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This book conations following chapters:

1.

Introduction to Partial Differential Equations: Formation of PDEs by eliminating-
Arbitrary constants, Arbitrary functions.

Solving Linear, Semi-linear, Quasi-linear PDEs of order 1 by Lagrange’s method,
Finding Integral surfaces passing through given curves represented by solution of a
given PDE.

Finding Complete Integral, Singular Integral, general integral of Non-Linear PDEs of
order 1 by Charpit’s method, Finding Integral surfaces passing through given curves
represented by solution of a given PDE: Cauchy-Characteristic Method.

Solving Lineah Homogeneous and Non-Homogeneous Linear PDEs of Higher order with
constant coefficients: finding C.F. & P.l., Cauchy-Euler PDEs.

Classification of PDEs of second order, reduction into Canonical form and solving those
Hyperbolic, Parabolic and Elliptic PDEs.

Solving Initial Boundary Value Problems(IBVPs): Method of separation of variables,
Eigenvalues and eigen functions of a Boundary value Problem, Using initial ccondiion
and by Fourier series getting required solution. Heat Equation, Laplace Equation and
Wave equation



PARTIAL DIFFERENTIAL EQUATIONS

° Chapter 1: Formation of PDEs
By removing arbitrary constants
By removing arbitrary functions
° Chapter 2: PDE of order 1

Linear: Lagrange’s Auxiliary equations method.
Non-linear: Charpit’s method, Characteristic method.

° Chapter 3: ODEs of higher order (i.e. order greater than 1) Linear homogeneous and non-
homogeneous PDEs
Linear ODEs with constant coefficients
General solution & Particular solution; Complete sol — C.F + P.I
Finding CF. & P.I. by reducing into PDE with constant coefficients.

Chapter 4:- Classification of PDEs & their application

e Reducing into canonical form
e Solving PDEs of different types
U
Heat Eq. Wave Eq.
Solution. By variable separable method

0’z 0%z 0z
R(X,¥y)—+S(X,y)——+T(X,y)— =0 Or Rr+Ss+Tt=0  .oereree 1
( y)ax2 ( y)(%,y ( y)ayz (1)
N
S2_4RT

. Here (1) is parabolic PDE if S? —4RT =0
e  Then (1)is a hyperbolic PDE if S*—4RT >0
. Then (1) is a elliptic PDE if S*—4RT <0




BASIC DEFINITIONS

Differential equation: An equation which involves derivatives, dependent variable/s,

independent variable/s.
e.g. (1) %+2x2y =x%", xe(-11). Here x is independent variable and y is depending on x
X

so dependent variable.

2

dy d’y

(2) d_3y+2__ex——cosx xe(a,b)
d¢  Tdx  dx® ’ ,

(3) EJre =y, E_zz =cost;te (a,b) is a system of differential equations.
o’z o1 oz, 3

4) — +—.—+XYy=X":Xe(a,b), c,d

@ et oyt XY €(ab),ye(c.d)

here x and Yy are independent variables and z is dependent.

Note: Variables for which domain is defined are called independent variables.

Classification of differential equations

ODE: If number of independent variable is one.
PDE: If number of independent variables are more than one.

e.g. (1), (2), (3) are ODEs, (4) is a PDE.

From calculus:
If y is function of x alone; then we talk ; like total derivative or simply derivative of y w.r.t x.

If y is function of u, v then we talk; Partial derivative of y w.r.t uorv.

e Order of differential equation: The order of the highest order derivative present in that
differential equation is called order of that differential equation.

e.g. Differential equation (1) is of order 1.

Differential equation (2) is of order 3.

¢ Degree of a Differential equation: The power of the highest order derivative, present in that
differential equation is called degree of that differential equation provided that derivatives are

radical free.




%
e.g. (1) ((cji_ij =1-y,order=1

For degree, we try to make derivatives radical free.

-+ given differential equation can be written as

% =(1- y)% .. degree = power of highest order derivative = 1
W+ cos 8 d'y)
e.g. (2) e* +cos XW+2y :(dx“ j

here order of differential equation = 4
degree of differential equation is NOT DEFINED (since derivatives are functions of exponential
trigonometric, so not radical free)

d’y ’
e.g. (3) COS(WJ +x°y=cosy

2
d5
-+ given differential equation can be managed as (d_zj = Cosfl(—xzy+cos y)
X

now derivatives are radical free. So degree of differential equation is 2.

e Linear differential equation: A differential equation is said to be linear ‘in the variable z if it
satisfies following three conditions:

(i) power of z does not exceed by 1

(ii) power of partial derivatives of z does not exceed by 1

(iii) No term present as product of partial derivatives or derivatives and z

Note: here powers are either 0 or 1.

e.g. (1) %+ p(x)y=Q(x) ;is a liner differential equation of order one in the variable y .

d'y d 2
(2) d—i’—d—y+ 2y =e" ;is a linear differential equation of order 4 in the variable v .
X X
2 4
(3) 6_5 + ¥ 842 :is alinear PDE in z. z dependent variable, x & y independent
OX oX  ox oy




2
(4) (?j + 2= x’yNot linear in z.
X

Note: Linearity has nothing to do with order of derivatives. It only cares about degree of the

variable and its derivatives for which we are checking the linearity.

Notations used in PDEs:

_ oz _
X

z p,z, =

:q == == = =

a
%y

Classification of first order PDEs:

Linear: A differential equation f(X,Y,z, p,q)=0is said to be linear if it is linear in p,q,Z. i.e.
given equation is of the form P(X,y).p+Q(X,y).q=R(X,Yy).

Semi-linear: A differential equation f(X,Y,z, p,q) =0issaid to be semi-linearifitis linearin p,q.
and coefficients of p&qQare functions of x&Yy only. i.e. given equation is of the form
P(xy)-p+Q(X,¥).a=R(X,Y,Z).

Quasi-linear: A differential equation f(X,y,z,p,q) =0is said to be quasi-linear if it is linear in
p, Q. i.e. given equation is of the form P(X,y,2).p+Q(X,Y,2).0=R(X,Y,2).

Non-linear: A differential equation f(X,V,z, p,q) =0is said to be non-linear.

e Homogeneous and non-homogeneous linear PDEs Higher order :

A partial differential equation is said to be linear homogeneous when all the deriavtives in that

equation are of same order. Otherwise it’s linear non homogeneous.
General from of higher order linear homogeneous PDE
aoa_”z++ali+azi+ ........... +ana—nZ=f(x,y)

ox" oyox™! oy2oy"2 oy
General from of higher order linear non-homogeneous PDE

"z "z "z "z

aoa)(_n+BO—n+al nl—l—Bl F o, =f(x,y)

oy X" oy




Partial Differential equation represented by a given family of surfaces

E.g. Find differential equation represented by z = ax + y; where a is arbitrary constant z is
depending on x and y.

Ans.z=ax +y.....(1)

Differentiating (1) we partially w.r.t x, we get

Now, using (2) in (1) we get

zZ= (2—Zj x+y; No arbitrary constant present «..(3)
X

So, (3) is differential equation of (1)

Or different (1) partially w.r.ty, we get. %= 0+1

a_ 1....(4);is also a differential equation of (1).

Detailed about formation of PDE:

Let’s consider a given relation as F (X, X,......X,, Z,8,,&,.....8,) =0 where a,,a,.....a,are arbitrary
constants. Z is dependent variable on independent variables X, X,......X, .

Case-1: If number of independent variables is same as number of arbitrary constants in given
relation then we get unique PDE of order one on eliminating arbitrary constants.

Case-2: If number of independent variables is less than the number of arbitrary constants in
given relation then we usually get a PDE of order greater than one on eliminating arbitrary
constants.

Case-3: If number of independent variables is greater than the number of arbitrary constants in

given relation then we get more than one PDEs of order one on eliminating arbitrary constants.

Initial Value Problem (IVP): A differential equation with given conditions at initial point of

domain of independent variable.

e.g. ODE (1) %: f(X,¥): ¥(X)=Y, where x, €(a,b) with xe[a,b] isan IVP




2 2
e.g. PDE [z%j +(z%j +2% =0; with z(X,, ¥,) = 2, With (X,,Y,) € X xY =[a,b;c,d]
X

Boundary Value Problems: A differential equation with conditions at boundary points.

d’y  ,dy ‘. . .
e.g. w+2&+y:e ; xe[-2,2] with y(-2)=0,y'(2)=0

e Solution of a differential equation: A function or curve which satisfies/represents the given

differential equation, is known as solution of that differential equation. Satisfies means if on
differentiating the given function and using derivatives and function in given differential

equation, we get both sides LHS and RHS as equal.

2 2
e.g. (1) - X ; y =1 satisfies the differential equation xdx+ ydy =0. So it is a solution of it.
: . . . d?y
(2) y(x)=c,cosx+c,sinx with ¢, and c, as arbitrary constants, satisfies v +y=0.50 y(x)
X

is the solution of this differential equation.

Let us now discuss different categories of solutions of PDEs of order one:

Complete Solution/Integral:

F(x,y,z,a,b) =0 is known as complete solution of f(x,y,z, p,q)=0; where z:dependenton x&y .

A Solution which has that many arbitrary constants as the number of independent variables.

Particular Solution/Integral: by giving some particular values to arbitrary constants in complete

solution, we get a particular solution of that PDE.

Singular Solution/Integral: The envelope of surfaces given by complete integral, which also

satisfy given PDE; is known as singular solution of that PDE.

Found by eliminating arbitrary constants from F(x,y,z,a,b) =0, Z—F =0, % =0
a

General Solution/Integral: Assume b=¢(a)in F(x,Yy,z,a,b)=0,i.e. we have F(x,Y,z,a,¢(a))=0,

One parameter family of surfaces. So it’s envelope gives the General solution.

Found by eliminating a from  F(x,y,z,a,¢(a)) =0, Z—F:O
a




Solution of an IVP: A solution / curve which satisfies the differential equation as well as given

initial conditions is known as solution of that IVP.




Formation of PDE
Category I: By removing arbitrary constants from given family of curves.

Ex-1 Find PDE represented by z=ax+y+2; ais arbitrary constant.

Ans. " z=ax+y+2 .. Q=a+0+0.'. we have, z=§x+y+z is req. PDE
oX oX
. oz 0z . . .
Or, z=ax+y+2 S —:a.0+1+0:>5:1|s also a PDE rep. by given family.

Observe: No. of arbitrary constant = 1 < no. of independent variables 2. (x & y). So we get more
than one PDEs of order 1.

Ex-2. Find PDE of family of spheres having radius A & centre in xy plane.

Ans. - Centre of sphere: in xy plane i.e. (h, k, 0); where h & k are arbitrary constants;
representing sphere for given family.

i.e., We have, given family as, (x=h)>+(y-k)*+2°=2* ... (1)

Observe:- No. of arb. Constants = No. of ind. variables = 2
Partially diff. (1) w.r.t. x; 2(x—h)+0+ 22% =0 we(2)

a

Partially diff. (1) w.r.ty, 0+2(y_k)+228y20 ...... (3)

Now, using (2) & (3) in (1), we get req. PDE

2 2
(zﬁj o 22 2 =n
2 oy

Ex.3 Find PDE rep. by z=ax+by+c, a, b, c are arbitrary constants.

Ans. ' z=ax+by+c; g=a+0+0:a=@, %:O+b+0:b=2
OX Ox oy oy

oz oz .
. ZI=X—+Yy—+C;CIS not removed yet
OX oy

2 2
Now, diff. again partially w.r.t x, Q=x8—§+g.1+ y oz +Q_0 +0
ox  ox°  0oX oxoy oy

* x&yareindependent var. oy/ox=0




oz 9z o oz .
=>—=X——Ft_—+Y is req. PDE.
OX  OX° OX ~ Oxoy

Observe: No. of arb. const = 3 > No. of indep. variable = 2 (x & y).

Category II:- Formation of PDE by removing arbitrary function from the eq. ¢(u,v)=0; where u,

v are functions ofx, y, z.
Note: we treat z as dependent variables on independent variables x & y.

Derivation : . ¢(u,v)=0 e (1); Where ¢ is arbitrary constant.

@du+@dv=0
ou

[ ouy  Ou L O o9 N N
= 6u(a dx + 8ydy = dzj av(a dx+8ydy+a dzJ 0...(2)

{ = uitselfis afunctionofx,y,z .. du :6_ud 6_ud +8_ud }
X oy oz

° Diff. (2) partially w.r.t x; we get,

S g g, o) GO g, 0 22
ou\ ox oy 0z OX ) OV OX oy oz ox

° Diff. (2) partially w.r.t. y; we get
@(iuo o @Jﬂ(av v azJ

O+—. . 0+
ou\ ox oy oz oy) ov

. 0...(4)
X ay Ty

{ x&yareind. Variables .'.%:0 and - zis function of x & y, we’ll have % in 3}
X
v va v o
_ObIu_ox ozlox _ox "ar | (s)
YERET au a ‘lUeriumw
ax o' ox oz

From (3) we have

.
From (4) we have _8¢/8u:ay o (6)
o/ ov @+q@
oy oz

Now, eliminating ¢ from (5) & (6) we have,




+
X0z _ Oy 0L . g req. PDE.

q_axay ox oy

OX 07 OXoz

(auav avauj +(6v6u avavj _dudv avau

—. . o(u,v) o(u,v)  o(u,v)
= .PDE i.e. 2. 2) p+8(z,x)q_6(x, "

aa
Here oY) _|OxOy|_ouv_ou v
o(x,y) |ovov| oxoy oy ox
OX oy
i.e., we have a(u,v). +6(U’V) = GO (7)
oy.z) ~ azx) " o(xy)

Exam point (1)

To get PDE by eliminating ¢ from ¢(u,v) =0;

Way (1): Following the procedure:

° Writing ¢(u,v) =0;

° Differentiating partially w.r.t x, then y & then eliminating ¢ .
Way 2

. o(u,v) o(u,v) o(u,v)

, , with the given u & v from ¢(u,v) =0
a(x,y) a(y,z) o(z,x)

Find

Using these in above final form (7)

Req. PDE — P(x,Y,2)P+Q(X,Y,2).g=R(X,Y,2)

Ex-4  Find PDE by removing arbitrary function from ¢(x+y+2z,x*+y*—2*)=0
Ans. Way1
XY+, X +Y -2)=0 ..(1)

Forif ¢(u,v)=0 .. u=x+y+z, v=x’+y*-7°




= d=-

= @du+@dv=0
ou ov

= (9 —dx —dy a—udz % @dx+@dy+@dz =0
ou | ox oy oz ov \ Ox oy oz

Diff. (2) partially w.r.t x,
@(6_u 1+8u 82)+8¢(8V 8v62j

ou\ox oz ox) ovlox oz ox
o o0

1+1. 2x+(=22).p)=0 ... 3
au(+ p)+ av( X+(-22).p) (3)

Diff. (2) partially w.r.ty,

aq)[au auazj a¢(av avaz]

ouloy ozoy oy ozoy
o % _
8u(1+1q)+6 (2y+(-22)q)=0 ... (4)

Now, eliminating ¢ from (3) & (4)

2(x—zp) 2(4-1zq)
1+p 1+q

(x=zp)(1+0) =(y —za)(1+ p)
X+0X—2zp—zpq =Y+ py —zq— pqz
(y+2)p—(x+2)g=x-y is the req. PDE.
Ans. Way 2:-
We have been given
d(X+y+2,x°+y*—2°)=0
U=X+y+2z,v=xX"+y* 7> ...(1)
Now, we know that, ¢(u,v) =0 is representing the PDE;

o(u,v) +a(u,v) _0(u,v)
o(u,2) o(z,x) _6(x,y)

From (1);

- (2)




auou

1
o) | o2 _ — 2y +2)
oy.2) |wvav| f2y -2z
oy oz
ou ou
aoxl |1 1
o(u.v) _ [0z Ox| _ =2(X+2)
o(z,x) |ovau| |-2z 2X
0z OX
au ou
o(u,v) |ox 1 1
ouy) _|ox oyl ~2(y-x)
axy) |vav| [2x 2y
Ox 0y

Using the above in equation (2), we get the equation PDE as,

2(y+2)p+2(z+x)qg=2(y—-x)=(y+2)p—(z+x)g=x—y.

Miscelleneous: category | & category Il Through process
Ex.1. Find the PDE represented by z = f(x? — y) + g (x> + y); by removing f & g.
Ans: [ =f(x>-y)+g(x*+y) ....(1)
Now, we try to eliminate f & g; by thought process of category (l).
Different (1) partially w.r.t. x;
%: fr(x*—y) . 2x+g'(X’ +y) x 2x = %%: F(x—y)+g' ¢ +y)  .(2)
Diff. (1) partially w.r.t y;

%zf'(xz—y)x(—1)+g‘(x2+y)><1:> %=—f'(x2—y)+g'(x2+y) ----- (3)

Diff. (2) partially w.r.t x,

%%Jr%(z__xl?j =f"(X’—y) x 2x+g"(X* +y) x 2x
1 [0z 10 " "
R{a_xf_ia_i}:f (xz—y) +0 (x2+y) ..(4)

2

Different (3) partially w.r.t y; % =f"(x*—y)+g"(X* +y) ...(5)

Now, subtracting (5) from (4), we get

2 2
iz 8_5_12 —a—§=0is required PDE.
4% |OX® X Ox| oy




Ex. 2.  Find the differential equation of surfaces of revolution whose axis of rotation is z-axis.

Ans: Surface of revolution whose axis of rotation is z—axis, given by z? = x*> + y? . Recall from 3D;

cone z = ¢ /x> +y*) ...(1), clearly, we don’t have ¢(u, v) =0 type, so, we follow:

Diff. (1) partially w.r.t. x, % = p(Ery )xi (2)

2x% +y?

Diff. (i) partially w.r.t.y, Z=—2Y ¢ (Jx+y?) ..(3)
Yy 2x*+y’
Now, from (2)/(3) P_X y@—xg= 0 is required PDE.
q vy ox oy

Ex 3. Find the PDE by removing arbitrary functions f & g from z = y f(x) + xg(y).
Ans: We have z = yf(x) + xg(y) .....(1)

Partially diff. (1) w.r.t x, %:yf 'X)+g(y)x1l = %:yf '(X)+g(y)--(2)

Partially different (1) w.r.t. y, %: f(X)x1+x9'(y) = %z f(X)+xg'(y) ...(3)

2

Partially different (2) w.r.t.y, s =f'X)+g'(y) ...(4)
OYyOX

From (2) xx+(3) x y; xyf '(X) +xg(y) + yf (x) + xyg'(y)= Xl —

oz oz , , oz o7 _ oz, .
x§+ ya ={xg(y)+yf )}+xy{f ' x)+g'(y)} = x&+ ya_ Z+ Xy Y ;required PDE

Examples to Practice
Type-1 Problems
Example.1. Eliminate a and b from az+b=a’x+y (1)

Differentiating (1) partially w.r.t'x"and 'y "', we have
a(oz/ox)=a’ ...(2), a(az/oy)=1...3)
Eliminating a from (2) and (3), we have (oz/ox)(éz/oy)=1,

which is the unique partial differential equation of order one.

Example.2. Eliminate a,b and ¢ from z =ax+by+cxy ...(1)

Differentiating (1) partially w.r.t'x"and 'y "', we have




Gz/ox=a+cy...(2), 8z/oy=b+cx...(3)

From (2) and (3), 8°z/0x* =0, 8°z/dy* =0....(4) and 6%z/oxdy =¢....(5)

Now, (2) and (3) = x(6z/ox)=ax+cxy and y(oz/dy)=by+cxy

. x(0z/ox)+y(6z/dy) = ax+by +cxy +cxy

or x(0z/0x)+y(8z/y) = 2+xy(0°z/xdy ), using (1) and (5) ....(6)

Thus, we get three partial differential equations given by (4), (5) and (6), which are all of order
two.

Type-2 Problems

Ex. 3. Find a partial differential equation by eliminating a and b from z =ax+by+a’ +b?.
Solution. Given z =ax+by+a®+b*....(1)

Differentiating (1) partially with respect to x and Yy, we get; dz/0x=a and 0z/dy =b.

Substituting these values of a and b in (1) we see that the arbitrary constants a and b are
eliminated and we obtain, z = x(6z/0x) + y(az/6y)+(az/6x)2 +(6Z/6y)2; which is the required

partial differential equation.

Ex. 4. Eliminate arbitrary constants a and b from z =(x—a)2+(y—b)2 to form the partial
differential equation.

Solution. Given Z=(X—a)2+(y—b)2. (1)

Differentiating (1) partially with respect to a and b, we get
oz/ox=2(x—a) and oz/oy =2(y—b).

Squaring and adding these equations, we have

(02/ox)’ +(az/oy)’ =4(x-a)’ +4(y~b)' =4| (x-a) +(y-b)’|
(0z/0x)° +(dz/dy)’ =4z, using (1).

Ex. 5. Eliminate a and b from z=axe’ +(1/2)xa%* +b.
Solution. Given z =axe’ +(1/2)xa’’ +b....(1)

Differentiating (1) partially with respect to x and Yy, we get




oz/ox=ae’ ...(2)  and az/ay =axe’ +a%e? = x(aey)+(aey)2 ..... (3)
Substituting the value of ae’ from (2) in (3), we get az/ﬁy = x(az/é’x)+(8z/8x)2 )

Ex. 6. Form the differential equation by eliminating a and b from z = (x2 + a)(y2 +b). [ILA.S.

1997] Solution. Given z=(x*+a)(y?+b)....(1)

Differentiating (1) partially with respectto x and Yy, we get

07/0X = 2x(y2 +b) or (y2 +b) =(1/2x)x(oz/ox) wel(2)
and 0z/dy = 2y(x* +a) or (x* +a)=(/2y)x(éz/dy). (3)
Substituting the values of (y*+b) and (X’ +a) from (2) and (3) in (1) gives

z=(1/2y)x(0z/dy)x(1/2x)x(0z/x) or 4xyz =(oz/ox)(oz/dy),

which the required partial differential equation.

Ex. 7. Form differential equation by eliminating constants A and p from z = Ae™ sin px.
Solution. Given z = Ae™ sin px. (1)
Differentiating (1) partially with respect to x and t, we get

dz/ox = Ape™ cos px.....(2), Oz/ot = Ape®sin px....(3)

Differentiating (2) and (3) partially with respect to X and t respectively gives

d%z/ox* = —Ap® e sin px.....(4) and 6%z/at? = Ap® e sin px....(5)

Adding (4) and (5), &°z/0x* +6%z/at? = 0,which is the required partial differential equation.

Ex. 8. Find the differential equation of the set of all right circular cones whose axes coincide
with z -axis.

Solution. The general equation of the set of all right circular cones whose axes coincide with z -
axis, having semi-vertical angle « and vertex at (0,0,C) is given by

X2 +y?=(z —c)2 tan® ¢ ....(1); in which both the constants ¢ and « are arbitrary.

Differentiating (1) partially, w.r.t x and Y, we get

2x=2(z—c)(0z/ox)tan’ & and 2y =2(z—c)(oz/oy)tan’




= y(z—c)(oz/ox)tan* @ =xy and x(z—c)(oz/dy)tan’ a = xy
= y(z—c)(oz/ox)tan® & = x(z—c)(oz/dy)tan’
Thus, y(0z/0x)=x(2z/dy), which is the required partial differential equation.

Ex. 9. Show that the differential equation of all cones which have their vertex at the origin is
pX+qy = z. Verify that yz+zx+Xxy =0 is a surface satisfying the above equation. [I.A.S. 1979,

2009]
Solution. The equation of any cone with vertex at origin is

ax® +by® + ¢z + 2 fyz + 2gzx + 2hxy =0,....(1) where a,b,c, f,g,h are parameters.
Differentiating (1) partially w.r.t. ‘X" and 'y "' by turn, we have
2ax+2czp+2fyp+29( px+z)+2hy =0 or ax+gz+hy+p(cz+ogx+fy)=0  ...(2)

and 2by+2czq+2f (yq+2)+2gxq+2hx=0 or by + fz+hx+q(cz+ fy+gx)=0 .(3)
Multiplying (2) by x and (3) by y and adding, we have

(ax2 +by? + gzx+ fyz + 2hxy)+(cz + fy+gx)(px+qy)=0

—(022 + fyz + gxz)+(cz + fy +gx)(px+qy)=0 using (1)

or (cz+ fy+gx)(px+ay—z)=0 or px+qy—z=0,....(4) required partial differential equation.
Second Part : Given surfaceis yz+zx+xy =0 ....(5)

Differentiating (5) partially w.r.t 'X' and 'y' by turn, we get

yp+ px+z+y=0and z+qy+xq+x=0 ....(6)

Solving (6) for p and q, p=—(z+Yy)/(x+Yy) and q=—(z+x)/(x+Y).

px+qy—z:—x(z+y)— y(z+x)_zz_2(xy+yz+zx):0’using 5)
X+Yy X+y X+Yy

Hence (5) is a surface satisfying (4).
Type-3 Problems

Ex. 11. Form a partial differential equation by eliminating the arbitrary function f from the

equation X+y+2 = f (X% +y? +2%).




Solution. Given X+y+z = f (x*+y?+2%)....(1)

Differentiating partially w.r.t. 'x" and 'y", (1) gives

1+p= f'<x2+y2+zz)-(2x+22p). (2)
and 1+q = f‘(x2+y2+22)-(2y+22q) .(3)
Eliminating f '(x2 +y+ 22) from (2) and (3), we obtain

(1+p)/(2x+2zp) =(1+q)/(2y+22q) or (1+ p)(y+20)=(1+0q)(x+2zp)

or (y—z)p+(z—x)g=x—y, which is the required partial differential equations.
Ex. 12. Eliminate the arbitrary functions fand F from y = f (x—at)+F (x+at).
Solution. Given y = f (x—at)+F (x+at).....(1)

From (1), dy/ox= f'(x—at)+F'(x+at) and hence 8°y/&x” = f "(x—at)+F"(x+at).....
Also, dy/ot = f'(x—at)-(-a)+F'(x+at)-(a)

and hence 8%y/at? = f"(x-at)-(-a)’ +F"(x+at)-(a)’

or &’y/ot* =a?[ f"(x—at)+F"(x+at)]....(3)

Then, (2) and (3) = 0°y/at* =a*(oy/ax?).

Ex. 13. Eliminate arbitrary function f from (i) z = f <X2 - yz). (i) z=f (X2 + yz).
Solution. (i) Given z = f <X2 - yz). (1)
Differentiating (1) partially with respect to x and Yy, we get

0z/ox = £'(X* —y?*)x2x sothat f'(x* —y?)=(1/2x)x(éz/éx) (2)
and 6z/0y = f'(x* —y?)x(-2y) sothat f'(x*—y?)=—(1/2y)x(dz/dy). ...(3)

1oz 1 oz 0z 0z

Eliminating f '(X2 —yz) between (2) and (3), we have ——=———or y—+X—=0.

oxox 2yey D Tox oy

(ii) Ans. y(0z/0x)—x(6z/dy)=0.




Ex. 14. Form a partial differential equation by eliminating the function f from
(i) z=f(y/x). (i) z=x"f(y/x).
Solution. Given z= f (y/x). (1)

Differentiating (1) partially with respect to x and Y, we get

oz/ox = 1'(y/x)x(=y/x?) or f'(y/x)=—(x*/y)x(oz/éx) (2)
and dz/ay = £'(y/x)x(Ux) or '(y/x)=x(dz/dy). ..(3)
Eliminating f '(y/x) between (2) and (3), we have

2
0z 0z
—X—g = xg or X—+ Y — =0,which is the required partial differential equation.

y oX oy OX
(ii) Given z=x"f (y/x). (1)

Differentiating (1) partially with respectto x and Yy, we get

oz/ox =nx" £ (y/x)+x"f ' (y/x)x(-y/x?) e(2)
and az/oy = x"f '(y/x)x(¥/x). .(3)
Multiplying both sides of (2) by x, we have x(az/ox)=nx"f (y/x)—yx"*f '(y/x). ()
Multiplying both sides of (3) by y, we have y(dz/oy)=yx" " f'(y/x). ...(5)

Adding (4) and (5), x(0z/0x)+y(oz/dy)=nx"f (y/x)

or x(0z/ox)+y(oz/dy)=nz, by (1)

Ex. 15. Form a partial differential equation by eliminating the function ¢ from

IX +my + nz :¢(x2 +y? +22).
Solution. Given Ix+my+nz =¢(X* +y* +2°). (1)

Differentiating (1) partially with respect to x and Yy, we get

| +n(oz/ox) = ¢'(x2 +y+ Zz)x{2X+ 22 (az/ax)} ()

and m+n(dz/dy) = ¢'(x2 +y2 4 zz)x{2y+22(az/ay)} (3)




l+n(az/ox)  2{x+z(oz/x)}

Dividing (2) by (3), weget < Gajay) 2{y+z(az/oy))

or (ny—mz)(6z/ox)+(lz—nx)(dz/oy)=mx—ly, which is the required partial differential

equation.

Ex. 16. Form partial differential egn. by eliminating the function f from z =e®*" f (ax—by).
Solution. Given z =™ f (ax—by). (1)
Differentiating (1) partially with respect to xand Yy, we get

oz/ox =e**af '(ax—by)+ae™*™ f (ax—by) ()

and 0z/dy =™ {-bf '(ax—by)} +be™"™ f (ax-by). e(3)

Multiplying (2) by b and (3) by a and adding, we get

b(éz/ox)+a(oz/dy)=2abe™™ f (ax—by) or b(5z/ox)+a(oz/dy)=2abz, by (1)

Ex. 17. Form a partial differential equation by eliminating the arbitrary functions f and F from
z=f(x+iy)+F(x—iy), where i* =—1.

Solution. Given z = f (x+iy)+F (x—iy). (1)
Differentiating (1) partially with respectto x and Yy, we get

dz/ox = f'(x+iy)+F'(x—iy)...(2) and 6z/dy =if '(x+iy)—iF'(x—iy)....(3)
Differentiating (2) and (3) partial w.r.t. X and Yy respectively, we get

o%z/ox® = f1(x+iy)+F"(x—iy) (4)
and &°z/oy? =i f "(x+iy)+i’F"(x—iy) :—{ fr(x+iy)+ F"(x+iy)} . .(5)
Adding (4) and (5), &°z/0x* +6%z/dy? =0, which is the required equation.

Ex. 18. Form partial differential equation by eliminating arbitrary functions f and ¢ from

z=f (x2 - y)+ g (x2 + y). [ILA.S. 1996]
Solution. Given Z = f(xz—y)+g(xz+y). (1)

Differentiating (1) partially with respect to x and Yy, we get




02/ 0x = 2xf '(x2 —~ y)+2xg '(x2 + y) = 2x{ f '(x2 — y)+ g '(x2 + y)} : (2)

and az/oy =—1'(x*—y)+g'(X* +y). ..(3)

Differentiating (2) and (3) w.r.t. X and Yy respectively, we get

’z/ox* = 2{ f '(x2 - y)+ g '(x2 + y)} +4x° { f "(x2 —~ y)+ g "(x2 + y)} ne(4)
and 0°z/0y* = £(X* —y)+g"(x* +Y). ()
Again (2) = f '(x2 - y)+ g '(x2 + y) =(1/2x)x(oz/ox). ....(6)

Substituting the values of f "(x2 — y)+ g "(x2 + y) and f '(x2 — y)+ g ‘(x2 + y) from (5) and (6)
, 02 0’z oz 0%z

= — +4x® =~ required pde.
ay2

2
in (4), we have a—zzzx(ijg_wrx 2 or x22
2 OX oy X ox

2X

Type-4 Problems

Extra Exam Point

Ex.1 State the properties of ®(X,y) if there exists a surface z=®(x,y) which passes through
the curve C with parametric equations X=X,(x),y =Y, (#),z2=2,(x) and at every point of
which the direction (p,q,—1) of the normal is such that f (x,y,z,p,z)=0.

Approach:

*Let Z=¢(X,Y)....(1) be the equation of the given surface

Let F(x,y,2)=¢(X,y)-2. (2)
OF o oz_ OF 0 _az_  OF

- il bl

X x x Ty oy Va

Since VF is normal to the surface F(x,y,z)=0, oF/ox,oF/oy,0F /oz ie. p,q-1 are
direction ratios of the normalto F(x,y,z)=0 or ¢(X,y).

From (1) and (2),

For more: See the explanation example below

Ex. 19. Solve the Cauchy’s problem for zp+q=1, when the initial data curve is
Xo =M, Yo =12y =p/2,0< <1,




Solution. Given f(x,y,z,p,q)=zp+q—1=0 (1)

Given initial data curve X, =g, Y, =, Z,=4/2,0< u<1 we(2)
From (1), of /op=12z, of /oq=1, and id—xo—qdizlxl—le:l—1 u#0,for 0< u<1.
ogdu opdu 2

Now, we have the following ordinary differential equations:

dx of dy of dz _ozdx ozdy

ot op dtoq and E_axdth@E or dx/dt =2z, dy/dt=1 ..(3)
and dz/dt = p(of /ap)+q(of /oq) = pz+q=1, by (1) ...(4)
Integrating (3) and (4), y=t+C, and z=t+C, ...(5)
From (2),at t =0, x(£,0) =, y(4,0)=u and z(1,0) = 1/2 ....(6)
Using (6), (5) reducesto y=t+ g and z=t+ u/2 we(7)
Then, from (3) and (7), dx/dt =t+ /2 so that x=(1/2)xt* +(1/2)x ut +C, ....(8)
Using (6), (8) reduces to X =(1/2)xt* +(1/2)x ut + u ....(9)

Solving y =t+ u with (9) for 4 and t in terms of X and Yy, we get

_yx o x=(Y?)
S T ()

Putting these values in z=t+ /2, the required solution passing through the initial data curve is
z :{2(y—x)+x—y2/2}/(2—y).

Assignment: Questions

Q.1. Eliminate a,b and ¢ from z=a(x+y)+b(x—y)+abt+c.[LA.S. 1998]

Q.2. Form the partial differential equation by eliminating the arbitrary constants a and b from
log(az—1)=x+ay+b. [I.A.S. 2002]

Q.3. Find a partial differential equation by eliminating a,b,c from x?/a® +y?/b? +z%/c* =1.

Q.4. Find the partial differential equation of all planes which are at a constant distance 'a' from
the origin.




Q.5. Show that the partial differential equation obtained by eliminating the arbitrary constants
a and ¢ from z=ax+g(a)y+c, where g(a) is an arbitrary function of a, is free of the

variables X,V,z.

Q.6. Show that the partial differential equation obtained by eliminating the arbitrary constants
aand b from z=ax+by+ f(a,b) is given by z=px+ay+ f (p,q).

Q.7. Form a partial differential equation by eliminating a,b and c¢ from the relation
ax® +by® +cz* =1.
Q.8. Form a partial differential equation by eliminating the arbitrary function ¢ from

¢(x2+y2+22,22—2xy):0.

Q.9. Eliminate the arbitrary function f and obtain the partial differential equation from
z=e"f(x+y).

Q.10. Equation of any cone with vertex at P(a,b,c) is of the form f (x;:’y_—l;] =0. Find the
Z-C 71—

differential equation of the cone.

Solution.1 Given z=a(x+Yy)+b(x—y)+abt+c (1)

Differentiating (1) partially w.r.t. 'x","y" and 't', we get
oz/ox=a+b...(2), az/oy=a-b....(3) oz/ot=ab....(4)

Using (a+b)’ —(a—b)’  =4ab .. (dz/ox)’ —(dz/dy)’ =4(dz/ét), using (2), (3) and (4).

Solution.2 (a) Given log(az—1)=x+ay+b (1)
Diffe (1) partially w.r.t. 'X' and ‘y’, we get Q =1...(2), a @ =a....(3)
az—-1ox az—-1oy
1+(oz
From (3), az—lzg so that a:M ....(4)
oy z
1+(oz
Putting the above values of az—1 and a in (2), we have M@ =1lor 1+Q @ = z@
z(oz/oy) ox oy )ox oy

Solution.3 Given x°/a’+y?/b® +2?/c? =1....(1)

Differentiating (1) partially with respect to x and Yy, we get




2—)2(+2—§%:0 or c2x+azzE:0 .(2)
a® c¢° dx dx
and 22’ Zf@—o or cty+b2z 2 20, (3)
b® ¢ oy oy
Differentiating (2) with respect to X and (3) with respectto Yy, we have
2 2
cz+az(g) +alz— 0z =0 . (4)
OX ox2
2
c +b2(azj +b¥z— 0z =0 ....(5)
OX 6’y
From (2), ¢’ :—(azz/x)x(az/éx) ....(6)

Putting this value of ¢? in (4) and dividing by a*, we obtain

2oz (a2 0%z 0%z a oz
———+| —| +z2—5=0o0r ZX—+X -z—=0. wee(7)
X OX \ OX Ox? OX? ox OX
2 2
Similarly, from (3) and (5), Zya— y(@j —Z@=O. ....(8)
oy’? oy oy

Differentiating (2) partially w.r.t. y, 0+a? {(62/8y)(82/8x)+ z (822/6X8y)} =0

or (0z/0x)(0z/éy)+12(0°z/oxdy) =0 (9)

(7), (8) and (9) are three possible forms of the required partial differential equations.
Solution.4

Let IX+my+nz=a (1)

be the equation of the given plane where |,m,n are direction cosines of the normal to the plane

sothat 1>+m?+n® =1 I,m,n being parameters (2)

Differentiating (1) partially w.r.t ‘X' and 'y', we have

l+np=0...(3), m+nq=0,....(4)

where p=0z/0x and q=0z/dy. From (3) and (4), | =—np and m=-nq. Substituting these

values in (2), we have n’ ( p°+q° +1) =1sothat n= ( p°+q° +1)7]/2 ....(5)




g I:—np:—p(p2+q2+l)fj/2 and m:—nq:—q(p2+q2+1)7]/2 (D)

Substituting the values of |I,m,n given by (5) and (6) in (1), we get

—px(p* +9” +1)7]/2 —qy(p*+q° +1)7]/2 +2(p*+q’° +1)7]/2 =a

2
or Zz=pxX+qy+ a( p°>+0° +1)]/ , Which is the required partial differential equation.
Solution.5 Differentiating z=ax+g(a)y+c partially w.r.t 'x" and 'y" yields

p=a and q=g(a). Eliminating a between them leads to q=g(p) or f(p,q)=0, where f
is an arbitrary function of p and (. Clearly, the resulting partial differential equation contains
p and q but none of the variables X,y,z.

Solution.6 Differentiating z=ax+by+ f (a,b) (1)
partially with respectto 'x' and 'y', weget p=a and q=b ...(2)
Eliminating a and b from (1) and (2) yields z = px+aqy+ f (p,q)-

Solution.7 Given ax® +by® +cz° =1. (1)
Differentiating (1) partially w.r.t. ‘X" and 'y "', we have

2ax+2cz(0z/ox)=0....(2), 2by +2cz(oz/0y)=0....(3)

Differentiating (2) partially w.r.t. 'y', we get

0+2c{(az/ay)(az/ax)+ 2(622/8y8x)} =0 or (&z/ox)(0z/dy)+12(0%z/oxdy) =0, ....(4)

since C is an arbitrary constant. (4) is the desired partial differential equation.

Again, differentiating partially (2) w.r.t. X and (3) w.r.t. ¥, we get
28+ 20{(G2/ox)" +2(072/0° )| =0..(5),  2b+2c|(ez/oy) +2(°2/2y?)} =0....6)
From (2), a=—(cz/x)x(8z/0x). Putting this in (5), we get

—(cz/x)x(az/ax)+c{(82/ax)z+z(822/ax2)}:0 or zx(822/8x2)+x(62/8x)2—z(az/ax):o

Similarly, from (3) and (6), we get Zy(622/8y2)+ y(@z/c’?y)2 —z(oz/oy)=0 ....(8)




(4), (7) and (8) are three possible forms of the required partial differential equations.

Solution.8 Given ¢(X’ +y* +2°,2° —2xy)=0. (1)
Let u=x*+Yy*+2z° and v=12"-2xy. (2)
Then, (1) becomes ¢(u,v)=0. (3)

Differentiating (3) partially w.r.t. 'X', we get

O0¢( ou ou\) O¢( ov ov
_¢(_+p ] ¢( A j 0, l8)
ou \ OX 0z oV \ OX 0z

where p=0z/0x and q=0z/dy . Now, from (2), we have

Ou/Ox = 2X, ou/dy =2y, du/dz =2z, V/OX =—-2Y, OV/0y =—2X, V/dzZ =22
Using (5), (4) reduces to (d¢/ou)(2x+2pz)+(0¢/ov)(-2y+2pz)=

or (x+pz)(d¢/ou)=(y—pz)(d¢/ov). ....(6)

Again, differentiating (3) partially w.r.t. 'y', we get

op(ou ou) ag(ov . ov

67(5” azj (ay QE}

or (0g/ou)(2y+2qz)+(04/ov)(—2x+2qz)=0, by (5)

or (y+0qz)(0g/ou)=(x—qz)(¢/ov). w(7)
Dividing (6) by (7), (x+ pz)/(y+0z)=(y—pz)/(x—qz)

or pz(y+x)—qgz(y+x)=y*—=x* or (p—q)z=y—X.

Solution.9 Given z=¢"f (x+Y) (1)
Differentiating (1) partially w.r.t. x and Y, we get

dz/ox=e’f'(x+y) and oz/oy =€’ f (x+y)+e’ f'(x+y) n(2)
From (1) and (2), we have 8z/dy =z +dz/dx

Solution.10 (x—a)/(z—c)=u and (y—b)/(z—c)=v (1)

Then, the equation of the given cone becomes f (u,v)=0 e(2)

....(5)




Differentiating (2) partially with respect to 'x', we have

of ou of ov o|1-0 x—a oz | of y—b oz .

——+——=0or — — s— [+—| — >— =0, using (1)

Ou OX OV OX oul z—c (z—c) oX | ov (z—c) OX

Of'i 1 - p X_az _q p y_bz =0, where p:g (3)
oul z—c (z—c) ov (z_c) OX

Differentiating (2) partially with respectto 'y', we have

ﬁa_u_Fﬂ@:O ori _X;azg ﬂ ﬁ_y;bzg =O,using (1)

ou oy ov oy ou\ (z-c) o) ovlz-c (z-c) o

of [ x—a | of 1 y-b oz
or - L4 _ =0, where g =— ....(4)
8U[q(zc)zj av(z—c q(zc)zJ 2

Eliminating of /ou and of /ov from (3) and (4), we have

1 Ly X—a o y-b
2= (z=¢)  (z=¢) |__[-e—p(x-a) -p(y-b) |_
X—a 1 y—b | i —q(x-a)  z-c-q(y-b)
_q 2 _q 2
(—cf < (a0

= {z-c-p(x-a)}{z—c-q(y-b)}-pa(x—a)(y-b)=0

= (z—c)2 -p(x-a)(z-c)-q(y—-b)(z-c)=0or (x—a)p+(y—-b)g=z—-c.

which in the required partial differential equation of the given cone.

PREVIOUS YEARS QUESTIONS ANALYSIS

Q1. Show that if f and g are arbitrary function of their respective arguments, then
u=f(x—kt+iay)+g(x—kt—iay), is a solution of ZX—ZL;Jrzyig:éZ% , where o® =1—é—22 :

[5a UPSC CSE 2021] Eliminate f and g and get the PDE. Take help from Ex 12

Q 1.1. By eliminating the arbitrary functions f and g from z = f (x> —y)+g(x>+y), form partial

differential equation. Refer example 18 page no. 20 [5a UPSC CSE 2023]




X —_ —_
Q 2. It is given that the equation of any cone with vertex at (a,b,c) is f (_ay_b] =0. Find the
z—-a z-cC

differential equation of the cone. [Sa UPSC CSE 2022, IFoS 2022]

Refer Solution 10 page no. 20 assignment

Q 3. Obtain the partial differential equation by eliminating arbitrary function f from the equation
f (x Y+, XY+ 22) =0. Refer example 4 page no. 10 [5a UPSC CSE 2021]

Q 4. Find the partial differential equation of the family of all tangent planes to the ellipsoid:
X® +4y® +4z7% = 4, which are not perpendicular to the xy-plane. [5a UPSC CSE 2018]

Hint: family of all tangent planes to ax® +by?® +cz® =1at the point («, 3, 7) is given by
aax+bpy+cyz=1. So for given ellipsoid: a=1/4,b=4/4,c=4/4; family of all tangent
planes; Passing through («, £, 7) is given by

%X+%+7/TZ =1=ax+4py+4yz=4...(1) Here «, 3,y are arbitrary constants.

Also it is given that these are not perpendicular to xy plane i.e. plane z=0=0.x+0.y+1.z=0.
So the product @.0+48.0+4y.1#0= y #0...(2)

4—(ax+4py)

So, we have to find PDE for z =
4y

;7 #0. Here «, B,y are arbitrary constants.

Q5. Find the partial differential equation of all planes which are at a constant distance a from the
origin. [(5d) 2018 IFoS]

Hint: Equation representing such planes : IX+my+nz =a; where |, m,n are arbitrary constants.

Refer Assignment Solution 4 on page no. 24

Q6. Obtain the partial differential equation by eliminating arbitrary function f from the equation
f (X+ Y+, X2+ Yy + 22> =0. [5a UPSC CSE 2021] Refer example 4 page no. 10

Q7. Form a partial differential equation by eliminating the arbitrary functions f(x) and g(y)

from z= yf(x)+xg(y) and specify its nature (elliptic, hyperbolic or parabolic in the region
x>0,y >0.[5a UPSC CSE 2020] Refer example 3 page no. 13

Q8. Construct a partial differential equitation of all surfaces of revolution having the z-axis as the
axis of rotation. [(5a) 2020 IFoS] Refer example 2 page no. 13




Q9. Form a partial differential equation of the family of surfaces given by the following
expression: 1//(x2 +yP+22% Yy - ZZX) =0.[1a UPSC CSE 2019] Refer example 4 page no. 10

Q10. Form the partial differential equitation by eliminating arbitrary functions ¢ and y from the

relation z = go(x2 - y)+1,//(x2 + y). [(5a) 2017 IFoS] Refer example 18 page no. 20
Q11. Obtain the partial differential equation governing the equations
#(u,v)=0, u=xyz,v=x+y+z. [(5a) 2016 IFoS] Refer example 4 page no. 10

Q12. Form a partial differential equation by eliminating the arbitrary functions f and g from
z=yf (x)+xg(y).[5a UPSC CSE 2013] Refer example 3 page no. 13

Q13. Eliminate the arbitrary function f from the given equation  f (X2 FY + 28 X+ Y+ z) =0.

[(5b) 2013 IFoS] Refer example 4 page no. 10




FIRST ORDER LINEAR PDEs

Lagrange’s method

An equation of the form |P(x, Y,2)p+Q(X,y,2)g=R(x,y, z)| is known as Lagrange’s equation. Also

it’s writtenas |Pp+Qq=R| ...(1)

Base behind Lagrange’s method

If u(x, y, z) = c1, v(x, y, z) = c2 are two independent solutions of systems of differential equations

X =ﬂ =% : where c1 & ¢y are arbitrary constant.
p Q R

Then ¢(u, v) = 0is a solution of Pp+Qq=R

Where ¢ is an arbitrary function(Proof can be easily done as category Il of prev. Chapter Not
required; eliminating arbitrary function ¢.

Lagrange’s method: To solve a PDE of the form Pp+Qq=R

Step (1): Write system of differential equations as
ox_dy_dz,
p Q R’

Step (2): Find two linearly independent solutions by solving differential equations out of above

by using P, Q, R form given PDE...(2)
system (in step (i)).
E.g. Let’s say by solving d—: = %, we u(x,y,z)=¢

By solving d—: = d—F:, we get V(X,Y,z)=cC,
.". Required solution of given PDE is ¢(u, v) = 0; where u & v are from step (ii)

or v =¢(u) or u = ¢(v) where ¢is arbitrary function.

Type | Problem

Where by taking any two fractions out of system of differential equations, solving we get,

u(x,y,z)=c¢, &Vv(x,Y,z)=c,

https://www.youtube.com/@PreparelnRightWay www.mindsetmakers.in
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Type Il Problem Let’s say if we u(X,Y,z)=c, by taking any two fractions out of system of

differential equations, But we’re not getting directly v(X,Y,z)=c, by other combination of
fractions.

In this case ; we use u(X,y,z)=c, tofind v(x,y,z)=c,

Type lll Problem: Choosing Multipliers

By algebra ; each fraction of (2) can be equal to Rdx+Qdy +Rdz
RP+QQ+RR
Where P, Q,, R, are called multipliers i.e. %= ﬂ= %= Rax+Qdy + R0z
P Q R PP+QQ+RR

Note: For multipliers selection
We choose P,Q,, R, insuch awhythe PP+QQ+RR=0

Because inthiscase:  We have; %= ﬂ= % = Rax+Qdy + Rdz
P Q R 0

Now let’s say if we take first & last fraction

dx _ Rdx+Qdy +Rdz

We have, y 5 = Pdx+Qdy+Rdz=0....(3)

Now suppose if P, is a function of x alone Q, is function of y- alone , R, is function
of z- alone; means we integrate (3) and easily get the solution.

2

Ex 1. Solve [E) p+Xxzq =Y.
X

Solution. On comparing given PDE with Pp+Qq=Rwe get P =E, Q=1zx,R=Yy?
X

Lagrange’s system of differential equations is, TN S oSy e (1)
yz) x
%)
. . dx dy  xdx ) )
By taking first two fractions of (1); -——~= —=—-=dy=x"dx-y°dy=0
(VZ] @y
X

3 3

. . X . . .
On integrating ; E—y? =C,, C Is an Iintegration constant.
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3 3

Xy
3

We get u (x,y,2) = ¢, where u(x,y,z)=

By taking 15t & 3" fraction of (1); XX _ gy
z

xdx = zdz; Onintegrating X?——:C2 =

3 252
Required solution of given PDE is ¢(X 3y ,X Z j:O

The linear partial differential equation with n independent variables and its

solution. Let x1, x2...,x» be the n independent variables and let p1 = 0z/0x1, p2 = 02/0xa,...,pn =
0z/0xn, Where z is the dependent variable. Consider the general linear partial differential
equation with n independent variables

P1 p1+P2 p2+..+Pppn =R (1)
where P1,P,,..,P, are functions of x1,x2...,xn.

Let us = ¢c1,uz = ¢3,...,un = cn be any n independent integrals of the auxiliary equations
(dx)/PB = (dxz)/P2 ] (an)/Pn
Then the general solution of (1) is given by ¢(u1,uz,...un) = 0.

Note that the above procedure is generalization of Lagrange's method.

Integral surfaces passing through a given curve. Till now, we discussed about general integral of
Pp + Qg = R. We'll now learn two Categories of problems of using such a general solution for
getting the integral surface which passes through a given curve.

Category-l. Let Pp+Qq=R (1)

be the given equation. Let its auxiliary equations give the following two independent solutions
u(x,y,z) =c, and v(x,y,z) =c, .(2)

Suppose we wish to obtain the integral surface which passes through the curve whose equation

in parametric form is given by x=x(t), y = (t),z=2z(t), ...(3) where t is a parameter.

Then (2) may be expressed as

u[x(t),y(t),z(t)] =c, and v[x(t),y(t),z(t)] =c,. ...(4)
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We eliminate single parameter t from the equations of (4) and get a relation involving ¢1 and c».
Finally, we replace c1 and c¢; with help of (2) and obtain the required integral surface.

Category Il. Let Pp+Qq=R ..(1)
be the given equation. Let is Lagrange’s auxiliary equations give the following two independent
integrals
u(x,y,z) =c, and v(x,y,z) =¢,....(2)
Suppose we wish to obtain the integral surface passing though the curve which is determined

by the following two equations
#(x,y,z) =0 and w(xy,z) =0. ..(3)

We eliminate x, y, z from four equations of (2) and (3) and obtain a relation between c1 and c;.
Finally, replace c1 by u(x, y, z) and c; by v(x, y, z) in that relation and obtain the desired integral
surface.

SURFACES ORTHOGONAL TO A GIVEN SYSTEM OF SURFACES

Let fix,y,z)=C ...(1)

represents a system of surfaces where C is parameter. Suppose we wish to obtain a system of
surfaces which cut each of (1) at right angles. Then the direction ratios of the normal at the point
(x, y, z) to (1) which passes through that point are 0f/dx, of/dy, 0f/0z.

[from vector calculus gradient]

Let the surface, z = @(x, ) ..(2)

cuts each surface of (1) at right angles.

Then the normal at (x, y, z) to (2) has direction ratios

0z/0x, 0z/dy,-1i.e., p, q,-1.

Since normals at (x, y, z) to (1) and (2) are at right angles, we have

p(of / ox) +q(of / oy) — (of / dz)=0= p(of / ox) +q(of / oy)=of / oz ...(3)
which is of the form Pp + Qg = R.

Conversely, we easily verify that any solution of (3) is orthogonal to every surface of (1).

Geometrical description of the solutions of Pp + Qg = R and of the system of equations dx/P =
dy/Q = dz/R and to establish relationship between the two.

Proof. Consider Pp+Qqg=R (1)

and (dx)/P=(dy)/Q=(dz)/R ..(2)
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where P, Q and R are functions of x.
Let z=@(x,y) (3)

represent the solution of (1). Then (3) represents a surface whose normal at any point (x, y, 2)
has direction ratios 0z/0x, dz/dy,—1 i.e., p,q,—1. Also we know that the simultaneous equations
(2) represent a family of curves such that the tangent at any point has direction ratios P, Q,R.
Rewriting (1), we have

Po+Qg+R(-1)=0 ..(4)

showing that the normal to surface (3) at any point is perpendicular to the member of family of
curves (2) through that point. Hence the member must touch the surface at that point. Since
this holds for each point on (3), we conclude that the curves (2) lie completely on the surface
(3) whose differential equation is (1).

Another geometrical interpretation of Lagrange's equation Pp+Qg=R.

To show that the surfaces represented by Pp + Qg=R are orthogonal to the surfaces
represented by Pdx + Qdy + Rdz = 0.

We know that the curves whose equations are solutions of
(dx)/P = (dy)/Q = (dz)/R (1)

are orthogonal to the system of the surfaces whose equation satisfies
Pdx + Qdy + Rdz=0 -(2)

Again from previous discussion, the curves of (1) lie completely on the surface represented by
Pp+Qq=R (3)

Hence we conclude that surfaces represented by (2) and (3) are orthogonal.
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Type-1 Problems

Ex. 1. Solve ptanx+qtany=tanz.
Solution. Given (tanx) p+(tany)gq=tanz. (1)

_dy dz
tanx tany tanz’

(2)

The Lagrange’s auxiliary equations for (1) are

Taking the first two fractions of (2), cot xdx—cotydy =0.

Integrating, logsinx—logsiny =logc, or (sinx)/(siny)=c, .e(3)
Taking the last two fractions of (2), cotydy—cotzdz=0.

Integrating, logsin y—logsinz =logc, or (siny)/(sinz)=c,. ....(4)
From (3) and (4), the required general solution is

sinx/siny =g(siny/sinz), ¢ being an arbitrary function.

Ex. 2. Solve y’p—xyq=X(z-2y).

dy dz

N — x(z—2y) (1)

. > . dx
Solution. Here Lagrange’s auxiliary equations are — =
y

Taking the first two fractions of (1) and re—writing, we get
2xdx +2ydy =0 so that X* +y* =c,. n(2)
Now, taking the last two fractions of (1) and re—writing, we get

dy y dy y

Jons _ e"9Y =y . Hence solution of (3) is

whichislinearin z and y.Itsl.LF.= e
z-y:.|'2ydy+c2 or zy—y’ =c,. ...(4)
Hence ¢<X2 +y%,zy— y2) =0 is the desired solution, where ¢ is an arbitrary function.

Ex.3. Solve p+3q=5z+tan(y—3x).

Solution. Given p+3q=5z+tan(y—3x). (1)
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The Lagrange’s subsidiary equations for (1) are % = ﬂ = dz . we(2)
1 3 5z+tan(y—3x)

Taking the first two fractions, dy —3dx=0. wer(3)

Integrating (3), y—3x=c,,C, being an arbitrary constant. ....(4)

Using (4), from (2) we get % = L ....(5)
1 5z+tanc

Integrating (5), x—(1/5)xlog(5z+tanc,)=(1/5)xc,,c, being an arbitrary constant.
or 5x—log| 5z +tan(y—3x) | =c,, using (4) ...(6)
From (4) and (6), the required general integral is

5x—log [52 + tan(y—3x)} =¢(y—3x), where ¢ is an arbitrary function.

Ex. 4. Solve z(z*+xy)(px—ay)=x".

Solution. Given Xz(z*+xy) p—yz(z* +xy)q=x". (1)

The Lagrange’s subsidiary equations for (1) are o] = Ly = % ..... (2)

xz(z2 +xy) —yz(z2 + xy) x*

Cancelling Z(Z2 + Xy), the first two fractions give

(1/x)dx=—(1/y)dy or (1/x)dx+(1/y)dy=0. (3)
Integrating (3), logx+logy=logc, or xy =c,. ....(4)
dx dz

Using (4), from (2) we get ————~=—
xz(z +cl) X

or X’dx =z(z* +¢,)dz or x*dz—(2°+¢,z)dz =0. ...(5)
. 4 4 2 _ 4 4 2 _

Integrating (5), x*/4—z /4—(012 )/2—02/4 or X' —z"-2¢z° =¢,

or x*—z*-2xyz* =c,, using (4) ....(6)

From (4) and (6), the required general integral is

¢(Xy, x*—z* —2xy 22> =0, ¢ being an arbitrary function.
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Ex. 5. Solve Xxyp+ y*q = zxy —2x°.
Solution. Given xyp + y*q = zxy — 2Xx°. (1)

The Lagrange’s subsidiary equations for (1) are % = d—g = Lz . ....(2)
dy y° zxy—-2x

Taking the first two fractions of (2), we have

(dx)/xy =(dy)/y? or (I/x)dx—(Y/y)dy=0 or(3)
Integrating (3), logx—logy =logc, or x/y=c,. ...(4)
From (4), X =c,y . Hence from second and third fractions of (2), we get

ﬂ dz or cdy— dz

2

Y oy’ - 207y

=0. ....(5)

Integrating (5), ¢,y —log (Z - 2C12) =C, or X— Iog[z - 2(X2/y2 )] =C,, using (4)
From (4) and (6), the required general solution is
X— Iog[z —2(X2/y2)] =¢(x/y), ¢ being an arbitrary function.

Type-2 Problems

Ex.1. Solve {(b—c)/a} yzp+{(c—a)/b}zxq ={(a—h)/c}xy.

Solution. Given {(b—c)/a}yzp+{(c—a)/b}zxq = {(a—b)/c}xy. (1)

The Lagrange’s subsidiary equations of (1) are adx_ _ bdy _ cadz

e Choosing X, Y,z as multipliers, each fraction for (2)

axdx+bydy+czdz _axdx+bydy+czdz

~xyz[(b—c)+(c-a)+(a=b)] 0

s.axdx+bydy+czdz =0 or 2axdx+ 2bydy +2czdz =0.

Integrating, ax” +by’ +cz* = ¢,,C, being an arbitrary constant. wee(3)

¢ Again, choosing ax,by,cz as multipliers, each fraction of (2)
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a’xdx +b?ydy + c*zdz _a’xdx+b?ydy +czdz

~ xyz[a(b—c)+b(c—a)+c(a=b)] 0

- a’xdx +b?ydy +c?zdz =0 or 2a’xdx + 2b*ydy + 2czdz = 0.

Integrating, a’x” +b?y*+c”z* =c,,c, being an arbitrary constant. ...(4)
From (3) and (4), the required general solution is given by

¢5<ax2 +by? +cz%,a’x* +b*y* + szz) =0, where ¢ is an arbitrary function.

Ex. 2. Solve z(X+Yy)p+z(x—y)q=x"+y?.

Solution. Given z(X+Y)p+z(x—y)q=x>+y*. (1)

_dy  dz
z(x+y)_z(x—y)_x2+y2

The Langrange’s subsidiary equations for (1) are

e Choosing X,—Y,—2, as multipliers, each fraction

xdx — ydy — zdz =xdx—ydy—zdz
xz(x+y)—yz(x—y)—z(x2—y2) 0 '

o Xdx—ydy—zdz or 2xdx—2ydy—2zdz=0.
Integrating, X —y*—z° = C,,C, being an arbitrary constant. ..(3)
e Again, choosing Y, X,—z as multipliers, each fraction

_ ydx+xdy—zdz =ydx—xdy—zdz
yz(x+y)+xz(x—y)—z(x2+y2) 0

. ydx+xdy—zdz=0 or 2d(xy)—2zdz =0.

Integrating, 2Xy —2° =C,,C, being an arbitrary constant. we(4)
From (3) and (4), the required general solution is given by

qrﬁ(x2 —y?—7%,2xy — 22) =0, ¢ being an arbitrary function.

Ex. 3. Solve (mz—ny) p+(nx—Iz)q =ly—mx. [LLA.S. 1977]

Solution. The Lagrange’s auxiliary equations for the given equation are
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dx  dy  dz
mz—ny nx—lz ly—mx

e Choosing X, Y,z as multipliers, each fraction of (1)

xdx + ydy + zdz _ Xdx+ ydy + zdz

x(mz—-ny)+y(nx—Iz)+z(ly—mx) 0

- Xdx+ ydy +zdz =0 or 2xdx+2ydy+2zdz =0

Integrating, X* + Yy’ +2° =c,,C, being an arbitrary constant.

e Again, choosing |,m,n as multipliers, each fraction of (1)

ldx + mdy + ndz _ldx+mdy +ndz

I (mx—ny)+m(nx—Iz)+n(ly—mx) 0

- ldx+mdy +ndz =0 so that Ix+my+nz=c,.

From (2) and (3), the required general solution is given by

¢(X2 +y2+ 2% X+ my + nz) =0, ¢ being an arbitrary function.

Ex. 4. Solve X(y*-2°) p—y(zz+x2)q =2(X* +y?).

Solution. The Lagrange’s auxiliary equations for the given equation are

dx dy . az
x(yz—zz) - —y(22+x2) N z(x2+y2)'

e Choosing X, Y, z, as multipliers, each fraction of (1)

xdx + ydy + zdz _ xdx + ydy + zdz

=xz(yz—zz)—y2(22+x2)+22(x2+y2) 0

= xdx + ydy + zdz =0 so that X’ +y*+2° =c,.

e Choosing 1/x,—1/y,—1/z as multipliers, each fraction of (1)

(I/x)dx—(1/y)dy—(1/z)dz (I/x)dx—(1/y)dy—(¥z)dz

y -2+ 27+ X (X +y?) 0

= (1/x)dx—(3/y)dy—(1/z)dz =0 so that logx—logy—logz =logc,

= log{x/(yz)} =logc, = x/yz =c, .
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. The required solution is ¢(X2 +y°+7°, X/yz) =0, ¢ being an arbitrary function.
Ex. 5. Solve (y—2zx) p+(X+yz)g=x"+y*.

Solution. The Lagrange’s auxiliary equations for the given equation are

dx dy  dz
y—2x X+yz X +y*’

(1)

e Choosing X,—Y, Z as multipliers, each fraction of (1)

B xdx — ydy + zdz _ Xdx— ydy + zdz
x(y—zx)—y(x+yz)+z(x2+y2) 0
= 2xdx—2ydy +2zdz =0 so that X’ —y*+2* =c,. (2)

e Choosing Y, X,—1 as multipliers, each fraction of (1)

ydx + xdy —dz d(xy)—dz
= = d —dz=0sothat xy—z=c,. ...(3
y(y—zx)+x(x+yz)—(x2+y2) 0 = (Xy) so that xy 2 (3)

.. From (2) and (3) solution is ¢5(X2 W XN Xy—Z) =0, ¢ being an arbitrary function.
Ex. 6. Solve X(y*+2) p—y(x*+2)q=2(x*-y*).[LAS. 2004]

Solution. Here Lagrange’s subsidiary equations for given equation are

dx d dz
_ y  _ , (1)

x(y2 + z) —y(x"' + z) z(x2 — y2)
e Choosing 1/x,1/y,1/z as multipliers, each fraction of (1)

(I/x)dx+(1y)dy+(1/z)dz  (/x)dx+(1/y)dy+(L/z)dz

Y +z-(x+2)+x° -y 0

= (1/x)dx+(1/y)dy+(1/z)dz =0 so that logx+logy+logz =logc,
= log(xyz)=logc, = xyz=c,. n(2)
e Choosing X,Y,—1 as multipliers, each fraction of (1)

xdx + ydy —dz _ Xdx+ ydy —dz
xz(yz+z)—y2(x2+z)—z(x2—y2)_ 0
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= Xxdx+ydy—zdz =0 sothat X’ +y*—2z=c,. .(3)

-.From (2) and (3), solution is qrﬁ(x2 +y* -2z, Xyz) =0, ¢ is being an arbitrary function.

Ex. 7. Solve (Xx+22)q+(4zx—y)q=2x"+Y.

dx  dy  dz
X+2z 4dx—-y 2X°+y

Solution. Here Lagrange’s auxiliary equations are

e Choosing Y, X,—2z as multipliers, each fraction of (1)

ydx + xdy — 2zdz _d(xy)-2zdz
y(x+22)+x(4zx—y)—22(2x2+y) 0
= d(xy)—2zdz =0 so that xy—z° =c,. (2)

e Choosing 2X,—1,—1 as multipliers, each fraction of (1)

B 2Xdx —dy —dz _ 2xdx—dy —dz
2x(x+22)—(4zx—y)—(2x2+y) 0
= 2xdx—dy—dz =0 sothat X*~y—-z=c,. .(3)

(1)

. From (2) and (3), solution is ¢(Xy— 22, x> —y— Z) =0, ¢ being an arbitrary function.

Ex. 8. Solve (2% —2yz—Y?) p+(xy+2x)q =Xy — 2X

Solution. Here Lagrange’s auxiliary equations for given equation are

d d d
x v @ (1)

22-2yz-y* x(y+z) x(y-z)

e Taking the last two fractions of (1), we have
(y—z)dy=(y+2z)dz or 2ydy—2zdz—2(zdy+ydz)=0.

Integrating, y> —2>—2yz =C,,C, being an arbitrary constant. we(2)

e Choosing X, Y,z as multipliers, each fraction of (1)

B xdx + ydy + zdz _ xdx+ ydy + zdz
x(22—2yz—y2)+xy(y+z)+xz(y—z) 0
= 2xdx +2ydy +2zdz =0 so that X* +y*+2° =¢,. (3
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From (2) and (3), solution is ¢5(y2 —7°-2y7,X° +y* + 22): 0, ¢ being an arbitrary function.

From the solution of the given equation, it follows that if it represents a sphere, then its centre
must be at (0,0,0), i.e., origin.

Ex. 9. Solve (y3x—2x4) p+(2y4 —x3y)q = 92(x3 —~ y3).

Solution. Here Lagrange’s auxiliary equations for the given equation are given by

dx  dy dz
y3X_2X4 2y4_X3y 92(X3_y3)

(1)
e Taking first two fractions of (1), we have (2y4 - Xsy)dx = (y3x - 2X4)dy

Dividing both sides by x°y°® gives (Zy izj dx = [i_ﬁj dy

3 2 3
X

y X2y
or (izdy—z—gdxj+(i2dx—2—)3(dyJ: Oord (lszfd [é}:o.
X X y y X y
Integrating, (y/x2)+(x/y2) =C,,C, being an arbitrary constant. we(2)

e Choosing 1/x,1/y,1/3z as multipliers, each fraction of (1)

(1/x)dx+(1/y)dy +(1/3z)dz (1/x)dx+(1/y)dy +(1/3z)dz

:(y3—2x3)+(2y3—x3)+3(x3—y3) 0

= (1/x)dx+(1/y)dy+(1/3)dz =0 so that logx+logy+(1/3)xlogz =logc,

= log(xy z%*) =logc, = xyz** =c,. (3)

From (2) and (3) solution is ¢(Xyzj/3, y/x2 + X/yz) =0, ¢ being an arbitrary function.
Ex. 10. Solve X*p+ y’q=nxy .

Solution. Here Lagrange’s auxiliary equations are (dx)/x* =(dy)/y® =(dz)/nxy ....(1)
e Taking the first two fractions of (1), we get X *dx—ydy =0.

Integrating, —1/x+1/y = —¢, so that (y—X)/xy=c, . (2)

e Choosing 1/x,—1/y,c,/n as multipliers, each fraction of (2)
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_ (I/x)dx—(1/y)dy+(c,/n)dz _ (I/x)dx—(1/y)dy+(c,/n)dz
X—Y+CXy X—Y+Yy—X

_ (]/x)dx+(]/ygdy+(cl/n)dz <o that %dx—%dw%dzzo

, by (2)

Integrating, logx—logy+(c,/n)z =(c,/n)c,,c, being an arbitrary constant.

or z—(n/c,)(logy—logx)=c, or z—(n/c,)log(y/x)=c,

or z——— nxy IOQX—CZ, using (2). wr(3)

y—X

From (2) and (3), the required general solution is

¢(y—x Z—- Xy log yj 0, ¢ being an arbitrary function.
Xy y—X

Type-3 Problems
Ex. 1. Solve (y+2)p+(z+X)q=x+Y.

dx d dz
Solution. Here the Lagrange’s auxiliary equations are _ L ...(1)
y+z 7 X AR y

_ d(x-
® Choosing 1, —1, 0 as multipliers, each fraction of (1) = (y:i); ((jz+ X) — Ei 33 . ...(2)

dy —dz d(y-z
¢ Again, choosing 0, 1, —1 as multipliers, each fraction of (1) = y = (y )

(z+x)-(x+y) —(y-2)
....(3)

e Finally, choosing 1, 1, 1 as multipliers, each fraction of (1)
_ dx +dy + dz _d(x+y+z)
_(y+z) +(z+x)+ (x+y) 2(x+y+z)

(
d(x-y) d(y-z) d(x+y+z)
(2), (3) and {4) = —(x=y) —(y-2) 2(x+y+z)’

....(4)

....(5)

d(x-y)_d(y-2)

X—=Yy -2

Taking the first two fractions of (5),

Integrating, log(x—y)=log(y—2z)+logc,c, being an arbitrary constant.
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or log{(x-y)/(y-z)}=logc, or (x—y)/(y-2)=¢,. ...(6)

' ' _ _ d(x—y) d(x+y+z)
Taking the first and the third fractions of (5), 2 + =0

(x-y) X+Yy+12

Integrating, 2log(x—y)+log(x+y+z)=logc, or (x— y)2 +(x+y+2)=c,. ..(7)
From (6) and (7), the required general solution is

¢[(x—y)2(x+y+z),(x—y)/(y—z)}=0, ¢ being an arbitrary function.

Ex. 2. Solve y(x—y) p+x*(y-x)q=2(x*+y?).
Solution. Here the Lagrange’s auxiliary equations for the given equation are
dx dy dz

yZ(X_Y)z_XZ(X—Y)Z Z(X2+y2)' (1)

e Taking the first two fractions of (1), x°dx =—y?dy or 3x°dx+3y’dy =0.
Integrating, X° +y° = C,,C, being an arbitrary as constant. —e(2)

e Choosing 1, —1, 0 as multipliers, each fraction of (1)

dx—-d dx—-d
- y - y ..(3)

Y (x=y)+x*(x=y) (x=y)(X’+Yy*)

e Combining the third fraction of (1) with fraction (3), we get

dx —dy dz d(x-y) dz
= or -—=0.
(x—y)(x2+y2) z(x2+y2) X-y
Integrating, log(x—y)—logz=logc, or (x—y)/z=c,. (4)

From (3) and (4), solution is ¢<X3 +y°(x- y)/z) =0, ¢ being an arbitrary function.
Ex. 3. Solve (X* -y —2%) p+2xyq =2xz or (y*+2* =X’ ) p—2xyq =—2xz .

[ILA.S. 1973; P.C.S. (U.P.) 1991]
Solution. Here the Lagrange’s auxiliary equations for the given equation are

dx _dy  dz
yi+22-x2  -2xy -2xz’

..(1)
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¢ Taking the last two fractions of (1), we have

(1/y)dy =(1/z)dz so that (1/y)dy—(1/z)dz=0.

Integrating, logy—logz=logc, or y/z=c,. we(2)
e Choosing X, Y,z as multipliers, each fraction of (1)

B Xxdx+ydy+zdz _ Xdx+ydy+zdz
xy? +xz% — x° — 2xy? — 2xz° —x(x2 +y? +zz)

(3)

e Combining the third fraction of (1) with fraction (3), we have

xdx+ydy+zdz  dz or 2xdx+2ydy+2zdz dz _

= 0.
—x(x2+y2+22) —2Xz X2 +y? + 7 z

Integrating, Iog(x2 +y + 22)— logz=logc, or (x2 +y+ 22)/2 =C,.  ...(4)

From (2) and (4) solution is ¢(y/z ,(x2 + y2 + 22)/2) =0, ¢ being an arbitrary function.

Ex. 4. Solve (1+y)p+(1+x)q=z.

dx d dz
Solution. Here the Lagrange’s auxiliary equations are —— = 15y £z B2 (1)
1+y 1+x 1z

e Taking the first two fractions of (1), we have

(1+x)dx=(1+y)dy or 2(1+x)dx—2(1+y)dy=0

Integrating, (1+ X)2 -(1+ y)2 =C,,C, being an arbitrary constant. (2)

e Taking 1, 1, 0 as multipliers, each fraction of (1) = =
1+ y+1+X 2+X+Yy

Combining the last fraction of (1) with fraction (3), we get

d(2+x+y)_% ord(2+x+y)_%_
2+X+Yy z 2+X+Y z

0.

Integrating, log(2+x+Yy)—logz=logc, or (2+x+Yy)/z=c, (4)
From (2) and (4), the required general solution is given by

¢[(1+ X)2 —(1+ yz),(2+ X+ y)/z} =0, ¢ being an arbitrary function.
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Ex. 5. Find the general integral of xzp + yzq=Xy.

Solution. Here the Lagrange’s auxiliary equations are (dx)/xz =(dy)/yz =(dz)/xy (1)
o From the first two fractions of (1), (I/x)dx=(1/y)dy.

Integrating, logx=1logy+logc, or x/y=c;. (2)

(UX)d+(Ly)dy _ yox xdy
(Ux)xz+(Ly)yz 2Xyz
.(3)

e Choosing 1/x,1/y,0 as multipliers, each fraction of (1) =

Combining the last fraction of (1) with fraction (3), we have

Integrating, Xy —2° =C,,C, being an arbitrary constant. (8)

From (2) and (4) solution is ¢(X/y, Xy — zz) =0, ¢ being an arbitrary function.
Ex. 6. Solve (x2 N yz) p+(y2 —zx)q =72 -xy.

dx d dz
Solution. Here the Lagrange’s auxiliary equations are ¥y B (1)

T sa  Upe e o BR AR B

® Choosing 1,—-1, 0 and 0, 1, —1 as multipliers in turn, each fraction of (1)

_ dx —dy _ dy —dz
X —y?+z(x-y) (y-z)(y+z+x)
50 that dx—dy - dy —dz or d(x—y)_d(y—z)zo.

(x=y)(x+y+2z) (y—z)(y+z+x) X—Yy y—z

Integrating, log(x—y)—log(y—z)=logc, or (x—-y)/(y-2)=c,. we(2)
e Choosing X, Y,z as multipliers, each fraction of (1)

_ xXdx+ydy+zdz xdx + ydy + zdz
X2+ Y2 +7° —3xyz (x+y+z)(x2+y2+zz—xy—yz—zx)'

..(3)

dx+dy +dz

* Again, choosing 1, 1, 1 as multipliers, each fraction of (1) =—————; .
X“+Yy +2°—Xy—yz—12X

..(4)
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Xdx + ydy + zdz
X+Yy+1z

From (3) and (4), =dx+dy+dz

or 2(x+y+2z)d(x+y+z)—(2xdx+2ydy+2zdz)=0.
Integrating, (x+y+2)’ —(X*+y*+2%)=2c,

or (x2 +y + 22 +2xy +2yz +22x)—(x2 +y + 22) = 2¢,

or Xy +Yyz+zX=¢c,,C, being an arbitrary constant.

From (2) and (5), the required general solution is given by

¢[xy+ yz+2x,(x-y)/(y- z)] =0, ¢ being an arbitrary function.
Ex.7.Solve (X* =y —yz) p+(X* —y* —2x)q=z(x~Y).

Solution. Here Lagrange’s auxiliary equations for the given equation are

dx B dy oz
X —yP-yz xX*-y*-2x z(x-Y)

(1)

e Choosing 1, —1, 0 as multipliers, each fraction of (1)

_ dx— dy e )

(X -y —yz)=(x* -y -2x)  z(x-Y)

e Choosing X,—Y,0 as multipliers each fraction of (1)

_ xdx — ydy _ xdx — ydy .(3)

T e ) )

From (1), (2), (3) we have

dz  dx-dy  xdx—ydy Org_dx—dy_Zde—Zydy n

z(x=y) z(x=y) (x=y)(¥-y) z oz 2(x-y?)

¢ Taking the first two fractions of (4), we have

dz=dx—dy sothat z—x+y=c, ....(5)
¢ Again, taking the first and third fractions of (4),

d(x2 —yz)/(x2 —yz)—(Z/z)dz =0
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Integrating, Iog(x2 —~ yz)—Zlog z=c¢, or (X2 —~ yz)/z2 =C,. ....(6)
From (5) and (6), solution is ¢(z — X+ y,(x2 + yz)/zz) =0, ¢ being an arbitrary function.

Ex. 8. Solve (x2+y2+yz) p+(x2+y2—xz)q =z(x+Yy).

X z
Solution. Here the auxiliary equations are d = dy __d (1)

x2+y2+yz_x2+y2—xz_z(x+y)

e Choosing 1, —1, 0 as multipliers, each fraction of (1)

dx—d dx—-d
= y = y (2)

(¥ +y*+yz)-(+y* —xz) z(x+y)

¢ Choosing X, Yy,0 as multipliers, each fraction of (1)

B xdx + ydy _ Xdx+ ydy 3)

x(x2 +y? +yz)+ y(x2 +y? —xz) (x+ y)(x2 +y2) '

From (1), (2) and (3), we have

dz  dx-dy  xdx+ydy or%:dx—dy:xdx+ydy ()

z(x+y) z(x+y) (x+y)(x2+y2) z z X2 +y?

e Taking the first two fractions of (4), we have
dz =dx—dy or dz—dx+dy=0.
Integrating, z—X+Yy =¢C;,C, being an arbitrary constant. ....(5)

¢ Taking the first and third fractions of (4), we have

oxdx+2ydy .dz  d(C+YY) _dz
— 5 =2 o —5——-2—=0.
X2 4y z X2+ z

Integrating, log(x* +y?)—-2logz =logc, or (X + yz)/z2 =c,. ....(6)
From (5) and (6), solution is ¢(z —X+ y,(x2 + yz)/zz): 0, ¢ being an arbitrary function.

Ex. 9. Solve cos(X+y)p+sin(x+y)q=z.

dx dy dz

Solution. Here the Lagrange’s auxiliary equations are =—
cos(x+y) sin(x+y) z
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e Choosing 1, 1, 0 as multipliers, each fraction of (1)

_ dx + dy _ d(x+y)
cos(X+y)+sin(x+y) cos(x+y)+sin(x+y)

(2)

dx —dy

e Choosing 1, -1, 0 as multipliers, each fraction of (1) = -
cos(x+y)—sin(x+y)

. n(3)

d(x+y) _ dx —dy
cos(x+Yy)+sin(x+y) cos(x+y)-sin(x+y)

From (1), (2) and (3), d_ZZ = -(4)

. . . dz d(x+y)
e Taking the first two fractions of (4), — = - .
z  cos(x+y)+sin(x+y)

...(5)

Putting X+y =t so that d(x+y)=dt, (5) reduces to

dz dt dt dt dt

7 costesint ﬁ{(l/ﬁ)cosu(l/\/f)sint} \/E{sin(7z/4)cost+cos(;z/4)sint} N \/Esin(t+7z/4)

Thus, (\/f/z)dz =cosec(t+7/4)dt.

Integrating, \/Elog z=log tan%(t +%j+ logc,, or % c, tan (%+%)

or Zﬁcot(izy+%jzcl as t=x+y ....(6)

cos(x+y)—sin
cos(x+y)+sin(x+y

—_~

X+Y)

e Taking the last two fraction of (4), dx—dy = d(x+y). ..(7)

N—"

On R.H.S. of (7), putting X+ Yy =t, so that d(x+y)=dt, (7) reduces to

cost—sint .
dx—dy =—————dt sothat x—y=log(sint+cost)—logc
y cost+sint Y =log( )~logc,

or (sint+cost)/c, =& or e (sint+cost) =c,
or ™" [sin(x+ y)+cos(x+ y)] =C,,as t=X+Y. ....(8)

From (6) and (8), the required general solution is

¢{ZJE Cot(%Jr%),eH {sin (x+y)+cos(x+ y)}} =0, where ¢ is an arbitrary function.
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Ex. 10. Solve cos(x+Y)p+sin(x+y)q=z+(1/z).

Ans. ¢{(22 +1)W§ tan (%—%),ey_x {COS(X+ y)+sin(x+ y)}} =0

Ex. 11. Solve xp+Yyq=2z-a, /(x2 +y? +zz).

Solution.

X z
Here the Lagrange’s auxiliary equations are d— = ﬂ = d . ...(1)

Xy z—a\/(x2 +y*+7°)
¢ Taking the first two fractions of (1), we have
(1/x)dx=(1/y)dy or (1/x)dx—(1/y)dy =0.

Integrating, logx—logy =logc, or x/y =c;,. w(2)

e Choosing X, Y,z as multipliers, each fraction of (1) = xdx+ ydy + zdz

..(3)

X2 + Y2 + 22 —az\/(x2 + ¥kt
e Combining first and third fractions of (1) with fraction (3), we get

dx dz xdx + ydy + zdz
ax _ _ ydy ; (8)

X z—a\/(x2+y2+zz) X2 +y2 +22 —az\/(x2+y2 +34d

e Putting X* + y* + 2% =t® so that xdx+ ydy + zdz =tdt, (4) gives

dx dz tdt dx dz dt
— > or —= = . ....(5)
X z—at t°—azt X z—at t-az

dz +dt d(z+t
e Choosing 0, 1, 1 as multipliers, each fraction of (5) Al = ( ) ...(6)

(z+t)-a(t+z) (1-a)(z+t)

e Combining the first fraction of (5) with fraction (6), we get

dx__d(@+t) o9k d(zet)
x (1-a)(z+t) S )x Z+t

Integrating, (1—a)logx—log(z+t)=logc,,c, being an arbitrary constant.

a-1 Xa—l
=C, or

Z+1 2+ (X +y*+2°)
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From (2) and (7), the required general solution is
¢[Xa‘l/{z + (X2 +y 4 22), X/y}} =0, ¢ being an arbitrary function.

Ex. 12. Solve (x3 +3xy2) P +(y3 +3x2y)q = Zz(x2 + yz) .[ILA.S. 1993]

X z
Solution. Here subsidiary equations are —; d = dy = d . ..(1)

X+3xy7 Y A3y 27(x +y?)

dx +dy _d(x+y)

e Choosing 1, 1, 0 as multipliers, each fraction of (1) = =
& P @ X2 +3xy? +3x°y + y° (x+y)3

cen(2)

dx —dy :d(x—y)
x® +3xy* —y* —3x%y (x—y)3

e Choosing 1, —1, 0 as multipliers, each fraction of (1) =

..(3)

From (2) and (3), (x+y) d(x+y)=(x-y) d(x-y)

or udu—v>dv=0, on putting u=Xx+Yy and V=X-Y.

Integrating, u_z/(—Z)—V_z/(—Z):Cl/Z Op-Y&r=U=S=e

or (x=y) “=(x+y) " =c,as u=x+y and V=x—Vy. (4)

e Choosing 1/x,1/y,0 as multipliers, each fraction of (1)

_ (1/x)dx+(1/y)dy :(]/x)dx+(]/y)dy
(U/x)x(X*+3xy* )+ (1 y)x(y* +3x°y) 4(x* +y?)

....(5)

e Combining the last fraction of (1) with fraction (5), we have

dz :(l/x)dx+(l/y)dy or %+ﬂ—2%=0.
27(x* +y?) 4(x* +y?) Xy 2
Integrating, logx+logy—2logz =logc, or (xy)/z* =c,. ....(6)

From (4) and (6), the required general solution is given by
¢[(X— y) X+ y , /Z } , ¢ being an arbitrary function.

Ex. 13.Solve p+Qq=X+Yy+zZ.

https://www.youtube.com/@PreparelnRightWay www.mindsetmakers.in



https://www.youtube.com/@PrepareInRightWay
http://www.mindsetmakers.in/

dx d dz

Solution. Here Lagrange’s auxiliary equations are — = @ _ . (1)
1 1 Xx+y+z

e Taking the first two fractions of (1), dx—dy =0 so that x—y =c;,. we(2)

dx+dy+dz  d(2+x+y+2)

e Choosing 1, 1, 1 as multipliers, each fraction of (1) = =
1+1+(x+y+2)  2+X+y+z

Combining the first fraction of (1) with fraction (3), d (2+Xx+y+2)/(2+x+y+z)=dx.
Integrating, log(2+x+Yy+z)—logc, =x or (2+x+y+2)/c, =€"

or €*(2+X+Yy+2)=c,,C, being arbitrary function. o (8)

From (2) and (4), the required general solution is

¢[X— y,e’” (2+ X+Yy+ Z)J =0, ¢ being an arbitrary function.

Ex. 14. Solve (2x2 +y +2°-2y7 -7~ xy) p +(x2 +2y° + 7% —yz-27x— xy)q =x’+y?
+27% —yz—7x—2xy. [ .A.S. 1992]

Solution. Here Lagrange’s auxiliary equations are

dx < dy . dz
2X2+ Y2 427 =2yz—2X—Xy X 42y +78—yz-22x—Xxy X'+ Yy +27%—yz—zx—-2xy

e Choosing 1,-1,0;0,1,-1and -1, 0, 1 as multipliers in turn, each fraction of (1)

dx —dy dy —dz dz —dx
=X2 2 =2 -2 =2 2
—yP—yz+zx Y -7 —Ix+xy P -XP-Xy+yz

dx —dy B dy —dz B dz —dx 2)

- (x=y)(x+y+2) B (y—z)(x+y+2) B (z—x)(x+y+2)

o Taking the first two fractions of (2), we have
(dx—dy)/(x—y)-(dy-dz)/(y—2)=0.

Integrating, log(x—y)—log(y—z)=logc, or (x—y)/(y-2z)=c,. .(3)
» Taking the last two fractions of (2), (dy—dz)/(y—z)—(dz—dx)/(z—x)=0.
Integrating, log(y—z)—log(z—x)=logc, or (y—z)/(z—x)=c,. (4)

From (3) and (4), the required general solution is
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¢[(X—y)/(y—Z),(y—Z)/(Z—X)]=0, ¢ being an arbitrary function.

Ex. 15. Find the general solution of the partial differential equation
pX(x+y)—ay(x+y)+(x—y)(2x+2y+z)=0.
Solution. Given X(X+Y)p—y(X+y)g=—(x—y)(2x+2y+z). (1)

X z
Lagrange’s auxiliary equations are d = dy = d ...(2)

x(x+y) -y(x+y) —(x-y)(2x+2y+z)

* Taking the first two fractions, (1/x)dx=—(1/y)dy or (1/x)dx+(1/y)dy=0.
Integrating, logx+logy=logc, or xy =c;. .(3)

e Again, each fraction of (2) = dx -+ dy - dx +dy +dz

X(X+Y)=y(x+y) x(x+y)=y(x+y)—(x—y)(2x+2y+2z)

_ dx+dy _ dx-+dy+dz
(x=y)(x+y) (x=y)(x+y)=(x—y)(2x+2y+2)

dx +dy dx+dy+dz dx+dy +dz

Thus, = ==
(x+y) x+y—(2x+2y+z) X+Yy+2

Thus, dx+dy+dx+dy+dz =0, so that log(x+y)+log(x+y+z)=logc,
X+Yy X+Y+12

or (X+Y)(X+Yy+2)=c,,C, being an arbitrary constant. e(4)

From (3) and (4), solution is ¢[Xy,(x+ y)(x+ y+ Z)] =0, ¢ being an arbitrary function.

Assignment: Questions

Q. 1. Solve (X*+2y*) p—xyq=xz.
Q. 2. Solve Xxzp+yzq=Xy.

Q. 3. Solve py+gx=xyz* (X* —y?).
Q. 4. Solve Xp—yq=Xy.

Q. 5. Solve p+3q=z+cot(y—3x).

Q.6.Solve px(z-2y*)=(z—aqy)(z-y*-2x°).
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Q.7.Solve (x—y)p+(x+y)qg=2xz.

Q.8. Solve y*p+x°q = x*y?z°.

Q9. Solve (3x+y—z)p+(x+y-2z)q=2(z—y).

Q. 10. Solve x(x2 +3y2) p— y(3x2 + yz)q = 22(y2 —xz).

Q. 11.Solve (y—z)p+(z—Xx)g=x-y.

Q. 12. Solve the general solution of the equation (y+2x) p—(X+yz)q+y*—x*=0.
Q. 13.Solve x(y—z)p+y(z—x)q=2z(x-y), e,

{(y=2)/(yz2)} p+{(z—=x)/(2)}a=(x=y)/(xy) . [1AS 2005]

Q. 14. Solve 2y(z—3) p+(2x—2z)q=y(2x-3).

Q. 15. Solve x*(dz/ox)+ y*(6z/dy)=(x+Y)z.

Q. 16. Solve z(x+2y)p—z(y+2x)q=y* —X°.

Q. 17. Solve {my(x+ y)- nzz}(ﬁz/ax)—{lx(x+ V)= nzz}(ﬁz/ay) =(Ix—my)z.[LA.S. 2001]

Q. 18.Solve px(z-2y*)=(z—qy)(z-y*-2x*)

Q.19.Solve px(z-2y*)=(z—qy)(z-y*-2x°). [I.A.S. 2006]

Q. 20. Solve x(z+2a)p+(xz+2yz+2ay)q=z(z+a).

3

Q. 21.Solve 2x(y+2°) p+y(2y+2*)q=2°.
Q.22. xp+z2q+y=0
Q. 23. Find the general solution of the differential equation x*(dz/0x)+ y*(6z/dy)=(x+Y)z.

Answers

Solution.1 The Lagrange’s auxiliary equation for the given equation are

dx _dy dz
X +2y°  —xy xz

(1)

e Taking the last two fractions of (2) and re—writing, we get
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(1/y)dy+(1/z)dz =0 so that logy+logz =logc, or yz=c, (2)

¢ Taking the first two fractions of (1), we have

2 2
dx _ X" +2y or ZX%J{EJX2 =-4y -(3)

dy  -xy dy \y
Putting x* =v and 2x(dx/dy)=dv/dx, (3) yields
dv/dx+(2/y)v=—4y, which is a linear equation.

2/y)d . . .
J@mes _ gaqy _ y® and hence its solution is

Its integrating factor =e
W = [{(-4y)xy*jdy +c, or yx* +y* =, - (4)

From (2) and (4), the required solution is ¢(yz, yox2 + y4) =0, ¢ being an arbitrary function.

Solution.2 Given Xzp+ yzq=Xxy. (1)

The Lagrange’s subsidiary equations for (1) are % = ﬂ = % . ...(2)
XZ yz xy

Taking the first two fractions of (2), (1/x)dx—(1/y)dy =0 (3)

Integrating (3), logx—logy =logc, or x/y=c,. ....(4)

From (4), X=c,y . Hence, from second and third fractions of (2), we get

(1/yz)dy =(Y/c,y*)dz or 2¢,ydy—2zdz=0. ....(5)
Integrating (5), c1y2 -7 = C, or Xy — 7% = C,, using (4). ....(6)

From (4) and (6), the required solution is ¢(Xy— 2%, X/y) =0, ¢ being an arbitrary function.
Solution.3 Given py +Qgx = Xyz* (X2 - yz). (1)

X z
The Lagrange’s auxiliary equations for (1) are d— = ﬂ = d— we(2)

y X XyZZ(XZ—yZ).
e Taking the first two fractions of (2), 2xdx—2ydy =0. .r(3)
Integrating. X —y® =C,,C, being an arbitrary constant. we(4)

Using (4), the last two fractions of (2) give
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(dy)/x = (dz)/(xyzzcl) or 2¢,ydy—2z2%dz=0. ..(5)
Integrating (5), ¢,y* +(2/z)=c,,c, being an arbitrary constant.

or y* (X’ —y*)+(2/z) =c,, using (4). ....(6)
From (4) and (6), the required general solution is

y? (x2 - y2)+(2/z) = ¢(x2 - yz), where ¢ is an arbitrary function.

Solution.4 The Lagrange’s auxiliary equations for the given equation are
(ax)/x=(dy)/(-y) =(dz)/ () (1)
Taking the first two fractions of (1), (1/x)dx+(1/y)dy =0

Integrating, logx+logy =c, sothat xy=c w(2)
Using (2), (1) yields (1/x)dx =(1/c,)dz so that logx—logc, = z/c,

or log(x/c,)=z/c, or log(x/c,)=2z/(xy), by (2)

Thus, x/c, = e¥™) or xg¥) =c,,C, being an arbitrary constant. ..(3)
From (2) and (3), the required solution is xe %) =¢(Xy), ¢ being an arbitrary function.

Solution.5 The Lagrange’s auxiliary equation for the given equation are

&y

1 3 z+cot(y—3x) -1

Taking the first two fractions of (1), dy—3dx =0 so that y—3x=¢ wn(2)

Taking the first and last fraction of (1), we have

dx

dz dz i
= or dx=——, using (2)
z+cot(y—3x) Z+cotc

Integrating, X = Iog|z+cotc1|+cz,c1 and c, being an arbitrary constants.
or x—Iog‘z+cot(y—3x)‘:cz, using (2) r(3)
From (2) and (3), the required general solution is

X—Iog‘z+cot(y—3x)‘ =¢(y—3x), ¢ being an arbitrary function.
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Solution.6 Re—writing the given equation, we have
x(z—2y2)p+y(z—y2—2x3)q:z(z—y2—2x3) (1)

The Lagrange’s subsidiary equations for (1) are

dx _ dy _ dz (2)

x(z—2y2) y(z—y2—2x3) z(z—y2—2x3)

Taking the last two fraction, we get (1/z)dz =(1/y)dy
Integrating, logz=Ilogy+loga or z/y=a (3)

where a is an arbitrary constant. Using (3), (2) yields

ax dy sothat (ay—y*—2x*)dx+x(2y-a)dy=0  ..(4)

x(ay—2y2) y(ay—y2 —2x3)

Comparing (4) with Mdx+Ndy=0, here M=ay—-y’-2x’ and N=x(2y—a). Then
oM /oy =a—2y and ON/ox =2y —a . Now, we have

1| el =;x 2(a—2y)=—g, which is a function of x alone.
N{oy ox) x(2y-a) X

. . g j(—z/x)dx ' Delki]iYipendra Gingh N
Hence, by usual rule, integrating factor of (1) =e =e =e" =X

Multiplying (4) by X, we get exact equation (ayX*ZyZX*2 —2X)dX+ x'(2y—a)dy=0

By the usual rule of solving an exact equation, its solution is

J.{(ay—yz)x‘2 —2x}dx+jx‘l(2y—a)dy:b

(Treating y as constant) (Integrating terms free from x)

or (ay—y*)x(=Y/x)—x* =b or (y’ —ax)/x—x2 =b

or (y2 —ax—x° )/X =b, where b is an arbitrary constant. ....(5)

From (3) and (5), required solution is (y2 —ax— X3)/X =¢(z/y), ¢ being an arbitrary function.

_dy  dz
X—Yy X+y 2xz

..(1)

Solution.7 Here the Lagrange’s subsidiary equations are
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1
Taking the first two fractions of (1), ﬂ XY +(y/x).
dx x-y 1-(y/x)

Let y/X=V ie., y=Xxv.

From (3), (dy/dx)=v+x(dv/dx).

(2)

(3)

.(4)

1+v dv_1+v_v_1+V—V(1—V)_1+v2

dv
Using (3) and (4), (2) gives V+ X—=—— or X— =
g(3) ), (2)e dx 1-v dx 1-v 1-v

1+v? 1+V?

or

1-v dx 2 2V 2dx
~dv=— or dv=—-
1+v X X

Integrating, 2tan™" v —log (1+ vz) =2logx—logc,

or log x* —log (1+ vz)— logc, =2tan™"v

or Iog{x2 (1+v? )/cl} =2tanv or x* (1+v*) =™
or X2 [1+(y2/x2 )} = CleZtanfl(y/x), as vV=y/x by (3)

or (x2 - yz)e_Zta"A(y/X) =¢,,C, being an arbitrary constant.

Choosing 1,1,—1/z as multipliers, each fraction of (1)

dx+dy—(1/z)dz _dx+dy—(Vz)dz

(x—y)+(x+y)-(Yz)x(2xz) 0

= dx+dy—(1/z)dz =0 so that x+y—logz =c,.

From (5) and (6), the required general solution is

¢(x+ y—log z,(x2 + yz)e_zta“_l(y/x)) =0, where ¢ is an arbitrary function.

Y

...(6)

Solution.8 Here Lagrange’s auxiliary equations are (dx)/y? =(dy)/x* =(dz)/x*y?z*. ...(1)

Taking the first two fractions of (1), we have

3x?dx —3y?dy =0 so that x*—y® =c,.

..(2)

Choosing x?,y?,—2/2% as multipliers, each fraction of (1) = {dex+ y2dy—(2/zz)dz}/0

so that 3x°dx+3y’dy —(6/2°)dz =0.
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Integrating, X’ +Yy®+(6/2)=c,,c, being an arbitrary constant.
From (2) and (3), the required general solution is

¢[X3 - y"’, X + y3 +(6/Z)] =0, ¢ being an arbitrary function.

(3)

Solution. 9 Here Lagrange’s auxiliary equations are = dy = dz
3x+y—z x+y-z 2(z-y)
Choosing 1,-3,1 as multipliers, each ratio of (1) = {dX—de—dZ}/O
so that dx—3dy—dz=0.
Integrating, X—3y —Z =C,,C, being an arbitrary constant. ..(2)
From (2), z=c,—x+3y. ...(3)
Substituting the above value of z, the first two fractions of (2) reduce to
dx dy dx dy
= or = . .(3)
3x+y—(c,—x+3y) x+y—(c,—x+3y)  2x+4y+c, 4y+c
Let u=4y+c, sothat dy=(1/4)xdu. ..(4)
4)du
Then, (3) = P = (]/ ) or 2 SerA £ or %—ix l, which is linear.
2X+U u s du 2u 4
Integrating factor of (5) = e_wzu)du =g WAlau _gloo) ™ — V2 —1/ [y
Hence solution of (5) is X><— J \/_ —du+c= —\/_+ C,
2X—Uu 2x—(4y+c,)
or ———=C, or ————=¢(,, by (4)
\/a 2 '_4y+cl 2
2X—-4y—(x-3y-z —
or y ( y ) =C,, using (2) or KXoyrez C, ...(6)

JAy+x-3y-z Jx+y-z

From (2) and (6), the required general solution is

¢<X—3y—z,(x— y+ Z)/1/X+ y—z)z 0, ¢ being an arbitrary function.
Solution.10

Here the Lagrange’s auxiliary equations for the given equation are
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x _ dy _ dz "
X(X2+3y2) —y(3X2+y2) 22(y2—x2)'

Choosing 1/x,1/y,—1/z as multipliers, each fraction of (1)

= (]/X)dXJr(]/)(/))dy_(]/Z)dz so that %dx+%dy—%dz =0.

Integrating, logx+logy—logz =logc, sothat (xy)/z=c,. (2)

dy y(3x +y?) __(Xj 3+(y/x)’

Taking the first two ratios of (1), .....(3)

dx  x(x*+3y°) Xx)1+3(y/x)’
Put y/x=Vv or y=Xv sothat (dy/dx)=v+x(dv/dx). ....(8)
2 2
Using (4), (3) reduces to v+ xﬂ:—v?’Jr—V2 or xﬂ:—v 3+V2 1
dx 1+3v dx 1+3v

dv ALV )V x| 143V

or X-—=-— or dV S 0
dx 1+3v? X v(1+v2)
dx (1 2v A L !

or 4—+| — 5 |dv, on resolving into partial fractions
X v 1+v

Integrating, 4log x+|ogv+|og(1+v2) or X“v(1+v2):c'2
x“(y/x)[1+(y/x)2}:c'2 or xy(x2 +y2):c'2 or clz(x2 +y2):c'2, by (2)
or z(x*+y?)=c,/c, or z(x*+Yy?)=c,, where ¢, =, /c, . ....(5)

.. From (2) and (5) solution is ¢(Z(x2 + yz), xy/z) =0, ¢ being an arbitrary function.

Solution.11 Here the Lagrange’s auxiliary equations are o = dy _dz . (1)
y—2 Z-XX-Y
Choosing 1, 1, 1 as multipliers, each fraction of (1) = dx +dy + dz = dx+dy + dz .
(y—2)+(z—x)+(x-y) 0
. dx+dy+dz=0 sothat x+y+z=c,. we(2)

Choosing X, Y, Z as multipliers, each fraction of (1)
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B xdx+ydy+zdz _ xdx+ydy+zdz
_x(y—z)+y(z—x)+z(x—y)_ 0

. 2xdx+2ydy+2zdz =0 sothat X*+y*+2° =c,. .(3)
. From (2) and (3) solution is ¢(x+ Y+2Z,X°+y’ + 22) =0, ¢ being an arbitrary of function.
Solution.12 Given (y+2x) p—(X+yz)q=Xx*—y’. (1)

d d d
X y _ dz 2)

Here the Lagrange’s auxiliary equations are =
y+zx  —(x+yz) x*-y

Choosing X, Y,—Z as multipliers, each fraction of (2)

= Xdx+ ydy - 2dz = Xdx+ydy—zdz ydx+ xdx+dz =0 or d(xy)+dz=0.
x(y+zx)—y(x+yz)—z(x —y ) 0
Integrating, Xy +z =¢,,C, being an arbitrary constant. ....(4)

.. The required solution is ¢<X2 +y =2, Xy + Z) =0, ¢ being an arbitrary function.
Solution.13 Given Xx(y—2z)p+Yy(z—x)q=z(x—Y) (1)

X z
The Lagrange’s auxiliary equations for (1) are d = gy = d ...(2)

x(y-z) y(z-x) z(x-y)

Choosing 1/x,1/y,1/z as multipliers each fraction of (1)

(Ux)dx+(Yy)dy+(Yz)dz (I/x)dx+(1y)dy+(1/z)dz

(y—2)+(z=x)+(x-y) 0

= (1/x)dx+(1/y)dy+(1/z)dz =0 so that logx+logy+logz =logc,

. log(xyz)=c, or xyz=c¢, e(3)
Choosing 1, 1, 1 as multipliers, each fraction of (1)
B dx +dy +dz _ dx+dy+dz
(xy —xz)+(yz—yx)+(zx—zy) 0
= dx+dy+dz=0 sothat X+y+z=c, ...(4)

From (3) and (4), solution is ¢(X+ y+z, Xyz) =0, ¢ being an arbitrary function.

Solution.14 The Lagrange’s auxiliary equations for given equation are
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dx dy  dz

2y(2-3) 2x-z  y(2x-3) (1)

Taking the first and third fractions, (2x—3)dx=2(z-3)dz.
Integrating, X° —3x=2°-62+C, or X*-3x—2*+62=C, (2)

Choosing 1,2y,—2 as multipliers, each fraction of (1)

B dx+2ydy —2dz _dx+2ydy —2dz
2y(z-3)+2y(2x—-z)—-2y(2x-3) 0
. dx+2ydy—2dz =0 sothat Xx+y*-2z=C, .(3)

From (2) and (3), solution is ¢(X2 —3Xx—2°+6Z,X+y* - 22) =0, ¢ being an arbitrary function.

Solution15. Re-writing the given equation X*p+y’q=(X+Y)z (1)
X z
The Lagrange’s auxiliary equations for (1) are d—2 = d—g = d .(2)
x>yt (x+y)z

Taking the first two fractions of (2), (1/X2)dx—(1/y2>dy =0.

Integrating, —(1/x)+(1/y)=C, or J/y-1/x=C, w(3)

Choosing 1/x,1/y,—1/z as multipliers, each fraction of (2)

(Ux)dx+(Yy)dy—(1/z)dz (1/x)dx+(Yy)dy—(1/z)dz

X+y—(x+y) 0

. (1/x)dx+(1/y)dy—(1/z)dz =0 so that xy/z=C, e(4)
From (3) and (4), solution is (D(Zl/y—]/X, Xy/z) =0, @ being an arbitrary function.

Solution.16 The Lagrange’s subsidiary equations are d = dy = de 5 (1)
z(x+2y) -z(y+2x) y*-x

Taking the first two fraction of (1), we have

(y+2x)dx+(x+2y)dy =0 or 2xdx+2ydy+d(xy)=0
Integrating, X* +Yy° +xy =C,,C, being an arbitrary constant. we(2)

Choosing X, Y, Z as multipliers, each fraction of (1)
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xdx + ydy + zdz _ xdx+ ydy + zdz
(xzz+2xyz)—(y22+2xyz)+(zy2—zxz) - 0

= 2xdx+2ydy+2zdz =0 sothat x>+ Yy’ +2° =C, .(3)
From (2) and (3), solution is ¢<X2 Y+ Xy xy) =0, ¢ being an arbitrary function.

Solution.17 Re-writing the given equation, {my(x +y)- nzz} p— {Ix(x +Yy)- nzz} q=(Ix-my)z
(1)

, . . dx dy dz
Lagrange’s auxiliary equations for (1) are = ==
my(x+y)—nz* —Ix(x+y)+nz* (Ix—my)z
..(2)
Each fraction of (2) = dx +dy = dz so that M - _%
(my—Ix)(x+y) —(my-Ix)z X+Yy z
Integrating, log(x+y)=—logz+logC, or (x+y)z=C, .(3)

Taking Ix,my,nz as multipliers, each fraction of (2)

B Ixdx + mydy + nzdz _ Ixdx+mydy +nzdz
Ixmy (X + y)—Ixnz? —mylx(x+ y)+mynz* + nz* (Ix—my) 0
. 2Ixdx+2mydy +2nz dz =0 so that Ix* + my* +nz? =C, ..(4)

From (3) and (4), solution is d)(xz +yz,Ix* + my® + nzz): 0, @ being an arbitrary function.

Solution.18 the given equation X(Z —2y2) P+ y(z -y - 2X2)q = z(z —y? —2X2) (1)

Lagrange’s auxiliary equations for (1) are o = dy = dz
x(z—2y2) y(z—y2—2x2) z(z—y2—2x2)
we(2)

Taking the last two fractions, (1/y)dy—(1/z)dz=0 so that y/z=C, e(3)

Taking 0,-2y,1 as multipliers, each fraction of (2)

—2ydy +dz _ d(z-y?) @

B —2y2(z—y2 —2x2)+z(z—y2—2x2) (z—2y2)(z—y2—2x2)

Combining fraction (4) with first fraction of (2), we get
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dx d<Z—y2) Ord(Z—yz)_z—yz—sz
x(z—2y2)_(z—2y2)(z—y2—2x2) dx X
or du/dx:(u—2x2)/x,taking z—y?=u o..(5)

or (du/dx)—(1/x)u =—2x which is an ordinary linear differential equation

logx !

I(:l/x)dx _ A-logx

whose I.F. =¢ =g " =¢'"* =x" =1/x and solution is

2

1 1 -y .
u-—=|(-2x)| = [dx+C =-2x+C,, 5
. I( )(Xj 2 OF — ,, using (5)

or(z—yz)/x+2x:C2 or(z—y2+2x2)/x:C2 ....(6)
From (3) and (6), the required general solution of (1)

CD(y/z,(z —y? —2x2)/x) =0, @ being an arbitrary function.

Solution.19 Do like. 17. Ans. CD(y/z,(z —y2 4 x3)/x) =0

Solution.20 The Lagrange’s auxiliary equations for given equation are

dx dy dz

s =t ---1
x(z+2a) xz+2yz+2ay z(z+a) (1

d
Each fraction of (1) dx+ gy = dz or (X+ y) :gdz
2(x+y)(z+a) z(z+a) X+y Z
Integrating, log(x+Yy)=2logz+logC, or (x+Y)/z*=C, (2)
Taking the first and third ratios of (4), % =Z+—2adz or o = (E—LJ dz
x z(z+a) x \z z+a
Integrating, logx =2logz—log(z+a)+logC, or x(z+a)/z’ =C, (3)

From (2) and (3), solution is (D{(X+ y)/zz, x(z +a)/22} =0. ¢ being an arbitrary function.

Solution.21 The Lagrange’s auxiliary equations for the given equation are

dx d dz
-y & (1)

2x(y+22) y(2y+22) A
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dx  zdy+ydz  d(yz)
2x(y+22)_2yz(y+zz)_2yz(y+22)

Each fraction of (1) =

- (Yx)dx+(3/yz)d(yz)=0 so that x/(yz)=C, n(2)

dy Y(ZY+22) 2y y Ldy 1, 2
—_— = Z3 = 3 + = or yz———yl:—a

From the last two fractions of (1),
z z dz z z

Putting —y ' =u and (]/yz)x(dy/dz) =du/dz in (3), we get
(du/dz)+(Yz)u=2/z*, which is an ordinary linear equation.

its 1.F. el ¥ g% _ 7 and solution is Uz =[(2/2*)2dz-C, =22 -C,

or -y 'z-2z"=-C, or z/y-2/2=C, ee(4)
From (3) and (4), solution is ®(x/yz,z/y—2/z)=0, ¢ being arbitrary function.

Solution.22 Given equation is Xp+2zg=-Yy

dx dy dz
Its Lagrange’s auxiliary equation are — = S50 ...(1)
X z -y

Taking the last two fractions of (2), 2ydy +2zdz =0 so that y*+2*=C, ....(2)
Choosing 0,z,—y as multipliers, each fraction of (1)

_zdy—ydz _ (Yz)dy—(y/2*)dz _ d(y/2)
2’ +y? 1+(y/z)2 1+(y/z)2

...(3)

Combining the first faction of (1) with fraction (3), we get

dx d(y/z d .
—:(—/)2 or —X—d(tan lzj:O
X 1+(y/z) X z

Integrating, log|x|—tan™(y/z)=C,,c, being an arbitrary constant. ....(4)
From (2) and (4), the required general solution is log|x|—tan™(y/z)= ¢5(y2 + 22)
Solution.23 Let p=0z/0x and q=0z/dy . Then, the given equation takes the form

X’p=yq=z(x+Y) (1)
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The Lagrange’s auxiliary equations for (1) are
(dx)/x* =(dy)/y? =(dz)/z(x+Y) (2)
Taking the first two fractions of (2), (]/Xz)dx—(],/yz)dy =0

Integrating, —(1/x)+(1/y)=c, or (x—y)/xy=c, e(3)

dx dy
P-y?

Choosing 1, -1, 0 as multipliers, each fraction of (2) =

.(4)

Combining the last fraction of (2) with fraction (4), we have

dx—dy dz dx—dy dz
= or -—=0
(x=y)(x+y) z(x+y) X-y z
Integrating, log(x—y)—logz=sinc? or (x—y)/z=c’ ....(5)
From (5), X—y=c¢,z ....(6)
using (6), (3) becomes (c,z)/xy =a or (xy)/z=c,/c, =c, say w(7)

From (5) and (7), the required solution is ¢((X, y)/z,(x- y)/z) =0

Examples based on article 2

Ex. 1. Solve x2 x3 p1+ X3 X1 P2+ X1 X2 p3+ X1 X2 X3 = 0.
Sol. Re-writing the given equation in standard form, we have
X2 X3 P1+ X3 X1 P2+ X1 X2 P3 =—X1 X2 X3 ...(2)

The auxiliary equations for (2) are dx, = ax, dX3 dz ..(3)
XX XX XX, =X XX,

Taking the first and the fourth fractions of (3), x1 dx1 + dz = 0 so that Xf +2z=qc1. ..

Taking 1st and 2nd fractions of (3), x1 dx1= X2 dx, so that X’ — X = ca. ...(5)
Finally, 2nd and 3rd fractions of (3) give x, dx2 = x3 dxs so that X,” — X,* = cs. ...(6)

Hence the required general integral is

¢(x12 +22, X = X2, %5 —X§) =0, ¢ being an arbitrary function.
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Ex. 2. Solve XQJF yg+t@=az+£
ox ~oy ot t

Sol. Here auxiliary equations for the given equation are
dx dy dt dz

D _T__ 7 (1)
X 'y t az+xylt

From the first two fractions of (1), (1/x)dx—(1/y)dy=0 sothat x/y=C. (2)
From the first and third fractions of (1), (1/x)dx — (1/t)dt =0 sothat x/t=C..  ..(3)
Dividing (3) by (2), we have y/t = C,/C. ..(4)

Taking the first and third fractions of (1) and using (4), we get

%:L = %_ a 7= & , Which is linear. ...(5)
X C, dx \x C,

az+| —= |x
C,

I.F. of (5) = g /(3% _ g-aloox _ gloo™® _ y-2 and 50 solution of (5) is given by

l-a 1-a
oA MORA casERT
C, C 1l-a tl-a
y lea
sozx? “t{1a =C,,C; being an arbitrary constant. ..(6)

From (2), (3) and (6), the required general solution is

1-a
¢(§,%, X _%’f J =0, ¢ being an arbitrary function.
y -a

Ex. 3. Solve x(du/dx) + y(du/dy) + z(0u/dz) = xyz.

Sol. Here the auxiliary equations for the given equation are

dx d dz du
Tz_y=_=_ (1)

y z Xyz
Taking the first two fractions of (1), (1/x)dx—(1/y)dy = 0.
Integrating it, log x —log y = log C1 or x/z=0C...(2)

Taking the first and third fractions of (1),  (1/x)dx—(1/z)dz=0
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Integrating it, log x—logz=log G or x/y=C, ...(3)

yzdx + zxdy + xydz _ d(xyz)
XyZ+Xyz+Xyz  3xyz

Combining the fourth fraction of (1) with fraction (4), we get

d_u = M or d(xyz)—3du=0 sothat xyz—3u=_G. ..(5)

Xyz  3xyz

From (2), (3) and (5), the required general solution is

.(4)

Choosing yz, zx, xy as multipliers, each fraction of (1) =

@(x/y, x/z, xyz - 3u) = 0, @ being an arbitrary function.
Ex. 4. Solve (y + z + w)(Ow/0x) + (z + x + w)(Ow/dy) + (x + y + w)(Ow/0z) = (x + y + 2).
Sol. Here the auxiliary equations of the given equation are

dx  dy  dz @ dw
Y+Z4+W  ZHX+AW X+Y+W X+Y+2Z

(1)

Each fraction of (1): dw—dx _ dw—dy _ dw-dz =dw+dx+dy+dzm(2)

—(w=x) —(w-y) —(w-z) 3(wW+x+y+2)

dw+dx+dy+dz dw-dz

0.
3(W+Xx+y+z)  w—X

Taking the first and the fourth fractions of (2),

Integrating, (1/3)xlog(w+x+y+2z)+log(w—x)=log C;

or (W+x+y+2)3(w=-x)=C; ..(3)
Similarly, (W+x+y+2)B(w-y)=C ...(4)
and (W+x+y+2)3(x-2)=C ...(5)

From (3), (4) and (5), the required general solution is
olw+x+y+2)B(w—x),(w+x+y+2)3(w-y),(w+x+y+2)"3(w-2)]=0,
where @ is an arbitrary function.

Ex. 5. Prove that if X’ + X + x{ =1 when z = 0, the solution of the equation (s—x1 ) p1 + (s—x2
)p2+(s—x2)p2+(s—x3) p3=s—zcanbegivenintheforms3{(x1—z)*+ (x2—2)3+ (x3—2)3}*=
(x1+ X2 +x3—32)3, wheres =x1+x2+x3+zand pi =9z/0x;,i=1,2,3.

Sol. Given (s—x1)p1+(s—x2)p2+(s—x3)p3=s—2z (1)

where s=x1+x2+x3+2 (2)
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d dx dx dz
The auxiliary equations for (2) are X o % 0%
S—X S—X, S—X; S—Z

or W M A G0) )
X+ X +Z X+ X HFZ X X, +Z X X+ X
_ d -3
Each fraction of (3)= o + dx, +dx, —3dz = (% +% +%~32) ..(4)

2(X + X + %) +32=3(X + X, + %)  —(X +X, + X%, —32)

Again, each fraction of (3) = dx, + dx, +dx, +d2 = d (Xl tX X +2) (5)
’ 3% +X+X+2)  3(X +X+X+2)

Then, (4) and (5) give ST X¥%=32) (X% +2)
(X + X, +X,—32)  3(X + X, + X, +2)

d(x1+x2+x3+z)+3d(x1+x2+x3—3z)
X, +X, + X +2 X+ X, + X, —32Z

or

Integrating, log (x_1+x_2+x_3+z)+3log (x_1+x_2+x_3-3z)=log a
or (x1+x2+x3+2)(x1+x2+x3—32)%=a, where a is an arbitrary constant. ...(6)

Giventhat X’ +X; +X; =1 when z2=0 (7)

Hence (6) gives a = (x1 + x2 + x3 )*. Then (6) reduces to

(X1 + X2 + X3+ 2) (X1 + X2 + X3 — 32)% = (X1 + X2 + Xx3)* ..(8)

dx, —dz  3(x-2)'d(x-2) d(x-2)

Now, each fraction of (3) = = = ..(9)

-(x-2)  8(x-2)  3(x-z)
d(x,-2z)" d (X —z)3

By symmetry, each fraction of (3) is also = = ..(10)

v ! -3(%, - 2)’ —3(x3—z)3

Using (9) and (10), we find that each fraction of (3)

~ d(x-z) ~ d(x, -2y ~ d(x—-2)’ ~ d[(xl_z)3 +(x-2) +(X3—Z)3} (11)
3(x-2)" 3(x,-z) -3(x-z) —3[(x1—z)3 +(x%-2) + (x3—z)3}

Then, from (4) and (11), we have
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3d (X, + X, + X, —32) _ d[(xl_z)s +(%-2) + (Xs—z)s}
(X + X, + X, —32) [(X1_Z)3 +(x%-2)" + (XS—Zﬂ

Integrating it, 3log (x1 + x2 + x3—3z) +log b =log {(x1 — 2)3 + (x2—2)3 + (x3 — 2)* }
(x1—2)3+ (x2—2)% + (x3—2)® = b(x1 + x2 + x3 — 32)3 where b is an arbitrary constant ...(12)
Putting z=0,(12) gives X + 3¢ + X =b(X + X, + X, )’

1=b(x1+x2+x3)3 using (7) sothatb=1/(x1+x2+x3)3

2 (12) 2 (=23 + (x2—2)3 + (x3—2)3 = (x1 + X2 + x3 — 32)3/(x1 + X2 + x3 )3 ....(13)
Raising both sides of (8) to power 3, we have

(X1+x2+x3+2)% (X1 + X2+ x3—32)% = (x1 + x2 + x3 )2 ..(14)
Raising both sides of (13) to power 4, we have

(x1—=2P+(x2=2)%+ (x3—2)> }* = (X1 + x2 + X3 — 32)12/(x1 + x2 + x3 )** ...(15)
Multiplying the corresponding sides of (14) and (15), we have

x1+x2+x3+2>3 {(x1—2)3+ (x2—2)3 + (x3—2)* }* = (X1 + x2 + x3 — 32)}

S{x1-23+(x2—2)3+ (x3—2)> }* = (x1 + x2 + x3 — 32),using (2)

Integral surfaces finding examples

Ex. 1. Find the integral surface of the linear partial differential equation x(y? + z)p — y(x?

+2)q = (x? — y?)z which contains the straight linex +y =0,z = 1.

Sol. Given  x(y?+2)p—y(x* + z)g = (x* — y?)z. (1)
dx dy dz

= . ..(2)

Lagrange’s auxiliary equations of (1) are =
grang v ed x(y? +2) —y(x2+z) (xz—yz)z

Two independent solutions by Lagrange’s method (from past examples solutions)

Xyz =1 and X2 +y?=2z=c,. ..(3)
Taking t as parameter, the given equation of the straight line x+ y =0, z=1 can be put in
parametric form x=t, y=-t, z=1. ...(4)
Using (4), (3) may be re-writtenas —t>=c;and 2t*-2=c,. ... (5)

Eliminating t from the equations of (5), we have
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2(-c1)—-2=c2 or 2c1+c2+2=0. ... (6)

Putting values of ¢1 and ¢ from (3) in (6), the desired integral surface is
2xyz+ x> +y*—=2z+2=0.
Ex. 2. Find the equation of the integral surface of the differential equation 2y(z —3)p + (2x — z)q
=y(2x — 3), which pass through the circle z = 0, x? + y? = 2x.
Sol. Given equation is 2y(z-3)p + (2x—z)g = y(2x — 3). ..(1)
Givencircleis x?+ y? = 2x, z=0. (2)
dx dy dz

2y(z—3):2x—z:y(2x—3)' ~(3)

Lagrange’s auxiliary equations for (1) are

Taking the first and third fractions of (3), (2x—3)dx—2(z—3)dz=0.
Integrating, x2 — 3x — z2 + 6z = ¢1, ¢1 being an arbitrary constant. ...(4)

Choosing 1/2, y, —1 as multipliers, each fraction of (3)

_ 1/ 2)dx + ydy —dz _ (@/2)dx +ydy —dz
y(z—-3)+y(2x—2)-y(2x—-3) 0
Hence (1/2)dx+ydy—dz=0 or dx + 2ydy — 2dz = 0.
Integrating, x + y2 — 2z = ¢2, 2 being an arbitrary constant. ...(5)
Now, the parametric equations of given circle (2) are x=t, y=(2t—t2)"2,z=0. ...(6)

Substituting these values in (4) and (5), we have

t?-3t=c1 and 3t—t*=co. ..(7)
Eliminating t from the above equations (7), we have c1+c2=0. ...(8)
Substituting the values of ¢; and ¢; from (4) and (5) in (8), the desired integral surface is

X2=3x—22+6z+x+y*-22=0 =>x>+y*—22-2x+4z=0.

Ex. 3. Find the integral surface of the partial differential equation (x—y)p + (y —x—2z)q = z through

thecirclez=1,x2+y?=1.

Sol. Given (x—-y)p+(y—-x—2)g=2z. ..(1)
dx dy dz

Lagrange’s auxiliary equations for (1) are = =—. (2)
X—y Yy—-X—-2 z

Choosing 1, 1, 1 as multipliers, each fraction on (2) = (dx + dy + dz)/0

& dx+dy+dz=0 sothat X+y+z=ci. .(3)
Taking the last two fractions of (2) and using (3) we get
—dy :ﬁ or 2dy _2_dz =0.
y-(c-y) z 2y—-¢ 2
Integrating it, log (2y —c1) -2 log z = log ¢ or (2y—c1)/z*=c2
or (Qy—-x-y-2)/7>=c2 or (y—x-2)/2*=ca. ..(4)
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The given curve is given by z=1 and xX?+y?=1.

Puttingz=1in(3)and (4), weget x+y=c1—-1 and y-x=c+1.

But 202 +y2) = (x +y)? + (y — x)%
Using (5) and (6), (7) becomes
2=(c1—1)%+(c2+1)? orci’+c2—2c1+2c=0. ..(8)

Putting the values of ¢1 and ¢; from (3) and (4) in (8), required integral surface is
(x+y+2?2+(y—x—-2)4/2*-2(x+y+2)+2(y-x-2)/2>=0

ie. Ax+y+2)+(y—-x—22-22x+y+2)+27%(y—-x-2)=0.

Ex. 4. Find the equation of the integral surface of the differential equation (x> —yz)p
+ (y? — zx)q = z2 — xy which passes through the line x =1, y = 0.
Sol. Given (x> —yz)p + (y*—zx)g = 22 — xy.
By past examples,
x=-y/ly-2)=c
and Xy + Yz + 72X = Ca.
The given curve is represented by x=1and y = 0.
Using (4) in (2) and (3), we obtain —-1/z=ciandz=c;
sothat (-1/z) xz=cc, orcc, + 1 = 0....(5)
Putting the values of ¢, &c¢, from (2) and (3) in (5), the required integral surface is
(x=y)/ly=2)1(xy+yz+zx)+1=0o0r(x—y) (xy+yz+zx)+y—-2z=0
Ex. 5. Find the equation of surface satisfying 4yzp + q + 2y = 0 and passing through
y2+22=1,x+z=2.
Sol. Given 4yzp + g = -2y. ...(1)
Given curveis given by y?+22=1,and x +z = 2.

The Lagrange’s auxiliary equations for (1) are dx _dy :E.
4yz 1 -2y

Taking the first and third fractions of (3), dx + 2zdz = 0 so that x + z? = ¢1.
Taking the last two fractions of (3),

dz+2ydy=0 sothat z+y?=c,. ...(5)
Adding (4) and (5), (Y’ +Z3)+(x+2)=c1+cC2

or 1+2=c1+cy using(2)

.(5)
..(6)
(7)

(1)

..(2)
..(3)
...(4)

..(2)
(3)

...(4)

...(6)

Putting the values of ¢1 and ¢, from (4) and (5) in (6), the equation of the required suface is given

by
3=x+22+z+y? or y’+z22+x+z-3=0.
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Ex. 6. Find the general integral of the partial differential equation (2xy — 1)p + (z— 2x?)q =

2(x —yz) and also the particular integral which passes through the linex =1,y =0.

Sol. Given  (2xy—1)p + (z—2x?)q = 2(x — yz). ..(1)
Given line is given by x =1 and y=0. ..(2)
Lagrange’s auxiliary equations of (1) are

dx dy dz

= = . ...3
2xy -1 z-2x*> 2x-2yz )

Taking z, 1, x as multipliers, each fraction of (3) = (zdx + dy + x dz)/0
sothat zdx+dy+xdz=0 or d(xz) +dy=0
Integrating, XZ+y=c1. ...(4)
Again, taking x, y, 1/2 as multipliers, each fraction of (3) = {xdx + ydy + (1/2)dz}/0
sothat xdx+ydy+(1/2)xdz=0 or 2xdx+2ydy+dz=0
Integrating, x?+y?+2z=ca. ...(5)
Since the required curve given by (4) and (5) passes through the line (2), so putting x=1and y =
0in (4) and (5), we get
zZ=C1 and 1+z=c so that l+ci=co. ...(6)
Substituting the values of ¢1 and c; from (4) and (5) in (6), the eqution of the required surface is
given by

l+xz+y=x>+y’+z or X+y’+z—-xz—y=1.
Ex. 7. Find the integral surface of x’p + y*q + 2> = 0, p = dz/dx, q = 0z/dy which passes through the
hyperbola xy =x+y,z=1.

Sol. Given  x’p+y*q+2°=0 or xX*p + y’q = -2 (1)
Given curve is given by Xy=x+y and z=1...(2)
Here Lagrange’s auxiliary equations for (1) are (dx)/x? = (dy)/y? = (dz)/(-Z?). ...(3)
Taking the first and third fractions of (1), x%dx + z%dz = 0.
Integrating, —(1/x)—(1/z)=-c1 or 1/x+1/z=c. ...(4)
Taking the second and third fractions of (1), y2dy+2z7%dz=0.
Integrating, —(1/y)—(1/z2)=—-c2 or 1/y+1/z=c. ...(5)
Adding (4) and (5), 1+1 =c1+C or u+g =c1+C

X y Xy @z
or (xy)/(xy) + 2 =c1 + ¢z, using (2) or ¢c1 + ¢c2 = 3. ...(6)

Substituting the values of ¢1 and ¢, from (4) and (5) in (6), we get
1/x+1/z+1/y+1/z=3 or yz + 2xy + Xz = 3xyz.
Ex. 8. Find the integral surface of the linear first order partial differential equation

yp + xq = z— 1 which passes through the curve z = x> + y* + z, y = 2x
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Sol. Given equation is yp+xq=z-1 .. (1)

and the given curve is given by z=x>+y’+1 and y=2 .. (2)

Lagrange’s auxiliary equations for (1) are o :Q :i ..(3)
y x z-1

Taking the first two fractions, 2ydy — 2xdx =0

Integrating, it, y?— x* = Cy1, Cy1 being an arbitrary constant ... (4)

Taking the first and the last fractions of (3) and using (4), we get

dx dz
FaCy” —zop o that loglz—1)—logh+ (x*+ C1)'"%) = logCs
1

log(z—1)—log(x+y)=logC,, by (4) or (z-1)/(x+y)=0C ... (5)

The parametric form of the given curve (2) is

x=t,y=2t,z=5t>+1 ... (6)

Substituting these values in (4) and (5), we get 3t?=C; and 5t/3=0C .. (7)

Eliminating t from the above equations (7), we get

5/C. 13J3=C, .(8)

Substituting the values of C1 and C; from (4) and (5) in (8), the required surface is given by
S5(y2—x2 )2 /33 (z=1)/(x + y) .

Ex. 10. Find the integral surface of the partial differential equation (x —y)y?p + (y — x)x?q = (x* +

y?)z passing through the curve xz=a3,y=0.

Sol. Given equation is (x + y)y? p & (y + x)x*q = (x* & y? )z (1)
and the given curve is given by
xz=a®> and y=0 .. (2)
Lagrange’s auxiliary equations for (1) are dx __dy _ @ (3)
(x=y)y* (y=x)x" (X +y*)z
Each fraction of (3) = dx-dy __ d sothat =Y @24
(X=NY*+x°) (X +Yy°)z X=y z

Integrating it, (x—y) / z = C1, C1 being an arbitrary constant ... (4)
Taking the first two fractions, 3x%dx + 3y’dy =0
Integrating it, x3+y3 = C,, C* being an arbitrary constant. ... (5)
The parametric form of the given curve (2) is
z=t, x=a*/t, y=0 ... (6)
Substituting these values in (4) and (5), we get

a®/t?=C1  sothat t?=a®/C; .(7)
and (a®/t)}=C, sothat t=a°/GC ... (8)
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Squaring both sides of (8), t°=a'®/ C? or (1) =a'®/C?

or (@*/G)=a"®/C2, sincet?=a3/ G, by (7)

or a’/ C=a'®/CZ, or C2=0°C} -(9)
Substituting the values of C1 and C; from (4) and (5) in (9), the required integral surface of (1) is
given by

O +y)2=a’ (x-y)/ 2 or Z2C+y)=a’ (x-y).

Orthogonal surfaces finding examples

Ex. 1. Find the surface which intersects the surfaces of the system z(x + y) =c(3z + 1)
orthogonally and which passes through the circle xX2 +y? =1, z= 1.
Sol. The given system of surfaces is fx,y,z)={z(x+y}/ (3z+1)=C. ..(1)

oz ez of (x+y)(

3 B 3 3Z+1)—Z><3_ X+Yy
U ox 3z+1’ 9y 3z+1l’ oz

(Bz+1)?  (Bz+1)?

The required orthogonal surface is solution of

of of of z z X+Yy
=— or p+ (s 5
oX oy oz 3z+1" 3z+1 " (3z+1)

or zZ(3z+1)p+2z(3z+1)g=x+y. ..(2)

Lagrange's auxiliary equations for (2) are d = gy = 37 ..(3)
z(3z+1) z(3z+1) x+y

Taking the first two fractions of (3), we get dx —dy =0so that x—y = Ci. ..(4)
Choosing x, y, —z(3z + 1) as multipliers, each fraction of (3) = [xdx + ydy — z(3z+1)dz]/0

xdx + ydy —322dz—z2dz=0 or 2xdx + 2ydy —6z> dz—2zdz=0

Integrating, x2+ y?— 223 — 22 = C;, C; being an arbitrary constant . ...(5)
Hence any surface which is orthogonal to (I) has equation of the form

(x> +y?=223-7%2=@(x—y), @ being an arbitrary function ...(6)

In order to get the desired surface passing through the circle x?> + y?= 1, z=1 we must choose
@(x —y)=—2. Thus, the required particular surface is x* + y> — 223 - 72=- 2.

Ex. 2. Write down the system of equations for obtaining the general equation of surfaces
orthogonal to the family given by x(x? + y> + 22 ) = C1 y2.
Sol. Given family of surfaces is x(x*+y?+22)/y*=C1
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Let  fix,y.2) =x(x*+y?>+2%)/y’=C1 (1)

Then the surfaces orthogonal to the system (1) are the surfaces generated by the integral
curves of the equations

dx  dy  dz dx dy dz

of lox of loy of loz (3x2+y2+z’1)/y2 —2x(x2+zz)/y3 2x 1 y*z

dx dy dz

y(3x* +y* + zz) - —2x (X + zz) " 2xyz

Taking x, y, z as multipliers, each fraction of (2)

_ xdx + ydy + zdz _ xdx+ ydy + zdz 3)
xy(3x% +y? +2°)—2xy(X* +2° )+ 2xyz  xy(X°+y*+ 22)

Combining this fraction (3) with the last fraction of (2), we get
xdx + ydy + zdz dz o 2xdx+2ydy +2zdz _ dz

= r
xy(x2+y2+zz) 2Xyz X +y*+17° z

Integrating, log (x?+ y?+2?)=log z+log C; or (X+y’+22)/z2=C ..(4)
Taking 4x,2y,0 as multipliers, each fraction of (2)

_ 4xdx + 2ydy __Axdx+2ydy
4xy(3x2 +y2+ 22)—4xy(x2 + y2) 4xy(2x2 + yz)

~(5)

Combining this fraction (5) with the last fraction of (2), we get

4xdx+2ydy  dz or 4xdx+2ydy 2dz
axy(2x* +y?)  2xyz 2x% +y? z
Integrating, log (2x*+y?)=2logz+log C3 or (2% +y?) [ y*=GC ..(6)

From (4) and (5), the required general equation of the surfaces which are orthogonal to the
given family of surfaces (1) is of the form (x*+ y?+ 22 )/z = {(2x*+ y? )/2* }, i.e.,

or x*+y*+722=zp{(2x*+ y?)/2? }, where @ is an arbitrary function.

Ex. 3. Find the surface which is orthogonal to the one parameter system z = cxy(x?+ y? ) which
passes through the hyperbola x?—y?=a%,z=0

Sol. The given system of surfaces is f (x,y,z) = z/(x* y + xy3) = C (1)
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of __2(3y+y) o 2(8yx+X) of 1

OX (xe’erxy?’)2 oy (x3y+xy3)2 Loz Ky’
The required orthogonal surface is solution of p(df/dx) + q(0f/dy) = 0f/dz

_z(3x2y+y3) _z(3y2x+x3) 1

(x3y+xy3)2 (x*"y+xy3)2 1= Xy +xy’

or

or {(3x*+y?)/x}p +{(3y*+x*)/ylg ==(x*+y*)/z  ..(2)

dx d dz
Lagrange's auxiliary equations for (2) are = y ..(3)

(3x*+y*)Ix  (3y*+x*)ly B —(x*+y?)/ 2

Taking the first two fractions of (3), 2xdx —2ydy =0 sothat x?—y?’=C1
Choosing x,y,4z as multipliers, each fraction of (3) = (xdx + ydy + 4zdz)/0
o 2xdx + 2ydy + 8zdz=0 sothat x?+y’+4z7°=C,

Hence any surface which is orthogonal to (1) is of the form

X2+ y?+ 472 = O(x? — y? ),® being an arbitrary function. ...(4)

For the particular surface passing through the hyperbola x? = y?=a?, z= 0 we must take ®(x? —
y?) =a* (x*> + y?)/(x* — y? )%. Hence, the required surface is given by

(X2+y2+422 )2 (XZ_yZ )2=a4 (X2+y2)

Ex. 4. Find the family orthogonal to @[z(x + y)?, x*=y*] = 0.

Sol. Given Qlz(x+y)?, x*—y?1=0 (1)
Let u=z(x+y)? and v=x2-y2..(2)
Then (1) becomes ®(u,v)=0 ..(3)

From (2), (Ou/dx) =2z(x+y), (0u/dy)=2z(x +y), (Ou/dz)=(x+y)?,
(ov/ox) = 2x, (0v/dy) =-2y, (0v/az)=0

The PDE represented after eliminating ¢
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py(x+y)+agx(x+y)=-2z(x+y) or py+qgx=-2z ...(8)
which is differential equation of the family of surfaces given by (1). So the differential equation
of the family of surfaces orthogonal to (8) is given by

ydx + xdy —2zdz =0 or d(xy) —2zdz = 0. ..(9)
Integrating (9), xy-—z*=C,
which is the desired family of orthogonal surfaces, C being parameter

Ex. 5. Find the family of surfaces orthogonal to the family of surfaces given by the differential
equation (y+z)p+ (z+x)g=x+y.

Sol. Let P=y+2z Q=z+x and R=x+y. ..(2)

Then, the given differential equation can be written as Pp + Qg = R. (2)

Now, the differential equation of the family of surfaces orthogonal to the given family is
Pdx+Qdy+Rdz=0 or (y+2)dx+(z+x)dy+(x+y)dz=0

or (ydx+ xdy) + (ydz + zdy) + (zdx + xdz) = 0.

Integrating, y + yz + zx = C, which is the required family of surfaces, C being a parameter.

PREVIOUS QUESTIONS ANALYSIS
Q1.1. Find the integral surface of the following quasi-linear equation

(y—¢)%¢+(¢—x)%=x—y.Which passes through the curve ¢=0, xy = 1 and through the

circle x+y+¢=0,x*+y%+¢? =a2. [6a UPSC CSE 2024]
Refer examples Integral Surfaces finding problems

Q1.2. Find the integral surface of the partial differential equitation:

(X—y) y2%+(y—x)x2%=(x2+y2)z that contains the curve: xz=a°%, y=0 onit.

Refer example 7, page no. 45 type 3.

e Taking the first two fractions of e Choosing 1, -1, 0 as multipliers,

solution is ¢(X3 +y°(x- y)/z) =0, ¢ being an arbitrary function.
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We have x*+y°® =3c,..(1) &C, =(x—Y)/z...(2) . So on taking x=t,z=a’/t,y =0, we get from

3
X_
(1) and (2); t* =3¢, &t* =a’, = 9c’ =a’c,’ = 9(x3 +y° )2 =a’ (—yj is required integral
z

surface. [6a UPSC CSE 2020]
Q2. Find the general solution of the partial differential equation ptanx+qtany=tanz where
0z 0z
p= = and = E . [(5e) 2020 IFoS] Refer Type-1 Problems Ex. 1. Page no. 6
X

Q3. Find the general solution of the partial differential equation:

(y3X—2X4) p+(2y4 - X3y)q = 92(X3 - y3) where p _2 q _a& and find its integral surface
7 aXl @/ 7’

that passes through the curve: x=t,y=t*,z =1. [6a UPSC CSE 2018]

Refer Ex 9 page 13; solution is ¢(XyZ]/3, y/x% + X/yz) =0, ¢ being an arbitrary function.

1
xyz? =¢, =>tt’1=c & y/x* +x/y’ =¢, :>t+f:C2' So on eliminating the parameter t from

Sk V> (xyz”3)2/3 +1= [X—yz e izj(xyz”3 )1/3.

two equations we get (Cl)ll3 +
y

_ 1o
@"

Q4. Solve (22—2yz—y2) p+(Xy+2x)q =Xy —2zx, where p=%,q =%. If the solution of the

above equation represents a sphere, what will be the coordinates of its centre?

Refer Ex 8 Type 2 page no. 12. solution is ¢(y2 — 27 -2y2,X* + ¥y + 22): 0, ¢ being an arbitrary

function.From the solution of the given equation, it follows that if it represents a sphere, then its
centre must be at (0,0,0), i.e., origin. [(7a) UPSC CSE 2018]

Q5. Solve the partial differential equation: (X — y)% +(x+ y)% = 2xz . [(6a) UPSC CSE 2017]

Q6. Find the general integral of the partial differential equation (y+2x) p—(X+yz)q=x*—y?.

Refer Solution 12 of assighment on page no. 31 [Se UPSC CSE 2016]
Q7. Find the general solution of the partial differential equation

202 v o _ (zxy2 —4x3) . [(5b) UPSC CSE 2016]

X
d OX oy
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Q8. Solve the partial differential equation (y2 +7° —x2) p—2xyq+2xz=0 where p :% and
X

0z
gq= E . [5a UPSC CSE 2015] Refer Example 3 Type 3 on page no 16.

Q9. Solve for the general solution pcos(x+Y)+qsin(x+y) =z, where p:% and q :%.

Refer Example 9 Type 3 on page no 19. [6a UPSC CSE 2015]

Q10. Solve the PDE: Xxu, + YU, +2zu, = Xyz . [(6a) UPSC CSE 2013]

Hint: Follow the method for 3 independent variable s, Article 2

Q11. Solve the partial differential equation px+qy =3z . [6a UPSC CSE 2012]
Q12. Solve (X2 — yz) P +(y2 - zx)q = 7? — Xy using Lagrange's Method. [(8a) UPSC CSE 2012]
Refer Example 6 Type 3 on page no 17.

Q13. Solve the PDE(x+22)?+(4zx— y)% =2x*+Y . [5b UPSC CSE 2011]
X

Refer Example 7 Type 2 on page no 12.

Q14. Find the general solution of X(y2 + Z) P+ y(x2 + z)q = Z(X2 2 y2) . [(5a) 2010 IFoS]
Refer Example 6 Type 2 on page no 11.

ORTHOGONAL SURFACES

For answers, follow examples based on finding orthogonal surfaces from page no. 46

Hint: Let Z=¢(X,Y)....(1) be the equation of the given surface

Let F(x,y,2)=¢(X,y)-2. (2)
F F F
From (1) and (2), %z%:%: p, %:%:%:q, Z—Z:_l

Since VF is normal to the surface F(X, y,z):O, oF/ox,0F [oy,0F oz i.e. p,q—1 are direction
ratios of the normal to F(X,y,z)=0 or ¢(x,y).

Let required surfaces are given by w(X,y,z) =0. So we have
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i
OX oy

in this equation then by solving this resulting PDE we get the required surfaces.

q +%—W.(—1) =0. Now by taking ¢ as given surfaces and find it’s derivatives and use
z

Q15. Find the system of equations for obtaining the general equation of surfaces orthogonal to
the family given by X(X2 +y+ 22) =Cy?, where C is a parameter. [6a IFoS 2022]

Refer example 2 page no. 46

Q16. Find the equations of the system of curves on the cylinder 2y =x* orthogonal to its
intersection with the hyperboloids of the one-parameter system xy=z+c. [(7c) 2019 IFoS]

Q17. Find the surface which is orthogonal to the family of surfaces z(x+y)=c(3z+1) and which
passes through the circle x* +y? =1,z =1. [(6b) 2017 IFoS]

Q18. Find the general equation of surfaces orthogonal to the family of spheres given by
x* +y?+12z% =cz . [5a UPSC CSE 2016]

Q19. Find the surface which intersects the surfaces of the system z(x+y)=C(3z+1), (C being

a constant) orthogonally and which passes through the circle x*+y*=1,z=1. [6b UPSC CSE
2013]
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Chapter: First Order Non-linear , PDEs
The PDE: f (x, Y, Z, p,q) = 0 represents a non-linear PDE of order 1
Eg (1) X’ —y+zp*+pq=0 (2) Z2-p*+pg+9°=0 (3) x+y+z+pg=0
Here z is dependent on two independent variable X & y

oz 0z
sdz=—dx+—dy = dz=pdx+qd
x Py y p qgay

Observe : suppose if someone asked us to solve a PDE f(x,y,z,p,q)=0....(1)
Step (1) Let if somehow, we get p=¢(X,Y,2) & q=w(X,Y,2)

Step (2) : Now, by using p&( from step (1) in dz = pdx +qdy and then solving this ordinary

differential equation, we get |z =C(x, y,cl,c2)|....(2) c, & C, are arbitrary constants.

Hence (2) is known as complete solution of (1).

Charpit’s method

How to solve the PDE: f(X,y,z,p,q) = 0..(1)
Step (i):- To find p&q from (1), we solve Charpit’s auxiliary equations; a system of differential
equations which are given by

dp  dg  dz  dx dy
fo+pf, f,+aof, —pf —af, —f, —f~

-(2)
Now, by taking combinations of two fractions from (2) (like Lagrange’s method) we try to get
p&q.

Notice: here we’ll get two constants of integration c1 & ¢;, while solving differential equations
from (2)

Step (ii):- Now , by using p&( from step (i) in dz = pdx + qdy

And solving this differential equation, we get the complete integral or complete solution
of (1).

Till Now, we’ve focused: on the general procedure to solve PDE f (X, Y, Z, p, q) =0 ... (1)

Now we categories (1) into some special forms: If (1) is of the form




() [f(p.a)=0] (i) |z = px+ay+9(p.q)| (iii) [ (p.0,2)] =

i.e., given PDEis a known n as Clairaut’s form singular solution etc.
function of p&q only f(xy,z,p,q) =z—pz—ay—9g(p,q)

By general procedure E.g.z=px+qy+p>+q>is

p=a, q=b and a PDE in Clairaut’s from

z=ax + by + ¢c
Now, we’ve interest in:-
Some given PDE can be reduced into these special forms!!
E.g.  Solver z°p?y+6zpxy +2zqx*> +4x’y = 0
Way 1:- By general procedure: always free to use, no issue, but may be lengthy.

Way 2:- Let’s learn to reduce given PDE in some special form (if possible, as this is
not rule; it just depends, on practicing examples.

2

62pxy qux

Ll (1) can be managed as— B R +4=0
X2y X’y x%y
2 2
= (igj +6(@j 120 = - 62 TC=g0 ovt, J 11T Delhi ] Upendra Singh NENTAR (2)
X OX XOX R 8y

Procedure :- xox=0X, yoy =0Y, 201 =07

X _x, Y _y, oz (3)
2 2 2
e, ZXZ_Z_p LOZ_OZ_g
Xox X yoy o
On using (3)in (2), we get P>+ 6P + 2Q+ 4 = 0= f (P, Q) =0  ...(4)

2
Complete integralis, Z =aX +hY +C:>Z?—a?+by2

Next Category of problems.
Solving PDE f (X, y, z, p, ) = 0 ...(1) with cond..x= f (4),y=g(4),z=h(A)

Finding integral surface given by (1) satisfying condition  (2)




Working rule for solving Cauchy's problems

e Let the given PDEis f(X,Y,z,p,q)=0...(1)

Suppose we wish to find the integral surface of (1) which passes through a given curve with
parametric equation

x=f, (1), y="1,(1), z=f,(1), A being the parameter -(2)

o then in the solution X =X( Py, 0y, Xy, Yo, 1o, t) Of the characteristic equations of (1)
dx/dt= of /op,
dy/dt= of /q,
dz/dt=p(of /op) +q(of /oq),
dp/dt=— (of /ox) —p(of /oz),
dg/dt=— (of /dy) —q(of /oz)
, we shall assume that x, = f, (1), y,=f,(4), 2z,=f;(4)aretheinitial values of x,y,z

respectively.

e Then the corresponding initial values of p,,q, can be obtained by the following relations
f,' (4) =pof,' (1) +Gf," (4) and  f{f,(1),f,(2) f,(2). P0G} = O

[usingin dz=pdx+qdy and f(x,y,z,p,q)=0]
When the above values of X,,Y,,Z,, Py, 0, and the appropriate value of t, is substituted in

characteristic equations of (1), we shall be able to express X, Y, Z involving the two parameters
t and A of the form

x=¢(t,4), y=46(t 1) and z=g(t 1)...(3)

which are known as characteristics of (1)

Finally, by eliminating A and t from (4), we arrive at a relation of the form G(x, y, z) =0, which is
the required equation of the integral surface of (1) passing through the given curve (2).




Ctegory-1 Examples

Ex. 1. Find a complete integral of g = 3p?.
Sol. Here given equationis f(x, y, z, p, q) =3p>—-q=0....(1)

. ) - . dp  dg dz _dx dy
e . Charpit’s auxiliary equations are 5 Eaa R A Ao
~tP— —*td- P -0 —

oX oo oy oz op oq op aq

dp __ dp _ dz_dx _dy | Gie(1)in(2)
0+p0 0+g0 —6p?>+q -6p 1

¢ Taking the first fraction, dp =0 sothatp=a.....(3)
Substituting this value of p in (1), we get g = 3d?. ....(4)
¢ Putting these values of p and g in dz = pdx + qdy, we get
dz = adx + 30%dy so that z=ax + 3a%y + b,
which is a complete integral, a and b being arbitrary constants.
Ex. 2. Find a complete integral of px + qy = pq.
Sol. Here given equationis f(x,y,z,p,q)=px+qy—pg=0...... (1)

dp dq dz dx dq

e Charpit’s auxiliary equations are = = = =
st Dl OSSP P QI —f, - —f

dp _ dy _ dz —aadp= . g
-(x-q) -(y-a) -p(x-g)-a(y-p) p+p0 qg+q0
e Taking the last two fractions of (2), (1/p)dp = (1/q)dq.

Integrating, log p=Ilogq+loga orp =agq. ..... (3)
Substituting this value of p in (1), we have
agx+qy—aq>=0 or aq=ax+y, asq#0..... (4)
~ From (3)and (4), gq=(ax+y)/a and p=ax+y.....(5)
¢ Putting these values of p and g in dz = pdx + gdy, we get
dz =(ax+ y)dx+[(ax+y)/a]dy or adz = (ax+ y)(adx + dy)
adz = (ax+y)d(ax+y)=udu where u=ax+y.
Integrating, az=u?/2+b= (ax+ y)2 /2+D,
which is a complete integral, a and b being arbitrary constants.
Ex. 3. Find a complete integral of yzp? —q = 0.
Sol. Heref(x, v,z p, q)=yzp’—q=0..(1)

q




dp _ dg _ dz :dx:dy
fo+pf, f,+qof, -pf,—of, -f, -f,

e Charpit’s uxiliary equations are

dp dq _ dz __dx _dy 2)
0+p(yp®) 2p*+q(yp®) —2yzp*+q -2yzp 1°
e Taking the first and fifth fractions, (1/yp3) dp = dy
or p~3dp =ydy or—2p=3 dp = —2ydy.
Integrating, p=2 = a2 — y?so that p = 1/(a% — y?)'/2.....(3)
Using (3), (1) = g = yzp?’ = q = yz/(a? — y?)......(4)

dx N yzdy
@ -y)"” (@ -y

o . dz = pdx + qdy =

or (a2 —y?)Y2 dz - v %332/)1/2 = dx or d[z(a? —y?)Y/?] = dx.

Integrating, z(a2 — y2)Y2 = x + b or z2(a® — y?) = (x + b)%, a, b being arbitrary constants.

Ex.4(a) Find a complete integral of (p? + g?)x = pz.

Sol.

(b). Find the compete integral of the partial differential equation (p? + g?)x = pz and deduce
the solution which passes through the curve x = 0, z? = 4y.
Let f(x,y, g, p, a) = (P2 + g2)x— pz = 0. ........ (1)

dp - dg E dz :dxzdy
icy Hasing UPyjovi[LiiT Delkiy Jpe=dai Singk J{ RIS @

Charpit’s auxiliary equations are

giving dp/q* = da/(-pq), by (1) or 2pdp +2qdq =0.

Integrating, p? + g2 = a%, where a is an arbitrary constant.......(2)
Solving (1) and (2), p = a’/q and q = (a/z) x/(z* —a°X) ........ (3)

2 2 _a2x%)d a2
a xdx+a«/(z a“x“)dy or zdz —a“xdx - ady.
z z

(z? —a’x%)

dz=pdx +qdy =

Putting z2 — a’x? = t so that 2(zdz — a? xdx) = dt, we get

(1/2+/t )dt = adyor (1/2)xt™2 = ady.

Integrating,  tY2=ay+bor /(22 -a’x*) =ay+b, as t=./(z" -a’x?)

or 22—a’x?=(ay+b)?orz2=a%?+(ay +b)?..... (4)
(b) Proceeding as in part (a), (4) is the complete integral.
The parametric equations of the given curve x = 0, z2 = 4y are given by

x=0,y=t? z=2t.... (5)




Therefore, from (4), we have 4t% = (at> + b)? or a’t* + 2(ab—-2)t>+b?=0...... (6)
Equation (6) has equal roots if its discriminant =0, i.e., if
4(ab—-2)>—4a’b?*=0 ora’b’=1sothatb=1/a
Hence from (4), the appropriate one parameter sub-system is given by
22=a’%+ (ay + 1/a)?ora*(x®? +y?) +a%(2y—-2z?) +1 =0,
which is a quadratic equation in parameter ‘a’. Therefore, this has for its envelope surface
(2y—-2%)?-4(x>*+y?)=0o0r (2y—22)2=4(x2+y2) ...... (7)
The desired solution is given by the function z defined by equation (7).
Ex. 5.Find a complete, singular and general integrals of (p? + g?)y = gz
Sol. Here the given equationis f(x,y,z, p,q) = ( p’ +q2)y—qz =0. ... (1)

dp dg = dz _dx dy
fe+pf, f,+df, —pfy—aof, -f, -—f

Charpit’s auxiliary equations are

dp _dq dz dx dy

= = 3 = ,by(l) ...... (2)
-pq  p® -2p’y+Qz-2q°y —2py —2Qy+z

Taking the first two fractions, we get 2pdp + 2qdg = 0 so that p2 + q2 =a . (3)
Using (3), (1) gives a’y=qz or q=a’y/z

Putting this value of q in (3), we get

p:\/(a2 —q2) =\/a2 —(a“y2 / 22) =%\/(22 —azyz).

Now putting these values of p and q in dz = pdx + qdy, we have

2 2
dz =E ’(22 _azyz)dx+ a ydy dy or M: adx.
z z [(Zz_azyz)

V2
Integrating, (22 —a2y2) =ax+b or z2—a’y? =(ax+b)? ...... (4)

Which is a required complete integral, a, b being arbitrary constants.

Singular Integral. Differentiating (4) partially w.r.t. a and b, we have
0=2ay*+2(ax+b)x....... (5) AndO0=2(ax+Dh)..... (6)

Eliminating a and b between (4), (5) and (6), we get z = 0 which clearly satisfies (1) and
hence it is the singular integral.

General Integral. Replacing b by ¢(a) in (4), we get

22 —a%y? =[ax+o@)P. ...... (7)




Differentiating (7) partially w.r.t. a, —2ay® = 2[ax+ ¢(@)].[ X + ¢'(a)]. ...... (8)
General integral is obtained by eliminating a from (7) and (8).

Ex. 6. Find a complete integral of p(1+ q2)+(b—z)q =0

Sol. Here given equationis f(x,y,z,p,q) = p(1+ q2)+(b—z)q =0...... (1)

" 0 . dp  dg dz _dxady
Charpit’s auxiliary equations are 5 Eale EaR R
~tP— —td— P-4~ —— -
ox oL oy oz op op oq

dp _dg dz dx dy

Pq F:—p(1+q2)—(b_z)q :—(q2+1) :—2pq—(b_z) , by (1)

First two fractions give (1/p)dp = (1/g)dq so that g = pc.
Putting g = pc in (1), we have p=./[c(z—b)-1]/c.

=~ g = pcgives q=./[c(z-b)-1].

Putting these values of p and g in dz = pdx + qdy, we get

dx cdz
dz=4/[c(z-b)-1]| —+dy | of ——=—==dXx+cd
GB35 | or e oo
Integrating, 2./[c(z—b)—1]=x+cy+a or 4{c(z—b)—1} = (x+cy +a)?
Which is a complete integral, a and c being arbitrary constants.

Ex.7. Find a complete and singular integrals of 2xz — px* —2qxy + pq =0

Sol. Here given equationis f(X,y,z,p,q)=2xz— px—2gxy+ pq=0 ...... (1)

o 0 . dp  dg dz _dx dy
Charpit’s auxiliary equations are i R e T
~TP— —ta4- P-4~ —— — -

OX oz oy oz op oq op aq

dp dg  dx dy dz
= —= 2 = = 2 ) by (1)
2z-2q0y 0 x°—q 2xy—p px°+2xyq—2pq

The second fraction gives dq=0sothatg=a
Putting =ain (1), we get p=2x(z —ay)/(x2 —a)

Putting values p and g in dz = p dx + g dy, we get

dz=—2x(22—ay) dx+ady or dz—ady _ 22xdx :
x*—a z-ay x*-a

Integrating, log(z —ay) = Iog(x2 - a) +logb




z—ay:b(xz—a) or z=ay+b(x2—a) ...... (2)

Which is the complete integral, a and b being arbitrary constants.
Differentiating (2) partially with respect to a and b, we get
O=y-band 0=x*—-a.....(3)

Solving (3) foraand b,a=x*and b=y ...... (4)

Substituting the values of a and b given by (4) in (2), we get z = x?y, which is the required
singular integral.

Ex.8 Find a complete integral of pxy + pq + qy = yz..
Sol. Given f(X,y,z,p,qQ)=pxy+pq+qy—-yz=0 ... (1)

Charpit’s auxiliary equation are dp dg az dx _ dy

fo+pf, f,+af, —pf,—af, —f, —f
%_ dq _ dz _ dx _ dy by (1)
0 (px+a)+ay -pOy+a)-q(p+y) -(y+a) —(p+y)’
The first fraction gives dp = 0 so that p = a.
Putting p = ain (1) gives axy +aq +qy =yz so that g = y(z—ax)/(a +y).
Putting these values of p and g in dz = p dx + g dy, we get
dz=adx+Mdy or dz—adx _ ydy =(1— g jdy
a+y z—ax a+y a+y

Integrating, log (z—ax) =y —alog (a +y) + log b, a, b, being arbitrary constants.
Or log(z—ax)+log(a+y)®—logbh=y or (z—ax)(y +a)® =he’

Ex. 9 Find a complete integral p*+q? —2px—2qy +1=0.

Sol. Given  f(x,y,z,p,q)=p>+0°>—2px—2qy+1=0. ...... (1)

dp dg = dz _dx dy
fe+pf, f,+df, -pfy—af, -f, -—f,

Charpit’s auxiliary equations are

dp_dg _ dz o dxdy
—2p -29 -p(2p-2x)-q(2q-2y) —(2p-2y) —(2q-2y)’

The first two fractions give (1/p)dp = (1/9)dqg so that p = agq.

by (1)

Putting p = ag in (1), a’q® +q° —2agqx—2qy +1=0 or (a2 +1)q2 —2(ax—y)q+1=0.

2(ax+y) + \/{4(ax +y)? —4(a2 +1)} 2(ax+y) + \/{4(ax +y)? —4(a2 +1)}
- 2(a? 1) e 2(a? +1)




Putting these values of p and g in dz = p dx + y dy, we get

2 2
e (ax+ y)i\/{(ax+ y) —(a +1)}
(a2+1)

(adx +dy)....... (2)
Put ax + y = v so that a dx + dy = dv. Then (2) gives
(a2 +l)dz ={vi {v2 —(a2 +1)}}dv.

Integrating, (az +1)z =v? /24_{(v/2)>< {v2 —(a2 +1)}

_(1/2)x(a2+1)log(v+ {vz—(a2+l)}ﬂ+b

is the complete integral, where v =ax + b and a, b are arbitrary constants.

Ex.10. Find a complete integral of p?x+q’y=z

Sol.

Given equationis f(x,y,z,p,q) = p?x+q’y—-z=0..... (1)
dp dq dz _dx dy

Charpit’s auxiliary equations are = =
MEAPEDSET RS gL

or 4P dq dz s TA G 1 R

—p+p* -a+q’ -2(p’x+gly) -2px 20y’

2pxdp + pZdx 9 2qydq + q°dy
2px(—p+p°)+ p?(-2px)  2ay(-a+0”)+q°(-2ay)
o 80520 _ale) | o(5™)_ales)
-2p’x  —2qy p’x g%y

Now, each fraction in (2) =

Integrating it, Iog(pzx)zlog(qzy)ﬂoga or p’x=g°ya. ...... (3)

Form (1) and (3), aq’y+q’y=z or q=[z/1+a)]'? ... (4)
1/2 2
Form (3) and (4), p= q[y_aj ={ za } .
X @+a)x

Putting the above values of p and q in dz = p dx + g dy, we get

1/2 1/2
dz=4_22 dx + z dy or (1+a)Y2z7Y2dz = Jax¥2dx + y V2dy.
(Q+a)x 1+a)y

Integrating, (1+a)Y2z =Ja/x + ﬁ+ b,a,b being arbitrary constants.




Ex.11.  Find a complete integral of 2(z+ px+qy) = yp°

Sol. Given equationis f(X,Y,z, p,q) =2(z+ px+qy)—yp> =0 ..(D)
Charpit’s auxiliary equations are = dq = dz = dp = dg
f,+pf, f,+df, -py,-ay, -f, -f,
d d dz dx d
. : T

Or = = = =
2p+2p 29-p*+29 —-p(2x-2yp)—qx2y —(2x-2yp) -2y

Taking the first and the last fractions, j—p :ﬂ or d_p+ 2d_y =0.

p -2y p y
Integrating, log p+2logy =loga or py’=a. ..(2)

Solving (1) and (2) forpand g, p = % and g=——-—S+—.

z ax a°

~.dz=pdx+qdy :% dx+{————3+F}d Multiplying both sides by y and re—arranging, we get
y y 'y y

2 2
(ydz + zdy)—a ydx—zxdy P asdy:O or d(yz)—ad| X |-& ydy —o.
y 2y y R

Integrating, yz — a(x/y) + (a2/4y2) = b, a, b being arbitrary constants. ... (3)
Ex. 12. Find a complete integral of z* = poxy. ...(1)

dp _ dp ¥ dz :dx:dy
fo+pf, f +adf, —pf —of, —f, -1

Charpits’s auxiliary equations are

d d dz dx d
P _ 9% _ XY (2)
—pay+2pz  —pay+20z —p(=axy)—q(=pxy) agxy pxy
xdp + pdx B ydp+qdy

Each fraction of (2) = =
X(—pay+2pz)+ paxy  y(—pgx+2qz) + paxy

xdp+pdx _ydg+qdy ~ d(xp) _d(ya)
2 pxz 2qyz Xp yQ.
Integrating, log(xp) =log(yq)loga’® or xp=a’yq ...(3)
Solving (1) and (2) forpand q, p=(az)/z and q=z/(ay).
s.dz=pdx+qdy=(az/x)dx+(z/ay) and (1/z)dz =(a/x)dx+ (1/ay)dy.

Integrating, logz =alog x+(1/a)log y +logb or z=x*y*h.

Ex.13. Using Charpit’s method, find the complete integrals of pg=px+qy




Sol. Here given equationis f(Xx,y,z,p,q)=pq— px—0gx=0 ...(1)

" - . dp dp dz dx dy
Charpit’s auxiliary equations are = = = =
f,+pf, f,+aqf, -pf,-qf, -f —f
dp d dz dx d
dp _dg _ Y by@)..2)

—p -4 -p@-x-p(p-y) -@-x ~(p-).

To find first complete integral . Taking the first two fractions of (2), we get

1/ p)dp=(1/qg)dg so that log p=Ilogq+loga or p=ag. ...(3)

Using (3), (1) =  ag® =q(ax+Y) = q=(ax+Yy)/a..(4)

Here, From (3), we have p=ax+Yy ..(5)

~dz=pdx+qdy =(ax+ y)dx+[(ax+y)/a]dy =(1/a)(ax + y)(adx +y).

Putting ax+y =t so that z=(1/2a)xt* +b or z=(1/2a)x(ax+Yy)>+b, as t=ax+y

To find second complete integral. Taking the second and the fourth ratios in (2) , we get
dx/(q—x)=dq/q or qdx+ xdq=qdp.

Integrating, qx=Q0°/2+a/2 or g*>—2xq+a=0.

1

- q=[2x+2(x* —a)2]/2 so that q=x+(x*—a)"? ...(6)

1/2

Using(6), (1) = p[x+ (x> —a)"?]— px— y[x+ (x> —a)"?] =0
So that p={l+x/(x* —a)"?}y. ..(7)

dz =pdx+qdy ={1+x/(x* —a)“}ydx+[x+(x* —a)"*]dy
_ Xy dy ) o B -
dZ—(YdX+de)+ W'F(X —a) dy or dZ—d(Xy)—i—d[y(X a) ]

1/2

Integrating, z =xy + y(x* —a)"? +b, a, being arbitrary constants.

To find third complete integral. Taking the first and the fifth rations of (2) and proceeding as

above third complete integral is z=xy + X(y? —a)"* +b

Ex.14. Find complete integral of xp +3yq=2(z—Xx°q°).

Sol. Given equation is f(X,Y,2,p,q) =xp+3yq—2z+2x°q* =0....(1)
Charpit’s auxiliary equations are dp = dg = oz = o = dy
f,+pf, f,+aqf, -pf,—qf, -f, —f
d d dz dx d
b__ = 2V by .(2)

—p+4xq° _F :—px—q(3y+4x2q) T —x  -3y-4x%q




(2):>%q=d—):( = logg=Iloga-logx = gx=a = q:% ..(3)
2
Using (3),(1) = xp + 3y(a/ x) — 22 + 2x*(a%/ x?) =0 o p=2E2) 3 g
X X

2 X

_ A2
dz:pdx+qdy:{2(Z a)_3ay}dx+gdy
X X

x?dz =2x(z—a®)dx—3aydx+axdy or x?dz —2(z —a)dx =—3ay dy + ax dy

2 _ _ 2 _ 2
x*dz - 2x(z a)dx:3aydx+a(1y ord[z a j:d(a_zj

x* x* X x> X

Integrating, (z—a%)/x* =(ay)/x*+b or z=a(a+y/x)+bx?
Ex. 15. find complete integral of p°+q”>—2pqtanh2y =sech?2y.
Sol. f(X,y,2,p,9)=p>+q° —2pqtanh 2y —sech’ 2y =0...(1)

dp _ dq _ dz :dx:dy
f+pf, f,+aqf, -pf -qf, -f -f

Charpit’s auxiliary equations are
q

d d

ap_ N KERS)

0 —4pgsech”2y+4sech”2ytan2y

Then, first fraction= dp=0 = p= constant = a, say ...(2)
Using (2), 1)= g° —(2atanh 2y)q+a’ ~sech?2y =0

= q:[ZatanthJ_rZ\/(a2 tanh22y—a2+sech22y)}/2
= q=atanh2y+\/(1—a2),sech2y.

[ Notethatsech®2y =1—tanh® 2y |

Using (2) and (3), dz = pdx+{atanh 2y+,/(1—a2)sech2y}dy

2dy

, oy 2 2
Integrating, z+b—ax+2IOQCOSh 2y + (1+a )Je2y+e—2y

z+b :ax+glog cosh2y +, /(1—a2)'f1ie(z;j))/z

zZ+b :ax+glog cosh 2y + (1+ az)tan—l(eZV)




2y
-.on puttinge® =t and 2e2ydy=dt,j 2e” dy :I dt —tante?
1

+(ezy)2 1+t

Ex.16. Find complete integral of xp—yq=xq f (z— px—qy).
sol. f(xy,z,p0)=xp-yq—xqf(z—px—-qy)=0  ..Q1)
Charpit’s auxiliary equations are

dp dq dz dx . dy

OF Iox+p(oF [7) oF loy+q(oF 1az) —p(oF Iap)—q(oF /aq) —(oF Ip) —(oF 1oq)

dp dg
= — iieanns b 2 3
p—qf +zpgf '— paxf ' —q+xg*f'—xq*f" ¥@) )

xdp+yd xdp+yd
prydg _xdprydg o
Xp— yq — oxf 0
—  xdp+ydg=0 =  xdp+ ydq+ pdx+qdy=pdx+qdy

Each ratio of =

1 dz—d(xp)—d(yq)=0 as dz = pdx+qdy

Integrating, Z— Xp— yq = constant = a, say ..(4)
Xp+yg=z—a ..(5)

Using (4), (1) become xp—yq=xq f (a) .(6)

Subtracting (6) from (5), 2yq=z—a—xqf (a) = q=(z—-a)/{2y+xf (a)} (7)

Using (7) and (8), dz =pdx+qdy reduces to

.(8)

G —(2-a) {y + xf (<31)}der dy
x{2y +xf (a)} 2y+xf(a)
2dz  2ydx+2xf (a)dx+2xdy 2d(xy)+2xf (a)dx
z-a x{2y +xf (a)} 2y +x*f(a)

Integrating, 2 log (z—a)=Ilog{2xy +x*f (a)}+logb or (z —en)2 =b{2xy + x*f (a)}.

Ex.17. Find a complete integral of px+qy =z(1+ pq)ll2

Sol. f(xy,z,p,q)=px+ay—z(1+ pq)ll2 =0 ...(1)




dp dq dz dx dy

Charpit’s auxiliary equation are

f+pf, f+qf, —pf,—qf, —f —f
dp dp d
Ty = T7 T so that P :—q,by (1)
p-p(l+pa)” q-a(l+pa) g
= logp=loga+logq = p=ag. (2)

Using (2), (1):>q(ax+ Y)Zz(l+aq2)l/2 or qz[(ax+y2)—a22]zzz

z dz adx+dy
Sq= 7 and —= - .
z \/{(ax+ y) —az’}

[(ax+ y)2 —azz} :

Let ax+y=\/5u so that adx+dy=\/adu.

~(3)= d_;:% org—:—\/(uzzzz)—\/{(%f—l}, (4)

which is linear homogeneus equation. To solve it, we put

.(3)

u du du
—=V or u=vz sothat —=v+z—
z dz dz
- (4) yields v+zd—u=(v2—1)l/2 or %:d—uﬂ2
dz z (vz—l) =~
Or (l/ Z)dz :—[(v2 —1)1/2 +v}du on rationalization.
_ vy, e 1 , 2| VP U ax+y
Integrating, log z ——[E(V —1) —Elog{v+(v —1) }_?er’ where, V_E_ /2
Ex.18. Find complete integral of (x2 - y2) pq —xy( p’ —qz) =1
Sol. Let f(x,y,z, p,q):(x2 —y2) pq—xy(p2 —q2)—1=0
Charpit’s auxiliary equations are dp = d = 0z = o = dy
fo+pf, f,+af, —pf,—of, —f, —f,
dp dq _ dx dy by (1) Using

—(=y)y+2py (X —-y*)p-2pxy’

xdp+ydp+pdx+qdy d(xp)+d(yq)
0 0

2pgx—z(p*-q7) —2pay—x(p*—q’)

* Xy, p,q as multipliers, each fraction =




a_—qu{(xz —yz)q—(a—qy) y}+xyq® —1=0 or {(a—qy)/x}(xzq—ay)+xyq2 -1=0
or (a—ay)(X’g—ay)+x’yg’ —x =0 or aq(x*+y*)=a’y+x

a’y+x 1[a(aZY+X)YI_ a’x—y
a

q:a(x2+y2) and p=% a(x*+y?*) | a(x*+y?)

Substituting these values in dz = pdx + qdy, we have

iz _(azx—y)dx+(a2y+x)dy _axdx+ydy+ xdy —ydy
- a(x2+y2) X +y? a(x2 +y2)

Integrating, z=(a/2)xlog(x*+y*)+(1/a)xtan*(y/x)+b.

Ex.19. Find a complete integral of 2( pqg + yp+qx)+ x> +y* =0

Sol. Given equationis f (X, y,z,p,q)=2(pq+yp+0x)+x*+y*=0 (1)
dp _ dg _ dz o dx dy
oF lox+p(oFloz) oF loy+q(oF/oz) —p(oF/op)—q(cF/oq) —(oF/op) —(oF/aq)
dp dg dz RS W J by (1)
2q+2x 2p+2y —p(29+2y)-q(2p+2x) —(20+2y) —(2p+2x) )
dp +dq+dx+dy

=(dp+dg+dx+dy)/0

Each of these above fractions =

(29+2x)+(2p+2y)—(29+2y)—(2p+2x)
= dp+dg+dx+dy=0so that (p+X)+(q+y)=a ...(2)

Re-writing (1), 2(p+x)(q+y)+(x—y)2: or(p+x)(q+y):—(x—y)2/2. .(3)

Now, (p+x)—(q+y)=\/{(p+x)2 +(A+y)¥ —4(p+x)(q+x)

(p+x)—(q+y)=\/a2 +2(x—y)2, using (2) and (3) ...(4)
Adding (2) and (4), 2(p+x)=a+w/a2 +2(z—y)2
Subtracting (4) from (2), 2(q+Y) =a—,/a’ +2(X—y)2
ive Do xi 2yl [52 VWV ge_vid_ 1 [ V)
These give p = x+2+2 a’+2(x-y) q y+2 5 a’+2(x-y)

Substituting the above values of p and q, dz=pdx+qgdy becomesd




dz =—

dz:-%d(xz—y2)+%d(x+y)+ 2><% a?+(x—y)2d(x—

Put x—y=t d(x—

2

y) =dt Then (5) becomes

(xdx+ydy)+(al2)x(dx+dy)+(1/2)x,/a* +2(x—y)2 (dx—dy)

(5

y)

dz =—(1/2)xd (x*+y*)+(a/2)xd (x+ y)+(1/«/§)x (a/x/i)2+t2dt.

X2+ y?

X+Yy

2

2

V2|2

(a\/_) +1°

(a/«/_)

Iog{t+ (a\/i)z +t2} +b

Putting the value of t, the required complete integral is

X* +y?

a(x+ y)

1

2

2

"2

{( -y)

_2+(x y) +%2Iog{x—y+,fa?2+(x—y)zH+b.

Ex. 20. Use Charpit’s method to find the complete integral of 2x{z? ((Ezlﬁy)2 +1}=z(0z/ox)
Sol. Given 2x(0Z /dy)" +2x—(8Z /18x)=0..(1)
Let zdz =dz so that z% =27 ...(2)
Then (1) becomes 2x(6Z /<9y)2 +2x—(0Z/ox)=00r 2xQ*+2x—p =0
Where p=0Z/0x and Q=0Z/0dy ...(3)
Let f(x,y,Z,P,Q)=2xQ*+2x—p=0 ...(4)
Charpit’s auxiliary equations are aP = dQ = dz = o = dy
fo+pf, f,+Qf, pfo —Qf, —f, —f,
d dQ
Giving ———=—= by (4) so thatdQ =0.
iving 2712 0 y (4) so thatdQ

Integrating, Q =a, a being an arbitrary constant

Using Q =a, (4) gives P :2X(a2 +1) Q=a (6)

dZ =Pdx+Qdy =2x(a’ +1)dx+ady, by (5) and (6)

Integrating, Z =x° (a2 +1)+ay+b/2, or 2°/2=x° (a2 +1)+ay+b/2, Using (2)
72 =2x° (a2 +1)+ 2ay +b , which is complete integral of (1)

Ex. 21. Solve by Charpit’s method the partial differential equation.




Sol.

p*x(x—1)+2paxy +q°y(y—1)—2pxz—2qyz +z* =0.
Let f (X, Y,z p,q)=p°X(x—-1)+2paxy+q°y(y—1)—2pxz—2qyz+z° =0..(1)

dp dg dz dx dy

] = = = ...(2)
fo+pf, f,+qf, —pf —of, -f —f

Charpit’s auxiliary equations are
p

From (1) f, =p®(2x—1)+2pay—2pz, f, =2pgx+q°(2y-1)-2pz,
f,=—2px—2qy+2z, f =2px(x-1)+2qxy—2xz f,=2pxy+2qy(y—-1)-2yz
Andso f, +pf,=—p* f +qf, =—p’Then (2) becomes

dp _dg _ dz
-p* —q°  —p{2px(x-1)+2qxy —2xz}-a{2pxy +2qy (y -1)-2yz}
_ dx _ dy 3)

—(2 pXx* —2px+2qu—2xz) —(2 pXy + 2qy° —2qy—2yz)
(1/ p)dp :(1/q)dq :(1/ p)dp—(1/q)dq

- - ~p+g

(1/x)dx—(1/y)dy
—2PX+2p—2Qy+22+2pX+2qy—29—22
(1/p)dp—(1/q)dg (1/x)dx—(1/y)dy
-(p-q) 2(p-q)

Or (1/2)x{(1/x)dx—(1/y)dy}=(1/q)dq—(1/ p)dp

Integrating, (1/2)x{logx—log y}=logq—log p+logaor (x/y)'* =aq/ p

Each fraction of (3)=

.(4)

Also, each fraction of (3) = .(5)

. (4)and (5)=

or p=(ay"*q)/x"?,a being and arbitrary constant....(5)

1/2

Re-writing (1), (px+qy—2z)° = p’x+q2y or px+qy -z =+(p’x+ay’)  ..(6)
. R » , U2
Taking + ive sign in (7), pX:qy—Z:(p X+q y) wee(7)
Substituting the value of p given by (6) in (8), aqy"*x"?+qy -z =(a2q2y+q2y)1/2
or a{y+a(xy)"’ ~(1+a’ )1/2 y'?}=1 sothat q=z/y"*{y"* +ax"? —(1+a’ )1/2}...(9)
Then (6) gives p=az/x"*{y"* +ax"? —(1+ a’ )1/2...(10)

Putting these values of p and qin dz=pdx+qdy+qdy, we get




az dx 3 zdy
XY2LyH2 4 axii2 (1+ a2 )1’2} B YUZLY2 4 a2 (1+ a2 )1’2}

dz =

dz ay"?dx + x"2dy

1/2

Z (Xy)l/Z{ ”2+ax”2—(1+a2) }

1/2
V2 4 axt? —(1+a2) +logh

Integrating, logz =2log{y
Or z =b{y"? +ax"'? —(1+ a’ )1/2}2’ a and b being arbitrary constants.
Ex.22. Find the complete integral of (p+q)( px+ay)=1

Sol. Let f(X,y,z p.q)=(p+q)(px+ay)—1=0 ..(1)
dp dq dz dx dy

Charpit’s auxiliary equations

f+pf, f+qf, —pf —qf, —f —f
Give dp = d =sothat%=d—q using (1)
p(p+a) q(p+q) P q

Integrating, p =aq,a being an arbitrary constant ...(2)

Putting p =aq in (2) gives (aq+0q)(agx+qy)—-1=0 or g*(1+a)(ax+y)=1..(3)
o From(2)and 3),  q=1/(1+a)”(ax+y)"’ p=al/(l+a)” (ax+y)"
Putting these values of p and q in dz=pdx+qdy we get

dz = adx _ dy _ d(ax+y)

(1+ a)l/2 (ax+ y)l/2 (1+ a)“2 (ax+ y)l/2 (1+ a)”2 (ax+y)

1/2

Integrating, z(1+ a)l/2 =2(ax+ y)ll2 +b,a,b being arbitrary constants.

Category-2 Examples: Special Case-l: Form_f(p,q)=0

Ex. 1. Solve (a) p? + g> = m?, where m is a constant (b) p? +q° =1
Sol. (a) Given that p? + g? = m?....(1)
Since (1) is of the form f(b, q) = 0, its solution is z = ax + by +c,...(2)
where a2 +b2=m2or b=(m*-a?)¥?2, on putting a for p and b for b in (1).
.. From (2), the complete integral is z = ax + y (m*-a?)"? +¢,...(3)
which contains two arbitrary constants a and c.

For singular solution, differentiating (3) partially with respect to a and c,




we get 0 = x—ay/(m? —a?)?and 0= 1. But 0 = 1 is absurd.
Hence there is no singular solution of (1).
To find the general solution, put ¢ = ¢(a) in (3). Then, we get z = ax + y(m? — a®)*? + ¢(a)....(4)
Differentiating (4) partially wit respect to ‘a’, we get 0 = a — ay/(m? — a®)? + §'(a)....(5)
Eliminating a from (4) and (5), we get the required general solution.
(b) Hint. takingm =1
Ex. 2. Find the complete integral of z2p?y + 6zpxy + 2zqx? + 4x%y = 0.
Sol. The given equation can be rewritten as
2%y (6z1dx)* + 6zxy(oz/0x) + 22x°(6z/1dy) + 4x*y =0
(z_azjz +6(z_82j+ Z(Z—az)+4=0, dividing by x%y...(1)
X OX X OX yoy
Put xdx=dX,ydy=dyandzdz=dZ....(2)
Sothatx?/2=X,y?/2=Yand 22/2=2Z....(3)
Using (2), (1) becomes  (Z/cX)?* + 6 (Z/X) + 2(cZ/dY) +4=0
or P2+ 6P+2Q+4=0,Where P=Z/X. Q=cZ/cY ...(4)
Equation (4) is of the form f(P, Q) = 0. Note that now we have P, Q X, Y, Zin place of p, g, x,

y, z in usual equations. Accordingly, solution of (4)is Z=aX+bY +c, ...(5)
wherea?+6a+2b+4=0 orb=-(a?+6a+4)/2, on putting a for Pand b for Q in (4).
So, from (5), the required complete integral is
Z =aX—{(a’+ 6a + 4)/2}Y + ¢, where g and c are arbitrary constants.
or 22/2 = a(x?/2) — (a? + 6a + 4) x (y?/4) + ¢, using (3)
orz2=ax?—- (2 +3a+d?/2)y? + ¢/, where c’= 2c.

Ex. 3. Find the complete integral of (i) x*p® +y?q? =z (i) p?’x+q°y=z2

Sol. (i) The given equation can be rewritten as

2 2 2 2 2 2
X_(@J +y_ @ =1 or (_X@Z j + yor. =1...(1)
z \ ox z Loy Jzox Jzoy
Pur (1/x)dx=dX, (1/ y)dy=dY and (1/Vz)dz=dZ..(2)
sothatlogx=X, logy=Y and 2Jz =Z....(3)

Using (2), (1) becomes (8Z / 8X)* +(8Z 1 Y)? =1 or P? +Q?% =1,...(4)

Where P=0Z /06X and Q=0Z/0Y . (4) is of the form f (P,Q)=0.




. solution of (4) is Z =aX +bY +c, ...(5)

Where a*+b*=1 or b =\/]?on putting a for P and b for Qin (4).
.. from (5), the required complete integral is

Z =aX +Y+/1-a% +cor 24z = alogx + logy -1—a? +c, by (3)

or log x* +log yﬁ —logc' =24z, takingc=—log ¢’

or log{x*y"?2 jc}=2z or xayﬁ =c'e?\"

where a and ¢’ are two arbitrary constants.

(ii) The given equation can be re-written as

(] HaT o ] (5

Put (1/\x)dx=dX , (L/[y)dy =dY and  (1/z)dz=dZ ..(2)

sothat 2x=X, 2/y=Y and 2Jz=2 ...(3)

Using (2), (1) becomes (8Z /8X)? +(8Z 18Y)? =1 or P2 +Q%=1,..(4)
Where P=0Z/0X and Q=0Z/9Y . (4) is of the form f (P,Q)=0.

.. solution of (4)is z=aX +bY +c,..(5)

where a? +b? =1or b=+1-a2, putting a for P and b for Q in (4).
.. from (5), the required complete integral is
Z=aX+Yyl-a’+c or 2\/E=2a\/§+2\/§\/1—7+c, by (3)
where a and c are two arbitrary constants.

Ex.4. Find the complete integral of (1— xz)yp2 +x%q=0.

Sol. The given equation can be rewritten as

2

12 (a2} 1oz -¢)" a2 (12
; (_j +——=0or|—~+——| +| =—|[=0...(1)
X“ \OX y oy X OX y oy
2 1/2
Put {x/(l—x ) }dx=dX and ydy =dY ..(2)

so that X =Iﬁ:—%j(l— xz)_llz(—ZX)dx=—(1—x2)ll2 and Y :y? ~(3)




Using (2), (1) becomes (6z/dX)? +(6z/8Y)=0 or P?+Q=0, ..(4)

where P=0z/0X and Q=0z/0Y. Note carefully that here the old variable z remains
unchanged

even after transformation (2). Here (4) is of the form f(P, Q) = 0.

.. Solution of (4)isz=aX+ bY +¢, ...(5)

wherea?+b=0 or b =—a?, on putting a for P and b for Q in (4),

... from (5), the required complete integral is.

z=aX-a’Y+c or z=—a(l-x)Y2—-(a?y?)/2 +c, by (3).
Ex. 5. Find the complete integral of (y—X) (qy—px) = (p—q)2

Sol. Let X and Y be two new variables such that
X=x+y andVY=xy....(1)

Given equation is (v=x) (gy—px)=(p—q)% ...(2)
0z 070X o0zoY oz 0z
=— =t —— =ty —.
ox oX ox oY ox oX oY
0z 070X o0z0Y oz oz
==t ———=——t y—,
oy oX oy oY oy oX oY

Now, p .(3) [+ from (1), 0X/0x =1and dY/ox =y]

and p ..(4) [ from (1), 0X/0y = 1 and 0Y/dy = x]

Substituting the above values of p and g in (2), we have

0z oz oz oz 0z 0z oz a \T
(Y=X)|Y]| —=+X— |- X —=+Yy—||= || =+ Y — || ==+ X—
oX oy oX oY oX oY oX oY
or (y—x)? a _ (y- x)z(ﬂjz or & —(gjz orP=@3..(5)
X oY oxX \av T
where P = 0z/0X and Q = 0z/0Y. (4) is of the form f(P, Q) = 0.
..Solution of (4) isz=aX+ bY +,...(6)
where a = b?, on putting a for P and b for Q in (5).
.. from (6), the required complete integral is
z=b’X+bY+corz=b2(x+y)+bxy+c, by (1).

Category-2 Examples: Special Case-ll: Form Clairaut’s

Ex. 1.Solve z = px+qy+c (1+ p? + q2)
Sol. The complete integral of the given equation is

z=ax+by+c (1+ a’ +b2), a, b being arbitrary constants....(1)




Singular Integral. Differentiating (1) partially w.r.t. a and b, we get

0=x+ac/ (1+a2 +b2) (2)

O=y+bc/ (1+a2 +b2) (3)

[From (2) and (3),

x2 +y? =(a’c?® +b%c?) / (1+a% +b?).
DCZ B X2 _ y2 _ C2 _ aZCZ + bZC2 _ C2
1+a?+b? 1+a?+b?

so that 1+a? +b? =c? /(c2 —x? - yz). ..(4)
X (1+a2+b2) X
From (2), a=-— =— , by (4)
c (Cz X2 yz)

Similarly from (3) and (4), we obtain b=—y/./c? —x* —y? .

Putting these values of a and b in (1), the singular solution is

N y? o2 2 —x2—y?

) JFRA) ) @)

2
Or z:(cz—xz—yz) or 22=c?—x?—y? or x> +y? +2%=c?...(5)

We can easily verify that (1) is satisfied by (5).
General Integral. Take b = ¢ (a), where ¢ is an arbitrary function.
Then, (1) yields z =ax+ yd(a) + c[L+a2 +{¢(a)}*1V* ...(6)
Differentiating both sides of (6) partially w.r.t. ‘a’, we get
0=x+yd'@)+(c/2)x[1+a% +{o@Q)¥1 Y2 x[2a + 24(a)$'(a)]. ...(7)
Eliminating a from (6) and (7), we get the general integral.
Ex. 2. Find the complete and singular integrals of the following equations:
(i) z=px+qy+log (pq) (i) 2= px+ay-2ypq
Sol. (i) The complete integral is z = ax + by + log (ab)
Orz=ax+ by +log a +log b, a, b being arbitrary constants .....(1)
Differentiating (1) partially with respect to a and b, we get
0=x+(1/a)and 0=y +(1/b)sothata =-1/xand b =-1/y. ...(2)




Eliminating a and b from (1) and (2), the required singular integral is
z=—-1-1+log(1/xy)orz=-2—log (xy)
(i) The complete integral is z :ax+by—2@...(1)

Differentiating (1) partially with respect to a and b, we get

2b 2a b a
O0=x————and 0=y———— sothat x= ’_ and y= /_ (2
2/ab Y 2+/ab a Y b (2)
Now, using (1) x—z = x(ax+by —2/ab = ,/E—a,,g—bﬂf%+2x/ab, using (2)
a a

Ox-z=,/(b/a). ..(3)
Similarly, using (1) y—z=y—(ax+by—2@),=\/§—a\/g—b£+2@
Oy-z=./(a/b). ..(4)

From(3)and (4), (x—2) (y—2) =1,

which is singular integral as it satisfies the given equation.

Ex. 3. Prove that the complete integral of z = px + gy — 2p — 3q represents all possible planes

through the point (2, 3, 0). Also find the envelope of all planes represented by the complete

integral (i.e., find the singular integral).

Sol.

Given that z=px + qy - 2p — 3g,...(1)

which is of the form z = px + qy + f(p, ) and so its complete integral is
z=ax+by—2a-3b, a, b being arbitrary constants...(2)

Since (2) is a linear equation in x, y, z, it follows that (2) represents planes for various values
of a and b. Again puttingx=2,y=3,z=0in (2), we have

0=2a+3b-2a-3bie,0=0,

showing that coordinates of the point (2, 3, 0) satisfy (2). Hence the complete integral (2)
of (1) represents all possible planes passing through the point (2, 3, 0).

Differentiating (2) partially with respect to a and b, we get

0=x-2 and0=y—-3sothatx=2andy=3.

Substituting these valuesin (2), we get z=0 as the required envelope (i.e., singular integral).

Ex. 4. Prove that the complete integral of z = px + qy + [pq/(pg — p — q)] represents all planes such

that the algebraic sum of the intercepts on three coordinate axes is unity.

Sol.

Since the given equation is of the form z = px + qy + f(p, qg), so its complete integral is

z=ax+ by + [ab/(ab - a— b)], a and b being arbitrary constants. (1)




Since (2) is a linear equation in x, y, z, it follows that (1) represents planes for various values

of a and b. We now rewrite (1) in the intercept form of a plane as follows:
ax+ by—z=ab/(a+ b-ab)

or X + y + :
[b/(a+b-ab)] [a/(a+b-ab)] [-ab/(a+b-ab)]

[Irhe algebraic sum of the intercepts on three coordinate axes

__ b . a (-ab) _b+a-ab
a+b-ab a+b-ab a+b-ab a+b-ab

=1, as required.
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Ex. 5.Show that the complete integral of the equation z = px+ qy+( p? +0° +1) represents all

planes at unit distance from the origin.

Sol. Given equation is of the form z = px + qy + f(p, q), so its complete integral is
2 2 v2 . .
Z=ax + by + (a + b° + 1) , 4, b being an arbitrary constant.
ax + by —z + (a2 +b% + 1) V2 — 0...(1)

Since (2) is a linear equation in x, y, z, it follows that (1) represents planes for various values
of a and b.

The perpendicular distance of (1) from origin (0, 0, 0)

a.0+b0-0+vaZ+b2+1 +aZ+b?+1 .
= = =1, as required

\/{az +b? +(—1)2} va? +b? +1

Ex. 6. Find the complete integral of the following equations:

() (p+a)(z-px—ay)=1 (i) paz=p*(xq+p*)+a*(yp+q’)
Sol. (/) Re—writing the given equation in the standard form z = px+qy + f (p,q) we get

z-px—qy=1/(p+q)orz=px+qyl/(p+q)

L] Its complete integralisz=ax+by+1/(a+b), where a and b are arbitrary constants.
(i) Dividing both sides of the given equation by pg, z= px+qy+(p4 +q4)/ pa,
Its complete integral is z= ax+by+(a4 +b4)/ab, a, b being arbitrary constants

Ex. 7. (a) Find the complete integral the equation 2(y+2q)=q(xp+yq).
Sol. Re—writing the given equation, we have

220 =xpq+yq’ or z=(1/2) px+(1/2)ay—(y/q)




Or z=x° (i@j+y2 [i%j—i[i%yl..ﬂ)
2X OX 2yoy ) 2\ 2yoy
Putting 2x dx =d X and 2y dy=dY so that x> = X and y? =Y, (1) gives
z=X(0z/X)+Y (6218 )~1/{2(dz/Y)} or z=PX+QY-(1/2Q),
where P=6z/0X and Q=0z/0Y . The above equation is of the form z=PX +Qy+ f (P,Q)

and hence its complete integral is
z=aX +bY —(-1/2b) or z= ax® +by? —(1/ 2b) a and b being arbitrary constants.
Ex. 7. (b) Find the complete integral of 2q(z — px—qy) =1+0?.

Sol. Re-writing the given equation in the form z = px+qy + (1+9°)/2q, we have

z— px—qy=(1+q2)/2q or z= px+qy+(1+q2)/2q,

Its complete integral is z =ax+by+(1+ qz)/ 2b, a and b being arbitrary constants.

Category-2 Examples: Special Case-lll: Form_f(p,q,z)=0

Ex. 1. Find a complete integral of 9( oA ) = 4.

Sol. Given equation is 9(p2 R | ) =4, ..(1)

0. Let u = x + ay, where a is an arbitrary constant. Now,

which is of the form f(p, g, z)
replacing p and g by dz/du and a(dz/du) respectively in (1), we get

2 2 2
o | & +a2(gj =4 or (gj 4
du du du 9(z+az)
2\ 12 . )
du = (3/2) x (z + a ) dz , separating variables u and z.

Integrating, u +b = + (3/2) x [(z + a? )3/2/(3/2)} oru+b=+ (z + a2)3/2

Or (u + by’ = (z + a2)3 or (x +ay + by’ = (z + az)g, as u=x+ay

which is a complete integral containing two arbitrary constants g and b.

Ex. 2. Find a complete integral of p> = qz.

Sol. Given equation is p? = qz, ...(1)
which is of the form f(p, g, z) = 0. Let u = x + ay, where a is an arbitrary constant. Now,

replacing p and g by dz/du and a(dz/du) respectively in (1), we get




(dzjz [ dzj dz dz
— | =|a— |z or — =az or —adu.
du du du Z

Integrating, logz—logb=auor z = be® or z = be?* * ),

which is a complete integral containing two arbitrary constants a and b.
Ex.3. Find complete integrals of the following partial differential equations.
(i) p(z + p) + g =0(ii) p(1 + q) = gz.
Sol. (i) The given equation is of the form f(p, g, z) = 0. Let u = x + ay, a being an arbitrary

constant. Replacing p by dz/du and g by a(dz/du) in the given equation, we get

E(z+£ +£:O or L3 —(z-a) or i:—du or oz =du.
du du) du du z+a z+a

Integrating, log (z+a)—log b=-uorz+a=be™ or z+ag=bextw),
(ii) Ans. az—1 = bex + ay.
Ex.4. Find a complete integral of p* + g*> — 3pgz = 0.

Sol. The given equation is of the form f(p, g, z) = 0. Let u = x + ay, a being an arbitrary
constant. Replacing p by dz/du and g by a(dz/du) in the given equation,

5 3 2 2
i3 +a3(£j —3az(£} =09 or (l+a3)£:3az or i dz = 3au.
dy du du du a

Integrating (1+a*)logz =3au+b or (L+a*)logz =3a(x+ay) +b.
Ex. 5. Find complete and singular integrals of z?(p*z* + g?) = 1.
Sol. The given equation is of the form f(p, g, z) = 0. Let u = x + ay, a being an arbitrary

constant. Replacing p by dz/du and g by a(dz/du) in the given equation, we have

zz{zz(zszraz (gjz}zlor zz(zz+az)(£)2 =1
du du du
du==+ z(z° +a?)"?dz = £(1/ 2) x (z* + a*)"*(2zdz)

Integrating, u+b==+(1/2)x[(z* +a®)¥*/(3/2)]

or 9(u+b)* =(z>+a*)® or 9(x+ay+b)* =(z* +a%)?,...(1)

which is a complete integral containing two arbitrary constants a and b.
Singular Integral. Differentiating (1) partially, w.r.t. ‘a’ and ‘b’, we get

18(x + ay + b)y = 3(22 + 0?) x 2a ..(2)

and 18(x + ay + b) =0. ...(3)

From (2) and (3), x + ay + b = 0 and a = 0. Putting these values in (1), we get z = 0, which




is free from a and b. Again, fromz=0, we get p=0z/0x=0and q=0z/0y =0These

values i.e.,

z=0,p=0and g =0 do not satisfy the given equation. Hence z = 0 is not a singular
solution of the given equation.

Ex. 6 . (/) Find a complete integral of z?(p* + g% + 1) = k2.

(if) Find a complete and singular integral of z(p?> + g*> + 1) = 1.

Sol. (i) The given equation is of the form f(p, g z) =0. Let u = x + ay where a is an arbitrary constant.
Replacing p by (dz/du) and g by a(dz/du) in the given equation, we get

2 2 2 22

2|[ % +a’ 92 L1k or (1+a?) dz) Kk 22
du du du z

-z

(k2_22)1/2

Or +(1+a?)"? dz=du or J_r%(1+a2)(k2 —7%)Y3(2zdz) =du

Integrating, +1+a*)"?(k*—z%)"* =u+b or (L+a?)(k* —z*)=(u+b)’
(L+a*)(1-2z%) = (x+ay+h)®

(if) Here k = 1. Proceed as in part (i) and get complete integral

(1+a2)(1-22)=(x+ay+b)2....(1)

Differentiating (1) partially w.r.t. a and b, we get

201-22)=2(x+ay +b) x y ...(2)

and0=2(x+ay+b)....(3)

From (2) and (3), we get x + ay + b = 0 and a = 0. With these values (1) reduces to 22 = 1,
which is free from a and b. Again, from z2=1, p=0z/ox=0and q=06z/6y=0.Now, p=0, g =0

and 22 = 1, satisfy the given equation and hence singular integral of the given equation is z2 = 1.

Category-2 Examples: Special Case-IV: Form_f (X, p) = f,(y,Q)

Ex. 1. Find a complete integral of x(1 + y)p = y(1 + x)q.
Sol. Separating p and x from g and y, the given equation reduces to
(xp)/(1 +x) = (yq)/(1 +y)

Equating each side to an arbitrary constant a, we have

ﬁza and ﬂ:a so that pza[“—xj and qza(“—yj
1+x 1+y X y

Putting these value of p and g in dz = p dx = g dy, we get




X y

Integrating,z=a (logx+x)+a(logy+y)+b=a(logxy+x+y)+b,
Ex. 2. Find a complete integral of p — 3x*> = g> — .
Sol. Equating each side to an arbitrary constant a, we get

p—3x’=a and q° —y=a so that p=a+3x? and q=(a+y)"?

Putting these values of p and g in dz = pdx + gdy, we get

dz = (a + 3x)dx + (a + y)/2 dy so that z=ax+x3+(2/3)x (a +y)¥2+b.
Ex. 3. Find a complete integral of z2(p* + g?) = x2 + y2, i.e., Z°[(0z ] 6X)* +(z ] By)*] = x* + y2.

2 2 2 2
Sol. Given 22(%) +22(%J =x*+y°® or (ZZ_ZJ +(z%j =x*+y%...(1)
X X

Let z dz = dz so that z2/2 =Z
Using (2), (1) becomes (6Z / x)* +(6Z / dy) =x* + y* or P2 + Q%> = x* + 2,
Where P=0Z /ox and Q=0Z /0y Separating P and x from Q and y, we get
P2—x2=y?- Q%
Equating each side of the above equation to an arbitrary constant a2, we get
P2—x2=q? and y2-Q%*=a?sothat P=(a%+x%)Y2and Q = (y2 - a?)V2.
Putting these values of Pand Q in dZ =P dx + Q dy, we have
dZ = (% + x)Y2 dx + (y> — a?)/2 dy.
Integrating, Z=(x/2) x (@ + x*)1/2 + (a?/2) x log{x + (a® + x*)Y2} + (y/2) x (y? — a*)/? -
(0%/2) x log {y + (y* — a®)/*} + (b/2)
2Z2=x2(a?+x2)1/2+a’log[x+(a*+x2)1/ 2} +y (y*+a? )/ 2—q%log{y + (y*+a®)/2 }+ b
[From (2),Z =2%/2]
Ex. 4. Find a complete integral of z(p?> — %) = x—y.
Sol. Re-writing the given equation,
(zoz 1 ox)? — (Nzoz 1 oy)? =x—y...(1)
Let Vzdz=dZ sothat (2/3) xz32=7 (2)
Using (2), (1) becomes (6Z / x)* —(6Z / 0X)* =x—Yy or P2—Q2 = x -y,
Where P =06Z/ox and Q=0Z/0dy. Separating P and x from Q and y, we
get




P?—x=Q*-y..(3)

Equating each side to an arbitrary constant a, we get

P2—x=aand Q?-y=asothatP=(x+0a)”2 and Q=(y+a)?

Putting these values of Pand Q in dZ = P dx + Q dy, dZ = (x + a)"2dx + (y + a)'/2 dy.
Integrating,  Z=1(2/3) x (x + a)¥2+ (2/3) x (y + b)¥2 + 2b/3

or (2/3) x z32=(2/3) x (x + a)32 + (2/3) x (y + b)*/2+ 2b/3, as Z = (2/3) x 3/

or 222=(x+a)¥2+ (y +a)*? + b, a, b being arbitrary constants.

Ex.5. Find the complete integral of (1— X2 ) yp? +x%q=0

2
Sol. Re-writing, we have (x2 —1)p—2 ~_9_3a2 say
=y
Lp= Ll and g = @?y. so that g = a?y. Hence d z =pdx + qdy becomes

1 1 (aZ 2)
dz=ax(x2 —1) 2 dx+a?ydy so that z=a(x2 —1)2 o

Ex. 16. Find the the complete integral of p + q —2px —2qy + 1 = 0.
Sol. Re-writing, p—2px=2qy—q -1 =a, say

Lp= a , Q= a+l and so dz = pdx+qdy = acK +(a+1)dy
1-2x 2y -1 1-2x 2y=1

Integrating z:—(%)xlog|1—2x|+(%)x(a+1)log|2y+1|+b

CAUCHY CHARACTERSTIC METHOD EXAMPLES

Ex. 1. Find the characteristics of the equation pq = z, and determine the integral surface which

passes through the parabola x =0, y* = z.

Sol. Given equation is pq =z, (1)
We are to find its integral surface which passes through the given parabola given by

x=0, and y’=z -(2)
Re-writing (2) in parametric form, we have
Xx=0, y= A, z= A% A beinga parameter -(3)

Let the initial values X, ¥,,Zy, Py, d, Of X, Y, Z, p,q be taken as
% =%(1) =0, Yo=Y(4) =4 z,=7,(4) = A° (4A)




Let p,,q, betheinitial values of p,q corresponding to the initial values X, Y,, Z,.Since initial

values (X,, Yo, Zy, P, 0y ) satisfy (1), we have

Py =25, OF Pody, = A%, by (4A)

Also, we have 7, (1) =pyX,' (A1) +%Y," (4)
sothat 21 =p,x0 +q,x1 or q,= 24, by (4A)
Solving (5) and (6), Po= 412 and Q,= 24

Collecting relations (4A) and (4B) together, initial values of xo, yo, zo, po, Go are given by
X,= 0,Y,= 4,2,= A°,p,= A/2,q,= 24 whent=t,= 0

Re-writing (1), let f(xy,2,p,0) =pg—z= 0
The usual characteristic equations of (8) are given by
dx/dt= of /op=q ..(9)
dy/dt= of /log=p ...(10)

dz/dt=p(of /ap) +q(of /aq) = 2pq ...(11)
dp/dt=— (of /ox) —p(of /oz) =p ...(12)
and dg/dt=— (of /oy) —q(of /oz) =q) ...(13)

From (9) and (13), (dx/dt) — (dq/dt) = 0, sothat x—q=C, ..

where C, is an arbitrary constant. Using initial values (7), (14) gives
Xo—qo=C1 or 0—2A=C1 or Ci= —2A, Then (14) becomes
Xx—q=-2\ or x=q-2A

From (10) and (12), (dy/dt)— (dp/dt) =0 sothat y—p=0C,,

where C; is an arbitrary constant. Using initial values (7), (16) gives
Yo—po=C2 or A—(A/2)=C; or C;=MA/2.Then (16)becomes
y-p=M2 or y=p+(N2)

From (12), (1/p)dp =dt sothat logp—logCs=t or p=GCset
Using initial values (7), (18) gives po=Cse® or MA2=C;
Hence (18) reducesto p = (A/2)xe!
From (13), (1/q)dg=dt sothat logg—-logCi=t or qg=Cié!
Using initial values (7), (20) gives go=Cse® or 2A=Cs
Hence (20) reducesto g = 2\e!
Using (21), (15) becomes x=2Aet=2N orx=2\e'-1)
Using (19), (17) becomes y=(N2)et+A/2 or y=(N/2)x(et +1)
Substituting values of p and g from (19) and (21) in (11), we get

dz/dt = 2{(\/2)xe! }x{2\e'} or dz=2N\?e* dt

.(5)

...(6)
...(4B)

(7)
(8)

(14)

...(15)

...(16)

.(17)

...(18)

..(19)
...(20)

..(21)
.(22)
.(23)




Integrating, z=MA?e% + Cs, Cs being arbitrary constant ..(24)
Using initial values (7), (24) gives zo=A>e°+Cs or A>=A*+Cs or Cs=0

Then, (24) gives z=N2e?* or z=M\*(e')? ...(25)
The required characteristics of (1)are given by (22), (23) and (25)

To find the required integral surface of (1), we now proceed to eliminate two parameters t and
A from three equations (22), (23)and (25). Solving (22) and (23) for et and A, we have
et=(x+4y)/(dy—x) and A= (4y-—x)/4
Substituting these values of et and A in (25), we have
z={(4y —x)*/16}{(x + 4y)/(4y —x)}* or 16z =(dy +x)?
which is the required integral surface of (1) passing through (2).

Ex. 2. Find the solution of the equation z = (p* + g* )/2 + (p — x)(g — y) which passes through the x

— axis.

Sol. Given equationis z=(p?>+q%)/2+(p—x)(g—-V) (1)

We are to find its integral surface which passes through x — axis which is given by equations
y=0and z=0 ..(2)

Re-writing (2) in parametric form, x=A, y=0, z=0, A being the parameter (3)

Let the initial values xo, yo, Zo, po, Go of X, y, z, p, q be taken as
xo=Xxo(A)=A, yo=vo(AN)=0, z=2(N\)=0 ..(4A)
Let po, go be the initial values of p, g corresponding to the initial values xo, yo, zo. Since initial
values (xo, Yo, 2o, po, o ) satisfy (1), we have
20=(po* +qo®)/2+ (po—x0 )(qo—X0) or 0= (po®+qo*)/2+qo(po—A), by (4A)

or po’ + qo®> + 2gopo—2goA=0 ...(5)
Also, we have zo' (A) = poxo' (A) + go yo' (A)
sothat O0=pox1+qox0 or po=0, by (4A) ...(6)
Solving (5) and (6), po=0 and go=2A ...(4B)
Collecting relations (4A) and (4B) together, initial values of xo, yo, zo, po, go are given by
Xo=MA, y0=0, 20=0, po=0, go=2\ when t=ty=0 ..(7)
Let flx,y,2,p,q)=(p*+q*)/2+pg—py—qgx+xy—2z=0 -(8)
The usual characteristic equations of (8) are given by
dx/dt =offop=p+qg-y ..(9)
dy/dt =0f/dg=q+p—x ...(10)
dz/dt = p(0f/op) + q(df/dq) =p(p+q—-y)+alg+p—x), -(11)
dp/dt = —(0f/dx) — p(0f/dz)=p+q-y -(12)
and dg/dt = — (0f/dy) — q(df/0z) =p + q—x ..(13)
From (9) and (12), (dx/dt)—(dp/dt)=0 sothat x—p=C ...(14)

where Ci is an arbitrary constant. Using initial conditions (7), (14) givesA—0=C; or C1 =A.




Hence (14) reducesto x—p=A or x=p+A ...(15)

From (10) and (13), (dy/dt)-(dg/dt)=0 sothat y—q=0C, ...(16)
where C; is an arbitrary constant.
Using initial conditions (7), (16) gives 0—-2A=C or Cp=-2A

Hence (16) reducesto y—qg=—-2A or y=q-2A .(17)
d —X
-'-% = % + 3—?—% =p+q-y+p+qg-x—(p+q-y), using(9), (12) and (13)
d - d _
or —(p+q X):p+q—x or —(p+q X)=dt
dt p+ g—X
Integrating, log(p+g—x)—log CGs=t or p+qg-x=Csée, ...(18)

where G; is an arbitrary constant. Using initial conditions (7), (18) givesO+2A—A=C; or Gz =
A

Hence (18) reduces to p+qg—x=»Aet ..(19)
d _
Now, w = % + z—?—% =p+qg-y+p+qg-x—(q+p-x), by (10), (12) and (13)
d _ _
or —(p+q y)=p+q—y or —d(p+q y)=dt
dt b+qg-y
Integrating, log(p+qg—y)—logCi=t or p+g—y—Cset ..(20)

where C; is an arbitrary constant. Using initial conditions (7), (20) gives0+2A—-0=Cs or Ca =
2A.

Hence (20) reducesto p+qg—y=2\et .(21)
From (9) and (21), dx/dt=2\e! sothat x=2Ae'+ Cs ..(22)
where Cs is an arbitary constant. Using initial conditions (7), (22) givesA=2A+ Cs or Cs = —A.
Hence (22) reduces to x=2Aet— A or x=A(2et—1) ..(23)
From (10) and (19), dy/dt=MAe! sothat y=2Ae'+ Cs ..(24)
where Cs is an arbitrary constant. Using initial conditions (7), (24) givesO=A+ Cs or Cs= —A.
Hence (24) reducesto y=Aet—A or y=Ae'-1) ...(25)
Substituting value of y from (17) in (12), we get

dp/dt=p+qg—-(g—2\) or (dp/dt)—p=2A, ...(26)
which is a linear equation whose integrating factor = e/t = ¢ and solution is

pe t=[(2Ne tdt+Cr;= —2N\e '+ C3 or p=—-2\A+GCse! ..(27)
where C7 is an arbitrary constant. Using initial condition (7), (27) gives0= —2A + C; or C; = 2A.
Hence (27) reducesto p= —2A+2Aet or p=2\(et—1) ...(28)
Substituting value of x from (15) in (13), we get

dg/dt=p+qg—-(p+A) or dg/dt—qg=-2A ..(29)

which is a linear equation whose integrating factor = e/(~19 = ¢~ and solution is
get =[(-A)etdt+Cs =Ae* +Cg or q=A+Cse' ~(30)




where Cg is an arbitrary constant. Using initial condition (7), (30) gives2A=A+ Cg or Cg=A.
Hence (30) reducesto g=A+Aet or g=A(1+e!) ..(31)
Substitutions the values of p + g — x and p + g — y from (13) and (24) respectively in (1) gives
dz/dt=p(2Aet) + g(Aet) = 2N(et —1)(2Aet ) + A(1 + et )(Aet)
[on putting values of p and g with help of (28) and (31)]
& dz/dt=5Ne**-3N\2e! or dz=(5\%e* -3\ el)dt
Integrating, z=(5/2)xA%e*—3A%"+ Co ..(32)

where Co is an arbitrary constant. Using initial conditions (7), namely z=0 where t =0, (32)
gives
0=(5/2)xN2=3N2+Cs or Co=3N>—(5/2)A% Hence (32) reduces to
z=(5/2) x N2 (e?*—1) —3\? (et—1) ..(33)
Solving (23) and (25) forAand ef, A=x-2y and e'=(x—y)/(x—2y) ...(34)
Eliminating A and e* from (33) and (34), we have

(0% + q?)x = pz

or z=(5/2)x{(x-y)* = (x—=2y)* } =3 {x—2y)(x—y) - (x—2y)* }

z = (y/2)x(4x — 3y), on simplification.
Ex. 3. Determine the characteristics of the equation z = p? — g? and find the integral surface
which passes through the parabola 4z+x?=0, y=0.

Sol. Do yourself, the required characteristics are x=2A(2-¢e 7Y, y = 2\/5 Me t-1),z= =N e~
2t \ being parameter. Solution is 4z + (X + y\/§)2 =0.

JACOBI'S METHOD

Ex.1. Find a complete integral of p, >+ p, *+ py =1.
Sol. Let the given equation be rewritten as
f (X0, %X, X3, Py, Py P3) = PE + P2 + P ~1=0.

.. Jacobi's auxiliary equations are

dp, dx,  dp,  dx,  dp;  dxg
of loxg, —oflop, of Iox, —of [op, of [oxg —of /0p;

or dp, _ dx12 zdﬁzdlzﬁzﬁ, using...(1)
0 -3/ 0 -2p, 0 -1

From first and third fractions, dp1 = 0 and dp, = 0 so that p1=a; and pz = a..




- Here Fy(%g, %, %3, Prs P2s P3) = Pr =y . (2)
and FZ(X].’XZ’XS' pll pZa p3)= pz =a2. (3)
3 (aFl oF, oF aFZ]

Now, (Fl,Fz)zz

or (Fy,F2) = (0)(0) - (1)(0) +(0)(1) - (0)(0) + (0)(0) - (0)(0) = 0, by (3) and (4).
Thus, we have verified that for relations (2) and (3), (F1,F2) = 0 . Hence (2) and (3) may be
taken as additional equations.

Solving (1), (2) and (3) for p;, Py, ps, PL =2, P, =y, P3 =1-2 °-a, ?

Putting these values in dz = pidx: + p2dxz + psdxs, we have

dz = a,dx +a,dx, +(1—al *_a, 2)dx3.
Integrating, z=a% +a,X, +(1—a1 *_a, 2)x3 +ag,

which is a complete integral of given equation containing three arbitrary constants as,a>,
and a3. a4, a,,

Ex.2. Find a complete integral of x; 2p, 2p, ps %+ p, 2p, °— ps 2=0.

Sol. Let f (XX, X5, Py, Py, P3)=X5 P PSP + PLPs — p5 =0....(1)

_ " - ' dp, dx, dp, dx, dps dxg
.. Jacobi's auxiliary equations are ﬁ_ﬂ_i_ﬂ_?_ﬁ

67)(1 Opy - 10Xy 0P, @ 87p3

or %z dx; _dﬁ_ dx,

0 —(2ppGpips+2pp;) O —(2pGplps +2p,pf)

=...., by (1)

.. From first and third fractions, dp:=0 and dp,=0 so that p:=a: and p2=a..
. Here R (X, Xy, X3, P, P2, P3) = Py =2y, -...(2)

and  Fy (X, %y, X3, Py, Pos P3) = Py =85. ....(3)

As in Ex. 1, verify that for relations (2) and (3), (F1,F2) =0

Hence (2) and (3) may be taken as the additional equations.

Solving (1), (2) and (3) for p1,p2,p3, we have p, =a;, P, =a,, P3 =t&a, / (l—afazzxg) .

Putting these values in dz = p1dx: + p2dxz + p3dxs , we get\

dz = a,dx, +a,dx, + {a1a2 / (1— alzazzxs?)}dx3, whose integration gives

Z=ay% + X, sin""(8,a,%; ) + 83,8,,8,,8; being arbitrary constants.




ASSIGNMENT 1: QUESTIONS

Q1. Find a complete integral of z=pz + qy + p? + g°

Q2. Find a complete integral of p2 —y? q = y? — x?

Q3. Find the complete integrals of following equations: (i) q=(z+ px)* (i) p=(z+ay)?

Q5. Find a complete integrals of the following partial differential equations:
(i) gq=px+p? (i)g=—px+p®

Q6. Find a complete integral of p?+q° —2px—2qy+2xy =0

Q8. Find the complete integral of the following partial differential equations.
(@) px° —40°x*+6x°2—2 (b) px’>—4q°x* +6x°2—2=0

Q9. Find the complete integral of (p +y)? + (g +x)?=1

Q10. Find the complete integral of 2 (y + zq) = q(xp + yq)

Solutions.

Sol 1.Letf(x,y,z,p,q)=z—px—qy—p?+9*>=0...(1)

Charpit’s auxiliary equations are da 4 % it = gy w(2)

fo+pf, f,+af, —pf,—af, —f, -f

From (1), fx=-p, fy=-q,f,=0,fp=-x—2p and fg = -y — 29 ....(3)
Using (3), (2) reduces to

dp _dq _ dg _dxdy
0 0 p(x+2p)+q(y+2p) x+2p y+2q

..(4)

Taking the first fraction of (4), dp =0sothatp =a....(5)
Taking the second fraction of (4), dg=0sothatq=b ....(6)
Putting p=aand g=bin (1), the required complete integral is
z=ax + by +a%+b? a, b being arbitrary constants.

Sol 2. Here given equationis f(x,Vy,z,p,q) = p?z* +q%2? -1=0 ..... (1)

dp  dg = dz _dx dq
fo+pf, f,+df, —pf,—af, -f, -1,

Charpit’s auxiliary equations are

or dp dq dz dx dy

p(4 p?z® + 22q2) q(4 p?z® + 22q2) —2p%z* —29%2%  —2pz* -2z
Taking the first two fractions, (1/p)dp = (1/g)dq so that p = aq.
1

z(azz2 +1)1/2

Solving (1) and (2) forpand q, p= )1,2 » Q=

z(azz2 +1




< dz = pdx+ qdy = (adx +dy) / z(azz2 +1)1/2 or adx+dy = z(azz2 +1)1/2 dz

V2
Integrating, ax+y = J'(azz2 +1) .zdz ..... (3)

Putting a’z® +1=t? so that 2a%zdz = 2tdt,(3) becomes
ax+ yzj(l/ az)t -tdt or ax+y+b =(1/3a2)t3, where t:(azz2 +1)1/2
Or ax+y+b =(1/3a2)><(a222 +1)3/2 or 9a*(ax +y +h)? =(a222 +1)3,
which is a complete integral, a and b being arbitrary constants.
Sol 3.(i). Here given equations is f(X,y,z, p,q)=(z+ px)>—q=0 ..... (1)
dp dq dz _dx dq

Charpit’s auxiliary equations are = = = =
fe+pf, f,+df, -pfy—af, -f, -—f,

or dp __ dg dz _ dx _
2p(z+ px)+2p(z+px) 29(z+px) -2px(z+px)+gq -2x(z+px) O

Taking the second and fourth fractions, (1/q)dq=—(1/ x)dx.
Integrating, logg=Iloga—logx so that g=a/x. ..... (2)
Substituting the above value of q in (1), we have

(z+px)®2=alx or px=+a/x—z or p=val/x/x=z/x. ....(3)

~ dz = pdx + qdy = ﬁ—i dx+Edy, by (2) and (3)
XX X X

Or xdz =~/ax ¥2dx — zdx + ady or xdz + zdx =~/ax¥%dx + ady
Or d(xz) =~/axY2dx + ady
Integrating, xz= 2\ax + ay+Db,a,b being arbitrary constants

(i) Ans. yz =ax+./ay +b.

Y by (1)

Sol 5. (i) Here given equation is f(x,y,2,p,9)=q— px—p>=0...... (1)
Charpit’s auxiliary equations are dp = dg = dz = ox = dy
fe+pf, f,+df, -pfy—af, -f, —f,
oo d_di_ & N W by

-p 0 —p(-x-2p)-q —(-x-2p) -1
The 2nd fraction gives dq = 0 so that g = a.




12
Putting q = a in (1) gives p?+ px—a=0 so that p=(1/2)><[—xi(x2+4a) }

Putting these values of p and g in dz = pdx + qdy, we get
) 12
dz:—(x/2)><dxi(1/2)><(x +4a) dx + ady.

Integrating, the required complete integral is

2
Xt 1 xy 0 2 2 12
z_—IiE{E(x +4a) +2alog{x+(x +4a) ﬂ+ay+b

Part (ii). Proceed like part (i) yourself. Complete integral is

z:xfji%{g( 2 +4a)1/2 +2a|og{x+(x2 +4a)1/2ﬂ+ay+b

Sol. Given equationis f(X,Y,z, p,q)=p®+q>—2px—2qy + 2xy =0. ...... (1)

o 0 . dp  dg dz _dx dy
Charpit’s auxiliary equations are i e R T o
—~tP— —tad— P-4~ —— —-
OX oz oy oz op oq op aq
Uggoman WML _—C' U o)
—2p+2y —-2q+2x 2x—-2p 2y-2q
which gives P ¢ = s ]

2(x+y=-p=0q) 2(x+y-p-0)
Ordp+dg=dx+dyi.e.,dp—dx+dg—-dy=0.
Integrating, (p=x)+(q—y)=a.... (2)
Re—writing (1), (p—X)?+(q-Yy)*> =(x=Yy)%. ..... (3)
Putting the value of (g —y) from (2) in (3), we get

(p—x)* +[a—(p—XTF =(x-y) or 2(|O—X)2—Za(p—X)+{az—(X—y)2}=0-
2a+ || 4a® —4.2-{a® — (x-y)?

N a \/[ a 4{a X=y }}:p:x+%[ai\/{2(x_y)2_az}}

=~ (2) gives =a+y—p+X or q=y+(1/2)><[a¢\/{2(x—y)2—az}}.

Putting these value of p and g in dz = p dx + g dy, we get

dz = xdx + ydy + (a/ 2) x (dx + dy) = (1/ 2)\/{2(x— y)? —az}(dx—dy)

a 1
Or dz = xdx + ydy + = (dx + dy) + ——=+/ (X - y)? —a® / 2 - (dx - d
ydy 2( y) \/E*/( y) ( y)




Integrating, the desired complete integral is

x> +y% a(x+y) 1 (x-y I a’
= +— Jox—y)2-a2r2-2 —y)+(x—y)? - 2/2}
z >t NARE (x-y)"-a 2 Og[(x y)+y(x-y) -a

Sol 8.(a) Let f(X,y,z p,q)=px’—40°x* +6x°2—2=0 ..(1)

dp dg dz dz dy

Charpit’s auxiliary equations are = = = =
fo+pf, f,+qf -—pf —qf, -f —f

q

dp dg dz dx dy
or s XY by
5px* —8g°x+12xz +6px*>  6gx> —px°+8g°x°> —x° 8gx* v

Taking the second and the last fractions, 4dq=3dy

Integrating, 4q=3y+3aor q=3(y+a)/4 ..(2)

Using (2), (1) given p={(9/4)x(y+a)’ —6x’2+2}/x® ...(5)

dz :(9/4x3)(y+a)2 dx —(62/x%)dx +(2/x° )dx +(3/4)(y +a)dy
(62/x3)dx +dz ={(9/4x3)(y +a) dx+(3/4)(y+a)dy}+ (2/x5)dx ..(4)

eefcld==toN :%, which is function x alone and so I.F. =ej(6/x3)dx=e‘3’xz
N\oz ox) X

Multiplying both sides of (4) by I.F. e¥* we, get

(62/x°)e ™ dx+edz=(3/8)x{(6/x)(y+a) e *dx+2(y+a)e * dy}+(2/x°)e* dx
d(ze ) =(3/8)xc{(y+a) & J+(2/x)xe " dx

Integrating, ze™ =(3/8)x(y+a) e +2I(1/ xz)e‘s’Xz (1/ x3)dx

Or ze =(3/8)x(y +a) e™* —(1/9)xjue“ du, putting (-3/x*) = u so that (6/x*)dx =du
Or ze™¥ =(3/8)x(y+a) e ™ —(1/9)x(ue" —¢")+b

Or ze" =(3/8)x(y+a) e ™" —(1/9)x(-3/x* )™ +(1/9)xe ™" +b

Or z=(3/8)x(y+a)’ +(1/3x2)+(1/9)+be‘3’xz , a, b, being arbitrary constants.

(b) Ans. z=(2/3)x(y+a)"* +(1/3x*)+(1/9) + be "

Sol9.let f(xy,z,p,q)=(p+y)*+(qg+x)2-1=0 ...(1)

dp dq dz dx dy

Charpit’s auxiliary equations are = = = =
fo+pf, f,+qof, —pf,—aof, -f, -f;

P




dp:dq: dz zdx:dy
209+x) 2(p+y) -2(p°+q*+py+ax) —2p+y) -2(q+X)

Taking the first and the last fractions, dp +dy=0sothatp+y=a
Using (2), (1) gives a% + (q + x)2—=1=0 or q + x =(1-a?)%? .. (3)
Using (2) and (3) in dz = pdx + qdy , we get

dz = (a —y)dx +{(1-a? )2 —x}dy = adx — 1(1-a?)/2 dy—(ydx + xdy)

Integrating, z = ax—(1-a?)Y2y —xy + b, a, b being arbitrary constants.

, by (1)

. (2)

Sol10. Llet f(x,y,z,p,q)=2y+2zq—xpq—-yq?=0...(1)
Charpit’s auxiliary equations are dp = dg = az = o = dy (2)
fo+pf, f,+qof, —pf,—aof, -f, —f;
dp dg dz _dx dy by (1)

—pQ+2pq  2-QF +20°(p+y) 2paX+2py—20Z QX Xp+2yp—27°

Taking the first and fourth fractions, (1/pq)dp = (1/gx)dx or (1/p)dp = (1/x)dx
Integrating, log p = log a + log x or p = ax, ... (3)

where a is an arbitrary constant. Substituting the value of p given by (3) in (1), we have
2y + 2zq — ax’qg —yg% =0 or yg? + q(ax?> — 2z) = 2y = 0.

= q = [ (ax*=2x) *+ {(ax?=22)2+8y?}2)/(2/y)... (4)

Substituting the values of p and g given by (3) and (4) in dz = p dx + g dy, we obtain

dz = axdx + (1/ 2y) x[2z - ax?® £{(2z - ax?)2 +8y?*}'?]oy

2dz — 2axdx _dy (5)
(2z-ax®) +{(2x—ax®)2+by?}? y

Putting 2z — ax? = u and 2dz — 2 ax dx = du, (5) yields

du dy du wu

u+(u?+8y?)

2

-0
y

2 1/2
r_:_i{[ﬂj +8} ..(6)
dy vy y

which is linear homogeneous differential equation. To solve it, we put u/y = v, i.e., u =yv so
that du/dy = v + y(dv/dy) and so (6) reduces to

v dy
(VZ +8)1/2 y

7

v+ yﬂzvi(v2 +8)Y%or
dy

taking positive sign. Integrating it, we have
log{v + (v2 + 8)/2}/ logy + logb or v + (v2 + 8)1/ 2 = by
oru/y+{(u/y)?+8}¥2=byoru+ (u2+8y?)2 = by?

or 2z —ax? +{(2z — ax?)? + 8y2}2 = by?, as u = 2z — ax%; a, b being arbitrary constants




PREVIOUS YEARS QUESTIONS

Q1. Find a complete integral of the partial differential equation

(p2 +q2)x= pz; p =?,q =%using Charpit's method and hence deduce the solution which
X
passes through the curve x=0,z° =4y. [8c IFoS 2022]

Refer example 4a, 4b, category |

Q2. Solve the following by Charpit's method: pxy+ pq+qy =yz, p = %,q = % . [6a IFoS 2021]
X

Refer example 8, category |

Q3. Solve the following differential equation:

(y2 + 72 —xz) p—2xyq+2xz =0, ng,q _a [7c IFoS 2021]
OX oy

Q4. Find a complete integral of the partial differential equation p = (Z +qy)2 by using Charpit's
method. Refer Solution 3, Assignment-1 [8a UPSC CSE 2021]

Q5. Find the general solution and singular solution of the partial differential equation

6yz —6pxy —3qy’ + pq =0. [(6a) 2020 IFoS]

Take help of Refer example 7, category |

Q6. Find a complete integral of the equation by Charpit's method p*x+0Q°y=1z. Here
0z oz

p=—0= rvl [(5e) 2019 IFoS]

Refer example 10, category |

Q7. Find the complete integral of the partial differential equation (p2 +q2)x =1Zp and deduce

the solution which passes through the curve x=0,z° =4y .Here p= ? = % .[(6a) 2018 IFoS]
X

Refer example 4a, 4b, category |

Q8. Find a complete integral of the partial differential equation 2( pq+ yp+ qx)+ x*+y*=0.

Refer example 21, category | [6a UPSC CSE 2017]

Q9. Find complete integral of xp—yq=xqf (z— pz—qy) where p= o q _a

' oy




Refer example 18, category | [(6c) UPSC CSE 2017]

ou

2
Q10. Find the solution of the equation (a_uj +[
OX oy

2
] =1 the passes through the circle
x*+y>=1Lu=1.[(7c) UPSC CSE 2013]

To find complete solution Refer Category-2 Examples: Special Case-l: Form_f (p,q)=0

Then, follow the same procedure as we did for example 4 in Category |

CAUCHY’S CHARACTERISTIC METHOD
Q1. Find the solution of the partial differential equation
1, , oz oz
5 (P @) +(p=x)(a-y):p=—"4 &
which passes through the x-axis, using Cauchy's method of characteristics.
[7c IFoS 2022], [7a UPSC CSE 2020]

Q2. Solve the first order quasilinear partial differential equation by the method of

characteristics: xg—u+(u—x—y)%u:x+2y in X>0,—0<y<ow withu=1+y on x=1.
X

[6a UPSC CSE 2019]

Q3. Determine the characteristics of the equation z = p> —q?, and find the integral surface which
passes through the parabola 4z+ x> =0, y=0. [6a UPSC CSE 2016]

Q4. Solve the following partial differential equation zp+yq=x
% (S)=X,Y,(s)=12,(s)=2s by the method of characteristics. [6a UPSC CSE 2010]

For answers refer Examples based on CAUCHY’S CHARACTERISTIC METHOD




HIGHER ORDER PDEs WITH CONSTANT COEFFICIENTS

General form of higher order PDE

o"z o"z oz 9"l
%67”30@““ pwE +B; oy F oo =f(xy) (1)

Eg. (1) 2— +X——+2X
oX

0’7 0%z %z,
(2) —+——+XCOSYy—==X"+Y
3 3 3
(3) 2_6§+5 822 +6—a§=x+y
ox®  oxPey oy

OBSERVE!
(1) (2D2 +xDD'+ 2x3yD‘D2)z — gty

Terms of degree 2 and Terms of degree 3. Terms are not of same degree (as far as
partial derivative are concerned)

(2) (D2 + DD'+ xcos yD '2)2 =x° + y; Terms are of degree 2 (derivatives)

(3) (2D3 +5D%D'+ 6D'3)z =X+ Yy ; Terms are of degree 3 (derivative)

Representations: In general, aﬁ =D, —=D"
X

e Homogeneous PDEs (F(Dm,D'rn ))z =f (X, Y) Each term of same degree m(derivatives)

¢
¢ }

With constant coefficient with variable coefficient
v

Special form (Cauchy Euler’s type) Rr +Ss+Tt =0

¢ Non — Homogenous PDEs (F(D, D'))z = f(x,y); Terms need not of same degree(derivatives)

7O\

With constant coefficient with variable coefficient




Part (1): we will study: Solving Homogenous PDEs
Part (2): We will study: Solving non-homogenous PDEs

/\

When F(D, D’) can be factored into linear factors of When f(D, D’) cannot be
the form factored into linear factors

(D-mD'-K,;)(D-m,D'-Kj)..)z=f(x,y)

Part (1): Solving homogenous PDEs: (F(Dm,D'm))z =f(xy) (1)

Solution of (1) is given by z=C.F + P.I

Just to observe! Let’s visualize through examples:
H 2 ] 72 _
E.g.(1) Solving (D —-5DD'+6D )z =X+Yy
To find CF of above equation:
(D® =5DD'+6D* )2 = 0= ((D-2D")(D-3D"))2=0.....(i

This is how we may Think!!

Let (D-2D")z=v ... (2)
. We have, (D-3D")v=0= Dv—3D’v=0:>@—3@=O
oxXx oy

’ dX dy dV . st : .
By Lagrange’s method; T:_3:_ .. From 1%' two fractions, y = -3x+¢; .. u(x,y,z) =y + 3X
Also, dv= 0=v=c,
(D-2D")z=c,= @—Zgzcz

ox oy

, dx dy dz . . . . \ \

So, Lagrange’s; 15" Solving again and then using these in ((D—ZD )(D-3D ))z =0

Rule to find CF of (F(D™,D™))z=0

. Manage (F(D™, D™)) z= 0 as,

(D-mD")(D-m,D")(D-mgD").....(D-m,D’)=0 (1)




Now, Let’s take (D-m,D")z=0= %_m”%:() =1lp-mqg=0..
X

P=1,Q=-m,, R=0

.. Lagrange’s auxiliary equation are,

dx  dy _dz

1 -m, 0
L J J

U U

y=-MyX+¢ Z=C¢,

u(x,y)=y+myx, v(xy)=z
. Solution of (2) is given by z=¢,(y+m,X). In general, we have; z=¢, (y+m,x), then

Exam Point- C.F of (1) is given by

z=dy (Y +mMX)+ o (Y +MoX)+..co+ b (Y +mX)|; where ¢4,¢5,...0, are arbitrary functions.

Procedure:
° Replace D by m, D’ by 1 in differential equation (1).

Let’s say, we get (m — m1)(m — m2)(m — m3).... (m—m;) = 0; (Known as auxiliary equation of (1))

Case (1): When my,m,,......,m, all are distinct.
C.F =y (y+mX)+ds (Y +MoX)+ oo+ b (Y + My X)

Case (2): If auxiliary equation has two repeated roots & rest are distinct.

Letif my=m, =a, mg,my,......,m, are distinct

Then C.F = ¢y (Y +0ax)+ Xy (Y +0X)+ 3 (Y +MaX) +.oooe+ dpy (Y + My X)

endipaof ({014

Case (1): when (F(D,D')) is homogenous of degree m & f(x,y)=¢(ax+by)

int: [Pl =L (m __ 1
Exam point: |P.I _F(D,D')(I) (ax+by) F(a’b)¢(ax+by)




To remember: we may think like, let ax + by =v ... We have,

F (Dl D-)‘I’(m) (v)= = (;,b)(b(v) On integrating m times w.r.t. v we get
1

F(D,D')(I)(V): F(;,b)&id)(v)dvm

m

1 X
Note: If F(a, b) = 0; then m‘b(fﬁw by) b

o(ax+by)

Case (2) when f(x, y) = x™y"; P.I= ! —xMy"

Exam point: Expand F(D, D’) using binomial in powers of D or D’ accordingas m<norn
<m

Eg.  F(D,D)=D?-5DD+6D?, f(xy)=xy?

Pl = 1 xy?= i{ 1 }X 2_1 ;xyzf;xyz
(D2,5DDv+6Dv2) D' | D23D" ~D=2D - | D! (D-3D") (D-2D")
Nl N\l
S o el 8) ) )
o) o)
D D

1 3D’ 9D? 27D% ’ 2D' 4D" )
= — |t —F—F— . XY | I+ —+—+..... Xy“ b=
DD’ D p? D3 D | D2

Case (IV): A general method to find Pl of (F(D,D'))z =f(xy)

If more than one factors, then use partial fraction and then

mf(X,Y):If(x,c—mx)dx,where C=Yy+mx

E.g. Finding sin(x+Y)

1
(D-5D")

Way 1: sin(x+y)= f (ax+by); a=1b=1 & proceeding by case (1)




Way 2:By general method,

P.l= ﬁsin(wr y)=jsin(x+c—mx)dx =Jsin(x+c—5x)dx =Isin(c+4x)dx

- -4
:%X) :%cos(y+5x—4X) =%C05(X+ y)

Working Procedure to solve: Homogenous Linear F(D,D")z= f (X,y); where
F(D,D")=(D-mD")(D-m,D").....(D-m,D’)

Finding C.F of (F(D,D’))z=0 (1)

Write auxiliary equation by replacing D by m & D' by 1in (1), we get auxiliary equation:
(m—m)(m-my)...(m=-m,)=0 .. m=my,m,,..m,

Case (1):- Let if my,m,,.....m, are distinct then C.F = ¢; (Y +mX)+dy (Y +MpX)+.coc+ dpy (Y + My X)
Where ¢;,9,,.....,0, are arbitrary functions.

Case (2):- Let if m=m,m,,....m, =a i.e., r-repeated roots of m; then

C.F=¢(y+ax)+x¢(y+an)+x2¢(y+cxx)+ ..... + X (Y +0xX) + Oy (Y M X+ +p (Y+myx)

Finding Pl
1 1
Case (1): Wq)(v): F(a,b)g't[r{esd)(v)dv' v=ax+by
. 1 — Xm . -
Case (2): W¢(ax+by)_ bmm!c1>(ax+by), If F(a, b) =0

Case (3): When f(x,y)=x"y" (use binomial to expand F(D, D’))

Case (4): General method

f(x,y)=jf(x,c—mx)dx; y=mX+cC

Non-homogenous PDEs with constant coefficient

Finding C.F & PI= F(D,D")z=f(x,y) : Now F(D,D') need not be homogenous.

Finding C.F when F(D,D") can be factorized as




g ((D-bD™-¢;)(a,D~b,D'~c;)(a,D—b,D'~c, ))z2=0
i.e. (D-mD-K;))((D-mD'-Ky)).....(D-m,D'-K)z=0

" (D-mD'-K)z=0= %—m%—kZZOS Pp—mq =kz

Lagrange’s method: % :d_r):w :% give:ze = ¢(y+mx) =z =e“¢(y +mx)
— z

Exam point: To find C.F of F(D, D’)

. Factorize F(D, D')as ((D—-mD'-K;)(D—myD'=Ky).......... (D-m,D'-K,))z=0
Then C.F = %y (y +mx) +€ 2", (y + MpX) +..co.+- €050, (y +my )

Case (2): When F(D, D') cannot be factorized as above : In that case we use TRIAL METHOD.

Step (1): Let z= Ae™*W - where h, k are constants to be chosen. So, for given PDE

7 — ehx+ky

We get (h, k) < % _ ey

2
0°z
= hzehx+ky

ox>

n
Step (2): Required solution is given by z = ZAehiX+kiy
i—1

Finding Pl of F(D, D")z =fix, y)

ax+by
Case (1): When f (x,y):ea”by, ThenP.l = ;ea’(+by _ &
F(D,D") F(a.b)
Case (2): When f(x,y)=x"y"
ThenP.l = ﬁxmy”; expand F(D, D’) in powers of D or D' by binomial expansion.

Case (3): When f(x,y)=sin(ax+by)or cos(ax+by)
Then for P.I: Replace D2 by —a® &D? by —b? &DD" by ab

Case (4): When f(x,y)= eax+byv(x, y)




1

Then P.| = ax-+by , _ pax+hy
o eT(xy) e F(D+a,D'+b)

F(D,D’)

cases.

1

IZ(D—,E)')eaX+bY; F(a,b)=0 then we do by:

Note: if in case (1)

;eamby _ ;eamby.l _ eax+by 1 1
F(D,D’) F(D,D’) F(D+aD'b)

Similar as we have done in ODEs Recalling from ODEs

1 e
Pl = X :
F0) F(a)
Pl = 1 (xm vax™ 4 +); Binomial expansion
F(D)
Pl = ﬁcosax or sinax; Replacing D> = —a?
1 1
PI - ax. = ax
F(D)e V(X) i F(D—i-a)v(x)
2 2 2
To Solve PDEs of the form |x? 8_; + 2xy£+ y? 6_; =0
OX Oxoy oy

The similar process as ODE, is followed.

We reduce given PDE by substituting: x=¢e",y=¢"

We get,
»0°2 0
X —2=D(D—1), where D=—
OX ou
2622 0
X —Z:D‘(D'—l), where D'=—
OX ov
xy—2%_ — DD'

v(x,y);v(x, y) is any of above three




EXAMPLES & PYQs : Linear Higher order PDEs with constant coefficients

CATEGORY-1

Ex.1. Solve the following partial differential equations:
(a) (D?-3DD'+2D?)z=e*"+e*" +cos(x+2y).

(b) (D?-3DD'+2D"?)z=e"" +cos(x+2y)
(c) (D®-4D’D’'+5DD”-2D")z=e"" +(y+x)"*.
(d) (D}-7D,D}-6Dj)z=sin(x+2y)+e"".
Sol. (a) Here auxiliary equationis m?>-3m+2=0 sothat m=12.
C.F. =¢, (Y+X)+d,(y+2x), d1, ¢2 being arbitrary function. (1)

e Now, P.I. corresponds to e**™Y

ECIRA ! ; ey = - L - ”evdvdv, wherev=2x-y
D’ —3DD' + 2D’ 22 ~3x2x (1) + 2x(-1)
= (1/12)x [e'dv=(1/12)xe" = (1/12) x> (2)
* P.I. corresponding to " = — ! -89+ t { L e”y}
D*-3DD’'+ 2D’ D-D' |[D-2D'

= D—lD' {1_(;X1)J.evdv}, where V=X+Yy

1, 1

=— g =————— " = X e’ = —xe*

D-D' (D-D) BT

o P.I. corresponding to cos(X+2y)

1
" _spp s 2p7 (A=

1
12 —(3><1>< 2)+(2>< 22)

”cosvdvdv , Where
V=X+2y
= (1/3)><.[sinvdv =—(1/3)xcosv =—(1/3)xcos(x+2y)

From (1), (2), (3) and (4), the required solution is z= C.F. + P.I.




2=, (Y+X)+d, (y+2%)+(1/12)xe® Y —xe**¥ —(1/3)xcos(x+2y)

(b) This problem is same as part (a) except that the term €**¥ is missing on R.H.S. So, now

(c)

(d)

you need not compute P.l. corresponding to e**Y . Therefore, the solution will take the

form

y =0, (Y+X)+d, (y+2x)+(1/12)xe?¥ —(1/3)xcos(x+2y)

Here auxiliary equation is m®—4m?+5m—-2=0 giving m=1,1,2.

C.F. =y (Y+X)+ X, (Y +X)+bs(Y+2X).,4,,0,,0, being arbitrary function
e P.I. corresponding to e¥**

— 1 ey+2>< — 1 1 y+2x
D®-4D*D’'+5DD'* —2D" D-2D ([)_D')2

= L , ! 2”evdvdv,where V=Yy+X,
D-2D' (2-1)

L 1 J‘evdvz 1 ev . 1 . ey+2)< :Ley+x — Xey+x
D-2D' D-2D' (1><D—2>< D’) 1x1!

e P.I. corresponding to (y+ X)”2

= : (y+x)"% = - { 3 (y+x)1’2}

D®-4D?D'+5DD"* - 2D" (D_[y)2 D-2D'
__ 1 X L J-V”zdv,where V=Yy+X
(D—D') 1—(2><1)
1 2 2 1 2 X2
- _ ,X—VSIZ :__—2(y+x)3/2 =S« . (y+X)3/2
D-D" 3 S(D_D') 3 1°x2!

=—(x2 13)x(y+X)*?,

From (1), (2) and (3), the required general solution is

2=y (Y+X)+ X0, (Y +X)+ 05 (y+2%)+xe"™* = (X7 13)x (y +X)¥*
Here note that Dx and D, stand for D and D' respectively.

Auxiliary equationis m*-7m—-6=0 sothat m=-1,-2,3.

(2)

(3)

(1)




C.F. = (Y—X)+b, (Y —2%)+ b, (Y +3X),0;,0,, 05 being arbitrary functions.
* P.I. corresponding to sin(x+2y)

= 1 sin(x+2y) = !
D; -7D,D} - 6D Y P —(7x1x2)—(6x2°

V=X+2y

)”_[sinvdvdvdv,where

= —(1/75)><”(—cosv)dvdv =—(1/ 75)xj(—sinv)dv =—(1/75)xcosv =—(1/75)x cos(x+2y)

e P.I. corresponding to e

1 e3x+y — 1

) e3x+y
D} -7D,D} 6D D,-3D, | (D, +D, )(D, +2D,)
1 1
= . Vd d ) h :3
5.-30, (311)(3r2) )& M. where v=3x+y
S S PV S SRV S S
20 D, -3D, 20D, -3D, ZO(DX—BDy)
:ixieww zie3x+y
20 1'x1! 20

Hence the required general solution is z= C.F. + P.lI.

2=¢, (Y—X)+¢, (Y—2X)+d, (y+3%)—(1/ 75)xcos(x+2y )+(1/ 20)x xe**

Ex.2.  Solve (a) (D2 —6DD'+9D’2)Z =tan(y+3x)  (b) (D2 —6DD’+9D'2)Z =6X+2y
Sol. (a) Here auxiliary equationis (mM—3)* =0 so that m=3,3.

C.F. =¢, (Y +3%)+xd,(y+3X), 0,0, being arbitrary functions

2 2
P.1. :;Ztan(y+3x): tan(y+3x):X?tan(y+3x)

(D-3D") 12 x 2!

The required solution is

z =<|)1(y+3x)+xd)2(y+3x)+(x2 /2)><tan(y+3x).

(b) Re-writing the given equation reduces to (D —3D')2 z2=2(3x+Y)




C.F. =¢, (y+3x)+xd, (y+3x),4,,0, beingarbitrary constants.

Now, P.I —;2(3“ )=2 S
, .l _(D_BD’)Z y - 12)(2!

(Bx+y)=x*(3x+Y)

The required solution is z = ¢, (Y +3%)+Xd, (Y +3x)+3x* + X7y .

Ex.3.  Solve
(a) (D-3D')’(D+3D')z=e>"

(b) (D-2D")(D+D')"z=cos(2x+Y)

Sol. (a) C.F. =¢,(y+3%)+xd,(y+3x)+d,(y—3x), where ¢,,9,,9, are arbitrary functions

Pl = L > L e = L > : ~l.evdv,where v=3x+y
(D-3D') D+3D (D-3D')" 3+(3x1)
i1l b e 1 X e
6(D-3D)°  6(D-3D' 61x2!

The required solution is z = ¢, (Y +3X)+ Xd, (Y +3X)+d, (y—3x)+(x2 /12)><e3X+y

(b) Ans. Z=¢, (Y +2X)+d, (Y —X)+Xd; (Y —X)=(x/9)xCOS(2X+Y)

Ex.4. Solve
(@) r+s—-2t=e*’

(b) (D®-7DD?-6D")y =sin(x+2y)
(c) (D®-3DD?+2D")y=(x—2y)"
Sol. (a) Re-writing given equation becomes (8°2/0x*)+(8°z/ oxdy)-2(°z/ dy*) =™
or (D*+DD'-2D"?)z=€"’  or (D-D')(D+2D)z=¢*"
lts C.F. =¢(y+x)+d,(y—2x),0,,0, being arbitrary functions

1 1 ., 1 1
PI. = e =
D-D'D+2D’ D-D'1+(2x1

)Ievdv,where V=Xx+y




11, 1 1 ., 1x,,
3D-D’ 3D-D' 31!

The required solution is Z = ¢, (Y +X)+¢, (y —2x)+(x/3)xe*”
(b) Here the auxiliary equationis m*-7m—-6=0 giving m=-1,-2,3.

C.F. =y (Y=X)+d, (Y —2X)+ b, (Y +3X), 0y, 0,, 05 are arbitrary functions.

1 , 1 ,
Pl === 6D sin(x+2y) = e —(7><1><22)—(16><23) j”5|nv(dV)3’

where V= X+2y

- _7_15”(—cosv)dvdv = —7—15I(—sinv)dv = —%cosv = —7—15cos(x+2y)

Required solution z =, (Y —X)+d, (Y —2xX)+,(y+3x)—(1/75)xcos(x+2y)
(c) The auxiliary equationis m®—-3m+2=0 giving m=1,12.
C.F. =y (Y+X)+X, (Y+X)+d; (y+2x),d,,6,,, are arbitrary functions

1 1
B X—2y)'? =
0°_app? 20° & 2Y) B _3x1x(-2)2+2x(<2)°

P.l Ijjvﬂz(dv)3,where V=Xx-2y

5/2 1 712

1 V32 1 \" v
=_E“(3/_2)dvdv=—§jmd":_ﬁ(3/2)><(5/2)><(7/2)

— —(8/2835)xVv"' = —(8/2835)x (x—2y)"2

General solutionis Z =y (Y+X)+Xd, (Y +X)+d, (y+2x)—(8/2835)x (x—2y)".

Ex.5.  Solve (D2 —-3DD’ + 2D'2)z =cos(x+2y)
Sol. The auxiliary equation m*—-3m+2=0 gives m=1,2.

C.F. =, (Y+X)+b,(Y+2X), 0,0, being arbitrary functions

1
P.I. = COS(X+2Yy)=
D? -3DD’ +2D"? ( y)

1
1?-3-1.2+2.2°

”cosv(dv)2 , where v=x+2y

:(1/3)><.[sinvdv =—(1/3)xcosv =—(1/3)xcos(x+2y)




Solution is z=¢, (y+X)+¢, (y+2x)—(1/3)xcos(x+2y)

Ex.6.  Solve (D2 —DD'—2D'2)2 =2X+3y+e>,
Sol. The auxiliary equation m*-~m—-2=0 giving m=2,-1.
C.F. =¢,(y+2x)+d,(y—X), 4,9, being arbitrary functions

P.I. corresponding to (2x+3y)

1
2X
D2 _ DD!_ZDIZ (

1
+3y)= 22—(2><3)—(2><32)'[-[V(dv)2 , Where v =2x + 3y

2 3
SN VI :—i(2x+3y)3
207 2 20( 2x3 60

P.l. corresponding to e****

= it 3x+4y — 1

~ D?-DD'-2D" 3 —(3x4)—(2x4°

)-He"(dv)z , Where v =3x + 4y

— —(1/35)xe" =—(1/35)x e,

General solution is z=¢, (y+2X)+d, (y—X)—(1/60)x(2x+3y)° —(1/35)xe>** .

Ex. 7. Solve 0°z/0x* +06%z/ 0y’ =cosmxcosny .

Sol. Given equation can be written as (D2 + D'z)z =CoSmxcosny.
Its auxiliary equationis m?+1=0 sothat m==i.
C.F. =¢, (y+ix)+d,(y—ix),¢, and ¢ being arbitrary functions.

1 cos(mx+ny)+cos(mx—ny)
+D? 2

P.l —;cosmxcosny—
" D*+D? D’

—l—cos(mx+ny)+1
2D*+D? 2
1 1

TS ”cosvdvdv+

1
Weos(mx—ny)

i 1
2 m? +(=n)?

”cosududu




where v=mx+nyand u=mx—ny

1 1 . 1 1 . 1
=S fsmvdv+§ R _[smudu = [—cosv—cosu]
=—ﬁ[cos(mx+ ny)-+cos(mx—ny)|, as v=mx-+ny, u=mx-ny
m®+n
=—ﬁx2cosmxcosny=—(m2+n2)_lcosmxcosny
m®+n

. . =
Hence the required general solution is z = ¢, (y+iX)+¢, (y— IX)—(m2 + n2) COS MX oS ny

Ex.7.(b) Solve 0°z/0x’ +0°z/dy? =cosmxsinny

Sol. Ans. 2 =¢, (Y +ix)+¢, (y—ix)+(sinmx+sinny)/(m? +n?)

Ex.8. Solve the following partial differential equations:
(a) (D*-2DD'+D?)z=tan(y+x) or (D—D')’z=tan(y+x)
(b) (D*-2aDD’'+a’D")z=f(y+ax)or (D-aD') z=f(y+ax).
(c) 4r—4s+t=16log(x+2y).
Sol. (a) Ans. z=¢1(y+x)+x¢2(y+x)+(x2/2)xtan(y+x).
(b) Ans. z=¢,(y+ x)+x<1)2(y+x)+(x2 /2)>< f(y+ax).
(c) Ans. Z=d, (2y+X)+Xd, (2y +X)+2x*log (x+2y)
(d) Ans. z =y (y+X)+dp(y—X)+(x/4)x(x—y)
(e) Ans. z=¢,(y—X)+¢,(2y+3x)+xe*”.

1
f) Hint: P.I. = —2x)7*
(f) Hin 577500 607 & ")

= -2x)"
D+2D[D+3D'(y ) }

= 1 X
D+2D’ —2+(3x1

)Ivldv, where v=y—2x




1

- 50 logv = 5120 log(y—2x)= [1>< (2" D’]l log(y—2x)
:1121! log(y=2x)
The general solution is z=¢,(y—2x)+¢,(y—3x)+xlog(y—2x).
Ex.9. Solve 632/8x28y—2(63z/6x8y2)+832/ay3 =1/ x2
Sol. Let D=0/0ox and D'=0/0dy. Then the given equation becomes
(D'D'=2DD?+D?)z =1/ or  (D-D'Y¥D'z=1/x2 (1)

Corresponding to repeated factor (D—D')Z, the part of C.F.is ¢p(y+X)+Xo(y+X).
Again corresponding to factor D’, the part of C.F. is fi(x).

C.F. of (1) = ¢y (y+X)+ X (Y +X)+ g ()

where we have omitted a function of x as it can be included in the term ¢5(x) of C.F.
.. Required general solution is Z= (Y +X)+ X0y (Y +X)+d3 —ylogx
Where ¢;,¢, and ¢5 are arbitrary function .

Ex.10- Solve (D3 —7DD'—6D'3)Z =x2+xy? +y° +c(x—y)

Sol. Given (D3 —7DD‘2—6D'3)2 =x2+xy? +y° +cos(x—y) (1)

Here auxiliary equation is m’—7m-6=0 sothat m=-1,-2,3.




SCF = ¢y =X)+da (Y —2X)+ (Y +3%).01,95, 03 being arbitrary function

P.l. Corresponding to (x2 + Xy2 + y3)

-1
_ 1 2 2,3\ 1 D? _D® 2 2, .3
_D3—7DD'2—6D‘3(X +Xy“+Yy )_§{1_(7F+6F (x + Xy +y)

1| (.p? _D® I T T T R 36
_§{1+[7F+6FJ+W}(X +XYT+Y )_E(X + XY+ )+§(2x+6y)+§1

=(x5/60+ xHy2 124+ x3y° /(6)+7(x6 /360 + x5y/20)+36><(x6 /720))

:5x6/72+x5/60+7x5y/20+x4y2/24+x3y3/6

P.l. Corresponding to cos(x - y)

= ! cos(x—y)= 1 !
D? - 7DD?-6D" (D+D')(D2—DD'—6D'2

cos(x—y)
)

1 1
= cosvdvdv, wherev=x—-y
D+D"j? 74><1><(—1)76><(—1)2 ’”

1 { D3D34 D™ } 1 x2y?72
- - b XYZ = Xyz =
DD'D" 3DD'D" DD'D" 8
1
4 (<1) <1t (=)
=(x/4)xcos(x—y)
Hence the required general solution is 2= (Y= X)+ 2 (Y —2X)+dz(y +3x)

+(5/72)x X% + x> 160+(7/20)xx°y +(1/ 24)x x*y? +(1/6)><(x3y3)+(x/4)xcos(x— y)
Ex.11. Solved (D2 + DD'—6D'2)Z =x? sin(X+Y).

Sol.  Re-writing the given equationis (D+3D')(D—-2D")z= X2 sin(x+Y)...(1)




oo CFo= ¢ (y—3%)+ 0, (Y +2x),¢,9, being arbitrary functions.

1 2 o 1 1 5 .
P.l.= _ . |
_ 1 J'x25in(x+c—2x)dx: 1 IXZSin(C—X)dx,where Cmy 2%
1 .2 ) .
= D+3D'_X COS(C_X)—JZXCOS(C—X)dX}, integrating by parts
D 13D'_X2 COS(C_X)_{_zxsm(c—X)’LJZSin(C—X)dX}J, integrating by parts
+3D'L
1 12 .
=5 apl” cos(c—x)+2xsm(c—x)—2003(c_xﬂ
=5 13DI_(X2—2)cos(x+y)+2xsin(x+ y)} as C=y+2X
+3D'L

ZI[(XZ —2)cos(x+c'+ 3x)+2xsin(x+c'+3x)}dx,where c'=y-3x

=_f(x2 —2)cos(4x+c')dx+ 2] xsin(4x+c')dx

:(x2 _2)sm(4x+c ) _J-2X5|n(4x+c )dx+2jxsin(4x+c')dx
4 4

[Integrating by part 1st integral and keeping the second integral unchanged]
:%(xz—2)sin(4x+c')+%fxsin(4x+c')dx

2
_X _zsin(4x+c’)+§{—
4 2

xcos(4x+c)+Icos(4x+c)dX}
4 4
2

_X 4_2sin(4x+c’)—§xcos(4x+c’)+3—323in(4x+c’)

=%(x2 _2)sin(4x+ y—3x)—§xcos(4x+ y—3x)+3—325in(4x+y_3x), as C'=y—3x

:(x2 /4—13/32)sin(x+ y)—(3x/8)xcos(x+y),

The solution z = ¢ (y —3x) + 4, (y+2x)+[(x2 /4)—(13/32)]sin(x+ y)—(3x/8)xcos(x+Y).




Ex.12.  Solve (D3 +D?D'-DD"2— D'3)z —eY cos2x

Sol.  Here D*+ D’D'-DD?-D* = D?(D+D')-D?(D+D')=(D+D')’ (D-D)
So the given equation reduces to (D-D')(D+ D')2 z =e’cos2x
L CF =g (y+X)+6, (Y—X)+ X (Y —X), ¢, ¢, being arbitrary functions

1 1 1

— y _ a+Xx
P.I. ~(0-D)(0+D) 5.5 ¢ COSZX_(D—D’)(D+D’)Ie cos2xdx,  where
y—-x=a
= L e* [e*cos2xdx = L e’ ! e (cos2x + 2sin2x)”
(D-D')(D+D) (D-D')(D+D)  1*+2°
1 1 ey(0052x+25in2x)=1 Je** (cos2x +2sin2x) dx,
5(D-D')(D+D) 5D-D'

where y—X=a

E e? {IeXCOSZXdXJr 2Iexsin2xdx}

5D-D'

1 1 e* - 2e* -

=— el COS2X + 2Sin2X )+ ———(Sin2x — 2c0s2X
D_DI {12+22( ) 12+22( )}

N ey(4sin2x—3c052x)=ifeb’x(4sin2x—30052x)dx,where b=y+Xx
25D-D' 25

_1 e’ {4Ie’xsin2xdx —3Ie’xc052xdx}
25

25 17 +2° 1°+2
=—(1/25)xe’ (cos2x +2sin2x)

. Required solution is

M { de. (—sin2x — 2c0s2x) —%(—COSZX - ZsinZX)}

=g (y+x)+¢,(y—x)+ x¢3(y—x)—(ey /25)><(cost+ 2sin2x)

Ex. 13. Find a surface passing through the two linesz=x=0,z— 1 =x—y = 0 satisfying r— 4s +

4t =0.

Sol. The given equation may be written as 2z/dx? — 4(0% z/dxdy) + 4(d%2z/dy? ) =0 or
(D>*-4DD'+4D'?)z=0 or (D-2D"')*>z=0




Its solutionis z = @1 (y + 2x) + x@2 (y + 2x).¢1, @2 being arbitrary functions...(1)
Since (1) passes through z=x =0, we have 0 = ¢1 (y) which gives @1 (y + 2x) = 0.
~ (1) becomes
zZ=x@2 (y + 2x) .(2)
Since (2) passes throughz—1=x—-y=0, i,e.z=1andy=x, we get
1=x@2 (3x) or @2(3x)=3/(3x) sothat @2 (y+2x)=3/(y+ 2x)
~ from (2), we have 3x =z(y + 2x), which is the required surface.
Ex. 14. Find the surface satisfying the equation r + t — 2s = 0 and the conditions that bz = y?
when x =0 and az = x> when y = 0.
Sol. Re — writing the given equation,
92 z/0x* + 82 z/dy? — 2(d? z/0xdy) = 0
or (D-D"%z=0 Or(D?>-2DD'+D?)=0
Its solutionis z = @1 (y + x) + x@2 (y + x).1, 2 being arbitrary functions...(1)
Since z=y?/bwhen x =0, (1) gives y?/b=@1(y), = @1 (y+x) = (y +x)*/b...(2)

Again since z = x*/a when y = 0, (1) gives x? a = x> (x) + @1 (x)....(3)
. ) X° X° b-a ..
Since from (2), @2 (x) = x*/b, (3) becomes 5 = x@2 (x) + r i.e. @2 (x) = ?X which gives

oot x) = DI x) (4)
ab

Using (2) and (4) in (1), the required surface is

2
1. Z=Bx(y+x)+(y+x) =y+x(b_ax+y+xj or z=(y+x)(§+%j
a a

ab b b
Ex.5. Find a surface satisfying the equation D? z = 6x + 2 and touching z = x> + y3 along its section
by the plane x+y+1=0.

Ans.z=x3+ 3+ (x +y + 1)?

CATEGORY-2

Ex. 1. Solve (a)(DZ—D')z:Zy—xz.(b) (ZDZ—D'2+D)2=X2—y.

Sol. (a) Here D2 - D’ cannot be resolved into linear factors in D and D'. Hence to find C.F,,
we consider the equation (D2 - D')z =0 L. (1)
Let a trial solution of (1) be z=Ae™™. . (2)

So D?z=Ah%™W and D'z = Ake™™ . Then (1) gives




Ex. 2.

Sol.

A(hz—k)eh”ky —0 or h?—k=0 sothat k =h?

2
. C.F. =ZAe™W = xAe™*Y A 1y being arbitrary constants.

-1
Now, P.l. = Dzl_D'(Zy_XZ):W(Zy_XZ):é(l_%j (2y—x2)

:é(lJFDRZ,+"'j(2y_Xz)zé{(z)’—xz)vLéD’(Zy—xz)}

1 , 1
?(2” ?ZJ

1 2 X2 1 X2 2
=¥(2y—x +2X?J=¥(2y)=2yx?=x y.
General solutionis z= EAth+h2y +x2y, A and h being arbitrary constants.
(b) Ans. z=3Ae™™M  _(1/2)xx®y? +(1/6)x y® —(1/12)x xy* —(1/6)x y* —(1/360)x y°

where h and k are connected by the relation 2h? —k? +h=0

Solve (3D2 -2D?+D —1)2 =4 Yeos(x +y).
Since (3D2 —2D?% + D—l) cannot be resolved into linear factors in D and D', hence C.F.

=3Ae™ W where Ah are arbitrary constants connected by 3h? —2k? +h-1=0.

1
3(D+1)2-2(D'+1)° +(D+1)-1

Pl =— 1,2 4e* cos(x+y)=4e*"
3D°-2D“+D-1

cos(x+Y)

1

— 4ty :
3D?+7D-2D?-4D'+1

cos(x+y)

1
3(—12)+7D—2(—12)—4D’+1

=4 cos(X+Y)

=4y ;cos(x +Yy)=4e"7Y (7D +4D")

TSN cos(Xx+Y).

49D? ~16D?




7D +4D’

= 49(—12)—16(—12)

cos(x+Y)

=—(4/33)xe*"Y (7D +4D")cos(x+Y)
=—(4/33)e*"Y x| 7Dcos(x+y)+4D'cos(x+Y) |

=—(4133)xe™™Y [ Tsin(x+y)—4sin(x+y)]=(4/3)xe*Vsin(x+y).

Hence general solution is z=3 Ae™™ +(4/3)xe*Ysin(x+y).
Ex.3. Solve (D-3D'-2)"z=2e%sin(y+3x)

Sol. Here C.F. =e* [¢1(y+3x)+ X, (y+3x)],¢1,¢2 being arbitrary functions

Pl =T pe2x0y sin(y +3x) = 262*0Y L

(D-3D'-2)? {(D+2)-3(D'+0)-2}

> sin(y +3x)

2
= 2% ﬁsin(yﬁ%x) = 2e2X%sin(y+3x),

». Required solution is  z=e™[ ¢y (y+3x)+Xp, (y+3x) |+ x°e™sin(y +3x).

2 2 2
Ex. 4. Solve a—§—4£+4ﬂ+ oz _,o
OX

Xy 2 ox oy

_ Xty

Sol.  Given (D?-4DD'+4D” +D-2D')z=¢*" or (D-2D')(D-2D'+1)z=€"".

L CF o =¢y(y+2x)+e "o (y+2x),d1,¢, being arbitrary functions

= 1 1 X+y | 1 1 X+Yy
P.I. = e = e
(D—ZDUH) D-2D’ D-2D'-11-2

’

=Y L 1
(D+1)-2(D'+1)+1 "'

N1
R A ) N R
D-2D' D D D




.. The required solution is z=dy (y+2x)+e "¢, (y+2x)—xe*".

Ex.5. Solve (D—3D'—2)"z =2e®tan(y+3x).

Sol.  Here C.F. =e®* {4, (y+3x)+xd,(y+3x)},¢, and ¢, being arbitrary functions.

Pl = %Zezxtan(y+3x)= 2;262)(+O'ytan(Y+3X)
(D-3D'-2) (D-3D'-2)
0p2X+0'y 1 tan(y +3x =2e2x—tan(y+3X)
{(D+2)-3(D'+0)-2)° '+ (D-3D')°

= 22X ><(x2/2!)tan(y+3x),
- General solution is z=e?* {¢; (y+3x)+ X, (y +3x)} +x%e* tan(y +3x)
Ex. 6. Solve r—3s+2t—p+2q=(2+4x)e”’
Sol.  Re-writing the given equation (D2 —3DD'+2D?-D+ 2D')z =(2+4x)e”
or (D-2D')(D-D'-1)z=(2+4x)e””’

o CF o =¢ (y+2x)+e"p, (y+X), where ¢;,¢, are arbitrary functions.

P.I.
1 0-x—y _ 9a0x—y 1
:(D—ZD’)(D—D'—l)Ze (1+2x)=2e {D+0—2(D’—1)}{D+0—(D’—1)—1}(1+2X)
. 1 y 1(, D20\, DY!
=2e y(D—2D'+2)(D—D’)(1+2X)zze VE(H 5 j (1—Bj (1+2x)

=e‘y%{1—%(D—2D’)+...}(1+%’+...j(1+ 2x)

eV %(1—g+....)(1+ 2x)




=e Y (1/D)(1+2x-1)=x%"Y
- The required solution is z =y (y+2x)+e*p, (y+x)+x%™Y.
Ex. 7. Solve (a)(D2 —DD'-2D? +2D+2D’)z =62 yxy +sin(2x+y).
(b) (D2—DD'—2D'2+2D+2D')z=e2x+3y+xy.
(c) (D2 —DD'-2D? +2D+2D’)z =Xy +sin(2x+y).
Sol. (a) The given equation can be rewritten as

(D+D')(D-2D"+2)z =¥ 4 xy +sin(2x+y) (1)

" C.F. =y (y—x)+e 20, (y+2x),d;,9, being arbitrary functions.

P.I. corresponding to e2**3Y
_ 1 e2x+3y - 1 e2x+3y _ _ie2x+3y
(D+D')(D-2D'+2) (2+3)(2-6+2) 10

P.l. corresponding to xy

1 1

“(D+D)(D-20'+2) " D(1+D'/D)x2{1+(D/2-D)]




2
=i xy—X+x—1—i(x—1j =i xy—X+x—1—X—+5
2D 2 D 2 2D 2 2 2

P.1. corresponding to sin(2x+y)

= 1 sin(2x+Y)

D?_-DD’'-2D"?+2D + 2D’

= 1 sin(2x+y)

~2% +(2x1)-2%(-1)+ 2D+ 2D’

1 . 1 ' 1 1
“2(pro) Y500 )(DZ _D'Z)sm(ZHy)
1 L ")sin(2x +

=—(1/6)x(D-D')sin(2x+y)=—(1/6)x[ Dsin(2x+y)—D'sin(2x+Y) ]
=—(1/6)x[ 2c0s(2x+y)—cos(2x+Yy) | =—(1/6) xcos(2x +y)
The required solution is 2=y (Y —X)+e 2y (y+2x)—(1/10)xe?*Y +(1/ 4)x x%y
+(3/8)xx? —(1/4)><xy—(x/2)—(x3 /12)—(1/6)><cos(2x+ y)
(b) As in part (a), C.F. =¢1(y—x)+e‘zx¢2(y+2x)
P.I. corresponding to e**3Y =—(1/10)xe?**%
P.I. corresponding to xy=(1/4)><x2y+(3/8)>< X —(1/4)xxy—(1/ 2)><x—(1/12)><x3.
. The required general solutionis z= C.F. +P.l,, i.e.

2=y (Y —x)+€ 2, (y+2x)—(1/10)x 23 4+ (1/ 4)x x?y +(3/8) x x°




Ex. 8.

Sol.

Ex. 9.

Sol.

~(1/ 4)xxy - (x12)-(x* 112)

(c) As in part (a), C.F. :¢1(y—x)+e‘2x¢2(y+2x)

P.1. corresponding to xy =(1/4)x X2 +(3/8)x X2 —(1/4)x xy—(x/2)—(x3 /12)

and P.1. corresponding to sin(2x+y)=—(1/6)xcos(2x+Y).

<. The required solutionis z= C.F. +P.l, i.e., z=dy(y—x)+e2d,(y+2x)

+(114)x% +(318)x X7 =(1/4)x xy = (x12) = (x* 112) x—(L/ 6)x cos (2x+ ).
Find a particular integral of the differential equation:

(D2 - D’)z =e*"Y 1 5cos(x +2y).

P.l. corresponding to e**Y

_ 1 eXHy _ Xty 1 1= Xty 1 1

D%-D' (D+1)? - (D' +1) D?+2D-D'

N |
:e"“’i 1+(2—Rj 1=ex+yi{1+..-}1zlxexer
2D 2 2D 2D 2

P.1. corresponding to 5cos(x+2y)

1
D2—D’COS(X+ y) _12_D'cos(x+ y) D,+1cos(x+ y)
1
=-5(D'-1)— cos(x+2y)=-5 D'-1)cos(x+2
(D'~1)—F—oos(x+ 2y)=-5—— (D' ~Djcos(x+2y)

=(D'—1)cos(x+2y)=D'cos(x+2y)—cos(x+2y) =-2sin(x+2y)—cos(x+2y)
~. Required P.I. =(x/2)xe*"Y —2sin(x+2y)—cos(x+2y).
Solve (D2 -D?-3D +3D')z =xy + X%

The given equation can be re-writtenas (D—D')(D+D'-3)z= xy +e*+2Y




. CF. =y (y+x)+e*, (y—x),0,,0, being arbitrary functions.

N1 -1
P.l. corresponding to xy = 1 Xy:_i(l_gj (1_ D+Dj Xy
(D—D')(D+D’—3) 3D D 3

1 D’ D+D' (D+D')
=—— 1+ —+... || 1+ + +... Xy
3" D 3 3

1 D’ D+D" 2DD’
=—— 1+E+... 1+ +—t. XY

3D 3 9
1[ D D D D 2DD j
=—— | l+—F—F—=—+—+——+... |Xy
3D 3 3 D 3
1( y 2x 1 2) 1(x%y xy x* x> 2x
= XY+t — =X+ = L+ T+
3D 3 3 D 9 9 2 2 3 6 9
P.I. corresponding to e**%Y
_ 1 1l ex+2y= 1 - ex+2y
(D+D'-3)D-D’ D+D'-3(1-2)
— _;el-xﬁyl: _el-x+2y 1 T= _ex+2y L
D+D'-3 (D+1)+(D'+2)-3 D+D’

N1
— e L DUy ey i(1+...)1=—xeX+2y :
pl"' D D

Hence the required general solutionis z=C.F + P.l,,i.e

z =¢1(y+x)+e3x¢2(y—x)—(x2y/6) —(xy/6)—(x2 /9)—(x3 /18)—(2x/27)—xex+2y
Ex. 10. Solve (D-D'-1)(D-D'-2)z=e"" +x.
Sol.  Here C.F. =e*fy (y+x)+e?d,(y+x), 01,0, being arbitrary functions

Now, P.I. corresponding to 7Y

1 erfy
(D-D'-1)(D-D'-2)




_ 1 erfy :l62xfy
PREEH PR TR A
and P.l. corresponding to x
1 1

(D—D’—l)(D—D’—Z)X 2{1—(D—D')}{1—(D—D')/2}X

:%[1_(0— D’)]_l{l— D;D’}_lx %{1+(D—D’)+...{1+ D;D'+...}x

_1 1+(D—D’)+D_D +... x:1 1+§D+... x=l x+§ .
2 2 2 2 2 2

-. General solutionis z=e*d; (y+x)+e%d, (y+x)+(1/2)xe™ Y +x/2+3/4.

Ex. 11. Solve (a) (D2 - DD'—ZD)Z —sin(3x+4y)—e¥*Y .

(b) (D2 - DD’—2D)Z =sin(3x+4y)+ x2y

Sol.  (a) The given equation can be re-written as D(D—D’'~-2)z =sin(3x+4y)—e2x+y.

. CF =y (y)+e%0,(y +x),¢1,0, being arbitrary functions.

P.1. corresponding to sin(3x+4y)

1 . .
=———sin(3x+4y)= sin(3x+4
D?-DD'-2D (3x+4y) ~3% +(3x4)-2D ( Y)
1 . . 3+2D .
= sin(3x+4y)=(3+2D Sin(3Xx+4y)=—sin(3x+4
3-2D ( v)=( )9—4D2 ( y) 9—4(—32) ( Y)

=(1/45) [ 3sin(3x+4y)+ 2Dsin (3x+4y) |
=(1/45) x| 3sin(3x+4y)+6c0s(3x +4y) ]

and P.l. corresponding to (—e2X+y)




1 e2x+y _ 1 2X+y 2182x+y
D(D-D'-2) 2(2-1-2) 2

Hence the required general solutionis z= C.F. + P.l,, i.e.

2=, (y)+e79, (y +x)+(1/15)x[sin(3x + 4y) +2c0s(3x + 4y)] +(1/ 2) x>

(b) As in part (a), C.F. =(1>1(y)+e2"(1>2(y+x),<1>1,(1>2 being arbitrary functions.

P.I. corresponding to sin(3x+4y)=(1/15)x]sin(3x+4y)+2cos(3x +4y)].

-1
1 1 D-D’

P.I. corresponding to x%y=——~ xly—__—J1| == X2

Do e Y = bbb 2y’ 20{ ( 2 j} y

1 D-D' (D-D'V (D-D'V )
=——00:7 1+ + +| ——— | +...p X%y
2D 2 2 2

1(. D D D? DD 3D?D ]2
+...|X%y

=———|1l+———F+————-
2D 2 2 4 2 8

» x2y+xy—x—2+X—x—E
2D 2 2 4

3 2 3 2
1u+u +xy x°  3X
2\ 3 2

Hence the solutionis z= C.F. + P.l,, i.e.
2=y (y)+e%0, (y+x)+(1/15)x[ sin(3x+4y) + 2cos(3x + 4y) |
~(116)5xCy = (L1 4)x Xy + (1/12) 3 ~ (1 4)x xy — (x* 1 4) +3x/8
Solve (822/6x2)—(822/ay2)+(8z/8x)+3(az/ay)—22=ex’y—xzy.
2

The given equation can be re-written as (D2 -D?+D +3D'—2)z =e*Y —x°y

or {(D-D')(D+D')+2(D+D)—(D-D'+2)}z="" —xy




or {(D+D')(D-D'+2)-(D-D'+2)}z=e*"Y —x’y

or (D-D'+2)(D+D'-1)z=e*"Y —x?.
. CF =y (y+x)+e50, (y—x), b1, 9, being arbitrary functions.

P.l. corresponding to e*Y

1 X=y _ 1 xy - _Lgxy

(D-D'+2)(D+ D'—1)e {1—(—1)+2}(1—1—1)e 4

and P.l. corresponding to (—xzy)

CEeEeCr e e i S LU

, 2 3
=%{1—D_2D +(D_2D) —(D;D) +} x{1+(D+D')+(D+D’)2+(D+D’)3+...}X2y

! 2 [/ 2 !
TN WL N x(l+D+D’+D2+2DD'+3D2D’+...)x2y
2172 2 4 2 8

=(1/2)x [1+(1/2)><D+(3/2)><D’+(3/4)><D2+(3/2)xDD'+(21/8)xDZD’+--~JX2y
= (212)x| Xy +xy +(3x2/2)+(3y/2) +3x+21/4) .

Hence general solutionis z= C.F.+P.l, i.e. z=e ¢ (y+Xx)+ed,(y—x)

—(11 4)x €Y +(1/ 2)x x?y + (11 2) x xy +(3/ 4)x x* + (31 4) xy +(3/ 2) xx+21/8

Ex. 13. Solve (D + D' )(D + D' — 2)z = sin(x + 2y)
Sol. Here C.F. = @1 (y — x) + €2x @2 (y — x), @1, 2 being arbitrary function

P.l. = 5 :ILD’—Z{DE- D,Sin(x+2y)} = ﬁ [ sin (3x + 2d)dx, where, y —x =d,
cos(3x + 2d
= 1 - ( ) =—1;cos (2x+y)
D+ D'-2 3 3D+ D'-2




-1 e [ e~ cos (3x + 2d)dx, where y—x =d

e 2 — 2cos (3x + 2d) + 3sin (3x + 2d)}

3

loaw 1

3 (22 +73
2 1

= —cos(x+2y)— —sin(x+2
39 © (x +2y) l3I(x y)

=~ Solution is z= @1 (y —x) + e @2 (y — x) + (2/39) % cos (x + 2y) — (1/13) x sin (x + 2y)
Ex. 14. Solve (D*—DD'?-D?* + DD’ )z = (x + 2)/x3
Sol. Re-writing, the given equation
D(D-D')(D+D' —1)z=(x+2)/x3
Its C.F. = @1 (y) + @2 (v + x) + e @3 (y — x), ®1, 2, ¢3 being arbitrary functions

O Ry o s el M e e

1 1 1 1 1 o 1
T T
D+ D'-1 X X D+ D' -1 X X

=—e* [e ™ log xdx+e* [ Lix=—e [(—ex)log x=J(-e= )de} rerfer i log X
1. X X X
[on integration by parts first integral only]
. General solution is z= @1 (y) + @2 (v + x) + ex @3 (y — x) + log x.
Ex. 15. Solve (D?> + DD' + D' — 1)z = 4sinh x.
Sol. Re-writing, the given equation

(D+1)(D+D'—1)z=2(e*—e7¥)
C.F.=e ™ @1 (y) + e @2 (y—x), where @1, @, are arbitrary functions
1

R CF I R ooy

2e¥ [e™*eX—e*dx

= L ZEXKX + EEZXJ = L(er" +eX=e™[e*(2xe* +e™¥)dx
(D+1) 2 D+1

=2e [ xe¥dx+e X x=2e " [xx(e¥/2)— [ 1-(e¥/2)dx] + xe( — x)
=xe¥—e X [eXdx+xe X=xeX—e *x (1/2) x e* + xe™ = (x — 1/2)e* + xe
General solutionis z=e ¥ @1 (y) +e* @2 (y—x) + (x—1/2) & + xe ~*
Ex. 16. Solve (D>—DD' + D' — 1)z =1 + xy + ey + cos(x + 2y)
Sol. Re-writing the given equation (D—1)(D—D'+ 1)z=1+ xy + ey + cos(x + 2y)
C.F.=e*@1(y) + e * @2 (y + x), ®1, P2 being arbitrary functions.




P.I. = (D—l)(E:)l—D’+1) {1+xy+e¥+cos (x+2y)}

= Dl 1e"‘je"{l +x(d —x) + e?=*+ cos (2d — x)}dx, where d = y + x

= L () s fer et o cos (- 20)a)
1 x X » e’ :
=57 {(l+ dx—x*)e* —(d —2x)e* + (-2)e* + e‘x + m{cos(x—Zd)Jr sm(x—2d)}}

= S de— w7 =+ 2x-2)+ e x+ {1/2) x cos (x = 2d) +sin (¢ 2]

=ﬁ [—1+x(y+x)=x2=(y+x)+2x+e’x+(1/2) x{cos(— 2y —x) +sin(— 2y —x)}]

Set {xy—y+x—1+xe’+(1/2) x cos(2y + x) — (1/2) x sin(2y + x)}

= D1 {(x=1)(y+ 1) +xe” + (1/2) x cos (2y + x) — (1/2) x sin(2y + x)}

=e fe ¥ {(x—1)(k + 1) + xe* + (1/2) x cos(2k + x) = (1/2) x sin(2k + x)}, where y = k

= e [(k +1)[e* (x—1)dx + €* fxe‘xdx+%fe‘X cos(2k + x)}dx

- % fe=*sin(2k + x)dx]

=e*(k+1){(—e™)(x+1)—(e7) (1)} +e* e {(—e ™ (x)=(e7*) }(1)}]]

+§%{—cos(2k+x) + sin(2k+x)}—§%
2 (-D)°+1 2 (-D)°+1

=—(k+1)x—e(x+1)+(1/2) xsin 2k +x)] == (y + 1)x—€¥ (x + 1) + (1/2)sin(2y + x)

~solutionis z=e*@1(y)+e @2 (y+x)—x(y+1)—(x+1)e¥ +(1/2) x sin(2y + x))

Ex 17. Solve (D?=DD'—=2D'2 + 2D + 2D’ )z = xy + sin (2x + )

Ans. z= @1 (y—x) + e > @2 (y + 2x) + (x/24) x (6xy — 6y + 9x — 2x> — 12) — (1/6) % cos (2x + y).

{—sin(2k + x) — cos(2k + x)]

Ex. 18. Find a surface satisfying r+s =0, i.e., (D?> + DD’ )z = 0 and touching the elliptic paraboloid
z=4x?+ y? along its section by the plane y = 2x + 1.
Sol. Given (D?>+DD’)z=0or D(D+D’)=0
~ Solution of (1) is z= C.F. =@1(y) +@2(y—x) (1)
where @1 and ¢, are arbitrary functions.
Since (2) touches the curve given by z = 4x? + y?
andy=2x+1 ..(3)




values of p(= 0z/0x) and q(= 0z/dy) obtained from (2) and (3) must be equal for any point on (4).
a—@2 '(y—-x)=8xfory=2x+1 or @2 '(x+1)=—38x.
and @1 '(y)+@2 '(y=x)=2yfory=2x+1or @1 '"(2x+ 1)+ @2 "(x+1)=4x+2
From (5), @2 ' (x) =8 —8x ..(5)
Integrating it, @2 (x) = 8x—4x% + c1,c1 being an arbitrary constant
Subtracting (5) from (6), @1 '(2x+1)=12x+2=6(2x+1)—-4
so that @1’ (x) =6x—4...(7)
Integrating it, @1 (x) = 3x?> —4x + 2, ¢2 being an arbitrary constant
From (8),
@1 (y) =3y =4y +c>..(8)
and from (7),
@2(y—=x)=8(y—x)—4ly—x)*+c1
Putting the above values of @1 (y) and @2 (y —x) in (2), we get
z=3y2—4y+c +8(y—x)—-4(y—-x)?> +c1 ..(9)
z=—-y? +4y—8x—4x> +8xy +c3, wherecs=c1 + 2
Equating the values of z from (3) and (9), we get
4x2 + y?=—y? + 4y — 8x — 4x* + 8xy + c3, where y=2x+ 1.
L C3=8X2+ 22— Ay +8x—8xy=8x*+2(2x+ 1) —4(2x+ 1) + 8x—8x(2x + 1) =-2
Hence, from (9), the required surfaceis 4x>*—8xy +y?—4y+z+2=0

CATEGORY-3
Ex.1. Solve xz(azz/ax2)+2xy(622laxay)—x(az/6x)=x?’/y2
Sol. Let x=¢e", y=¢" sothat u=logx, v=Ilogy. (1)

Also, let D=6/6x, D'=d/dy D;=0/6u and D;=d/dv
Then the given equation (X2D2 +2xyDD'- xD)z =x3y? becomes
: 3, \2
[0,(0-1) 20,00, a~(ef (¢
or (D12+2D1Di—2Dl)z:e3“’2V or Dl(D1+2Di—2)z=e3“’2V

5 CFo= gy (v)+ePh, (v-2u)= <|>1(v)+(eu )2 ¢, (v—2u) =y (log y)+ x%¢, (log—2log x),
using (1)




Ex. 2.

Sol.

Ex.3.

=y (log y)+x2¢2(log(y/ xz)): fi(y)+x? fz(y/xz), where fi and f; are arbitrary
functions
3,2 3

_ 1 u-2v 1 N3 vy2 XYy X
Now, B = Dl(D1+2D1'—2)es 2 _m(e J(e) " = 9 9y

Hence the required general solution is z = C.F. + P.l. or z = fi(y) + x*f2(y/x?) — (x3/9y?).

Solve x2r — 3xys + 2y*t + px + 2qy = x + 2y.

The given equation can be re-written as
x2(622/6x2)—3xy(622/axay)+2y2(azz/8y2)+ x(0z10y)+2y(éz/ dy)=x+2y
or (X2D2 —3xyDD'+2y’D "%+ xD+2yD‘)z:x+2y. weee(1)

Letx=e" y=e"sothatu=logx, v=logy. ..(2)

Also, let D=6/0ox, D'=0/dy, D,=0/6u and D, =d/dv

- (1) becomes [Dl(Dl—l)—SDlDi+2Di(D_'L—1)+D1+2Dl'}z=e“ 126"
or (Df -3DyD; +20;°)z=€" +2¢" or (D, - Dy )( D, - 2Dy )z =€" + 2¢".
o CFo= gy (vru)+dy (v+2u) =y (log y +log X) + b, (log y + 2log X)

or C.F. = ¢y log(xy)+d, Iog(xzy) = f(xy)+ f (xzy), where f1 and f> are arbitrary

functions.

1 \% V) _ 1 1-u+0.v 1 0.4+1v
R R A o R M TR e
=;e“ +2;e" =X+, using (2)

(1-0)(1-0) (0-1)(0-2)

Hence the required general solutionis z= C.F. + P.l. or z= f;(xy)+ f, (xzy)+ X+y

Find the general solution of x? (822 / 8x2)+ 2xy(622 / axay)+ y? (622 / ayz) =nz




Sol.

Ex.4.

Sol.

=n{x(az/ox)+y(ozlay)}+x* +y* +x°

Letx=e", y=e"sothatu=logx, v=logy. ..(1)
Also, let D=6/ox, D'=0/dy, Dy=0/du and D; =0/ év
Then, the given equation reduces to

[x2D? + 2xyDD’ + y*D’?> —n(xD + yD’) + n]z = x> + y> + x3

or  [X*D?+2xyDD’ +y>D’* = n(xD + yD%) + nlz = x2 + y2 + x3
or{(Py+ D) ~(Py D) -n(Dy+ Dy -) et e e
o {(By+1)(Pr+Di-1)-n(Dy + D -1)f2 =6 e e
or (Di+Dy-1)(Dy+ Dy —n)z=e® +6™ + €™
2 CF= ey (v-u)+ €M (v-u) ey (v-u) + (e ) oy (v-u)

x=¢y (logy —logx)+X"d, (logy —logx) = x¢ log(y / x) + x"¢, log(y/ x), using (1)

= xf1(y/x) + x"fo(y/x), where f1 and f, are arbitrary functions.

1 1
Also, P.l. = (ezu +e? 4 e ) = g2ur0v

[0+ 90101 1) CErECerey

+ 1 eO.u+2v + 1 e3u+0.v
oo (Beaoenn)
) EF ) ey e

(2+0-1)(2+0-n) (0+2-1)(0+2-n) (3+0-1)(3+0-n) 2-n  2(3-n)

Hence general solution is z=xf; (y/x)+x" fz(y/x)+(x2 + yz)/(Z—n)+x3/2(3—n)

Solve xz(azzlaxz)—yz(azz/ayz)z Xy or (X2D2 —yZD'Z)z =Xy
Letx=eu,y=evsothatu=logx, v=logy. ..(2)

Also, let D=4/6x, D'=d/dy, Dy=d/ou  and D;=d/év




Ex. 5.

Sol.

Then the given equation (xZDZ—yZD'Z)z:xy becomes
[Dl(Dl—l)—Dl'(Dl'—l)}z=e”eV or  (D!-D2-Dy+Dy)z=e""

o [(Dl_q)(DﬁDi)—(Dl—Di)}he”” or (Dl—Dl')(D1+D1'_1)Z=eu+v

or C.F. = ¢;log(xy)+x¢, log(y/ x) = f,(xy)+xf,(y/x), where f; and f, are arbitrary

functions.

1 1 1 u
u+v utv _ B Uty _ eV xy log x

AISO,P.I.:(Dl—Dll)(Dl-FDi_l)e =D1_D1'(1+1_1)e 1!

Hence the required general solution is z= C.F. + P.I. or z = f;(xy)+ xf, (y/x)+xylogx
Solve yt—q=xy.

The given equation can be rewritten as
y(azzlayz)—(azlay) =Xy
yz(ézzlayz)— y(azlay)zxy2

or

Let x=¢", y=¢" sothat u=Ilogx, v=Ilogy.

Also,let D=0/ox, D'=d/oy, Dy=0d/ou and D;'=0/0v.
Then (1) becomes [D;(D;'-1)-D, "]z —ele?

or Di(Di—Z)z:e‘“ZV

< CFo= y(u)+e%d, (u) =, (logx) + y%d, (logx), by(2)

= f,(x)+ y?f,(x), f,. and f being arbitrary function

1 eu+2v _ 1 19“+2V :1 u+2v 1

Also, P.I. = — , = - 1
(D1—2)D1 D -22 2 D'+2+2




e" x(e")2 xv:XyTZIogy.

zleu+2vi1:1
2 D 2

Hence the required general solutionis z= C.F. + P.l. or
2 1 2
z="f(xX)+y fz(X)+[§j><Xy logy .
Ex. 6. Solve (xzD2 —xyDD'—2y?’D? + xD —2yD')z =log(y/x)-(1/2).
Sol. Let x=e",y=¢e" sothat u=Ilogx,

v=logy...(1)Also, let D=0/0x, D'=0/0dy, D;=0/0u and Dy =d/dv.

Then the given equation reduces to
[Dl(Dl—l)—DlDl'—ZDl'(Di—l)JrD1—2Dl'}z=Iogy—|ogx—(1/2)

or (D -DyD;-2D)z=v-u~(1/2) or (D ~2D;)(D; +D;)=v-u-(1/2).
v CF. =y (v+2u)+y (v—u) =dy (logy + 2logx) + b, (logy — logx)

C.F. =¢1(Iog(yx2))+¢2(log(y/x)): fl(yx2)+ i, (y %),

where f; and f, are arbitrary functions.

1 1
or Pl = 5 , .Z(V—U——)
D —D,D; -2D; 2

i
Df(l—DllDl—ZDllef) 2




2 2 2
1 (v 1]2(\/ 1Ju2 _%uzv_luzz(logx) logy (logx) by (1)

2)2 4 2 4

.. Required solution is

z= fl(yx2)+ f,(y/x)+(1/2)x (logx)?logy — (1/ 4)x (logx)?.
Ex.7. Solve (XZDZ —4y°D? —4yD’—1) 7 =x"y’logy .
Sol. Let x=¢e", y=¢" sothat u=Ilogx, v=Ilogy.

Also, let D,=0/éu and D, =08/0v.

Then the given equation reduces to

| D.(D,-1)-4D;(D; ~1)-4D, 1]z =e™e™v

or  (Df-D,—-4D7-1)z=€*"*v#(2)

Here (Dzl—D1 — 4D/ —1) cannot be resolved into linear factors in D, and D,’. To find
C.F. corresponding to it, we consider the equation.

(D -D,-4D; -1)z=0 en(3)

7= Ae"t ween(4)

Let a trial solution of (3) be

D,z = Ahe™™, and D}z = Ak%e"*

Then, (3)= A(h’—h—-4k*-1)e""™ =0= h?-h—4k’-1=0. . (5)

. C.F.of(2)=xAe"™ =ZA(e" )h (ev)k = SAX"y

1 1
P| Of 2u+2vV — e2u+2v . v

( )_Df—Dl—4D1'2—l (D, +2)" (D, +2)-4(D; +2) -1

_ A2U+42v 1

- D2 2 ! v
213D, - 4D 16D, —15




1
\'
(-15)x| 1+(16/15)x D; +(4/15)x D’ —(1/5)x D, - (1/15)x D} |

-1
s B or-do- Lot v

2 2
e2u+2v (1_ED .\ jvz e2u+2v (V_Ej: (eu) x(ev) (16—15V)
(-15)\" 15 ¢ ) (-15) 15 225

=(1/225)xx*y* (16 —15logy), using (1).

_ p2u+2v

=e

The required general solution is z = ZAX"y* +(1/225)xx’y? (16—15logy )
where h* —h—4k*—-1=0, and A h and k are arbitrary constants.

2 2
Ex.8. Solve iﬂ—ig :iﬂ—i@

Sol. Let x*/2=u, y?/2=v sothat dx/du=1/x, dy/dv=1/y ...(1)

0z ordx 1oz .
B E using (1) (2)

vt 23(E) BTN ofiam
ou> ou\du) oulxox) ox\ xox)du

2
:[la—z—i@J%,using(l)

Now,

-9 - % (3
ou?  x2oxt X ox )
2 2
Similarly, %:%%—%g ..... (4)
oty oyt yoy

Using (3) and (4), the given equation reduces to
o*z/ou* =d°z/ov* or (Df -D;)z=0
or (D,-D,)(D,+D;)z=0 en(5)

where D, =0/0u and D,'=0/0v. Hence solution of (5) is




2= (v+u)+d, (V=) = {(1/2)x (X" +y7 )} + 4, {1/ 2)<(y* - X°)}

or  z="f(y*+x*)+f,(y?—x*), f, f, being arbitrary functions.

Ex. 9. Find a surface satisfying equation 2x*r —5xys+2y’t+2(px+qy)=0 and touching the

Sol.

hyperbolic paraboloid z = x* — y* along its section by the plane y =1.

2 2 2
Re-writing given equation, ZXZ%—Sxy 0z +2y2£+2(xg+ ng=O.
X X

or  {2x’D’-5xyDD'+2y’D?+2(xD+yD')} z=0 (1)
Put x=¢", y=¢" sothat u=Ilogx and v=Ilogy.

If D,=0/0u and D,'=0/0v, then (1) reduces to

2D,(D,~1)-5D,D;+2D,(D; ~1)+2(D, +D;) |2=0
or (2D -5D,D, +2D;?) =0 or (2D, - D; )(D, -2D; ) =0.
. solutionisz= C.F. =¢ (2v+u)+¢, (U+2v),d,4, being arbitrary function

The given surface is z = Xx*—y?.

Now (2) and (3) are to touch each other along the section by the plane
y =1#(4)
Therefore the values of p and ( for (2) and (3) must be equal at y =1. Equating values
of p and g from (2) and (3), we get
y? fl'(yzx)+ 2xyf2'(x2y)= 2x . (5)
and 2xyf1'(y2x)+ X2 fz'(xzy) =-2y ...(6)
Putting y =1, (5) and (6) reduce to
f, (x)+2xf, (xz) =2x and 2xf, (x)+x*f, (xz) =-2.
Solving these,  f(X)=—(2/3)xx—(4/3)xx™ er(7)
f

and o (%) =(213)xx 7 +(413) err(8)




Integrating (7), f,(X)=—(1/3)xx* —(4/3)xlogx+c,

Which gives fl(yzx) =—(1/3)x y*x* —(4/3)xlog (yzx)+cl ..(9)

Writing X for x* in (8). f,(X)=(2/3)x(1/ X)+(4/3)
Integrating it, f,(X)=(2/3)xlogX +(4/3)x X +c,

Putting the values of fl(yzx) and fz(yxz) from (9) and (10) in (2) and writing

C, +¢, =c/3, the complete solution is
z=—(1/3)xy*x? —(4/3)><Iog(yzx)+(2/3)xIog(yx2)+(4/3)><(yx2)+c/3
or 3z =—y’x* —4(logx+ 2logy ) + 2(logy + 2logx ) + 4yx* +¢
or 3z=—y*x* —6logy +4yx* +cC
Now equating values of z from (3) and (11) and putting y =1, we have
X’ —1= (1/3)[—x2 —6logl+4x? +c], giving ¢ =-3.

So the required surface is 3z =4yx* — y*x* —6logy — 3

PREVIOUS YEARS QUESTIONS

Q1. Find the general solution of the partial differential equation

(D?+DD'-6D ")z = x*sin(x+y) where D z% and D'z%. [7a UPSC CSE 2022]

Q2. Solve the partial differential equation: ( D?*-2D’D'-DD"“+2D '3)2 =e”" +sin(x-2y);

D=—,D'=

9 . [5d UPSC CSE 2020]
OX oy

Q3. Find the solution of the following differential equation:

0°z 0°z 0’z

2—+5 +3— =vye*. [(7c) 2020 IFoS
o ey oy ye”. [(7c) ]
. . .0z 0z
Q4. Find the solution of the equation: F_ﬁ =X—-Y.[(5a) 2019 IFoS]
X

Q5. Solve the partial differential equation:




(2D* -5DD'+2D ")z =5sin (2x+y)+24(y—x)+e*"*’ where Dzag, p=2.
X

oy
[7a UPSC CSE 2018]

Q6. Find a real function V of x and y, satisfying Z—Y+ﬂ = —47z(x2 + y2) and reducing to zero,
X

oy
when y=0. [(8a) 2018 IFoS]

2 2
Q7. Solve (D2 -2DD'+ D'Z) e**? 1 x* +sin2x where D =£, D'Eg, D? Ea—z, D" Ea—z
OX oy OX oy
. [5a UPSC CSE 2017]
Q8. Solve the partial differential equation
3 3 3 3
a—i—zﬂ— 0z 28— — Y [7a UPSC CSE 2016]
OX ox*0y  oxoy? oy®
2 2 2
Q9. Find the particular integral of 0 5—2 0z 6 Z_ =2Xcos Y. [(6b) 2016 IFoS]
OX 6x6y oy?
Q10. Solve (D2 +DD'-2D '2)u =e*, where D = 82 and D'= % . [Sb UPSC CSE 2015]
X

Q11. Find the solution of the equation u,, —3u,, +Uu,, =sin(x—2y). [(5d) 2015 IFoS]

Q12. Solve the partial differential equation (ZD2 —-5DD '+ 2D'2)z =24(y—x).

[5a UPSC CSE 2014]

Q13. Solve (D +DD'- 6D'2)z =x"sin(x+y) where D and D' denote 92 and i

OX oy’

[6a UPSC CSE 2013]

Q14. Solve the partial differential equitation (D—2D")(D—-D ')2 z=e*"Y . [5a UPSC CSE 2012]
Q15. Solve (D3D'2+ DZD'S)Z =0 where D stands for ai and D' stands for 02 [(5b) 2012 IFoS]
X y

0’1 0’z
Q16. Find the complementary function and particular integral of the equation y—— =X-—

ayz

[(7b) 2011 IFoS]




Q17. Solve the PDE (D?*~D')(D—-2D")Z =e*" +xy . [5a UPSC CSE 2010]

Q18. Find the surface satisfying the PDE (D2 —-2DD '+ D'Z)Z =0 and the conditions that bZ = y?
when x=0 and aZ = x* when y=0. [Sb UPSC CSE 2010]

NON-HOMOGENEOUS

Q19. Find the general solution of the partial differential equation

(DZ—D'2—3D+3D')Z =Xy +e*"* where Ds@3 and D'z%. [7a UPSC CSE 2021]
X

Q20. Solve: (D—3D'-2)" z =2e* cot(y+3x). [(7a) 2014 IFoS]
Q21. Solve the PDE (D*~D”+D+3D'-2)z=e"") —x’y. [5a UPSC CSE 2011]
Q22. Find the general solution of (D—D'-1)(D—D'-2)z =" +sin(3x+2y).

[(7a) 2010 IFoS]




Partial Differential Equations of order Two with variable coefficients

Ex 1. Solve the following partial differential equations:

(i) r=6x (i) ar = xy (iii) r =sin(xy)

Solution.
(i) Given equation can be written as 6z%/dx* = 6x (1)
Integrating (1) with respect to ‘ X’ 6z/0x = 3x? +¢1(Y)' w(2)

where ¢l(y) is an arbitrary function of y.

Integrating (2) with respect to ‘ X’, Z= X+ X, (y)+¢2 (y),

where ¢, (y) is an arbitrary function of y .

(ii) Given equation can be written as 0z°/ax” =(1/a)xxy (1)
Integrating (1) w.r.t. “ X’, 0z/0x :(y/a)x(x2/2)+ ¢.(y) e(2)
Integrating (2) w.r.t. ‘x’, z=(y/6a)xX’ + x4 (y)+&(Y),

which is the required general solution, ¢,¢, being arbitrary functions.

(iii) Given equation can be written as 9°z/dx” =sin(xy) (1)
Integrating (1) w.r.t. 'X" oz/ox=—(1/y)xcos(xy)+¢ (y) (2)
Integrating (2) w.r.t. 'X' z= —(1/y2)><sin(xy)+ xg (y)+¢,(y),

which is the required general solution, ¢ ,¢, being arbitrary functions.

Ex. 2. Solve (i) t—xq =X’ (i) yt—q=xy

Solution.

(i) The given equation can be rewritten as (6q/dy)—xq =X, (1)

which is linear differential equation in variables  and Y, regarding X as constant.

J(=xd

Integrating factor (I.F.) of (1) =¢’ ~ =e™ and solution of (1) is

q(I.F.)=.[(x2)(I.F.)dy+¢1(x) or g =Ix2e‘xydy+¢l(x)




or g™ =x*x(-1/x)xe™ +4¢ (x) or q=0z/0y =—x+e"¢ (X)
Integrating it w.r.t. 'y, z=—xy+(1/x)xd¢ (x)e” +y, (X)

or z=—Xy+ (x)€” +y,(x), where v, (x)=(I/x)x ¢ (x)

Itis the required solution, y,,y, being arbitrary functions.

(ii) The given equation can be rewritten as y(&q/dy)—q=xy or (6q/0y)—(1/y)xq=x, which

is differential equation linear in variables q and Y, regarding X as constant.

[(~yy)ay _

I.F.of (1) =e e =1/y and solution of (1) is

qx%:-[(xx%jdy+¢l(x) or %:xlog y+6(x)
or q=xylogy+ yg (x) or dz/dy = xylogy+ yg (X)
Integrating it, z:x[(yz/z)xlog y—f{(yz/Z)x(]/y)}dy}+(y2/2)x¢l(x)+¢2(x)

or z=(Y2)xxy’ logy—(Y4)xxy? +(1/2)x Y*¢ (X) + &, (X), 4. &,

or z=(1/2)xxy? logy —(1/4)x xy* +(1/2)x y°¢ (X)+ &, (X), . 4, being arbitrary functions.




Classification of P.D.E. Reduction to Canonical or Normal Forms.

Let's consider aPDE: Rr+Ss +Tt +f(x,y,z,p,q) =0 .. (1)
Where R, S, T some function of x, y
(1) If S> —4RT >0; Then PDE (1) is hyperbolic PDE
E.g. One-dimensional wave equation, r—t=0;R=1 T =-1, S=0; S>—4RT =0-4x1x(-1)>0
(2)  If S2—4RT =0; PDE (1) is parabolic PDE
Eg. r+2s+t=0;R=1T =1S =2.. S —-RT=4-4=0
(3)  IfS2—4RT<0; PDE (1) is Elliptic PDE,
Eg. r+s+t=0;R=1,5=1,T=1.. S°—4RT=1-4<0

Part (1): Reducing Rr +Ss+Tt+ f (x, Y, Z, p,q):O into canonical form: like

02 oz oz
_=¢ U,V,Z_,_
ouov ou ov

How!! By given PDE: we try to find
Step-l: u & vi.e., z = function of x,y —1° 5 7 =function of u & v

then How to find u & v ??

d for this

we write B characteristic equation for given PDE as RAZ +SA+T=0..(1)

(i.e., S2—4RT >0) (i.e., S2—4RT =0) i.e., S2—4RT <0
Hyperbolic PDE Parabolic PDE Elliptic PDE
eWeget Ay & A,:real & We get two equal roots No real root
distinct roots of (1) M=hy=2A M=a+if
_ solve,ﬂjtkzo b =0o—1p

e Now, we find u & v by dx Find u &V by:
s;):vmg. 5 Get fl(i(,y) C %”leo’ %+x2:0
N =0, Xin,=0 Take u=fy(x,y) X X
dx dx Now choose another

v v function f>(x, y) which is

fi(xy)=c f(xy)=c, linearly independent with
. We take, fi(x, y); using jacobians to
u=fi(xy), v="1(xy) verify linear independence




Step (ll): We try to find p,q,r,s,t
* We have, u =function of x & y, v = function of x & y; z as some function of u, v

.. zisa function of u & v; u & v are function of x, y.

) oz 0z 01 0L0u 0z oV
L 0l=—O0U+—N=> —=——+——=p
ou ov OX OuOoX ovoX

Eg.ifu=x+y,v=x-y

. 0Z ou o6z ov oz oz oz
i.e., we have p=—= + 1.2 1=

X oxou xev o ou o ev

2
Note: from line; we get 9 terms of @,@,u,v the finding r:a—gz%igj
OX ou ov Oxc  OX\ OX
Eg. Lletifu=x+y,v=x-y
, oz .oz ,01 oz oz oz 0 (8 6)
p===l il s 2 s o
oX  au N  OX du ov  OX \ou ov
0%z aﬂazj (a aj(az azj 0’z 8%z 8%z
=—=—|—=|=—+=—|| —t— | =—+2—+—
ox2  ox\ ox ou ov)\ou ov) gu?  ouov  py?
2 2
Similarly, we get ngzé_ung@.Q tzﬁ_z: ...... Ands = ﬂzi @ from above.
oy oyou oy ov 8y2 oxoy oz\ oy

Ex. 1. Classify the following partial differential equations
(i) 2(6°u/ox*)+4(0°u/oxdy ) +3(°u/oy’ ) =2

(ii) O°u/ox® +4(6°u/oxdy )+ 4(6°u/ay*) =0

(iif) xyr—(x2 —y?*)s—xyt+ py—ox = 2(x2 -y?)

(iv) xz(y—l)r—x(yz—1)s+y(y—1)t+xyp—q =0

(v) x(xy—l)r—(xzy2 —1)s+ y(xy-1)t+xp+yq=0

(vi) (x=y)(xr—xs—ys+yt)=(x+y)(p—Q)
Solution.

(i) Re-writing the given equation, we get 2r+4s+3t—2=0 (1)




Comparing (1) with Rs+Ss+Tt+ f (x,y,u,p,q)=0,weget R=2,S=4 and T =3.So

S?—4RT = (4)2 —(4x2x3)=-8<0, showing that the given equation is elliptic at all points.
(ii) Re-writing the given equation, we get r+4s+4t =0 (1)

Comparing (1) with Rr+Ss+Tt+ f (X, y,u, p,q):O, weget R=1,S=4and T =4.50

S? —4RT = (4)2 —(4x1x4)=0, showing that the given equation is parabolic at all points.
(iii) Given xyr —(x* = y*)s—xyt+ py —gx—2(x* - y*) =0 (1)
Comparing (1) with Rs+Ss+Tt+ f (X, y,z,p,q)=0, we get R=xy,S :—(x2 - yz) and
T =-Xy.So, here S*—4RT = (x2 - y2)2 +4x%y° :(x2 + y2)2 >0,

showing that the given equation is hyperbolic at all points.

(iv) Hyperbolic (v) Hyperbolic

(vi) Hyperbolic

Ex. 2. Classify U, +U, =Y,

il |08
The matrix A of the given equation is givenby A={0 1 0
0 0 -1

The eigenvalues of A are given by |A-A1|=0, i.e,

-2 0 0
0 1-2 0 |=0or —(1+4)(1-4)" =0
0 0 -1-2

Hence 4 =-111 showing that all the eigenvalues are non-zero and have the same sign except

one. Hence the given equation is of hyperbolic type.

Ex.3. Classify U, +U, +U, +U, +U, =0

Solution.
The given equation can be re-written as

u,+0-u,+0-u,+0-u, +u, +u,+0-u, +u, +u, =0




.. The matrix A of the given equation is given by A=

o o K
=)
=)

Now, =0, using properties of determinants

Al=

o O B

0 0
11
11

Il
O O -
O O
o O

Since |A|=0, the given equation is of parabolic type.

Ex.4. Find the characteristics of y°r —x*t =0

Solution.

Given y’r—xt=0 (1)
Comparing (1) with Rr+Ss+Tt+f (X,Yy,z,p,q)=0, here R=y* S=0and T =—x*.

Then S?—4RT =0-4xy° x(—xz) = 4x’y? >0 and hence (1) is hyperbolic everywhere except on
the coordinate axes x=0 and y=0

The A-quadraticis RA*+SA+T =0 or y?4>—x*=0 D)

Solving (2), A=x/y,—x/y (two distinct real roots).

Corresponding characteristic equations are

(dy/dx)+(x/y)=0 and (dy/dx)—(x/y)=0 = xdx+ydx=0 and xdx—ydy =0

Integrating, X* + Yy’ =¢, and X* —y* =c,, which are the required families of characteristics. Here

these are families of circles and hyperbolas respectively.

Category-1:Hyperbolic PDE: canonical form

Ex.1. (i) Write canonical form of 6°z/dx> —6°z/6y* =0

(i) Reduce 3(822/6X2)+1O(622/8X6'y)+3(622/8y2): 0 to canonical form and hence solve it.
Solution.

(i) Re-writing the given equation, we get r—t=0 (1)

Comparing (1) with Rs+Ss+Tt+f(x,y,z,p,q)=0, here R=1,S=0 and T=-1 so that
S? —4RT =4>0, showing that (1) is hyperbolic




The 1 -quadratic equation RA*+SA+T =0 reduces to 1> -1=0

Hence 4 =1-1.So A, =14, =-1 [Real and distinct roots]

Then the characteristic equations dy/dx+ 4, =0,dy/dx+ 4, =0reduces to (dy/dx)+1=0 and
(dy/dx)-1=0

Integrating these, y+X=c¢, and y—Xx=¢,

In order to reduce (1) to its canonical form, we choose

U=y+Xand v=y—X ...(2)
0z 010U oOzov o071 o2 .
=—=——+——=———,using (2) we(3)
OX OUOX OvVOoX ou ov
and ngzgﬁ_u_'_g@:@_‘_g' using (2) .(4)
oy ouoy ovoy ou ov
From (3) and (4), izi—i and izi+i 25
OX Ou ov oy du ov
2
:a—zzg(azj (2——j(@—— using (3) and (5)
ox° ox\ ox ou ov
oo a2\ o(ae o 0’z o’z 0%z
orr=—| ——— ——|==—=-2 +— ....(6)
ou\aou ov 6v ou ov ou ouov oV
2
andt=22_9[2% (i+ﬁ)(a— @j by (3) and (5)
oy? ay ay ou ov)\ou ov
o(oz oz\ o(oz oz 0°z 0’z 0%z
ort=—| —+—|+—| —+—|==—5+2 +— we(7)
ou\aou ov,) ovidu ov ou ouov ov

Using (6) and (7) in (1), the required canonical form is

2 2 2 2 2 2 2
o’z . 0z 62_(82 ;.02 E]:Oo az:O

— - | —+ + r
ou*  ouov ov (ou® ouov  ov? ouoz
(ii) Ans. &*z/ouov=0; z=f (y—3x)+9g(3y—x)

Ex. 2. Reduce 0°z/ox* =(1+ y) (622/8y2) to canonical form

Solution.




Re-writing the given equation, r —(1+ yz)t =0 .(1)

Comparing (1) with Rr+Ss+Tt+ f (X,y,z,p,q)=0, here R=1,S=0and T =—(1+ y)2 so that
S?—4RT :(1+ y2)>0 for y#—1, showing that (1) is hyperbolic. The A-quadratic equation

RA*+SA+T =0 reduces to /12—(1+y)2:0 so that A=1+y,—(1+y). Hence the

corresponding characteristic equations are given by
(dy/dx)+(1+y)=0 and (dy/dx)—(1+y)=0
Integrating these, log(1+y)+x=C, and log(1+y)-x=C,
In order to reduce (1) to its canonical form, we choose
=log(1+y)+x and v=log(1+y)—x wr(2)

0z 0L0ou oOzov o071 o2
==+ —— =" using (2) we(3)
OX OuUOX Ovox ou ov’

oz _dzdu 62 v 1 (62 az)
and q= — ...(4)
oy oudy 8v8y 1+ylou  ov
From (3) 9/0x =8/du—o/ov ..(5)
2
:% :%(%):(%—%j(g—i—%) using (3) and (5)
or 1 =08"z/ou’ -2(8°z/oudv)+o°z/ov? ...(6)

i ofaz)_ o) 1 (aerazj 1 (82 8z)+ig(az azj by (4)

oy oylay) oy |1+ylau  ov (1+y)\ou ov) 1+yoylau ov
_t (2+§j+i_£(& ja_u g( )

(1+y)2 ou ov) l+y|ou\au oviou ov

1 (a2 e\ 1 [(é%2 o
S /by (2
(1+y) ou ov) 1l+y| ou’ auav y+1 u y

1 0° 0’z 0%z o1 oz
ort= 5 2+2 +—2———— (7)
(1+ y) ou ouov ov- ou  ov

Using (6) and (7) in (1), the required canonical form is




+__
ou®>  ouov  ov?

- =—+
ouov  ou  ov

0’z 0’z 0’z (0%z 0’z 0’z o071 oz 0’z o7 oz
2 ~ +2 + ~ =0or 4 = —
ou ouov ov° ou  ov

Ex. 3. Reduce the differential equation t—s+ p—q(1+1/x)+(z/x)=0 to canonical form.
Solution.

Given 0-r—s+t+p—0q(1+1/x)+(z/x)=0 (1)
Comparing (1) with Rr+Ss+Tt+ f(X,y,z,p,q)=0,here R=0,S=-1and T =1

Hence S*—4RT =1> 0, showing that the given equation is hyperbolic.

The A-quadratic equation RA*+SA+T =0 reduces to —1+1=0 giving A=1. Hence the
corresponding characteristic equation dy/dx+A =0 yields dy/dx+1=0 or dx+dy =0

Integrating it, X+ Yy =C, C being an arbitrary constant
Choose U=X+Y and V=X, we(2)

where we have chosen v =X in such a manner that u and v are independent as verified below:

Jacobian of U and v=

oufox oufoy| L 1
ov/ox ov/eyl L 0

‘=1¢0:>u and V are independent functions.

0z O0I0u oOzov 01 02 !
NOW, p:—:——+——:—+—,US|ng (2) (3)
OX OUOX oOvVox ou ov

_ 0z _o0zou ozov _ oz

q_@_au ay+55:8—u,using (2) ...(4)
From (4), we have 0/dy =0/du ..(5)
2
S= 0’z :E(QJ:EK@+QJ, using (3) and (5) ...(6)
OXxoy oy\ox) oulou ov
and t=8_2§=2[@j=i(@]’ using (5)
oy oyloy) oul\ou

or t=06%z/6u’

Using (2), (3), (4), (6) and (7), (1) reduces to

0’z 0%z 0’z o0z oz oz 1\ z
- ==+ t—+t—+———|1+= [+=—=0
ou- ouov) ou® ou ov ou




or 0°zfouov—(dz/ov)+(1/v)x(éz/éu)—(z/v)=0, which is the required canonical form.

Ex. 4. Reduce the equation yr +(X+ y)s+xt =0 to canonical form and hence find its general

solution.

Solution.

Given yr+(x+y)s+xt=0 (1)
Comparing (1) with Rr+Ss+Tt+ f(x,y,z,p,q)=0, here R=y,S=(x+y) and T =X so that
S?—4RT =(x+ y)2—4xy=(x—y)2 >0 for x#Yy and so (1) is hyperbolic. Its A -quadratic

equation RA*+SA+T =0 reduces to yA>+(x+Yy)A+x=0 or (yi+x)(4+1)=0 so that

A =-1,—x/y.Then the corresponding characteristic equations are given by
(dy/dx)—1=0 and (dy/dx)—(x/y)=0

Integrating these, y—x=c, and y*/2—x*/2=c,

In order to reduce (1) to its canonical form, we choose

u=y-xand v=y*/2-x*/2 (2)

2 2
Gl +ug:0,by(2) or u i +g:0,as u=0...(3)
ouov  ov oVov oV

Final required form is: u’
Solution of (3). Multiplying both sides of (8) by v, we get
uv(6°z/ouév)+v(dz/v) =0 or (uwDD*+vD")z=0 ..(4)

where D=9/ou and D'=9/du. To reduce (9) into linear equation with constant coefficients,

we take new variables X and Y as follows.

Let u=€” and v=e" sothat X =logu and Y =logv ...(5)
Let D, =9/0X and D, =0/3Y .Then (9) reduces to

(DD, +D;)z=0 or D(D,+1)z=0

Its general solutionis z=e""¢ (Y)+g¢,(X)=u"¢ (logv)+¢,(logu)

or Z=U71W1(V)+l//2(l.l)Z(y—X)ill//l(yz—X2)+!//2(y—X), where y, and w, are arbitrary

functions.




Ex.5. Reduce the equation r(2sin X)S—(COS2 x)t—(cosx)q =0 to canonical form and hence

solve it.

Sol. Given r—(2sinx)s —(0032 x)t —(cosx)q=0 (1)

Comparing (1) with Rs+Ss+ f (X,y,z,p,q)=0, here R=1,s=-2sinx and T =—c0s’ X so that
S?—4RT = 4(Sin2 X + COS* X) =4>0, showing that (1) is hyperbolic. The A -quadratic equation
RA?+SA+T =0 reduces to A°—(2sinx)A—cos’ x=0 so that A =sinx+1sinx—1.Hence the

corresponding characteristic equations become
dy/dx+sinx+1=0 and dy/dx+sinx—1=0

Integrating these, y—COSX+X=¢, and y—COSX—X=C,

Choose U=Yy—C0SX+X and V=Yy—COSX—X ...(2)
_z_ad —+— oz v =(1+sinx)— oz +(sin x—l)g, by (2) we(3)
Ox QU ox oV ox ou ov

az 62 au oZLov 07 01
+——=—+—, using (2) ...(4)
ay au av ovoy ou ov’

From (4), we have 0/dy =0/du+0o/ov ...(5)

. 82 8(62] (8+£j(@+gj,using(4)and(5)
8y oyl oy ou ovj)\ou ov

a(az azj a(az azj_azz 2822 0’z

ort=—| —+— |+—| —+— =—+ +—
ou\ou ov,) ovidu ov ou ouov ov

Now, S = oz 6(82) g{(ljtsinx)g
oayox oy\ox) oy au

=(sinx+1)— ¢ (S—Zj (sinx— 1)%(2_3
% o av(saz;} smenfg(3)5£(%)3)

0’z 9%z
(sinx—1) p afﬁ
u

...(6)

+(sin x—l)%}, by (3)

sm X+1 (




. [ 0%z 0%z 8%z %z 0%z
or s=sinx| — +2 t—= |t we(7)
ou ouov  ov ou: ov

(azj {S|nx+1 — +(sinx— 1)8 } cosxg+(sin x+l)ﬁ(a—z)+cosxg+(sin x—l)i(@j
ov ou ox\ ou ov OX\ ov

az ou 0 (oz)\ov . 8 82 au 8 az 8v
=COS X + smx 1 — = == +(smx—1)
av 6u6x8v8uax 8u8v8x8vav8x

2 2

+(sinx-1) g\iz} (sin x—1){(sin X+1) ai;v +(sin X_l)%J

2

_cosx[—+—j+ (sinx+1) { smx+1)2 z
u?

2 2 2
‘. r:cosx(g+@J+(l+sinx) E(sm —1) a—§—2c032x
ou ov ou? oV ouov

....(8)

Using (4) (6), (7) and (8) in (1), we get

2 2 2
0x (sm X+1-2sin x)ﬂ—Zcos X 0z
ou? ov? ouov

cosx(gngJ (1+25|nx+sm x)
ou ov

0’z 0’z 0°z\ oz 9%z 0°z 0’z 0’z 07 oz
—2sin x<sin X —+2 iy, MMINQSTY —+2 +—[—-CcosSX| —+— |=0

ou®>  ouov  ov: ) ou®  ov? ou?  ouov  ov? ou  ov

or (1+2sin X+sin’ x - 2sin® X — 2sin x—cos” x)x (8°z/6u’ )+ (sin* x+1 2sin x— 2sin” x
+25in x—c0s” X) x (8°2/av* ) - (2cos® x+4sin® X + 2¢0s” x ) x(8°z/dudv) = 0
or 6%°z/6uév =0, on simplification. ..(9)

(9) is the required canonical form of (1).

Solution of (9). Integrating (9) w.r.t. z/ov = ¢(V) , ¢ being an arbitrary function ....(10)

Integrating (10) w.r.t. 'v', Z= j(/ﬁ(v) dv+F (u)=G(v)+F(u),

where G Iqﬁ v)dv, Fand G are arbitrary functions.
=G(y—cosx—x)+F(y—cosx+X) is the required solution.

Ex. 6. Reduce the equation (y—l)r—(yz —1)S+ y(y-1)t+p—q=2ye”™(1- y)3 to canonical
form and hence solve it.

Solution




Given (y-1)r —(y2 —1)s+ y(y-1)t+p—q=2ye*™(1- y)3= 0 (1)
Comparing (1) with Rr+Ss+Tt+ f (X,y,z,p,q)=0, we get

R=y-1S=—(y"-1) and T =y(y-1) w(2)
. The A-quadratic RA*=SA+T =0 gives

(y-1)2° —(y2 —l)ﬂ+ y(y-1)=0= 14, =1and 4, =y (real and distinct roots)
Hence characteristic equations (dy/dx)+4 =0 and (dy/dx)+4, =0 become
(dy/dx)+1=0 and (dy/dx)+y=0

Integrating these, Xx+Yy=c, and ye* =c,

To reduce (1) to canonical form, we change the independent variables X, Yy, to new independent

variables U,V by taking
U=Xx+y and v=ye" ..(3)

0z _dtou arov @ exgzg Qb(3) (4)

==+ —
OX OU oX avax ou g oV ou ov

LN BN e Ry p3) (5)

0z
oy oudy oy au o o
o ( oz 0 o\(oz or) 0z 0’z ,0z1 oz
—| = |=| = —+V— || —+V— |=—+2V +V*— +V—, by (4)
ox\ ou au ou ov)\ou ov) oau ouov ov ov
_ofa)_o Q 82} _(a_ (82) < 07

ox\ oy 8x ou 3 o

oz oz\(or) 0z 6 0’z . 0%z 0’1 oz
=| =+v=| = |+e v— = —=—+(e"+v) +vet —— +e" —

ou ov)\adu ov 8V ou? ouov ov oV
andt:g(gj 6( j j eX ( j

oy\dy) oy\ou

) (azjau 0 (82)82 .| 0 (azJau 0 (&Jav 0%z , 0’1 ,, 0%z

=— +e' | — — |=—+2e +e” —
oy ov\aou)joy oy ov\ov/oy| ou ouov ov

Substituting the above values in (1) and simplifying, we have




0%z 3 0’z

1-y) ¢ =2ye”*(1-vy) or =2V (6
( y) ouov y ( y) ouov (6)
which is the canonical form of (1).

Integrating (6) w.r.t. 'v', 8z/ou =V’ +¢(u),4(u) being an arbitrary function,  ....(7)

Integrating (7) w.r.t. 'u', Zz=uv’+4¢ (u)+g,(v), where ¢ (u J.¢
" Using (3) z=(x+Y)y’e™ +4¢ (x+ y)+¢2( ),where ¢, and ¢, are arbitrary functions.

Ex. 7. Solve X* (y—1)r—x(y*~1)s+y(y-1)t+xyp—q=0
Solution
Given xz(y—l)r—x(yz—1)s+y(y—1)t+xyp—q:0 (1)

Comparing (1) with Rr+Ss+Tt+ f (x,y,z,p,q)=0, we get
=x*(y-1),S=-x(y*~1) and T=y(y-1)

. A-quadratic RA*+SA+T =0 reduces to

x*(y-1)4° —x(y2 —1)/1+ y(y-1)=0= 4 =y/x and 4, =1/x (real and distinct)

So characteristic equations (dy/dx)+4, =0 and (dy/dx)+1, =0 become

(dy/dx)+(y/x)=0 and (dy/dx)+(1/x)=0

Integrating these, Xy =c, and xe” =c, so for canonical form, we take

u=xy and v=xe’ w(2)

0z ozou oLov 0L 0L
==t —=y—+e'— by (2) ~(3)
OX OuoXx ovox =~ ou ov

az 826u azav az
ay 6u8y avay au

0’z ooz o o oz d(a az
=—=—|—|=—|y—+& = |=y— +e’ , by (3)
OX°=  OX\ ox ox\ " ou ov OX au 8v

—+xe¥ (?_O\Z/ by (2) . (4)




d(doz\ou 8 (az\ov 0 (dz\ou 8 (az\ov , 0%z , 0’7 5,01
=y|— —+— +e’ —t+—| = | ==Y 5ty —+e7 —
aulou Jox  oviau Jox oulov)ox  ovlov)ox ou ouov oy
0’z 8(62) a( o yaz) o 8(62) yOL 6(62)
—| X—+xe¥ = |=—+X +ef —+xef —| =
axay OX\ 0x) ox\ au ov) ou  ox\au ov OX\ ov
0z, yor, 6(62j8u a(ﬁzJav y 6(82)% 6[azj8v
=—+e' —+X + +xef| =— +
ou ov oulaou)ox ov\ou)ox ou\ov)ox ov\ov)ox

2 2 2
:gjtey@+xy£+(yxey+ey X) oz +xe2ya—§
ou ov ou ou ov

0’z a(azj a( oz yazj a(az) ,or a(azj
and t=— —| Xx—+xe’ — |=x—| — |[+xe’ —+xe’ —| —
oy oyloy) oyl ou v dy\ou ov oy \ ov
_y 8(62]% az(azjav e a[azjau a(az)av
ou\ou /oy ov\ou)oy oy ovlov)oy
, 0°2 0’z 502 0z

=x? — +2X 28y — = 4 x% +xe¥ —
ou’ ouov oy’ oV

Substituting the above values in (1) and simplifying, we get 822/8u8v =0, ....(5)
which is canonical form of (1).

Integrating (5) w.r.t. 'u’ dz/ov=¢(V), #(V) being an arbitrary function.

Integrating itw.r.t. 'v', z=¢ (V)+4,(u), where ¢ (v J.¢ v)dv

L= ¢l(xey)+¢2 (xy), by (2). This is the required solution, ¢, 4, being arbitrary functions.
Ex. 8. Solve (i) Xyr —(X* —y*)s—xyt+ py—ax=2(x* - y*)

(ii) x(y—x)r—(yz—x2)5+y(y—x)t+(y+x)(p—x):2x+2y+2

Solution

(i) Given xyr—(x* —y*)s—xyt+ py—gx=2(x*~y*) =0 (1)
Comparing (i) with Rr+Ss+Tt+ f (x,y,z,p,q)=0, we have

R=xy,S==(X"-y*) and T =—xy

So A-quadratic RA>+SA+T =0 becomes xyA? —(Xz—yz)l—xy:O giving 1=—Yy/X,X/y




Y —0and - —y+/12=o:>ﬂ—i=oandd—y+¥=o
dx dx dx x dx x

Integrating, y/x=¢, and X’ +y* =c,. So, we take
u=y/x and v=x’+y?

.. Proceeding as usual, we obtain

7

_0z_ozou oz ov_ ( yjaz o2 g2 _dou v 1o
OX 0OU OX OV OX ay oy oy ovoy X ou

_+_
ou ov
2 2 2
r (—lj a—+2 (ZX)( yja cax 2 +2y82+2g

ou? ovou o' x*ou  ov
2 2 2
s=(—lzj(1Ja—i+ Zy(—lzj+2x><l 0’z +4xya—§— 1
X X ) ou X X | ouov ov: o x? au
1Y 8%z 1 0%z , 07 o
and t=| = | —+2x=x(2 +4 +2—
[xj ou’ X ( y)éuav y EY:Y

Substituting these in (1) we get

2 22 07 (5 o\, 01 _(YZ—XZ)XZ_ ué=1
(x*+y?) auav—(y X*)x* or P (x2+y2)2 _(u +1)z,by(Z)

Integrating (3) w.r.t. 'U’, we have

—I

du +g(v)= jf'” -2f du +4(v)

us+1 (u2+1)2
We have, Il.u21+1du=UX —ju>< u +1) du, integrating by parts
du (V+1)-1 du du
o | ratd (17 +1) du= 2 j(uz+1)2
du du u
Then, J.u2+1_2~|. =—

(u2+1)2 u®+1

Using (5), (4) gives 0z/ov = —u/(u2 +1)+¢(V),¢(V) being an arbitrary function

.(2)

0z

ov

.(3)

...(4)

...(4)

.o(5)




Integrating (5) w.r.t. Z=—(uv)/(u+V*)+¢ (v)+, (u), where ¢ (v)=[¢(v)d

- Using (2), Z==xy+¢ (X’ +Y*)+4,(Y/X). 4.4, being arbitrary functions.

(ii) Hint. Since R=x(y—x), S :—(y2 —xz), T=y(y-x),sohere 4, =y/x, 4, =1
Sowe get (dy/dx)+(y/x)=0 and (dy/dx)+1=0 as characteristic equations

These give Xy =¢, and X+ Y =C,.Hence take

or =— =—

ovou (y- X)3 [( y+ x)2 - 4xyT/2 B (V2 —4u )3/2 '

y=Xy and Vv=X+Y ...(1)
oz 0z oz oz
Asusual, p=y—+— and q=X—+—,
ou ov ou ov
2 2 2 2 2 2 2
r23/26§+2y oz + 0’z +a—2,t—x28— 2X 0z 8 —,
ou ovou ovou oV ou® ovou av
x—xyﬂ+(x+y) 0z +i+@
ou’ vou  ov: o u
. . 3 0%z
.. Given equation becomes —(y—x) A; =2X+2y+2 (2)
0%z 2(x+y+1 2(x+y+1 2(v+1
(x+y~+1) (ry+D) _ 2(v+l)

Integrating (2) w.r.t.'u’, we get —_— ...(3)
/ v —4u

Integrating, (3) w.r.t. v, 2—4/ V2 —4u [ V —4u }+¢1(V)+¢2 (u)

or z=x-y+log(2x)+¢ (X+Y)+¢ (Xy),é, ¢, being arbitrary functions.

Ex.9. Solve (i) y(x+Yy)(r—s)—-xp—yq—z=0

(i) Xys—X°r — px—qy +2z =—2xy’y

Solution

(i) Given y(x+y)r—y(x+y)s—xp—yq—z=0 (1)

Comparing (1) with Rr+Ss+Tt+f (X,y,2,p,q)=0,R=y(x+Y),S=-y(x+y),T=0




So, the A-quadratic RA*+SA+T =0 reduces to

y(x+y)A*—y(x+y)A=0,giving 1=0,1.Thus 4, =1and 1, =0 and so %+ﬂ1=0 and

d—y+ﬂ,2 :0:>d—y+1:0 and d—y=0
dx dx dx

Integrating these, X+ Yy =c, and y=c,
Sowetake U=X+Yy and v=Y

0z 0zou o0Lov o2
Now, p=—=——+——=—/by(2)
OX OUOX ovox ou

e @ N & a2

g=—=—+——-=
oy oy voy ou ov

0’z 0oz o(oz) &%z
r=_—=—| = |==| = |==5,by(3)
ox=  ox\ ox oul\ au ou

&’z ooz o(éz oz 0’z oz .
S = SO =l — T , using (3) and (4)
ovou ox\oy) ou\ou ov) ou” ovou

o’z ooz (a aj(az azj 6(62 azj 6[62 azj 0’z
t=F sl |=| — (s || — i S teet= S | 7 | = —— +2
oy® oy\oy ou ov/\ou ov) ou\ou ov) oviou ov) oau

Substituting these values in (1), we have

0%z 0z 0z oz 0%z 0z oz
y(x+y)| - —~X——Y| —+—|-2=0or wv +U—+v—+2=0
ou ou ov ovou ou ov

o'z 1
ovou vV ou

loz 1 0(07 12 1(oz z
or +——+—2z=00 —(—+—j+—(—+—j:0
ov Vv

,
uov uv ou\ov Vv) u

Let oz/ov+(z/v)=w

Then, the above equation (7) becomes ow/du +w/u =0

Integrating, wu=g(v) or w=(1/u)x¢(v)

oz 1 1
Substituting this value of W in (8), we have 5+V 7= aqﬁ(v)

J@)a

I.F.of (9) =e " =V and solution of (9)is

(2)

..(3)

...(4)

...(5)

...(6)

0%z 0’z
+_
ovou  ov?

w(7)

....(8)

...(9)




2= [$(v)iv -+, (u) or 2= (v)+ 24, (u), where 4 (v)=[ p(v)d

1 1
7= +—@,(X+V),by(2); @,0, bei bit functi
or y(x+y)¢l(y) y¢2( y), by (2); 4.4, being arbitrary functions
(i) Hint. Given xys—X°r — px—qy + z = —2x%y (1)

Here, R=—x*S=xy, T =0 and A-quadraticis —x*A° + xy4 =0

sothat 4 =y/x and 4, =0.Hence, characteristic equations

dy dy dy 'y dy
0 and 0=2L+Z=0and X=0
™ —+4=0an +ﬂ? o x an i
Integrating these, Xy =c,, y=C,.Sowetake U=Xy and v=Y ...(2)

0z 0zou 0OLov 0z 0z
Then, p=—=——+——=—Y=V—, by (2) we(3)
OX OUoOX ovox ou ou’

az az au 62 av 0z 071 uoz oz
=X—+—=——+—,by(2) ...(4)
é'y “ou 8y 8v ay du ov vau ov’

2 2
=a—§=£(g)=vi(v&j zaz,bv(S)
oX=  OX\ oX ou\ ou ou

’z _dfa d(udz oz 10z wd’zo00%z
=V—|——+— |=V|-—+——5+—— |, by (3)and (4)
6x8y 8x ay ou\vaou ov vou Vvou® ouov

Substituting these values in (1), we have

oz 0’z 0%z , ,0°7 0oz (u oz az]
XY| —+U—+V—— |- XV ——V—X-Y + +7==2xy
ou  ou®  ouov ou ou vou ov

2 2 2
o ugﬂjza §+uv 0°z _uza i_u@_u@_vg+z_ 2( u?/v? )v by (2)
ou ou ouov ou ou ou oV

0%z 0z az 2u? %z loz 1oz z 2u
or uv —-U—-V—+2=——— or ——————t—=——
ouov ou 6‘v v AUV VOU uov uv Vv
0oz 1z 1(0z 1z 2u
or —| ———|-——~| ———|=—— ....(5)
ou\ov Vv oV Vv \;

Let dz/ov—z/v=w ()




ow 1 2u
Then (5) becomes 8___W: —-, Which is linear differential equation we(7)
u u Vv
I.F. of (7) = e_wu)du =g o9u = gloou” =(1/u) and so its solution is

w 2u 1 2u 2u?
U:—J'(V—Zxajdu :—V—2+¢(v) or W:—V—2+u¢(v)

7z 1 2u®
Substituting this value of w in (6), we get %—— Z=——-+Ug(u)
v v

- | (Yv)d - -1 . L
Its I.LF. =e Joo =e ™' =¢"" =(1/v) and soits solution is
2

z_ 11{_2_lf+u¢(v)}dv:3—2+uw<v>+¢2(u)

\"

or z =(U2/V)+UVI//(V)+V¢2(U)=(U2/V)+U¢1(V)+V¢2 (u) or z=x"y+xys (V) +Ye, (xy), by
(2)

Ex. 10. Solve X°r — y*t+ px—qy = x°

Solution

Given X°r—y’t+ px—qy =0 (1)
Comparing (1) with Rr+Ss+Tt+ f (X,y,z,p,q)=0, we get

R=x*,S=0and T =-V? (2)
Now, the A-quadratic RA*+SA+T =0 and (2) give

x?2* —y? =0 so that A=+Yy/x (real and distinct roots)

Take A, =y/x and 4, =-y/X

Hence characteristic equations (dy/dx)+4, =0 and (dy/dx)+4, =0

become (dy/dx)+(y/x)=0 and (dy/dx)—(y/x)=0

or (I/x)dx+(1/y)dy =0 and (1/x)dx—(1/y)dy =0

Integrating, logx+logy=Ilogc, and logx—logy=logc,

or Xy =c, and X/y=c,




To reduce (1) to canonical form, we change the independent variables X,y to new independent

variables U,V by taking
u=xy and v=x/y

0z 0Oz0ou 0zov oz loz .
= =———4+——=y—+——using (3)
OX OU OX oV oX ou yov

o _au an_ o X
oy oudy ovoy au yrov
8(82) o 0z laz 8(82} 18(82)

r=—l =<1 =l Y=o~ =Yl = |t
ox\ ox /) ox\~ ou yav ox\ou) yox\ov

_y 8£82J8u+6(azjav 1 a(azJau+a(az)av
lou\ou/ox oviou/)ox | y|loulov)ox ov\ov)ox

N AR
ou’ ovou y )yl ovou ov?

using (3)

le' using (3)
y

OBoT, %z 1 0%z
" I‘—y — 42 +—2—2
ou’ ouov  y° oy

(= 0foL|_0, 0 [Xxa _Xi(a_zj_ _%QJFLQ(Q]
oyloy) oyl ou y*ov oy L au yov y?oviov

_y 6(82j8u+6(82j8v +Q§_l a(azjaqua(g)@
louloujot ovloujoy | yiov y? oy ov\ov/joy
[ %2 0%z X )|, 2xoz X 0’1 0°1 X

=X| == xX+ x| - |[[+22 =2 XX+ — x| ——
ou? ovéu y? y v y*| ouov ov? y?

¥ 0’z 2x* 9%z 2xaz x* 0%z
P ouov Vv ov y&v2

t=

..(3)

...(4)

...(5)

....(6)

Substituting the values of r,t, p and q given by (6), (7) (3) and (4) in (1), we obtain

y— + +——+ >
ou®  ouov  y? ou? ou>  y> ouov ylov  ytov

oz 1oz oz X oz 2
XY —+t=—— |-y X———— |-Xx"=0
ou yov ou y°ov

[ , 0%z 2622 162} [Xzaz 2x% &%z 2x oz xazj




2
or 4x? 0z _ X* so that i(@jzl .r(8)
ouov ou\ov) 4
which is the canonical form of (1).
Now, integrating (8) w.r.t. 'u‘, éz/ou =(u/4)7L f (V) ....(9)

Integrating (9) w.r.t. 'v' z=(uv) /4+I v)dx+g(u)

or z=(uv)/4+y(v)+¢(u), where w(v) :I f (v)dv

or Z= X2/4+1//(X/y)+¢(xy) , Which is the required solution, ¢, being arbitrary functions.
Ex. 11. (a) Reduce X° (822/6X2)— y’ (622/8y2) = 0to canonical form and hence solve it.

(b) Reduce y°(8°z/x*)—x*(8°2/dy*) =0 to canonical form.

Sol. (a) Re-writing the given equation, X°r —y*t=0 (1)

Comparing (1) with Rr+Ss+Tt+f(x,y,2,p,q)=0, here R=x*,S=0 and T =—y? so that
S? —4RT =4x’y* >0 for x#0,y#0 and hence (1) is hyperbolic. The A-quadrate equation
RA?+SA+T =0 reduces to A°x* —y® =0 sothat A=y/x, —y/x and hence the corresponding
characteristics equations become (dy/dx)+(y/x)=0 and (dy/dx)—(y/x)=

Integrating these, xy =c, and x/y =c,
In order to reduce (1) to its canonical form, we choose U =Xy and v=x/y ...(2)

Now, doing exactly as in solved Ex. 12, we get

02 02 102 ,0%7 2% 0%z 2x az x* 0%z
r=y —+2—+— and t=Xx"—— —
ou ouov y o2 ou y? 8u8v y? 8v y* ov

Putting these values of r and t in (1), we get

yi 2622 1 0%z Xzaz 2x* 0%z +2xaz+x 0%z
o> yP auv Yy ov yt o

+
o> Touav yRov?

, 0’7 2x oz 0’z oz
r 2X

or 2u (GZZ/GUGV)—(GZ/GV) =0, using (2) w(3)




This is the required canonical form of (1).

We now proceed to find solution of (1). Multiplying both sides of (3) by v, we get

0%z 0z

2uv —v—=0or (2uvDD'-vD"')z=0 wr(4)
ouov  ov

where D=g/ou and D'=0/ou. We now reduce (4) to a linear equation with constant
coefficients by usual method (refer Art. 6.3 of chapter 6).

Let u=e* and v=e" sothat X =logu and y =logv ....(5)
Let D, =09/0X and D, =6/0Y . Then (4) reduces to
(2D,D,-D,)z =0 or D;(2D,-1)z=0

Its general solution is given by (use Art. 5.6 of chapter 5)

2=e"2¢ (Y)+¢,(X)=u"’¢ (logVv)+4¢, (logu) =u"?y, (V)+w, (u), using (5)

= 09)" v (X)) + w2 () = X (0/%)" w (%1 y) + 2 (9) = XE (x/y) + w7, (xy), using (2)
where f and v, are arbitrary functions.

(b) Try yourself. Choose U :(y2 —XZ)/Z ; v:(y2 +x2)/2

0°z 1 ( 0z azj
Ans. = V——-UuU—
duov 2(u2—v2) ou  ov

Ex. 12. Reduce the equation x(xy—l)r—(x2y2—1)s+y(xy—1)t+(x—1)p+(y—1)q=0 to

canonical form and hence solve it.

Sol. Comparing the given equation with Rr+Ss+Tt+ f (x,y,z,p,q)=0

here, R=x(xy-1), S :—(x2y2 —l), T=y(xy-1) (1)
Now, the A -quadratic equation RA*+SA+T =0 and (1) give

X(xy —1)A*=(X’y* =1) A+ y(xy-1)=0 or XA —(xy +1)A+y =0

or (xA—1)(A-y)=0 sothat 1=1/x, y.Take 4, =1/x and 4, =y

Hence characteristic equations (dy/dx)+4, =0 and (dy/dx)+1, =0




become (dy/dx)+(1/x)=0 and (dy/dx)+y=0

or dy+(1/x)dx=0 and (1/y)dy+dx=0 (2
Integrating (2), y+logx=1logc, and logy+x=1logc,

or loge’ +logx=1logc, and logy +loge* =logc,

xe’ =¢, and ye* =g,

To reduce the given equation to canonical form, we change the independent variables X,y to
new independent variables u, Vv, by taking

u=xe’ and v=ye" w.(3)

0z _ozou odrov_ 0z 07
= —+——=¢'—+ye*—, using (3) wr(4)
Ox  OudX  Ovox ou ov

_ oz _oatdu 62 o xey@+e %,using (3) ...(5)

oy auay avay ou

0 (82) 8( y 07 Xazj , 0 (GZJ 33 . 0 (azj
S — = +ye'— |=e—| — |+ye' —+ye' —| —
OX \ OX OX 6u ov ox \ ou oV OX\ oV

J o (ez\ou o (é6z\ov x 0Z x| 0 (0z\ou O (0oz)\ov
=) —[— | —+—| = |— | A ST n T
Louloujox ov\oujox ov ou\ov)ox ov\ov )ox

=e’ iey 0z —ye’ +yexg+ ye* oz ey+a—22yeX
| ou? ovéu N ouov  ov?
0%z 0°1 0%z oz
r=e” —+2ye"’ — 4y’ —+yet —
u’ y ouov y ov? y ov

o a( , 0z Xazj , 00 a(azj (0L a(azj
= xe) —+e' — |=e' —+xe’ —| — |[+&  —+e' —| —
ox 6y OX ou ov ou ox\ ou ov OX \ oV
, 0z y'a(az)au 8(82)& , Oz 6[8zj8u 6(82}
=e' —+xe’| —| — | —+=—| — | — |+e  —+¢" +—| =
ou | ou\ou)ox ov\aou)ox ov ou\ov)ox ov\ov

yoo ez, oz ] e | ez, o
=e a—u+xe ﬁe +6v8uye +e E+e auave +8V2ye

62 0%z 0%z oz oz
= xe? +1)e"Y —— 4 ye* 4o —4ef =
Gu (xy ) ouov 4 ov? ou ov




0 ( oz a( , 01 Xazj , 0 6(82) ) 8(82)
t=—|—|=—| X&' —+€&" — |=X&" —+ X&' —| — [+& —| —

oyloy) oyl au o ov au aylau) ~ oy\lov

, 0z y_a(azjau a(az]av » 6(82)% a(azjav
=xe’ —+x&'| —| = | —+=—| — | = |+&'| —| = | —=+=—| = | =
ou L ouloujou ov\aou)oy ou\ov/)oy ov\ov/ oy

M A2 2 2 2
:xe"@+xey Exe"+£ex}+e{ 0z xeuﬂex},

ou | ou® dudv dudv Y
2 2 2
t = x%e? a_z +2xe*tY ﬂ_’_ xe’ @+e2x a_z
ou ouov ou oV

Putting the above values of r,s,t,p,gq in the given equation and simplifying, we obtain the

required canonical form

2
0z =0 or 3(@}0 ....(6)
ouov ov\ ou
Integrating (6) w.r.t. 'v', 6z/ou= f (u), f being an arbitrary function. ~:7)

Integrating (7) w.r.t. 'u’, z =I f(u)du+w(v) or z=g(u)+y(v), where ¢(u) =I f(u)du,
Using (3), the required solution is z = ¢(Xey)+1//(yex), ¢ and ¥ being arbitrary function.

Ex. 13. (a) Reduce the one-dimensional wave equation 8°z/0x’ =(1/C2)><(822/8t2) : (C > 0) to
canonical form and hence find its general solution.

(b) Find the D’Alembert’s solution of the Cauchy’s problem: 6°z/6x* = (l/cz)x(ézz/étz) , (C > 0)
satisfying z(x,0)=f(x) and z(x,0)=g(x) where f(x) and g(x) are given functions

representing the initial displacement and initial velocity, respectively. Also, z, =dz/ét.

Sol. (a) Given 8”z/x* —(1/c?)x(8%z/at*)=0,c > 0 (1)
To re-write (1), put y=ct, ...(2)
Then, (1) reduces to 6°z/0x’ —(622/6y2) =0orr—-t=0 (3)

Proceed now exactly as in solved Ex. 1 to reduce (3) to its canonical form

2
02 =0 or i(@jzo ...(4)
ouov ou\ ov




where U=y+X,V=Yy—Xor U=ct+X and v=Ct—X o(5)
Integrating (4) w.r.t. 'u’, dz/ov = f (v), where f isan arbitrary function ...(6)
Integrating (6) w.r.t. 'v', z :j f(v)dv+y (u)=F(v)+y(u), where f(v) :I f (v)dv
or z(x,t)=F(ct—x)+y (ct+Xx), using (5)

or z(X,t)=¢(x—ct)+y(x+ct), we(7)
where we take ¢(x—ct)=F(ct—x) and ¢, as arbitrary functions.

(7) is the required general solution of (1).

(b) We are to solve 6°z/ox? —(]/cz)x(ﬁzz/atz)= 0 (i)
subject to the conditions z(x,0)= f () (i)
and (éz/at)_ =g(x) ... (iii)

Proceed exactly as in part (a) and get solution of (i) as
z(xt)=¢p(x—ct)+y(x+ct) wer(iV)

Differentiating (iv) partially w.r.t. 't', we get

dz/ot =—cg'(x—ct)+cy'(x+ct) (V)

where dash denotes the derivative w.r.t. the argument. Putting t =0in (iv) and (v) and using (ii)
and(iii) respectively, we get ¢(X)+y (x)= f (x) (Vi)

and —cg'(x)+cy'(x)=g(x) (Vi)
Integrating (vii), —cg(x)+cy (x)= J': g(u)du, ....(viii)

where ais an arbitrary constant. Solving (vi) and (viii) for ¢(x) and y(X), we have

1 1 ¢x

1 X 1

#(0=5 ()= a(x)du,and v (x)=2 1 ()+ [ g (u)do
that ¢(x—ct)—1f(x—ct)_i e (u)du (i)
so tha —2 2c s g wenlIX

and W(x+ct):%f(x+ct)+2—1CIX+Ctg(u)du er(X)




Using (ix) and (x) in (iv), we get the required so called D’Alembert’s solution of the Cauchy
problem (which represents the vibrations of an infinite string in the present problem)

X+ct

z(x,t):%[f (x—ct)+ f (x+ct)]+2—10[La_ctg(u)du+_[a g(u)dx}

or z(x,t):%{f(x—ct)+ f (x+ct)}+2—1C :jc:tg(u)du eee(Xi)

Particular Case l. If in the above problem, we take ¢ (X) =0so that the initial velocity of the string

is zero, then (xi) reduces to

z(x,t):{f (x—ct)+ f (x+ct)}/2
where f (X—Ct) represents a right travelling wave travelling with the speed c (along OX) and

f (x+ct) represents a left travelling wave travelling with the speed c.

Particular casell. If f(x)=sinx and g(x)=cosx inthe above problem, then the corresponding

solution (xi) reduces to

z(x,t)==1sin(x—ct)+sin(x+ct)} +— Xmcosudu
; 1 X—ct

2C
or z(x,t)=sinxcosct+(1/2c)x{sin(x+ct)—sin(x—ct)} or

z(x,t)=sinxcosct+(1/c)xcosxsinct
Particular case IlI. If f(x)=sinx and g(x)=X’, then (xi) gives
z(x,t)=sinxcosct+ x’t +(c3t3)/3, on simplification.

Category-2: Parabolic PDE: canonical form

Ex. 1. Reduce the equation 8°z/6x’ +2(622/8X6y)+622/8y2 =0 to canonical form and hence

solve it.

Sol. Re-writing the given equation, we get r+2s+t=0 (1)

Comparing (1) with Rr+Ss+Tt+f(X,y,z,p,q)=0 here R=1S=2T=1 so that
S? —4RT =0, showing that (1) is parabolic.

The 1 -quadrate equation reduces to A°+24+1=0 so that A =-1,—1 (equal roots).

The corresponding characteristic equation is (dy/dx)—1= 0 or dx—dy=0




Integrating, X—Yy =C,C being an arbitrary constant.
Choose U=X—-Yy and Vv=X+Y, we(2)

where we where we have chosen v=X+Y in such a manner that u and v are independent
functions as verified below.

o(u,v ou/ox ou
— ( )_ / /ay_a_u@_a_u@:]_.1+1.1:2¢0

S o(xy) |ov/ox ov/ey| oxay oy ox

0z 010U 0Ozov 07 012
Now p=—=——+——=—+—, using (2) .(3)
OX OUOX oOVOX ou ov

0z 0Z0u 0z ov 07 oz
=—=——+——=——+—,using (2) ...(4)
oy ouoy ovoy ou ov’

0

From (3) and (4), —= 0 0

0 8 0
ou av oy ou ov

Z 0z 07 oz
axz__(_x (au av)[ 8vj SAEHELAE

...(5)

oo az a 0z az oz 0’z 0%z
k- — | — BRSNS = +— ....(6)
au au av 8v au T au? ouov oV
82 0 07 o0z
—_—t+— by (4 d(5
( j ( oy avj( oY avj y (4):and(5)
o( oz oz o oz o) 0z oV 0’z
= —— 4= || —— 4= |=—- +— w(7)
aul ou ou) ovl au ov) ou? ouov ov
2
and s = 0z ﬁ Q =(i+ﬁj(—a— gj by (4) and (5)
Ooxoy Ox\ oy ou ov ou ov
o o ) o o o 0’z 0’z
au au ov) ov au oV ou: ov
Using (6), (7) and (8) in (1), the required canonical form is
2
8—520 or 3(@):0 ...(9)
ov ov\ ov

To find the required solution. Integrating (9) partially w.r.t.'v', we get

dz/ov=¢p(u), ¢ being an arbitrary function. ...(10)




Integrating (10) partially w.r.t 'v', z —J.¢ Jdv+y (u)=vg(u)+y (u)
or z=(X+Y)@(X—y)+w(x—y), which is the desired solution, ¢,y being arbitrary functions.

Ex. 2. Reduce the equation
y? (822/8x2)— 2xy(822/8x8y)+ X (822/8x2) = (yz/x)(az/ax)+ (xz/y)(az/ay) to canonical form

and hence solve it.

Sol. Re-writing the given equation, Y°r —2Xys + Xt —(yz/x) p —(Xz/y)q =0 ...(1)
Comparing (1) with Rr+Ss+Tt+f(x,y,z,p,q)=0, here R=y*S=-2xy,T=x" so that
S? —4RT =0, showing that (1) is parabolic.

The A-quadratic equation RA?> +SA+T =0 reduces to

y2A2 = 2xyA+x> =0 or (yA—x)" =0 sothat A=X/y,x/y.

The corresponding characteristic equation is dy/dx+x/y =0

or xdx+ydy =0 sothat x*/2+y?/2=C,

Choose U=Xx?/2+Yy?/2 and v=x?/2-y?/2, (2)

where we have chosen v =x?/2—y?/2 insuch a manner that u and Vv areindependent functions

as verified below

_9(u,v) |ou/ox ou/oy _dudv auov_ 2%y %0
a(x, y) OV/OX ov/oy| oOx oy oy OxX
Now, p:gzgﬁ_u+@@=x[g+g],using (2) ..(3)
OX Ou OX oV OX ou
62 az au az 8v 07 01 .
X[—+—j, using (2) ...(4)
"oy oy avey \au v

0’z 0 0z oz 0z oz ooz oz
=—=—X|—+—|{=—+t_—+X—| —+— |, by (3)

oX°~ OX ou ov ou ov ox\ou ov

07 oz 8(82 szau 8(82 8zj8v
=— 4+ —+X| —| —+— | —+ +

ou ov ou\ou ov/oXx oviou ov)ox

2 2 2
224_@4_)(2 8_§+2£+a_§ 'using (2) (5)
ou ov ou ouov  ov




0%z 0 0z oz 0z oz 0 (07 oz
t=—¥=—|Y|———=||l=——=+Y=—| ——— | by (4)
o oyl \au av)| au v Taylau v

oz o o(éz oz\ou o (e or\ov| o o1 ,(0*z 0%z Oz
N R RS BN
u

“au v Claulau ov)ay avlau ov)oy| au ov au? “ouav ov?
0’z ofoz) 0 (82 62} 0 (az az]au 8(62 azjav

and s= S [ PP Y] iy § S VP e (ot e el
oxoy ox\oy) ox ou ov ou\ou ov/)ox ov\ou ov)ox

or s=xy(0°z/ou* - o%z/ov?) (7)

Using (3), (4), (5), (6) and (7) in (1) and simplifying, we get

4x*y?(0°z/ev? ) =0 so that 6°z/av* =0 ...(8)
which is the required canonical form.

Integrating (8) partially w.r.t. 'v', dz/ov = ¢(u), ¢ being arbitrary function. ...(9)

Integrating (9) partially w.r.t. 'v', Z=vg@(u)+y (u), i beingarbitrary function.

or z =[(X2 — yz)/2]¢{(x2 + yz)/2}+1//{(x2 + yz)/Z} , using (2)

or z =(X2 = yz) F (X2 + y2)+G (X2 it yz), F, G being arbitrary functions

Ex. 3. (i) Reduce r+2xs+x’t =0 to canonical form

(ii) Reduce r—6s+9t+2p+39—z=0 tocanonical form

(iii) Reduce r—2s+t+ p—g =0 to canonical form and hence solve it.

Sol. Hint (i) Given ' +2xs+X’t =0 (1)

Comparing (1) with Rr+Ss+Tt+f(X,y,z,p,q)=0, here R=1,S=2x and T =x? so that
S? —4RT =0, showing that (1) is parabolic.

The A-quadratic equation RA* +SA+T =0 reduces to
A2 +21x+x*=0 or (}L+x2)=0 so that A =—X,—X
The corresponding characteristic equation is (dy/dx)— Xx=0or dy—xdx=0

Integrating, Yy — X2/2 =C,,C, being an arbitrary constant. ...(2)




Choose U=y—x?/2 and v=x

where we have chosen V=X in such a manner that uand v are independent functions.
we finally obtain &?z/6v® = 6z/6u, which is required canonical form.

3. (ii) Hint. Here A =3,u=Yy+3X.Choose V=Y. The canonical form will be

o*z/ov? =2/9—(oz/ou)+(Y3)x(oz/év)

3. (jii) Hints. Here A =1, u=Xx+Y.Choose V=Y .The canonical formis 6°z/ov* = dz/év solution
isz= ¢(X+ y)+eyc//(x+ y),¢,gy being arbitrary functions.

Ex. 4. Reduce the following to canonical form and hence solve

(i) X°r+2xys+y’t =0(ii) r —4s+4t =0 (iii) X’r +2xys+ y’t+xyp+y’q=0

(iv) 2r—4s+2t+3z=0

Sol. Hint(i) Given X’r +2xys+y’t=0 (1)
Comparing (1) with Rr+Ss+Tt+ f (x,y,2z,p,q)=0, here R=x*,S=2xy and T =y’ so that
S? —4RT =0, showing that (1) is parabolic.

The A -quadratic equation RA* +SA+T =0 reduces to

X222 +2xyA+Yy?> =0 or (xA+Yy) =0 giving 1=—y/X,—y/x

The corresponding characteristic equation is dy/dx—y/x=0

or (I/y)dy—(1/x)dx =0 so that logy—logx=c, or y/x=c¢,

Choose u=y/x and V=Y w(2)
where we have chosen V=Y insuch a manner that U and v are independent functions
we finally get as the canonical form 8°z/6v? =0

Integrating (8) partially w.r.t. 'v', dz/ov= ¢(u)

Integrating, partially w.r.t 'v', z=vg(u)+y(u)

or z=yg(y/x)+w(y/X), ¢, beingarbitrary functions.

(ii) Hint. Here 4 =2,u=Yy+2X.Choose V=Y. The canonical formis 622/8V2 =0 and solution is

2=yp(y+2x)+y(y+2x).




(iii) Hint. Here A =—y/x,u=Yy/x.Choose V=Y .The canonical formis 6°z/ov? =—(6z/ov) and

solutionis z=¢(y/x)+e”w(y/x)
(iv) Hint. Here 2=1,u=X+Y.Choose V=Y. The canonical for 6°z/ov* =—(3z/2) and solution

is z= e(im)y;ﬁ( y+X)+ ef(i“la/_z)w(y +X)

Category-3: Elliptic PDE: canonical form

Ex. 1. Reduce the following partial differential equations to canonical forms:

(i) 0%2/0x* + x* (azz/ﬁyz) =0 or r+x’t=0 (i) y*(0°z/ey*)+6°2/ox* =0

Sol. (i) Re-writing the given equations, we get I+ x’t =0 (1)
Comparing (1) with Rr+Ss+Tt+ f (x,y,z,p,q)=0, here R=1S=0,T =X’ so that
S? —4RT =—4x° <0,x =0, showing that (1) is elliptic.

The A-quadratic RA*>+SA+T =0 reduces to 1>+ x* =0 giving A = ix,—ix

The corresponding characteristic equations are given by

dy/dx+ix=0 and dy/dx—ix=0

Integrating, Y +i (XZ/Z) =c, and y—i (X2/2) =C,

Choose U= y+i<x2/2):a+iﬂ and v= y—i(XZ/Z)za—iﬂ

where o=y and B =x%/2 (2)
are now two new independent variables.

Now, poE_f20a @Ap_ 3)
OX Oa OXx 0Of oX op
0z 070 0z 0 0z
oy Oaoy oOpoy o«

o’z a(azj a[ azj oz 6[&)
r=—=—|—|==—| X= |==—=+X—| == |, by (3)
oX~ ox\ox) ox\ op) op ox\opf
:i{i(zy_mi(zj%}zﬂzig 5]
o |oalop)ox oplop)ox| o — oB

and t:a_izﬁ[@j:i(ﬂj:a_zz, by (4) ....(6)
oy° oy\oy) oa\da) oo




Using (5) and (6) in (1) the required canonical form is

oz ,01 ,0%z 0’z 0’z 1 oz X2
— +X —+X s=00r —+—=-————,as f=—
o~ off  oa o> of 2B P 2

(i) Ans. 6%z/0a® +0%2/9f8* = —(1/2a)x(6z/dcx), where o = y2/2,B=x

Ex.2. Reduce Y? (822/8X2)+ X2 (622/8y2) =0 to canonical form

Sol. Re-writing the given equation, we get y*r +x*t =0 (1)
Comparing (1) with Rr+Ss+Tt+f(x,y,z,p,q)=0, here R=y?S=0,T=x* so that
S? —4RT =-4x%y* <0 for x#0, y # 0, showing that (1) is elliptic.

The A-quadratic equation RA?> +SA+T =0 reduces to

Y222+ x> =0 or A =—x?/y? sothat 1=ix/y, —ix/y

The corresponding characteristic equations are

dy/dx+ix/y =0 and dy/dx—ix/y=0

Integrating, y* +ix* =C, and y’ —ix* =C,

Choose U=y’ +iX* =a+if and v=y° —ix* =a—if

where a=y? and =X’ r(2)

are now two new independent variables

Now, p= 2202 2B _5 % 12 .(3)
ox oaox opox OB

az 07 0 0z 0 0z
@ B _oy % by (2) (4)

"oy oady opoy ) oa

2432 o il
OX\ Ox) oX op aﬂ ox\ op
_ @Jrzx{i(ﬂja—oh—[ Jaﬂ} 2 4y 8222 (5)
op da\op )ox op\op ) ox op op
and t=a—2§=ﬁ(gj 6[ yzj 22 ZYQ(EJ
oy~ oy\oy) oy oa oa oy\ oa
—22+2y{i(ﬂ)aa —( jaﬂ} 2 L |4y 6222 ..(6)
0 oa\oa)oy oOp\da)oy ox oa




Using (5) and (6) in (1), the required canonical form is

2 2 2 2
2y2g+4x2y26—22+2x22+4x2y28——0 or 2af 822 822 a ,B—:
op op oo a oa” Of Gﬁ oo

0’z oz 1(1lax 1ax
or —+—+—-| ——+=—|=
oa® op% 2\aoa pop
Ex. 3. Reduce 0°z/x? +y2(822/8y2)= y to canonical form.
Sol. Hint. Re-writing the given equation, we get r+y’t—y =0 (1)

Comparing (1) with Rr+Ss+Tt+f(X,y,z,p,q)=0, here R=1,S=0 and T=y* so that
S? —4RT =-4y* <0 for y # 0, showing that (1) is elliptic.

The A-quadratic equation RA*+SA+T =0 reduces to A +y*=0= A =iy,—iy

The corresponding characteristic equations are given by

dy/dx+iy =0 and dy/dx—iy =0

Integrating these, logy+ix=c, and logy—ix=c,

Choose u=logy+ix=a+if and v=Ilogy—-ix=a—-ig,

where a=logy and £ =X .(2)

are now two new independent variables.

The required canonical formis

0’z 0z oz 0’z oz o
s+t—-——-y=00or —+—=—+¢€".
op° oa° Oa oa” 0Of° Oa

PREVIOUS YEARS QUESTIONS

For Answers hints, see examples of respective categories.
Q1.1. Solve the partial differential equation E(@ + d)) + 2x2y(@ + ¢j =0
oy \ OX OX

By transforming it to the canonical form. [8a UPSC CSE 2024]

of o9 _ 6¢ L o0 o9 _
ay(ax+¢j+2x y( +¢]_0 oxdy ay+2x y( +¢j_0

S=1,R=0,T =0; S —4RT =1>0; HEPERBOLIC

Now Refer Example-4 Category-1 Hyperbolic PDE




2 2
Q1. Reduce the partial differential equation E —ﬂ+ @ —@(1-{- lj + Z_ 0
oy oxoy ox dyl x) x

to canonical form. [8a UPSC CSE 2023] Refer Example-3 Category-1 Hyperbolic PDE
Q2. Reduce the following partial differential equation to a canonical form and hence solve it:

yu,, +(X+ y)uxy +Xu,, = 0. [8a UPSC CSE 2022] Refer Example-4 Category-1 Hyperbolic PDE

Q3. Reduce the following second order partial differential equation to canonical form and find

2 2 2
the general solution: 0 LZJ —2X ou +x° 0 l; =6—u+12x. [7c UPSC CSE 2019]
OX Oxoy oy. oy

Take help from Example 3(i) Category-2: parabolic PDE: canonical form

2 2 2 2 2
Q4. Reduce the equation yza—S—ny 02 +Xza—§:y—@+x—g. to canonical form and
OX oxoy oy X OX 'y oy

hence solve it. [7a UPSC CSE 2017]
Take help from Example 2 Category-2: parabolic PDE: canonical form

Q5. Reduce the second-order partial differential equation

2 2 2
X2 o —2xy . +y? e +Xa—u+ 8_u:0 into canonical form. Hence, find its general solution.
ox* OXoy y oy ox yay

[8a UPSC CSE 2015] Take help from Example 4 Category-2: parabolic PDE: canonical form

2 2

Z z
Q6. Reduce the equation % =x? % to canonical form. [6a UPSC CSE 2014]

Refer Example-6 Category-1 Hyperbolic PDE

: 0°z o’z 0z , ,
Q7. Reduce the equation y—2+(x+ y) +X— =0to its canonical form when x =Y. [5b
OX oxoy oy

UPSC CSE 2013] Refer Example-4 Category-1 Hyperbolic PDE

Q8. Rewrite the hyperbolic equation x?u,, —y?u,, =0(x >0,y >0) in canonical form.
xx vy

Refer Example-11 Category-1 Hyperbolic PDE [(6c) 2013 IFoS]
0z 01 0z , .
Q9. Reduce the equation — +2——+-— =0to its canonical form and solve. [(5a) 2011 IFoS]
OX oxoy oy

Take help from Example 1 Category-2: parabolic PDE: canonical form




Q10. Reduce the following 2nd order partial differential equation into canonical form and find its
general solution Xu,, + 2X2ny —u, =0.[6b UPSC CSE 2010]

Take help from Examples Category-1: Hyperbolic PDE: canonical form




CHAPTER: INITIAL BOUNDARY VALUE PROBLEMS(IBVPs)

Demand of exam UPSC CSE/IFoS
Example 1. Solve the following

initial boundary value problem IBVP of heat conduction given by
2
8_U — ka_l;,
ot OX
BC.: u(0,t)=0=u(l,t); t>0

IC.: u(x,0)=f(x) ; 0<x<I

0<x<lI; t>0

Example 2. Sometimes the problem is stated like below and then we must know what is the PDE
representing Heat equation and how to use given conditions of physics in terms of mathematical
problem. For such questions, there are few selected equations, we need to remember like Heat
equation, Wave equation, Laplace etc. About physics terminology, no need to worry much, simply
try to read examples in this document, after few, you’ll have idea what are those just few terms to
be take care of.

() If both the ends of a bar of length |are at temperature zero and the initial temperature is to be
prescribed function f (x)in the bar, then find temperature at subsequent time t

The initial boundary value problem IBVP of heat conduction is given by

a—u:ka—zl;; 0<x<lI; t>0 (1)
ot OX

BC.: u(0,t)=0=u(l,t); t>0 (2)
IC: u(x,0)=f(x) ; 0<x<I .(3)

(b) A uniform rod of length | whose surface is thermally insulated is initially at temperature o. At

t=0,0ne end is suddenly cooled to 0°C and subsequently maintained at this Temperature other
end remain thermally insulated Find temperature distribution.

2
The IBWPisgivenby =k Y. o<x<l; t>0 (1)
ot OX
ou(t t
BC: wu(0,t)=0, u(g ):0; t>0..(2) IC:u(x,0)=;0<x<I.(3)
X

Example 3. A thin rectangular homogeneous thermally conducting plate lies. In x—y plane
0<x=a,0<y<bh.The edge y=0is held at the temperature Tx(x—a) where T is Constant
while the remaining edges are held at 0°.the other faces are insulated and no Internal sources and

sinks are present find temperature distribution
Note: The given problem is of Dirichlet type and can be defined as

Uy, +U,, =0 (1)
BC: u(0,y)=0=u(ay)=u(xb), u(x,0)=Tx(x-a) (2)




Example 4. The points of trisection of a string are pulled aside through h on opposite sides of the
Position of equilibrium and the string is released from rest. Derive an expression for the string At
any subsequent time and show that the middle point of the middle point of the string always
Remains at rest

u_g &,

i.e. Given IBVP can be defined as —=C—,; O<x<3l
ot OX

BC: u(0t)=0=u(3l,t); IC: Z—‘:(x,o)=o, u(x,0)=f(x)

Mentor’s words: Now we’ll prepare for this chapter in a Systemtic Way.

Step-I: Solving PDE by method of separation of variables.

Step-ll: Combining the result of step-l with given boundary conditions: eigenvalues and eigen
functions of the Boundary value Problem.

As we have the general solution of given problem addressed with PDE and Boundary
conditions. By the Principle of Super position, we write this solution in infinite series
summation form.

Step-lll: Now on using the given Initial Condition in this solution, we get a Fourier Series. So at
this third step basically, we try to find out Fourier Coefficients.

Let’s explain now:
Step-l: Method of separation of variables
Example: Solve the following PDE using separation of variable method

2
M) Yog¥ yxo)=se (@) LU M N,

ot ox ox2  ox oy
. Let’s consider a PDE e = 46_u ..... (1)

ot OX

Here u is the dependent variable on two independent variables x & t
. Let u(x,t)=X(x).T(t) is solution of given PDE.

i.e., we suppose u as product to two functions X & T; which are variable separated
. u:X.T:a—u=X'T, a—u=X.T' weee(2)

X ot
{*. Xis function of x alone .. ﬁ(x)=i(x)= X '}and T'=d—T=§(T)
OX dx d ot

. . X T

Now, using (2) in (1) weget XT'=4X'T = —=—

g(2)in(1)weg <" 1T

Note that LHS & RHS both are only one variable functions, we can take them equal to
some separation constant

i.e., we have, é:lzk weee(3)
X AT

° Now, we solve separately above ODEs’

% =% = logX = Ax+loge; = X =ce™ weeer(4)




Similarly, I_T == %IogT —\t+c, = logT=4At+c, =T = De*™; D is integration constant
So, the complete solution of given PDE is, u(x,t)=ce"*De" = u(x,t):cDe(x+4t)7‘ wer(5)
+ Given condition is u(x,0)=8¢* .. (5) given 8¢ =CDe”* = CD=8 & B =-3

Required solution of given problem is, u(xt) —ge (x4

(m .. uis the dependent variable on two independent variables x & y i.e., u(x, y)
Let u(x,y) = X.Y
2
f Ny Y ey My
oX ox2 oy
.. Using these in given PDE, we have
XY Z2X Y 4 XY =0= X _2X Y
X X Y
Let’s take both LHS & RHS of above equation as some separation constant [l.
X' _2X'_ A
coooofoooo nhoom
ISolving ODE U
d?x  dX 9y
——2—-AX=0 =ce ™ ..(2
") X y=0C3 (2)
m? —2m—1=0
- 244+ 4N
2
m=1+1+A, m=1—+1+A
~ PI=0
S X=CF= cle(l+m)x +c2e(l_m)x (1)
.. The complete solution of given PDE is, u(x,y)= {cle(l+m)x - cze(l_m)x}%e‘”
ou 20u _3x
1 —=Uu+——, u(x,0)=6e (1
(1) P p (x,0) (1)
Here u(x,t) is of function of x & t.
t
}\(7
Let u(x,t)=XT and by following previous procedure u(x,t) =CD. ellH)xg"2

Also, given u(x,0) —ge X . ge3* = cDeM)¥ee

.. Required solution of given problem is u(x,t):6e‘3x‘t
Step-ll: Eigenvalues & Eigen functions: for a given PDE with given boundary conditions & initial
condition: Values of A for which given PDE has non-terminal solution is called eigenvalue &

this non-trivial solution is called reign function of given problem.
Let’s say the given problem is to solve following Initial Boundary Value Problem(IBVP)

2
a—uzk.a—u, 0<x<lI ; 1>0; tis time.
ot ox?




BC:u(0,t)=0=u(l,t)=0,t>0
1.C:u(x,0)=f(x); 0<x<I
Let’s try to solve by variable separable method

attimer=10
u=>0 u(x, 1) x=1
Rod
\>Heat flor
B ) in rogl

u(x,t)be the Temperature at a point x & time t
Let u(x,t)=X(x).T(t)
ou

LIS TRCAC TS
ot ox?
. From given PDE, XT'=kX'T = % :Xyzk.....(l) ; where A is separation constant.
So, we have X—:k and l:
X KT
= X"-AX'=0 = T-kAT=0=T=ce™
. Auxiliary equation m? -1 =0
m=+/A
| Caue cle\/xx +C, e
—cleJ_X +Co€ AR
u(x,t) ( e 4 cpe \/_X)ce“‘t )
e Now, using boundary condition
u(0,t)=0=(c; +¢,)e™ =0 -+ e™ 0 for any for value of t
. We must havec; +¢, =0 eee(2)
u(l,t)=0:>(cle\/_' 1oV )e“‘t 0 { e’ ;tO}
" (cle\/II +cze‘\m):0 weee(3)

Note: But what happens, if we categories A as +ve, —ve, zero.
Case (1) Let A is positive : Let 1 = z/°

+ We have, = n? = X"-pPX =0=> X =¢e™ +ce ™

Now, using Boundary condition; we have,
u(0,t)=0=>¢;+c, =0 =0
u(lt)=0=cee" +ce ™ =0 " cp=0




i.e, X=0 u(x,t) =XT= 0.ce”2kT =0 (TRIVIAL SOLUTION)
i.e., for positive A ; we cannot have non-trivial solution
.". given problem has no positive eigenvalue.

Case (ll) Let A is negative; Let L =—p?
X" 2 LI

.. We have, —=—p°, _—
x kT ©
X"+ pu?X =0 log T =—p2kt + logc
. C.F = ¢, cosux + ¢, sinux T =ce KT
2
" u(xt)=(c cospx+cysinpx)ce ™ KT
Now, using B.C,
2 2
u(0,t)=0=>(c,cos0+c,sin0)ce * M =0=>¢; +¢, x0=0=>¢; =0 { ce WK ¢0}
2 2
u(l,t)=0=(c cospul +c,sinul)ce ™™  =0= (0+c,sinul)ce ™ =0
= C,sinul =0 { ce“zkt}
Eithercz =0 or sinul =0
J \2
i.e., we have, ¢, =0,c, =0 uwl=nn; neZ
So, we have u(x,0)=0T(t)=0 .'.uzﬂ

I
(Trivial solution)
So, we don’t consider this possibility of taking c; =0

Therefore, for non-trivial solution; to get eigenvalue/eigen function); we take p =$

22
nnkt

..n 7 . .
Lu(xt)= A(sml—nx).e 12 ; where A is some arbitrary constant.

nw . O .7 21 . .
Here, p:l— i.e., u:—,l—,T where each value is called an eigenvalue and for each

(.
eigenvalue, u(x,t) is called an eigen function of given problem.

Case (lll): When A =0 i.e.,, n=0
. T X"

.. we have, —="—=
kT X

i.e., XY =0=X=Ax+B, When A, B are arbitrary constants.

T—=0 =T=C
KT




~u(x,t)=(Ax+B).C
Using boundary condition u(0,t)=0=(A0+B).C=0 =B.C=0
u(l,t)=0=(Al+B)C=0= AI.C+B.C=0= Al.C=0 = A=00rC=0
i.e., In this case u(x, t) = C; where C is some arbitrary constant
But if C# 0 then u(x, t) will not satisfy boundary condition
u(x,t)=0.. Trivial solution .. 1 =0is not an eigenvalue.
Observation: If we have been given an IBVP (Initial Boundary value Problem) as re kaiL; with

n’n?

ok

B.C: u(0,t)=0, u(l,t)=0 then the solution is of the form u(x,t) = [Asin%xje

*+ equation is linear (given PDE), so we can apply the principle of superposition and so
the solution of given problem is written as,

22
nnkt

u(x,t):ZAn(sinnl—ﬁxje_'2 ...... (4)
n=1
Now, if we apply the given initial condition u(x, 0) = f(x) onabove u(x, t)
So, we get,
= () o = . (nm L . I
f(x)=> A, sm(—x}e = N sm[—x} Which is a Fourier series
n=1 I n=1 I
[
Where, A, :IEJ f (x)sin?xdx .....(5) ; Fourier coefficients
0
.. (4) & (5) together give the required solution of given IBVP.

Step-lll: Fourier Series: let us assume that f(X) is a periodic function of period 27, let X e[-7x, 7]
and is integrable. Let us further assume that f (X) can be represented by a trigonometric series

f(x)=a,+ z a, CosNnX -+ Z b, sinnx....(1)then the Fourier coefficients are determined by
n=1 n=1
Hint: Integrating (1) w.r.t. X, we get a,; Multiplying by cosnxin (1) and then integrating, we get a,

Multiplying by sinnx in (1) and then integrating, we get b,

a, :if f(x)dx, a, :EJ. f(x)cosnxdx, b, :EJ' f (x)sin nxdx
2r * T T,

Exam point-1 for period 2L, i.e. xe[-L, L]

—iff(x)dx a —ljf(x)cos”—”xdx b —iff(x)sin”_”xdx
% 2L = LY . L

Exam point-2 for period L, i.e. X<[0, L]

—EJL'f(x)dx a —gjf(x)cosn—”xdx b —gj‘f(x)sinn—ﬁxdx
% Ly " Ly L "Ly L




So, how this will be used in our chapter’s demand?
Ans. Let’s say after step-11, For some given IBVP, for 0 < x <1,
n? 7%kt

we found u(x,t)=B +ZA1 cos(mxje i’ (1)

Applying Initial Condltlon IC, we get
x(1-x)=B +ZA1cos(nﬁxJ (2)

Which is half —range Fourier cosine series. Therefore
1 ¢l
B, =TIO X (1—x)dx

3 3 2
AN
{2 3 6

And =—I cos[ Tx)dx— 22|22 [1+(_1)”}

n’z
a° i
A= T niseven
U nisodd
_4n“zkt
Using in Eq.(1) we get u(x,t) __+Z (annxje :

Mentor’s advice: Although we may go for explaining different kinds of PDEs with different kind
of Boundary conditions like above but that will not be a productive process to address the
demand of exam UPSC CSE/IFoS. So, what should be the Right way to Prepare this topic!

In this document, all kinds of problems are categorically explained through good
examples. Aspirants are suggested to try those examples and if they feel like why the solution is
written in that particular format, then they may refer above discussion with given IBVP’s

scenario logically.




Parabolic Partial Differential Equations

Examplel: If both the ends of a bar of length |are at temperature zero and the initial temperature
is to be prescribed function f (x)in the bar, then find temperature at subsequent time t

Solution:- The initial boundary value problem IBVP of heat conduction is given by

2
ou_ a—l;; 0<x<l: t>0 (1)
ot OX
BC.: u(0,t)=0=u(l,t); t>0 (2)
IC: u(x,0)=f(x) ; 0<x<I .(3)
Let u=X(x)T (t)be variable separable solution of Eq.(1).Then Eq.(1) = II_T = X7 (4)

Eq.(4) holds good if ;—T I Constant. Since B.C. are periodic and homogeneous in x

Therefore periodic solution for Eq.(1) exists only when we consider

X n
L )2 .(5
. ©
= X =C, cos Ax+C, sin Ax .(6)
Using Eq.(5) in Eq.(4),we get
T' 2
_:_223 T:Ce—/lkt 7
kT 3 ( )
Hence complete solution of Eq.(1) is u=(Acos Ax+ Bsin Ax)e’lz“ .(8)

Applying B.C. Eq.(2), we get, 0=(Acos0+ Bsin O)e’ﬂz"‘

And  0=(Acos/l +Bsin/”LI)e’12kt = A=0, A=cosAl+Bsinil=0

ie., A=0, BsinAl =0

For non-trivial solution ,we assume that B =0but sinAl =0, ie., A= nl—”; nis Integer

Hence the solution is found in the form

Ees
u(x,t)zBsin[@je - (9)

Since heat conduction equation is linear, therefore its most general solution is obtained by
using The principle of superposition. Thus

7n27[2 Kt

u(x.t)ziBn sin(@je ’ .(10)

Using 1.C.,we get f(x)=>B, sin(#j (11)
n=1
Which is half range Fourier sine series. Therefore
2 ¢! . [ nzX
Bn :TJ‘O f (X)SIﬂ(Tjdx (12)

Eq.(10) along with Eq.(12) represents the required solution of given IBVP.




Example2:- Arod of length [ with insulated sides is initially at uniform temperature u,. Its ends
are Suddenly cooled at 0°C and are kept at that temperature. Find the temperature function u(x,t).
Solution:- The IBVP of heat conduction is given by

2
u_9u. 0<x<l; t>0 Q)

ot OX
BC: u(0t)=u(l,t)=0; t>0 (2)
IC: u(x0)=uy; 0<x<lI .(3)

Proceeding on the same line as in example 1, we get

n? 72kt

xt)=>"8, sin(@je‘ i (10)
Using IC, we get u, = > B, sin(@j
Which is half-range Fourier sine series.

Therefore,Bn:IEIo sn[nijdx ZL_L(—cosgj 2, —2(1-cosnz)= %(1—(—1)”)
0

I nxz nz nz
4u, :
—2 ;  nisodd
B,=| nx Or BZM:L; n=0,12,.. (12)
0 ; niseven (2n+1)”
- 2n+1) 7x _(2n+11 2kt
Using in Eq. (10) , we get u(x,t =Z Mo in I, e ! .(13)
= (2n+1)x I

Note: Above two examples are in their explained and standard answer formats as to required
to write an answer in exam. So now following examples are being given for practice and in
solutions, direct hints or only crucial steps are given.

Example 3:- Ahomogeneous rod of length | has its ends kept at zero temperature and the

Temperature is initially is u(x O)— X ; O<x<l/2 Find temperature distribution t
P y I 12<x<) P u(x0).
Solution:- The IBVP of heat conduction is given by
ou o°u
—=k—; 0o<x<I (1
ot ox? @
BC: u(0t)=0=u(lt); t>0 (2)
X 0<x<l1/2
IC: x,0)= f (x)= ’ (3
( ) () {I—x c1/2<x<I ®

o N 2kt
Proceeding on the same line as in example (1), we get u (x,t) = Z B, (@]e ’ .(10)




Applying 1C, we get f( ZB si n(nij (12)

Which is half-range Fourier sign series, Therefore, B, = IEL: f (X)Sin(nijdx

a 0

:EU”ZXS ( )dx+j sm(nﬁxjdx} =%sin(n_”j: nr? (-1)2 : nisodd
| | do | | nx 2 o
0 ; niseven
= BZn+1:L1)2 ; BZn :0 , n:0,1,2,... (12)
((2n+1)7)
© n (2n+1)° 7
Using in Eq.(10),we get u(x,t)=>" A [(Zn“)ﬂxje o .(13)
n= 0 2n +1) |

2
Example4: Determine the solution of one dimensional heat equation %u— Kg— —a<x<a,
X

B.C.: u(+at)=0,with IC, u(x,0)=x; t=0;-a<x<a.

Solution. Proceeding as in example (1), we get u(x,t) =(Acos Ax + Bsin Ax)e ™ .(8)
Applying BC.: u(+a,t)=0,we get

0= Acos ta+Bsin(4Aa)= A=0,B #0but sin(4a)=0,ie, A= (n”]

a
nrx 7n27r2K'[
Hence the solution is found in the form u(x,t) = Bsin(—je a (9)
a
Since heat conduction equation is linear, therefore its most general solution is obtained by
© 7n2722Kt
Using principle of superposition . Thus u(x,t)=> B, sin [@je o (10)
n=1 a
. - . [ nzX
Applying IC,we get x=Y "B, sm(Tj; —a<x<a (11)
n=1
nzX
Which is full range Fourier sine series, therefore B, :—J‘ xsm( N jdx
- 2a _1 n+1
B, =1jaxsm(mxjdx_L (12)
a’e a nz

*Note: for —a < x < a, Fourier coefficients are calculated like above.

o > 26\(—1)n+1 _(nzx) 5
Using in Eq.(10),we get, u(x,t)=>" - sm( " je a (13)
n=1 T




Exam point: The Boundary Conditions are Non-homogeneous and non-periodic/periodic,
therefore both solution corresponding to zero and Negative Value of separation constants:

Examples

Example5:- Solve the IBVP
ou , &
_:k_;
@ G5
BC: u(0t)=2 u(Lt)=3
IC: u(x0)=x(1-x)
b) -k 0<x
BC: u(0,t)=5=u(Lt)

BC: u(x0)=x
Solution.(a) We have

2
8—u:ka—l:; 0<x<1; t>0
ot ox )
BC: u(0t)=2  u(Lt)=3; t>0 @)
IC: u(x0)=x(1-x); <O0x<1 3)
Let u= X (x)T (t)be variables separable solution of Eq.(1). Then Eq.(1) gives
e
KT X (4)

Eqg. (4) holds good if each side is equal to same separation constant. Since B.C.are
Non-homogeneous and non-periodic therefore both solution corresponding to zero and
Negative Value of separation constants. Constitute the general solution.

Let X7=O&;—T=O.Then Onsolving , we get X =Cx+C,, T =C,

Hence u=(Ax+B,)
Applying BC,we get

2=A.0+B and 3=A(1)+B,
= B,=2and A =1
Hence U=x+2 (6)
Let X7 = —A%.Then Eq.(4) gives I-<r_T =—1%.0n solving ,we get

X =(C,cos Ax+C,sin Ax), T =Cge ™™
Hence u = (A, cos Ax+B,sin Ax)e " @

The general solution of given IBVPis given by




U=x+2+(A,cosAx+B,sin 1x)e™* ™

(8)
Applying BCin Eq. (8) , we get
2=2+(A +B,.0)e "™
3=1+2+(A,cos A +B,sin 1) )
= A, =0,A,cosA+B,sin1=0
For non-trivial solution
A =0, B,#0,sinA=0, ie, A=nz; nel
Hence solution is found in the form
_ H —n?72kt
U=x+2+B,sin(nxr)e (10)

Since Eq. (10) is linear, therefore its most general solution is obtained by using principle

Of superposition. Thus, u=x+2+> B, sin(nxz)e™" " (11)
n=1

Applying IC, we get
x(1-x)= x+2+ianin(n7zx)
=1
-2-x? :ianin(nnx)

n=1 (12)
Which is half —range Fourier sine series. Therefore

B, %j:—(2+ xz)sin(nnx)dx

Using in Eq. (11) we get

= | 6(-1)" 4((-1)" -1
u(xt)=x+2+) M—A—M sin(n;zx)e‘“z”2kt
2| o Nz (n7)
(13)
(b)Here B.C.are non-homogeneous but periodic . therefore both solution corresponding to
separation constants zero and —ve, constitute the general solution .

Let X7 =0.Then Eq. (4) gives II_T =0. On solving, we get
X =Cx+C,, T=C,
Hence u=(Ax+B,) (5)
Applying BC, we get
5=A.0+Band 5=A+B
= B,=5 and A =0
Hence u=>5 (6)




X" ] T
Let — =—A%.Then Eq.(4) gives — = —A2.
X q.(4) g T

On solving, we get
X =(c,cos Ax+CysinAx). T =Cee ™

Hence u=(A, cos Ax+B,sin Ax)e "

(7)
The general solution of IVBP s given by
u="5+(A,cosAx+B,sin Ax)e™ ™ ®)
Applying BCin Eq.(8) ,we get
5=5+(A, +B,.0)e "™
and (#+B,0) 2 9)
5=5+(A,cosA+B,sin1)e*"
= A, =0,B,sin(1)=0
For non — trivial solution ,we set B, #0,sin4A=0
ie., A=nz; nel
Hence solution is found in the form
u(xt)=5+B, sin(nfrx)e’”z”z"t .(10)

Now proceed, apply super position and then by taking initial conditions and then
Fourier like part (a).

Exam point: BCare of Neumann type, therefore both solution corresponding to zero and —ve
separation constants: Examples

.- (@) Solve the following IBVP

a—u:ka—zl;; 0<x<I; t>0 1)
ot OX
BC: u,(0,t)=0=u,(l,t) 2)
IC: u(x,O):sin(Xl—ﬁj (3)

(b) Find the temperature function when both ends of a rod of length lare kept insulated
And initial temperature is x(1—-x);t>0

. (@) Let u= X (x)T (t) be variable separable solution of given IBVP.then
X" T
AN 4
X kT 4)
Eq.(4) holds good if each side is equal to same separation constant . since BC are of

Neumann type, therefore both solution corresponding to zero and —ve separation constants
Constitute the general solution

Let X7 =0.Then Eq.(4) gives II_T =0on solving ,we get X =C,x+C,, T =C,.




Hence u=(Ax+B,) (5)
Applying BC, we get 0=A
Hence u=B (6)
Let 2" =42 Then Eq. (4) gives T
X KT
On solving ,we get X =(C, cos Ax+C,sin Ax),T =C,e™* ™
Hence u=(A, cos Ax+B,sin Ax)e " (7)
The general solution of IBVP s given by
u(xt) =B, +(A, cos Ax+B,sin Ax)e ™" (8)

Applying BC, we get

0=B,, 0=(-AAsin(Al)+B,Acosl)
= B,=0, AAsinil=0 9)
For non — trivial solution , we set A, #0, sinAl =0

. Nz
1.e., }tzT; nel.

Hence solution is found in the form

nzXx

u(xt)= Bl+Azcos(T)enTz (10)

Since Eq.(1) is linear , therefore its most general solution of Eq.(1) is obtained by using
principle of superposition .thus

© B
u(x,t)=B+> A cos(@)e X (11)
n=1
Applying IC, we get
o 7n27r2kt
sin (Xl—ﬂj =B+ A cos(@)e ’ (12)
n=1

Which is half -range Fourier cosine series. Therefore

And A= EL: sin (ﬁl—x) cos(@j dx

(n+1)72' I (n—l);r I




_ 1{(—1)””_(—1)“_ 11 }

n+1 n-1 n+l1 n-1

T
114" 14(-Y)
x| n+l n-1
2(1+(_1) ) (l ; nisodd
A== . — ; niseven
(n _1)” (nz—l)ﬂ ’
Using in Eq.(11),we get
2 & 4 2nzx) oK
u(x,t)=—+ cos e | 13
( ) V4 ;(4n2—1)7r ( I j (13)
(b) The IBVPis given by
2
au_kﬁu; 0<x<l:;t>0 (1)
ot ox’
ou _au
BC.: It t>0 2
5 (00)=0=—(Lt); t> o)
IC: u(x0)=x(I-x); O<x<I (3)
Proceeding on the same line as in above example we get
® izt
xt)zBl+ZAjcos[$je F (11)
n=1
Applying IC, we get
x(1-x)=B +Zﬁcos(nﬁxJ (12)

Which is half —range Fourier cosine series. Therefore
1 el
B, :Tjox(l —Xx)dx

3 3 2
s (T _P\E
{2 3 6

And :—I cos[ ijdx— 22|22 [1+(_1)”}

n“z
—4—|2 X niseven
A\q — n2z?
0o ; nisodd
2n7TX 74n272rzkt
Using in Eq.(11) we get u xt :—+Z 5 COS I e !

:- (@) A bar of length unity has its end at X= 0 is insulated and its end at x =1is kept at
Temperature zero .Find an expression for the temperature u (x,t) if




1 ; 0<x<lI/2
u(x,0)=
2(1-x); 1/2<x<lI
(b) Auniformrod of length | whose surface is thermally insulated is initially at temperature

a. At t=0,0ne end is suddenly cooled to 0°C and subsequently maintained at this
Temperature other end remain thermally insulated Find temperature distribution
(c)Find the temperature u(x,t)is a uniform bar of length | whose end x =0s kept at zero
temperature and other end x =1is poorly insulated and radiates energy into the medium (i)At a
rate proportional to the temperature (ii) at a constant rate and initial temperature is
f(x):0<x<I.
.- Just hints at crucial steps while solving to reduce large number of pages.

ou | o« ou
(a)the IBVP is given by __kax ; 0<x<1.(1) BC: 6_(0 t)=0,u(Lt)=0.(2)

1 ; 0<x<

IC: u(x,0)=

1
2 3)
2(1-x); 1

e Let u=X(x)T (t)be variables separable solution of Eq.(1) Then
* — VERS zﬂzk
:Z&COS[zn 1j7zxe( 2l (10)
n=1

Applying IC, we get u(x,0)=ZAzcos[2n_1)7zx (11)
n=1

Which is half range Fourier cosines .therefore , A :%I:U(x,o)coss(zn—ljﬁx dx
o 16003(211_1)” _[Ejzﬂzm
=> . e’ ? (12)
n=1 (Zn—l) 72'2
o ou | ou, .
(b) The IBVPis given by E:ky’ 0<x<lI; t>0 (1)
BC: u(0,t)=0, aug('t):o; t>0..(2) IC:u(x,0)=a;0<x<I.(3)
(2n-1) Y (2n-1) Y
2n-1 - 7| kt - | kt
u(x,t):stinMe[ ! j (9) » u(x,t) ZB sin (2n- 1) [ ' ] .(10)
e Applying IC we get « =§:Bn sin(wj; B, :Ijoawdx
=1
da & i (2n-1)zx -yt
U Eqg. (10 t t =— ! 12
sing in Eq. (10) we get u(x, néZn 0 ( I Je (12)




ou ou

Th by —=k—; <x<lI
(c) (i) The IBVPIs given by - pvl 0<x
BC: u(0,t)=0, aug(’):—ozu(l,t); t>0; IC: u(x0)="f(x): 0<x<lI
» - Bkt
. u(x,t)=Zstin(@je 1 (10)
n=1

e Applying IC,we get f( ZB sm( Xj B, :—I sm( de (11)

Eq.(10) along with Eq.(ll) represents the solution of IBVP.

(")——kgi- BC: u(0,t)=0 %:—a;owo;lc: u(x,0)=f(x)
u(x,t):—ax+istin(2n_1)|£xe(n2jﬁuz (11)

e IC, f(x):—ax+Zstin[2n2_1j%x .(12); B, ——I sm(znz_l%xjdx (13)
n=1
Eqg. (11) along with Eq.(13) represents the solution of given IBVP

Consider a heat conduction equation in infinite bar

2
a—u:ka—l;; —o<X<w;, t>0 (1)
ot OX
IC: u(x0)=f(x); —o<X<w, t=0 (2)
Let u= XT be a variable separable solution of Eq.(1) Then, ); = %T? = Separation constant
If separation constant is zero then Eq.(3) gives T =C,, X =C,x+C,
Hence u=Ax+B, t>0 (3)

Form realistic physical considerations its is reasonable to assume that f (x) —0as |x| —> 0
So we discard this solution if separation constant is +vethen Eq.(3) gives
u = (C, cosh Ax+C, sinh 2x)C,e*"
(4)
Which shows that u(x,t)grows exponentially with time i.e., u —ooas t —ooBut u(x,t)is
Bounded for bounded u (x,t)separation constant should be —ve
Now from Eq. (3) we have, u(x,t)=(AcosAx+Bsin Ax)e’“zt (5)
e Function f(x), i.e,, u(x,0)= f(x)is either continuous or piecewise continuous on (—ao,0)and

non-periodic in general *, therefore use of Fourier integral is advisable instead of Fourier series
for the principle of superposition we shall use following relation instead of

Summation u(x,t)= I:u (x,t,4)dA= j:(A(ﬂ)cos Ax+B(A)sin /’Lx)e‘“ztdﬂ (7)




[ Z%I A.B, —A(2), (ﬂ)j
Which is general solution of Eq.(1) Use initial condition in Eq.(7) to obtain
u(x,0)=f (x)=.|.:(A(/’t)cosix+ B(4)sinAx)dA (8)
1

On comparing with Fourier integral theorem f (t) = —J?Uw f (x)cosm(t —x)dx}da)
Via —o0

f (X):%j:[.[z f (y)cos)t(x—y)dy}dﬁ

We get, A(/I)zlro f (y)cosAy dy, B(/I):iro f (y)sin Ay dy..(9)
T T

Using Eq. (9) in Eq.(7) we get u(x,t):ij:Uw f (y)cos/l(x—y)e"lz“dy}d/i
T —o0

Changing order of integration, we get u(x,t)= j U e cosﬂ X— y)d/”t}dy (10)
Using the standard result Iom e cos(2bz)dz = gebz (11)

[ kAt =127]

2 Jkt

X=y
[ i jdy (12); Eq. (12) is solution of Eq. (1) if f (yy)is bounded.

()
Jz 1 } N

In Eq. (10), we obtain u(x,t):%'[:) f (y)[_e T

1 o
u(x,t)= J. f
aktz °—
.- in a one-dimensional infinite solid—oo < X <o,the surface a<x<bis initially
maintained at temperature T,and at zero temperature everywhere outside the surface find

temperatures distribution.
:- the problem is defined as
u, =ku,, ; —00 < X <00

) _| To + a<x<b
IC . U(X,O)—[OO . otherwise

(Y
The general solution of problem is u(x,t) = ! Jm f(y)e [ ‘MJ dy

Jarkt 7

L .- - B TO b—[mjdy
Using initial condition f (y)=T,;a<y<b,we get, u(x,t)= j e (A)

JArkt 72

Let — X4_ )k/t = z.then dy = \/4kt dz using in (A), we get
T

TO /\W _ \/_ _z2 2 ax 72
I o © 2 [kt dz = L/_J.“ke dz — \/;J'O‘Me dz

Akt

TEO e”( J (a4kxﬂ




Consider a heat conduction in a semi-infinite bar

8_u:k82“;x>o;t>0 1)
ot 0X,
BC : u(x,0)=0; t>0 (2)
IC : u(x,0)=f(x) (3)
Proceeding on the same line as in previous section, we get
u(xt)=(Acos Ax+Bsin 1x)e ™" (6)
Applying BC, we get,0=A
Hence u(x,t)=B sin Axe™ " (7)

Function f (x) i.e., u(x,0)= f(x) iseither continuous or piecewise on (—o,c0) and non-

periodic in general therefore use of Fourier sine integral is advisable instead of Fourier series. For
the principle of superposition we shall use following relation instead of summation.

u(x,t)zj':B(/i)sin axe # " (8)

Using IC, we get, f (x) = [ "B(2)sin AxdA 9)

On comparing with Fourier sine integral formula, we get, B(2)= EI: f(y)sindydy  (10)
T

Using Eq. (10) in Eq. (8), we get u(x,t):EJ.:J‘: f (y)sinAsinAxe ™ dy d4
T

Z%me: f(y)[cosa(x~y)-cosa(x+y)]e *dyda

Jz

Using ["e™ cos(2bz)dz =Tﬂe’b2, we get

JE I IE T
t==[f N a) _ o \Nake) | MY
u(x,t)zijwf(y) ei[*}‘%) —ei(“x/‘%] dy (11) [ A%kt=2"]
J4kt 70
Substituting XY _ 7 and 22 — 7 in first and second integrals respectively, we get

4kt 4kt




u(x,t):% J'%f(xjtz\/M) J' ( X+2 )e‘zzdz (12)
ou o

1 solve —_k—; x>0,t>0
ot OX?

BC :u(0,t)=0, IC:u(x,0)= f(x)=

: proceeding on the same line as in previous derivation, we get

1 © 2 © 2
u(x,t)=—=|| ,e*dz—|, e*dz - f(x)=1
(0= et e [ 1091
\We‘Z dz = —IJ:_'“ e dz=erf (Lj
J_ = 0 Jakt
(Heat loss due to radioactive decay). Solve the following heat equation
N _ku, +Ne™ (1) Wit
ot
BC: u(0,t)=0=u(l,t); t>0
: (2),(3)
IC : u(x,0)=f(x) O<x<I

Where Ne ™ represent the heat loss due to radioactive decay in the bar.

: Consider a new unknown function v(x,t) such that u(x,t)=v(xt)+w(x) 4)
which reduces the given non-homogeneous pde to homogeneous pde.
Substituting Eq. (4) in (1), we get v, =k (v,, +Ww,, )+ Ne™ (5)
For homogeneous pde, we get kw, = —Ne ™ (6)

The two point boundary condition on u(x,t)becomes v(x,t)+w(0)=0,v(l,t)+w(l)=0 (7)
w(1)=0 (8)

“¥ 4, x+C, where c

They are homogeneous if w(0)=0,

TG
el (™) e )]

Eqg. (6) along with Eq. (8) gives w= —%e

N —ax X —al _
Hence w:@(—e +I(a —1)+1j_ )

The boundary value problem in v(x,t)becomes

Vv, =kv,,
BC : v(0,t)=0=v(l,t) (10)
IC v(x,0)=u(x,0)-w(x)= f (x)—w(x)

The general solution of Eq.(10) by method separation of variable is




s 7kn27r2t
v(x,t)=>_B, sin(@]e ¢ (11)

n=1

Where :—_[ sm( ijdx

Hence complete solution of original problem is u(x,t)=v(x,t)+w(x)
. N _ X _al 2 . nﬂ'X 7@
e, u(xt)=—|(1-e®)—=(1-e*) |+ ) B,sin| — |e ! 12
(50)= | - ) a-e) [ T 27 4
- the end A of a rod of length |is kept at zero temperature and heat is supplied at the
end B with constant heat flux q,.rod is initially at zero temperatures. Find temperature distribution.
ou | ou

: the given IBVP can be defined as Esz ;o 0<x<lI, t>0 1)
X

ou

BC : u(0,t)=0, a—(l,t):q0 t>0 ()

" :

IC: u(x,0)=0; 0<x<I (3)

Here BC are non-homogenous. Therefore we consider a new function v(x,t)s.t.
u(x,t)=v(x,t)+w(x) (4)

Which reduces the non-homogeneous p.d.e to homogenous BC.
Substituting Eq. (4) in Egs. (1)-(3), we get v, =ku,, +kw,,

2 (1,+30(1) =g,

v(0,t) +w(0)=0; &

v(x,0)+w(x)=0

For homogenous pde, we set kw,, =0 (5)
dw(lI
The two point BC on v(x,t) become homogeneous if w(0)=0, V(\j/( ):qo (6)
X
Eq. (5) along with Eq. (6) gives w=(q,X (7
The IBVP in v(x,t)is become
Vv, =Kv,,
ov (8)
BC :v(0,t)=0=—(I,t
00)=0-2(0)
IC : v(x,0)=u(x,0)—w(x)=—0yX
-1 {mﬂjzkt
The general solution of Eq. (8) is v(Xx,t) ZB sm( J xe * ? (9)

Where Bn=—ﬁj‘|xsin 201 dx
| Jo 2




A el o3
2] 252

o (_1\" _ (2n-1 Y
Hence v(xt)= (2) 8q°|23in(2n 1)m(e Sl (10)
n=1 ((Zn—l)ﬂ') 2l
The solution of original problem is
i 8q0 .n[Zn _lﬂxje(zgel”j kt (11)
"1 ((2n-1)7z) 2

Rectangular plate surface: heat flow: Examples
. A thin rectangular plate whose surface is impervious to heat flow, has an arbitrary

function f(x,y)at t=0.its four edges x=0,x=a,y=0,y=bare kept at zero temperature.

Determine temperature distribution.
the given IBVP is defined as

2
6_u:k(a ] 0<x<a,0<y<b (1)
ox*

ot
yv=>b
x=0 xX=a
@) Y= 0 g
BC : u(0,y,t)=0=u(a,y,t) (2)
u(x,0,t)=0=u(x,b,t) (3)
IC : u(xy,0)="f(xY) (4)
Let u=XYT be variables separable solution. Then Eq. (1) gives
oy 1T
20 =2 5
X y kT ®)
Eq.(5) hold good if each side is equal to separation constant. Since BC(2) and (3) are periodic in
x and y therefore we set X ¥ _ 1’ (6)
X y

Using in (5) we get ;—T =—P% P =A%+ 4"

On solving, we get u(x,y,t)=(AcosAx+Bsin Ax)(ccos xy+ Dsin yy)e"’zky (7)




A=0,Bsinila=0
Applying BC (2), we get A=0 B0, /Izn—”; nel ®
C=0,Dsinub=0 )
Applying BC (3), we get . _ 1= el ©
Using Egs. (8) And (9) in Eq.(7), we get ’

u(x,y,t)= BDSIn(n stm(mﬂyjepz“’“h (10)
a b

2 2

Where p*nm= 7’ (n_er_Zj

a’> b

Using principle of superposition, we get

u(xy )= Eu Sin[%)(}in(%jepz“mh (12)

n=1 m=1

Applying IC , we get

ZZEHmsm( o j in (m;ryj (12)

=1 m=1
Which is Fourier sine series in two dimensions? Therefore,
=_I I (X, sm[ ﬂx)sin[mgx)dx dy (13)
a

Eq.(11) along with Eq.(13) represents the solution of Eq.(1).

Examplel2: (a) The four edges of a thin square of a thin square plate of area z”are kept at
temperature zero and the faces are perfectly insulated. The initial temperature is assumed to be

u(x,y,0)=xy(z—y) by applying the method of separation of variables to the two dimensional

heat equation u,_kV*u,determine the temperature u(X, y,t)in the plate.

(b) A rectangular plate bounded by the lines x=0,y=0,x=a,y=bhas an initial distribution
given by u=asin(zy/a).sin(zy/b).the edges are kept at zero temperature and the plane faces
are impervious to heat .find the temperature at any point.

Solution: (a) The given IBVP is defined as

ou o
N

rF 3




BC : u(0,y,t)=0=u(a,y,t) (2)
u(x,0,t)=0=u(x,b,t) (3)

IC: u(xy.0)=f(xy)=xy(z-x)(z=y) (4

Proceeding on the same line as in example 1, we get

(xy.t) ZZEnm sm( s jsin(mgyje”z“mh (11)
Applying I1C ,we geE _
xy(z—x)(r—y)= ZZEnmsm( ]sm(Tyj (12)

Which is half-Fourier sine series? Therefore.

E, :—I j xy(z—x)(z—y sm(nﬂxjsm(Ty)dxdy
:(%)L’rx(n x)sm( ”dexj‘”y(yz y)sm[m”yjdy

"+ integral is separable function

4 2 2 o 16(1-(-1)")(1-(-1)")
=_2F(l_(1 ))F(l ( 1) ): neme 2
Ey = 63 3
7 (2,,) (2t-1)
Using Eq.(11) we get
w o 64sin( _1)72)(s,in(2t_1)7zy v
U(X, y’t)=zz a b e P

Proceeding on the same line as above,we get

(030~ 5 5 i 22 i P e

n=1 m=1

Applying 1C we get

Asm(ajsm( ) Z_;;E sm(nﬁxjsin(mgyj (12)

Equating coefficients of similar terms, we get
E,, = Aand all other E_, =0

Using in Eq.(11), we get




¥=0
u(x,y,t)=Asin (%stin (%yje-pzukt

1 1
Where p®, =7* (¥+b—2j

Consider a three-dimensional diffusion/heat conduction equation

Z—Lt‘ =kV2u (1)

In cylindrical coordinates (r,6,2), Eq.(1) becomes
l1ou 0° 1lou 1 0°u o4
P il R it R
kot or" ror r°00° oz

Where u=u(r,6,z,t)

Let u(r,0,z,t)=R(r)H(6)Z(z)T (t)be variable separable solution of Eq.(2) substituting into

Eq.(2),it becomes

(2)

R”HZT+1R'HZT+%H”RZT+Z”RHT:%RHZ
r r
or ROIR LIH 2 1T _ -
R rR rH Z kT
Which —A%is a separation constant. Then Eq.(3) =
T'+kAT =0
R" 1R'" 1 H" Z"
— et —+ A =——=—4(sa 4
R rR r°H 7 () )
Thus, the equations determining Z, R and H become
Z2"-1’Z =0
R" 1R'" 1 H"
— S —+ A"+’ =0 5
R rR r*H a ©)
ie r2E+rE+(/12+,u2)r2=——"=v2(say)
R R H
Therefore H"+v’H =0 (6)
v 1o, 2 2y VP
R"+ZR“+|(2°+4°)-= |R=0 (7)
r r

Equation (4) — (6) have particular solution of the from




T — efklzt
H =ccosvé+ Dsinveg (8)
Z = Ae" +Be™

The differential equation (7) is called Bessel’s equation of order vand its general solution is
R(r)=cljv(1/;tz+y2r)+czYv(«//12+y2r) 9)

Where j,(r)and Y, (r)are Bessel function of order v of the first and second kind respectively

since Eq.
(7) is singular at r = Qtherefore physically meaningful solution must be twice continuously
Differentiable in 0<r <a.Hence Eq.(7) has only one bounded solution given by

R(r)=jv(«//12+y2) "+, > ooasr — 0 9)

Finally the general solution of Eq.(2) is given by
u(r,0,z,t)=e"" [Ae“Z + Be"”][c cosv@+ Dsinvé] j, («//12 +y2r) (10)

Heat flow in the infinite cylinder
Example13:- Determine the temperature u(r,t)in the infinite cylinder 0<r <awhen the initial

Temperature is u(r,0)= f (r),and the surface r =a is maintained at 0° temperature
Solution:- The given IBVPis defined as f;—l: =kVu
(1)

Where uis a function of r and tonly therefore
du 1lou_déu

arar ka @
Subject to BC :u(a,t)=0 (3)
IC :u(r,0)= f(r) (4)
The general solution of Eq.(2) is u(r,t) = Aexp(—kA’t) j, (Ar) (5)
Using the BC (3) we obtain j,(a)=0 (6)
Which has an infinite number of roots, aZ, (n =12,... oo).Thus use of principle of superposition
gives u(r,t):gﬁexp(—aﬁt)jo(énr) (7)

Now using the IC :u(r,0)= f (r),we get f(r):iﬁhjo(énr)

To compute A,, we multiply both sides of Eq.(8) by rJ, (§mr)and integrate with respect to
rtoa; Get (i.e., orthogonality of Bessel’s function )




0 fornzm

?}Jf (&,a) forn=m

2 a
= Anzmjo uf (u)J,(&,u)du

Hence the complete solution of the given problem is

~ Z exp( afnft)U:uf (u)Jo(gmu)du} (10)

Heat flow in the Sphere
Examplel4:- Find the temperature in a sphere of radius a, when its surface is kept at zero

temperature And its initial temperature is f (r,0)
Solution:- Here the temperature is governed by the three-dimensional heat equation in spherical

polar
Coordinates independent of ¢ therefore we have to find the solution of pde.

lou o  2au 1 0 ou
—t+—— sing— (1)
kot o’ ror r’sing oo 00
BC: u(a6t)=0 (2)
IC: u(r,6,0)=1(r,0) (3)
The general solution of Eq.(1) with the heIp of previous derivation can be written as
(r,6,t) z A (4 3,4 (A1) P, (cos@)e™" (4)

Applying the BC (2), we get Jnm(/ta):
This equation has infinitely many positive roots; denoting them by &a, we have

o0 0

0,t)=>"> A (&) 3,4, (&) P (cos 0)exp(-a&’i) (5)

n=1 n=1

Applying the IC,we get

)= 22 A(&r) 3, (&1) Py (cos0) (6)
n=l n=1
Multiplying both sides by P?(cos@)d (cos&)and integrating between-1tol,we get
fl P?(cos®) f (r,0)d(cosd)= ii A (& _1/2 Jowwz (& r)f % (cos@)d (cos6)
n=l n=1
T 1/2 2
zze m,z(ar)[mﬂj
Using the orthogonality property of Legendre polynomials we have
2n+1 1 T 12 2
S IOLGOLIES 3 W EL R P B

Where 1 =cos@.in order to evaluate A, we multiply both sides of the Eq.(7) by




r*2J,.u.(&r)and integrate w.rt. r from 0 to ato obtain

mgij r23, (& dd f(r,0)du= /xjr%wzg yﬁ% (8)

Eq.(5) along with Eq.(8) constitute the solution of given IBVP.

Examplel5:- A homogeneous solid sphere of radius R has the initial temperature distribution
f(r),0<r <R, where ris the distance measured from centre the surface temperature

Is maintained at 0° show that temperature u(r,t) in the sphere is the solution of

2 : :
u =c’ (urr +—urjwhere c’is a constant show also that the temperature in the sphere
r

For t > Qis given by u(r,t) ZB sm(%rjexp( 2,2, %C

Solution:- The temperature distrlbutlon in a solid sphere is governed by the parabolic heat

equation u, =c*Vu (1)

From the given data uis a function of r and talone Due to spherical symmetry the Eq.(1)
Can be written as u, =c? (urr +Zurj (2)

r
Setting v = ruthe given BCgives v(R,t)=ru(R,t)=0 (3)
While the 1C gives v(r,0)=ru(r,0)=rf (r) (4)
Since umust be bounded at r =0, we need v(0,t)=0 (5)
rj, r

Similarly finding u,, and substituting into Eq.(2) we obtain v, = c?v,, (6)

Using the variables separable method we may write v(r,t)=R(r)T (t)and get

R(r)= Acoskr+Bsinkr
- (7)
T (t) =exp(—c’k’t)

Thus using the principle of superposition we get

v(r,t)= i(A1 coskr + B, sinkr)exp(—c’k’t)

n=1

Also using v(0,t) =0, we have
(A coskr+B sinkr) =0 =A =0

For non-trivial solution we get B, #0,sinkr =0
ie., kR =nr, k:%?, n=12,..

RZ

n=

© 2,2
Thus, the possible solution is v r, t an sm( Jexp[—c n°z tj




Finally, applying the v(r,0)=rf (r)we obtainrf ( ZB sm[—r]

Which is a half-range Fourier sine series. Therefore B, = E.[o rf (r)sin (% r]dr
Butv(r,t)=ru(r,t). Hence the temperature in the sphere is given by
2c’t
B,sin| —r |ex 8
Z ( = j p( 7 J (8)

Examplel6:- A circular cylinder of radius a has its surface kept at a constant temperature u, if the
initial Temperature is zero throughout the cylinder prove that for t >0,

u(r,t)=u {1—Ei;3((§§a)) exp (- éfkt)}Where & 'sare the positive roots of J,(¢&a)=0

and k is the thermal conductivity which is a Constant
Solution:- It is evident that uis a function of rand talone and therefore the p.d.e.to be solved is

o°u 1ou 1éu

F+——:—— (1)
r ror kot
Subject to IC: u(r,00=0 O0<r<a (2)
BC: u(at)=T,t=>0 (3)
Let u(r,t)=u,+u,(r,t). Then
So that u, (r,0)=—u, (4)
u(at)=0 (5)

Where u, is the solution of Eq.(1) by the variables separable method we have
u (r.t)= AJ, (4r)exp(-2’kt)
Using the BC : u,(a,t)=0, we get AJO(/Ia)exp(—izkt) =0
Which gives J,(1a)=0 as A=0.Let &,&,,....,&,, be the roots of J;(Aa)=0.Then the

Possible solution bythe principle of is superposition T, (r,t) z AJq( exp( §nzkt) (6)
Using the IC : u, (r,0) =—u,into Eq. (6) we get Z Ao (&r)=—U,
n=1
Multiplying both sides by rJ, (&,r)and integrating we get

—uJ‘ rdo( dr—ZAJ 3o (&,r)rdy (&,r)dr —Aﬂ_[ rJg (&,r)if m=n;otherwise0

- Aﬂa—(cfma)

But —uj 3y (&,r)dr —J'gmafi\]o(x)_




S 8 0= 0, (01 = 2,

&
Therefore, Aﬂ_Jf(g a):—%Jl(f a); A =_ﬁ 1
2 i é:m " aégn ‘]l(é:na)
E3 ) ex *kt
Finally the complete solution is u(r t ol 1— az ° ) p(éfn )
n= 1 1 n

Heat conduction equation in 3D
Example:- If y, (x,t),, (V. Y),w;(z,t)be solution of three linear heat conduction equation in

X, Y,z respectively prove that y =y, v, i, is necessarily a solution of 3D heat conduction
Equation

Solution:- Since If v, (x,t),,(y,Y),w,(z t)are solution of linear conduction equation in
X, Y, Z, Therefore

oy, —k Py, . Oy, —k Oy, . oy, —k Oy, (1)-(3)
ot ot ot oy? ot oz
Multiplying by w, v, v, w, v, v, in Eq.(1)-(3) respectively and adding we get

oy, oy oy o’y o’y 6(//
Vol — VY, atzwlwz 8t3 =l{l//2'//3 aleﬂ//lws 8y2 Vie 2 2

Using product rule of differentiation in

0 8!// 8!// oy. ORI  5°
a(l//ll//zl//s):k|:l//2l//3 axgl"H//lV/a 8}/2 iy, 823i|_k{y+$+? (l//lWZVIS)

0 o’y 'y Oy
EI/] -~ k( 8xw + ayf poc j [ vy w, # funof x| (4)

Which shows that y is solution of 3D heat conduction equation

Elliptic Partial Differential Equation

Examplel:- Find the steady temperature distribution in a thin rectangular plate bounded by lines
x=0,x=a y=0,y=Db the edges x=0,x=a, y=_0are kept at zero temperature while the Edge
y =bkept at 100°C.
Solution:- The given problem is Dirichlet type and con be defined as
Viu=u, +u, =0 (1)
BC: u(0,y)=0=u(ay)=u(x0), u(xb)=100C (2)
The general solution of given problem is
u(x,y)=(Acos Ax+Bsin ix)(Ce™ + De ™) (3)




Applying homogeneous BC, we get
0= Acos 0+Bsin 0, 0= AcosAa+BsinAa

And 0=C+D

= A=0, Bsinia=0, D=-C

For non-zero solutionwe set B #0, sinla=0 i.e., A:n—”
a

Using in Eq. (3) we get u(x,y)= ZBCsm( " jsmh(nzyj

Using principle of superposition we get

ZE sm( j5| h(nﬂxj (4)

a
Using BC u(x,b) =100, we get

1OO=ZE“sin(na j5| h(mxj

a
Which is half-range Fourier sine series. Therefore

400
) 200 b 'n =odd
n . T
En:—_[ 100sin| —— |dx ——.(1—(—1) ): nzsinh| —
nzh a . (nzb a
asinh| — nzsin| —
a a 0 ' n=even

Using in Eq. (4) we get required solution u(x,y)=>" a 4

" (2n-1)zsinh ((Zn_l)”b]

a

Example2:- A thin rectangular homogeneous thermally conducting plate lies. In x —y plane
0<x=a,0<y<bh.The edge y=0is held at the temperature Tx(x—a) where T is
Constant while the remaining edges are held at 0°.the other faces are insulated and no
Internal sources and sinks are present find temperature distribution
Solution:- The given problem is of Dirichlet type and can be defined as
Uy +U,, =0 (1)
BC: u(0,y)=0=u(ay)=u(xb), u(x,0)=Tx(x-a) (2)
The variables separable solution of Eq.(1) is
u(x,y)=(Acos Ax+Bsin ix)(Ce™ + De ™) (3)

Applying homogeneous BC, we get
0=A 0=Bsinla, Ce”+De”™ =0




. . n : .
For non-trivial solution we set B # 0,4 = L Using these values in Eq.(3) ,we get
a

A(y-b) _ A(b-y)
u(x,y):BCsin(nZXj(e eme J
_(nzx)_.  (n
'y) = Esin| 22 |sinh| X (b -
u(x,y) sm( - Jsm (a( y);r)

-2BC

nzh/a

e
Using principle of superposition we get

)=>E, sm( jsmh( " (b—y)j

Using BC u(x,O):Tx(x—a) we get

Tx(x-a)=>E, sm( )smh( (b y))

Which is half range Fourier sine series Therefore

Where E=

saet ("1

E, :Z—Trx(x—a)sin(mxjdx= -
asmh(n”bj a i smh[ ”bJ
a a
2
A Bt AR
=l N smh(n”b) (5)
a
0 ;N =even
Using in Eq. (4) we get required solution
(2n—1)7rx

u(x,y):—i 38a2T sin a)”b]sinh((zn_l)(b_y)ﬂ] ©)

1 7T (2n—1)3 Sinh((Zn—l

Example3:- Solve :
(a) u,+u, =0

u(0,y)=u(ay)=u(x0)=0; u(x,b)= sun(3zxj
(b) u, +u, =0;
u(0,y)=0=u(a,y), u(xy)—>0asy—owu(xb)=

(c) u, + u,
u(0,y)=

0;
0=u(z,y), u(xy)—>0asy—o, u(x,0)=sinx




3ry
a

ol ()

smh( ”yj
a

Solution Ans. u(x,y)=

nzy

(b) u, —ZE sm( X)e a (4)
a
4u,
2 a . (nzx 2u, " _|—2e? ; n=odd
E”_Wjo uosm( - jd _Ee (1—(—1) )— N
T4 0 ; n=even
Using in Eq. (3) we get required solution
© AU e(2n—1)£ (Zn—l)ﬂ'x (2n-1)zy 4u. & (Zn—l)ﬂ'x _(2n-Yzy
u(x,y)=> - in 2 =—2>sinj—L— e =@
= (2n-)x a T a
(©) u(x,y) ZE sin(nx) (3)
sinx=» E,sin(nx) =  E =landallother E, =0
n=1
Using in Eg. (3) we get required solution u(x, y):e’ysinx 4)

Example4:- (a) Evaluate the steady temperature in rectangular plate of length a and with b, the

sides of

Which are kept at temperature zero the lower and is kept at temperature f (x)and the upper

Edge is kept insulated

(b) Solve Viu=0; 0<x<a, 0<y<b

u(0,y)=0, u(x,0)=, u(x,b)=0

w T sin (”yj

b
Solution:- u = ZE sin

S e e yﬂ

Using BC u(x,0)= f (x) we get, f (

oo

(6)

Nz
a

J

2 a . (nzXx
EHWI Sln(?)f(X)dX (7)
acosh
a
Eq.(6) along with Eq.(7) represents the solution of Eq.(1)
(b) Since BCin y are periodic therefore solution of given problem is
u(x,y)=(Ae”+Be™)(Ccosiy+Dsin1y) (1)




Applying BC u(x,0)=0, u(x,b)=0,we get

C=0, Dsinib=0 (2
For non-zero solutionwe get D=0, A= nz
Applying BC u(0,y)=0,weget 0=A+B,ie, B=-A (3)

Using Egs.(2) and (3) in Eq.(1),we get u= ZADSIn(nbyjsmh(nZX)

Using principle of superposition we get u=> E Sm(nbyjsmh [ n;zxj @

Using condition u, (a,y) =T sin® ( byj we get

Tsm( J ZE sm( )c h(nzx)%
Z[Bsm%—sm 37”) ZE sm( jco h(nzxj'n{

= E1=3T—b'E3: L 3ra
127 cosh( 7; j

47 cosh (”aj
b

Hence Eq.(4) gives required solution

3sm( yjsmh( XJ sin[3 yjsmh(gﬁxj
Tb b b b b
uy)=4 ra - 3ra
cosh— 3cosh[ )
b b
Example5:- Solve V2u=0; 0<x<z, 0<y<1 subjectto u(x,0)=u,cosx, u(x,1)=u,sin’x,
u,(0,y)=0=u,(7y).

Solution:- Hint. u(x,y)= Ay +U, cosh ycos+2 D sinh ny cos nx (4)

n=1

and all other E, =0.

Using BC u(x,1)=u,sin’x,we get u,sin®x= A;+U, coshlcosx+ Y D, sinh(n)cosnx
n=1

= A=—, D, =-u, cothl, D, = —UEOCOS ech 2 (5)
Using Eq. (5) in Eq. (4) we get required solution




u(x,y)= °y+u cosh y cos x —Uu, cosh1sinh y cos x —%cosecthmh(Zy)cost (6)

ExampIeB. Find the steady state temperature distribution in a rectangular bar in which heat is
generated At a constant rate g per unit volume and no temperature gradient in the z-direction

Solution:- The given BVP is defined as K (u,, +u,, )—q=0 (1)
Where K is constant thermal conductivity
BC: u,(0,y)=0=u(a,y)=0 (2)
u,(x,0)=0=u(x,b)=0 (3)
Eqg.(1) is non-homogeneous, therefore separation of variables method is not applicable. If we
Assume the solution as u(x,y)=v(x,y)+w(x) (4)
Then problem Eq.(1) and (3) reduced to the following two problems

d2W+ﬂ_0 (dw

VA &l:o w(a)=0 (5)

And v, +0,=0, v,(0,y)=0=0(a,y)=0, (x0); o(xb)=-w(x) (6)

: q
K(UXX +o, +WXX)=q = K(UXX +UW)=O, W, =_E
ox’
Solution Eq.(5) is W(X)=CX+C, T (7)
: D _ ga’ ga’
Applying conditions w(0)=0=w(a),we get ¢, =0;0=ca+c, 7 { ¢, =0,c,= i
ga’(,
Hence Eq.(7) W(x):—k 1-= (8)
a’
Solution of Eq.(6) is v(x, y)=(Acosx+Bsin ix)(Ce" + De ) (9)
Applying BC v, (0,a)=0=0v(a,y), we get 0=B, 0=Acosia+Bsinla
(10)
.. . (2n—1) T
= B=0, Acosia=0; For non- trivial solution we get A=0, A= Y

Applying BC v, (x,0)=0,we get 0=CA1-D4,ie, D=C

Hence Eq. (9) becomes v(x,y)=2AC cos((Zn 1) - )cosh((zn—l) %YJ

2
(2n—1) n_y] (11)
2 a

principle of superposition; u x y ZE cos( 2n— 1) jcosh[
a

n=1

Using BC v(x,b)=-w(x)=- qzi (12 ] we get

ga’ [1X ]:iEn s (2N -1 7X 1)7rx ogn (2N=D)7b
2k | a? - 2a




Which is half-range Fourier cosine series. Therefore

a_ 2 2 . . n+1
S — (1X_2]C05(2r21 Lo o= 28 (2
acosh(( n-1)z J a a aka (2n-1)z cosh (2n-1)zb
2a 2a 2a
- (—1)n+lCOS(2r2]_l.7Z'XjCOSh(zg_lﬂ'yj
Hence v(x,y)=E, = =3 a 2 (12)

1 ((Zn 1)7:} cosh{(zn 1)7er
2a 2a
The solution of problem is obtained by adding Egs. (8) and (12) we get

20 %) 16087 = COS(Zg_l.ﬂXj.COS(Zg_lﬂ'yj

U(X’ y) =——|1 2 3
2 k™ nd (2n-1)’ cosh ((Zn ;;)ﬂbj

2k
NOTE: (1) Above problem can also be solved by using u(x,y)=ov(x,y)+w(y).
(2) If q is variable rate i.e.,,q=q(x) then we shall use u(x,y)=uv(x,y)+w(x).only
(3) If q is variable rate i.e.,q=0(y) then we shall use u(x,y)=v(x,y)+w(y).only
2

_ . . T upa iRl
Example7:- Solve the following Poisson equation —+— =
ox- oy

Subject to BC u(0,y)=u(5,y)=x(x,0)=u(x,4)=0.
Solution:- Given equation is not homogeneous therefore separation of variables method is not
Applicable if we assume the solution as u(x, y)=uv(x,y)+w(x) (1)

Then given problem reduced to the following two problem w,, =2, w(0)=(0)=w(5) (2)
Uy +0, =0;0(0,y)=0=0(5,y) v(x,0)=-w(x)
v(x,4)=-w(X) 3)
( Uy tU, +W, =2= v, +v, =0, w, = 2)
Solution of Eq.(2) is W= X*+C,X+C,.
Applying BC w(0)=0=w(5),we get 0=c,, 0=25+5c,,ie., c,=0,c,=-5

Hence w(X)=x*—5x (4)
Solution of Eq.(3) by separation of variables method
v(x,y)=(AcosAx+Bsin Ax)(Ccosh 1y + Dsinh 1y) (5)
Applying BC v(0,y)=0=0(5,y),weget; 0=A, Bsin51=0
nz

For non-trivial solutionwe set B#0, A= ?.




=Bsin (@j(c cosh ( nnyj + Dsinh [ n;zyn
Hence S S S

principle of superposition; u x y i sm—(c coS h( 5yj+DSinh(?D (6)

n=1

Applying BC,we get v(x,0) ZC sin 2% (7)

And v(x,4)= ;[C cosh( : }LD h(%)}sin(%} (8)

Which are half-range Fourier series therefore from Eq. (7),

N7 X 25 . [ nzX
- I x,0)sin ?jdx:gjo(Sx—xz)sm(?)dx [ W(x):u(x,o)]
(200
C. = g n=odd
| 0 ; n=even

From Eq. (8),[Cn cosh4n_7[+ D.s h4n_7fj :éj; (X 4)S|n(n7ngdx

:—I 5x X )sm( c jdx

C, cosh —”+ D, sinh (4n—7[} =C
5 5

n

4 F 1- cosh4n—7[
1—cosh ™% 200 030054
D =|—— 2 |-C == néz® anz) || (10)
= L (4%) n smh( j
sinh
5
| O , h=even

Using in Eq. (6), we get

I dnr
=, 200 . (nzx n (1_C03hj X
v(x,y)= D S=sin XN cosh MY sinh =%
nfoddnﬂ- 5 5 sinh4nl
sin nzx
=3 20 L5 Jsinh M (4 y)+sinh Y (11)
n=odd n"z - 4n72' L 5 5
sin =

Complete solution of given problem is




u(x,y):u(x,y)+w(x):(x2—5x)+2030 i [sinhn{(4—y)+sinh%} (12)

Example8:- Find the steady state temperature in a semi-circular plate of radius a, insulated on
both the Faces with its curved boundary kept at constant temperature u, and its bounding diameter

is Kept at zero temperature
Solution:- The given problem (BVP)is defined as

Viu=0, ie, u"+uT'+ur9—20=0 (1)
BC: u(a@)=u, u(r,0)=0=u(r,x) (2)

Let u=R(r)H (0)be variables separable solution of Eq. (1).then Eq.(1) becomes

0=0
2pn 1 n
FRUIR L HY 5
R H
The general solution of Eq. (3)(As discussed in Interior Dirichlet Problem) is
u(r,0)=(Acos 10 +Bsin 10)(Cr* + Dr*) %)

Applying BC : u(r,8)=0,we get A=0,while BC u(r,z)=0gives Bsin iz =0.
For a non-trivial solution we get B=0, sinAz =0, ie, Azr=nz, n=12,...
Hence the possible solution is u(r,8) = Bsinnd(Cr* +Dr ) (5)

Since u(r,¢9) —finite as r — 0, therefore constant D must be zero Hence using

Principle of super position in Eq.(5) we get u(r,8)=> B r"sinng (6)
n=1

Using BC: u(a,@)=u,, in Eq.(6), we get u(a,d)=u, = i B,a"sinng
n=1

Which is a half-range Fourier sine series therefore

4u,

T — forn=odd
Ba”zg_[ U, sinnd ad =1 nr
7 90

n
0 forn=even

Using in Eq. (6) we get required solution
(2n-1)

“(r’g)zifzuﬁr_l)ﬂ

sin(2n-1)6 (7)




Example9:- A thin annulus occupies the region 0 <a<r <b,0< 0 < 27 whose faces are insulated
The temperature along the inner edge is O while along outer edge temperature is held at
u=Kk cos(@/ 2),where K is a constant determine the temperature distribution the annulus.

Solution:- The given problem (BVP)is defined as

VU =0, a<r<b, 0<0<2r (1)

Subjectto BCs: u(a,8)=0 (2)
u(b,8)= kcosg (3)

The general solution of the problem is u(r,8)= (clr” +C,r" )(c3 cosnd+c,sinnd) (4)

Using BC, (2) we get 0= (cla” +cza’”)(c3 cosnd +c,sinnd) = ca" +c,a™* =0,0rc, =—c,a”"

2n

Using in Eq. (4), we get u(r,0) :(r” _a

rn

j(Acos né + Bsinng)

n
n=1

0 2n
principle of superposition gives u(r,0)=>" (r” _a ](A1 cosnd+ B, sinnd) (5)

0

Using BC (2), we obtainu(b,8) =k cosg = Z(b” ~b™"a* )(A1 cosnd+ B, sinnd)
n=1

Which is a full-range Fourier series. Therefore,
A (b“ —b’”az“)zijh K cosgcos nédéo =Lr” cos(n +£j0+cos(n—l)0 dé=0
Y0 2 2790 2 2
= A =0 (6)

And B (b”—b‘”az”)— kr”cosgsinnedezijh sin n+1 @+sin n—l 0|de
| o 2 27 %0 2 2

Tz
l 1 2r
cos| n+=16 cos|n—= 10
K 2 2

+

27| 4l n-t
2 2 |

k 1 1 1 1 k 1 1 k 2n

oAl 1 70 ™ N W W i

27| n4Z e on-> n-- Tlon+Z n-=| "npi-=

2 2 2 2 4

8kn

Or B (b"-b"a*")=——— 7
o e ey ™)

Using Eq. (6) and (7) in Eq.(5) we get required solution of problem

u(r,H)z%i n {(r/a)”—(a/r)”}inng

7 434" -1 (b/a)" —(alb)"




2
Examplel0:- A function uof rand @ satisfying the equation ZTqula_quia_u =0

ror r?o6°
Within the region of the plane bounded by r =a,r=b,60=0,0 = % its value along the

Boundary r =ais 6’(%— ej, along the other boundaries is zero prove that

= (r/b)"* —(b/r)"* | sin(4n-2)0
Z;‘ alb)"*—(b/a )“”{ (2n-1)° }

2
Solution:- The given problem can be defined asa—u 1@+ia_u =0 1)

or’ ror r’of
Subject to the following boundary conditions

()  u(b6)=0, 0<9<%

(if) u(r,z/2)=0 a<r<b (2)
(i) u(r,0)=0, a<r<b

(v) u(a6)=0(x/2-6), 0<O<xl2

The general solution by separable of variables method is
=(c,r* +¢,r*)(c;cos 10+ ¢, sin 16) (As discussed in derivation)

Use of BC (iii) gives 0=c,(c,r* +c,r*) (3) =¢,=0
Use of BC (ii) gives 0=c,sin l%(clrl +c,r*)
For non-trivial solution we set ¢, # 0, sin% =0, ie, A=2n, n=12,....thus the

Possible solution of the given equation takes the form U (r,0) =c,sin(2n6)(c,r*" +c,r *") ..(4)
Applying the boundary condition (i), we get 0 =c, sin (2n9)(clb2” +czb’2")
Which gives ¢, =—cb*. Therefore, Eq. (4) becomes U (r,0) = c,c,sin(2ng)[ r*" —r"b*" |

Using principle of superposition we get U (r,6) Zc sin 2n49)( —r’z”b““) (5)

2n

4n
Using boundary condition (iv), we get 9[%_0jzz sin(2n9)[ b J
a

Which is a half-range Fourier sine series. Therefore,

2 P - - a4n _b4n 1 N T a4n _ b4n
—5h 9(5—0j5|n(2n9)=cn[ T J_4n3 {(_1) _1}22‘:{ 32" ]

. % [a“”—b“”j is; for nodd
1e., —C, =42n
0

: for neven




Using in Eqg. (5), we get required solution
4n-2 8n—4 8n—4
Z— (Ej sin(4n—2)9[r8n+bgn_4j

(2n- 1 a”"—b
Examplell:- A homogeneous thermally conducting cylinder occupies the region 0<r <a,
0<6 <z 0<z<h,where r,0,zare cylindrical coordinates the top z=hand the lateral surfaces
r=aare held at 0°, while the base z =0is held at 100°. Assuming that there are no sources of heat
generation within the cylinder find the steady-temperature distribution within the Cylinder
Solution:- The gives BVP is defined as Vu =0 (1)
Subjectto BCs:u=0"onz=h,; u=0"onr=a, u=100"0on z=0, 2)
The general solution of the Laplace equation in cylindrical coordinate is

r(r,0,2)= j, (r)(c,cos uf +c,sin u6)(ce” +c,e”) 3)
BC shows that temperature u (r, 0, z) Is independent of @ this is possible only when
4 =0in Eq.(3) hence u(r,z)=J,(4r)(Ae* +Be ™) (4)

Aelh

Usingthe BC: u=0o0nz=h,weget 0=J,(Ar)(Ae"" +Be ™) = B=-"—r
e

Therefore the solution is u(r,z)= JOS—;)A[eA(Z‘“) —e‘*(z‘hq =J,(Aa)sinh A(z~h) ..(5)

Now using the BC :u=0onr =a,we have 0=AJ,(4a)sinhA(z—h)=J,(1a)=0
J, (ﬂa) =0, which has infinitely many positive roots. Let &, = aA, then solution given by

)smh{i‘(z—h)] n=123,..

Using the principle of superposition we obtain u ZAW\] ( ]smh{(’; ( —h)} (6)

n=

Eq. (5) becomes u(r,z)=AJ, (

The BC: u=100°0on z=0gives 100:2Asinh(_§;hjjo(§;rj
n=1

Which is a Fourier-Bessel series multiplying both sides with rJ, (§mr/a) and integrating
@ (G e 2N A o S \ra (Gl Sl
w.rt. r From O to a, we get 100_[0 rJO( " ]dr =" A sinh (— " L rd, " J " dr

n=1
Using the orthogonality property of Bessel’s function
0 ifi=]

— 3 () ifi= |

joaxJn(aix)Jn(ajx)dr_ a2
2
Where ¢;,a; are the zeros of J (x):O, we have

100j0ar.]0('§ jdr—zﬁxsmh[ fhj?J (&)




So,

A = 202] [ rJo(ﬂjdr = h j xJo ( ox=2 ()
a’ sinh(—iij(;) a £ smh( 5 j a
Using the recurrence relation xJ _[ xJ dx in Eq. (7) we get

§n

~ 200 J, () ~ 200
A= grsinh(=&h/a)df (&) ] &sinh(-£h/a)d, (&)

Hence the required temperature distribution inside the cylinder is
Jo(&,r/a)sinh {gn (z-h)

~ 2003 2
= & sinh(=&h/a)d, (&)

Examplel2:- In a solid sphere of radius ‘a’, the surface is maintained at the temperature given by
kcosd, 0<O<rxl2
£(0)=

} ..(8)Where & are the positive zeros of J,(&).

. Prove that the steady state temperature within the solid is
0 , nl2<0<nx

2 4
u(r,0)= k{% P, (cos@)+%(£j P, (cos@)+%(£} P, (cose)—%(gj P, (cosH)+...}
Solution:- The given BVP is defined as

2
V?u =0 where szg(r£)+ii(sin9ij+ 12 8—2 (1)
or\ or) sin@oe 06 ) sin“6 o¢
Subject to u(a,8)= f (6),we get

Since uis independent of ¢ and finite at r = Qtherefore general solution of Eq. (1) is

:iAjr”Pn(cosﬁ) (2)

Using the given BC :u(a,8)= f (9)we get u(a,0)= f (9)2 Aa"P, (cos) Zb (cos0)
n=1

Where A a" =b,.This is a Fourier-Legendre series where

b :2n+1

n

fl f (0)P, (cos@)dr (use of orthogonality) (3)

In this problem limits are 0 to 1 because f iszero when —1<x <0, therefore

b, = 2n+1I: f(0)P,(cos)dr = zanrlj'olkxPn (x)dx; x=cosd
If n=0 then b, :%Ekx.Po(x)dr :%I:kx.l.dx=§: A, R (x)=1
If n=1then blzgjjkx.x.dx=§:Ala B (x)=x
If n=2then b, :%j:kxpz(x)dx: —2k=Aa’ P ):3)(;_1




7 o1 7 1. 5x%>—3x 5x? —3x
Ifn=3thenbS:EJ.kaPS(x)dx:EJ.okx S dx=0 B (x)= ;
3 1
b4=—§k=A4a4 P4(x)=§(35x4—30x2+3)

Substituting these values into Eq. (2) we obtain the required temperature distribution

u(r,0)= kB P, (cos 9)+%(£j P, (cos 49)+%(£j2 P, (cos8)

Examplel3:- A thermally conducting solid bounded by two concentric spheres of radii a and
b(a<b)is Such that internal boundary is kept at f,(&)and the outer boundary at f,(&)find

steady State temperature in the solid

Solution:-The given problem is defined as V’u =0 1)
Subject to the boundary conditions u= f,(¢)at r=a, u=f,(0)atr=a (2)
For axially symmetric case the solution of the Laplace equation (1) is
> B
0)= "+—"_|P (cos@
u(r,o) nz_;(Ajr +r”+1j ) (cos6) (3)
Using the BCs: f,(0)= i(Ana” + rnB” J P, (cosd) (4)
n=0 +
') [ Bn
f2(9)=§(A1b +r”—+J P, (cos6) (5)
Which are Fourier-Legendre’s series Applying orthogonality property
0 ; m=n
T P R _
jo ) (cos@) P, (cos@)sindde 2
2n+1
We get j: f.(0)P,(cos@)sing do = i(Aﬂa“ + aBnL JJO” P,(cos@)P, (cosd)sinodd
n=0
— m Bb 2
_(A“a +a”‘”j2m+1 (©)
- . e ( B = .
And jo f,(0)P,(cosd)sing do = nz_;(ﬁhb + oot jj‘o P,(cos@)P, (cosd)sinddé
B 2
| Ab"+—m
(A“ +b”‘”j2m+1 ()
2 ¢~ .
Let 2m+1j0 f.(0)P,(cos@)sinddo=C
2

mf: f,(0)P,(cosd)sinddd =D,
+




B+l =C, = ADb"+ bil =D,
On solving we obtain
Cmam+l _ Dmbm+l a.m-¢—1 _bm+l(Cmbm . Dmam)
A= 22 _p2me (8) B, = 2 _ g2md (©)

Hence the required steady temperature distribution is

U(r,0)= Z(Aﬂr + m+1]Pm(cosH)Where A and B_ are given by Eq. (8) and (9).

n=0

Hyperbolic Differential Equations

Example:-1 A. A solve the following wave equations
2’y o’y
(a) =c’—; 0<x<I, t>0
ot ox?

BC: u(0t)=0=u(lt)

IC: u(x0)="f(x)=ux(I-x), u(x0)=0
(b) — 82 = 2222, 0<x<x t>0

BC: u(0,t)=0=u(zt)

IC: u(x0)=x u(x0)=0

o%u 282u

(c) —: — 0<x<L t=0
OX
BC: u(0,t)=0=u(1t)
X ;0<x<=
IC: u(x,0)="f(x)= %—x ;%<x<%, u,(x,0)=0
0 ; =<xx<l1
o%u o%u )
(d) ﬁzczy; OSXSI, tZO
BC: u(0t)=0=u(lt)
ﬁ : 0<x<b
IC: 0)= b
- 0=l 1y
rb<x<l
(1-b)

Solution:- (a) We have




o’u e ou

e pvl 0<x<I, t=0 Q)
BC: u(0t)=0=u(lt)
IC: u(X,0)="f(x)=ux(I-x); u(x,0)=0 (2)
Let u= X (x)T (t)be variables separable solution of Eq. (1) then (3)
T X"
—_—=— 4
T X )

Eqg. (4) holds goods if each side is equal to same separation constant since BC in xare
periodic

Therefore X must be periodic for this we set

X" T

A _//{2 - — _/12
X T

On solving we get

u=(AcosAx+Bsin Ax)(C cos Act + Dsin Act) (5)
Applying BC (2) we get

A=0, Bsin Al =0

For non-trivial solution we get B=0, sinil=0
e, B0, /1:n|—7[ (6)

Using in Eq. (5) we get

u=sin (@j(c cos( mI[CtJ+ Dsin ( mITCtD (7

Using principle of superposition we get

“(X’t):g Sln(nl J(C os[nTCt}rDﬂsin(nﬂl—dD

Applying BC u,(x,0)=0,we get D, =0

Hence Eq. (7) becomes
ZC sm( jcos(nTCt) (8)

Applying 1.C. u(x,O):f( ),We get

=>'C,sin (mj
=i l
Which is half-range Fourier sine series therefore

:—I sm(mxjdx
C, :Tj:yx(l —x)sin(#}dx




- |
=2—ﬂ —X(I—X)iCOS@-F (|—2X)I—C08@dx
I L nz I nz | 0
=2—” (ij(l—ZX)sin@—Z(Lj cos@
0 nz | Nz | .
o 8ul?

ZZT”_Z(LT(PM")} (e "

0 : n=even

o0 2 —_ p—

Hence u(xt)=>’ Bul ssin((2n 1)“}005((2” 1)”Ctj
" ((2n-1)7) | !

2 2

8—21:028—3; 0<x<m; t=0

ot OX

BC: u(0t)=0=u(rt)

IC: u(x0)=x; u(x0)=0

Proceeding on the same line as in (a) we have

u(x,t):iCnsin(nx)cos(n,ct)

n=1

Applying IC u(x,0)=x, we get

X = icn sin(nx)

n=1
Which is half-range Fourier sine series.

(b) We have

2 v

Therefore C, zifoﬂxsin(nx)dx :%{—Ecos(nxﬁ(%j sin? (nx)}0

2 T n 2 n+l

=2 I =5

22y |-

n+1
Hence u(x,t)=22(_r?) sin(nx)cos(nct)
n=1

2
(c) We have aat—g:cza—xl:; 0<x<1

BC: u(x0)=0=u(lt)

(
IC: u(x0)=f(x); u(x0)=0
Proceeding on the same line as in (a) we have

u(x,t)= icn sin(nzx)cos(nzct)

n=1

Applying 1.C. u(x,0)= f (x)we get

(1)

(2)
(3)

(8)

1)

)
(3)

(8)




=Y C,sin(nzx)
n=1
Which is half-range Fourier sine series therefore

:—I sm Nz X dx

= ZIO xsin(nzx)dx+ ij G— xjsin (nzx)dx

1/2
1

) _ :
=2 —iCOS(nﬂ'X)-I-Sm nnx} +

(1—XJCOS nzX .

2 sin nzx
2 2|~ N
nx (n7z')

nz (n7z)2

1/4

0

Hence u(x,t)=>

n=1 (nJZ')
0? , 0°
(d) We have &—g:c a—XLZJ (1)
BC: u(0t)=0=u(lt) (2)
ﬁ : 0<x<b
IC: u(x0)= K(1-x) , u (x,0)=0 (3)

(I—b) rb<x<l

Proceeding on the same line as in (a) we have
u(xt)=>C, sin(#jcos(nﬁl—d) (8)
n=1

Where Cn=gj' 2kX m(%jd)”z ! k(l_x)sin(nﬁxjdx
I b I | Jv2 (|—b) |




2kl? sm(mlrb)

n’z°b(1-b)

sin[nﬁbj
2klI? & I . (nxzx nzct
Hence u(x,t)= sin cos| —— 9
(x1) nzb(l—b); n? (I j ( I J ®)
Example:-2. Solve the following wave equations
82 o%u

( ) - 2 a 2 ]

BC: (O,t):O:u(I,t)

IC : u(x,O):ksin(ﬁTX); u,(x,0)=0

2 2
(b) aatz _czgz . O0<x<1; t>0
BC: u(0,t)=0=u(lt
u(0.t) (Lt)
IC: u(x0)=ksin2zx; u(x,0)=0
or o ooxt
BC: u(0t)=0=u(lt)

O<x<l; t=0

(c) O<x<1; t=0

IC : u(x,O):ksin3”TX; U (x,0)=0
82 _Czaz

6t2 ox? '
BC: u(0t)=0=u(rt)

O<x<xm: t=0

(d)

sinx ; O<x<zl/2
IC: u(x0)=
0 ; 7#zl2<x<nrx
Solution:- (a) Proceeding on the same line as in example 1 A (a) we have

u(x,t)icnsin[@)cos(nnl—(:t} (8)

n=1

; u(x,0)=0

Using IC: u(x,0)=f(x)= ksm( I jweget

ksm( I j nZ;C sm(mlrxj

In this case do not use Euler’s integral formula but compare directly hence
C,=kand all other C, =0; n>2.

Hence required solution of the problem

u(x,t)= ksm( I jcos(ﬂlctj (7)




(b) Proceeding on the same line as in 1B (a) we get

u(x,t)>_C,sin(nzx)cos(nzct) (8)
Using IC u(x,0)= f (x)=Kksin(27x)we get

ksin(27zx)=>_C, sin(nzx)

= C, =k,and aII other C,=0.
Hence required solution of the problem
u(xt)=ksin(2zx)cos(2zxct) (9)

(c) Proceeding on the same line as in 1B (a) we get
ZC sm( ﬂxj (mI[Ctj (8)

Using IC : u(x,O):ksin3(|—XJ,we get

ksm( j ZC sm( j
Z(Bsmﬂl—x—sm?j ZCnsin(@j

n=1
= CF%,CE—E and all other C, =0.

Hence required solution of the problem is

u(x,t)= Z(BsmTcosﬂTd—%sm?’T—xcosﬁj (9)

(d)Proceeding on the same line as in 2B (a) we get

u(x,t)= icn sin(7x)cos(nct)

n=1

. sinx ; O<x<xl/2
Using IC u(x,0)= 0 ey ,we get
ol 2<x<rx

o0

sin x
}:ZCnsin(nx)
O n=1
= C,=1land all other C, =0; O<x<x/2

And all C, =0 when 7/2<x< .

Hence required solution of problem is




u(xt)= sinxcos(ct); 0<x<7x/2 )

0 Coml2<X<rw

Example:-3 Solve the following wave equations

2 2
(a)gt—;‘:cz%‘j; O<x<l; t>0
BC: u(0t)=0=u(lt)

IC: u(x0)=0, ut(x,O):ksins(ﬂij

2 2
(b)gt—‘j:cz%‘j; O<x<z: t=0

BC: u(0t)=0=u(zt)
IC: u(x0)=0, u/(x0)=ksinx

Solution:- (a) We have

@02:@; O<x<l; t=0 (1)
ot OX
BC: u(0t)=0=u(lt) (2)
IC: u(x0)=0, ut(x,O):ksinSKETXj (3)

Let u= X (x)T (t)be variables separable solution of Eq. (1) then Eq. (1) reduced to

S
X ot “

Eq. (4) holds good if each side is equal to same separation constant since BC are periodic

in x
L . . X" , T 2.
Therefore X must be periodic. For this we consider > A o T -1
Hence u=(AcosAx+ Bsin Ax)(C cos Act + Dsin Act) (5)

Applying BC (2) we get




A=0, Bsin Al =0

For non-trivial solution we set Bx0, sinAl=0
ie., B=0, 1=— (6)

Using in Eqg. (5) we get

o)l ol

Using principle of superposition we get

u(x,t)= HZ:: (Cn cos[nﬁl—dj+ D, sin(nﬁTCtDsin(@j (7)

Using IC u(x,0)=0,we get C, =0.hence

X t):iDnsin(ml—Cthin[@j (8)

Applying IC u,(x,0)=ksin*(zx/I)we get

(7)o 2
{507

= %:Dl”TC’_EZD [P’TCJand all other D, =0.

Hence required solution of the problem is

mct . wx 1 . 3zct . 3xx
} (9)

u(x,t)=— K 3sin 2= sin 22 — Zgjin 222 sin 222
4rc | Il 3 [ |

(b)Proceeding on the same line as in (a) we get

X t)ziDnsin(nct)sin(nx) (8)

n=1




Applying IC u,(x,0)=ksinx, we get

ksinx = i D, (nc)sinnx

n=1
= K =D,.c and all other D, =0

Hence required solution of the problem is
k . :
u(xt) :Esm(ct)sm(x)

Example:-4.Solve the wave equation (in elastic bar)

2 2
a—l;:cza—g; O<x<l; t>0
ot OX

BC: u,(0t)=0=u,(l,t)

IC: u(x0)=kt u(x0)=0

Solution:- Proceeding on the same line as in derivation of elastic bar (I1),we get

< n n
u=C,+>C, cos(lixj cos(LCt

he1
Applying IC u, (x,0)=bx, we get
bx=C, + icn cos(@j
P
Which is half-range Fourier cosine series. Therefore
C, = H:bx dx :%

C, = g_flbx cos(mj dx
| Jo I

2 |
2b . nzx | I N X
=—| xsin—.—+| — | cos——
| | nx Nz |

0

(9)

(9)

(10)




R CEACISCICR

_ A odd
C,= (I‘l;r)
0 : N=even

Hence Eq.(9) becomes

u(x,t):EJri —4bl cos(zn_l)ﬁx.cos(zn_l)mt

2 =((2n-1)x) ! !
Example:-5. The points of trisection of a string are pulled aside through h on opposite sides of
the Position of equilibrium and the string is released from rest. Derive an expression for the
string At any subsequent time and show that the middle point of the middle point of the string
always Remains at rest
Solution:-Give IBVP can be defined as

(11)

—=C"—; O0<x<3l 1)
ot OX
BC: u(0t)=0=u(3l,t)
ic: Z—l:(x,o):o, u(x,0)= f (x) 3)

Proceeding on the same line as in example (1) we have
u(x,t)= icn cos(nmtjsin(mxj (8)
) 3l 3l
Applying IC u(x,0)= f (x) we get
f(x)= icnsin[%)
=i 3l

Which is half-range Fourier series therefore

C, :g 03| f (x)sin[%)dx 9)
y(OA); 0<x<I
Where f(x)=| y(AC);l<x<2l
y(CD); 21 <x <3l
y(OA) Represents Eq. of straight line OA.
Eq. of OA: y—O:T;g(x—O) ie., y:¥
Eq. of AC : y—h—u(x—ZI)

20—




ie., y=h—2Th( 1) ?(3I—2x)
Eq.of CD: y+h= ?i;l(x—Zl)
ie., y_—h+?(x 21)
y=—(x-3l)
_¥ 0<x<I
Hence f(x)= IE(3|—2|);|SXS2|
h

I—(X—3|) (21 <x<3l

Using in Eq. (9) we get_
C, _2 Ilysin(@)dxﬂ' h(3I 2x)sin(nﬂxjdx
0 3l 3l

3| |
+I x 3I sm(mxjdx
3l
Nz X X
Xsin dx + 3I 2x)sin dx
3I2[I (3Ij -[ ) (3I)
3l . (nzX
+L|(x—3l)sm( 3 }dx}
2h| 3lx (I’VZ’X) 917 . (nﬂxj I
=—| ———CO0S + sin
31? nz 3l nz? 3l o

2h [ 3l [nﬁxj 1812 . n;sz
- sin

+—| —(3l —2x)—cos
312 ( )n7r 3l n2z? 3l

r 2 3l
+2—2 —(3l —2x)3—|cos nzx . 92| ~sin n7zx
3l nz 3l n°z 3l

2h[ 3I° nzt) 92 nz) 3l 2nr
= ———COS| — |+ 3 2Sln +—COS| ——
3l | Nz 3 n“z 3 nz 3
1812 . (2nz) 3lI? nz) 182 Nz
—ﬁsm — |+—COS| — |+ 3 2SII’]
Nz 3 Nz 3 n°z 3

312 2nrz 91> . (2nx
———CO0S - Sin
nz 3 n‘z 3




2h{27l2 nz 271° 2n71

= —_— —_— I —_—
312 | n*x? nzzz2 3

18h (nﬂ'j . (ZHﬂj 18h nz ( nﬁj
7 sin =SIn| — sin— —=sin| nx ——
n’r 3 3 n’z? 3 3
18h [ Nz

. nr
=23 sm? (—1)23|n?}

ﬂsinn—ﬂ : n=even
C,=| n?z? 3

0 ; n=odd
Using in Eqg. (8) we get

-3 ?hzcos(zn”Ctjsin(Znﬁxjsin(zn”J (10)
=nr 3 3 3
If x :%I,i.e., mid point then Eq. (10) gives

3l = 9h 2nzct ) . 2Nz
ul —,t|= coS sin(nz)sin
(3-S5 ntoon 57

(3I tj 0

2

Which shows that mid-point remains at rest always.

Example:-6. Solve the following non-homogeneous wave equation
(@) u,=u,+Ax; 0O<xl;, t>0

BC: u(0t)=u(l,t)=0; t>0
IC: u(x0)=0=u,(x0); 0<x<I
(b) u, =u, +A; O<x<I;t>0
BC: u(0t)=u(l,t)=0; t>0
IC: u(x0)=0=u,(x0); 0<x<I
() u,=u,-sinx; O0<x<z/2,t>0
BC: u(0t)=0=u(z/2t)
IC: u(x0)=0=u,(x0)=0; 0<x<7z/2
Solution:- (a) We have

U, =U, +W,, + AX; O0<x<1,t>0 (1)

BC: u(0t)=0=u(Lt); t>0 (2)

IC: u(x0)=0=u,(x0); O<x<1 (3)
Suppose u(x,t)=o(xt)+w(x)

Substituting in Esqg. (1) —(3) we get




Uyp = Uy
v(0,t)=0=0(11) W, =—AX

- v(x,0)=-w(x) w(0) = :W(l)} 4)-6)

v, (x,0)=0
Which are two BVP.
Solution of Eq. (5) is w(x)= —AX?3+ Cx+C,; w(0)=0=w(t)
. Ax(l— x2)
ie., w(x) = (6)
Using Eq. (6) Eq. (4) we get i

Ly =0V

BC :v(0,t)=0=0(1t) (")

IC:v,(x,0)=0, v(x,0)= —%(1—%)

The variables separable solution of Eq. (7) is

v(xt)= Z@:Cn cos(nzt)sin(nzx)

n=1

Applying IC v(x,0)= —%(1— xz),we get

—%(l—xz) =icn sin(nzx)
n=1
Which is half-range Fourier sine series therefore
C, =§ :—%(1— xz)sin(nﬂx)dx

:gfsx(l—xz)sin nzx dx

_A[M

= COos n7Z'X+I
nz

(1 3 )cos n7TX dx]

Nz

3

9

A {(1—3x2)cos NTX . 6xsin nzx I
+I dx

3nr nz nz

0




1
2A XCOS NzX Sin nzX

e (nz)
0
2Acos(nz)  2A(-1)
C,= N2 = N2
Hence v(x,t) =i2¢lg_? cos(nzt)sin (nzx) (9)
n=1 T

Thus solution of original problem is
v(x.t) :%(1_ X2)+2—?i(—1)” cos(nzt)sin(nzx) (10

3

/Al n

(b)Proceeding on the same line as in (a) we get
w, (X)=-A; w(0)=0=w(1) (4)
And Uy = Uy (5)

v(0,t)=0=0(11)
v(x,0)=-w(x), v, (x,0)=0

Solution of Eq. (4) is w(x)= g x(1-x) (6)

Using in Eqg. (5) we get
0, =0, (7)

BC: o(0t)=0=0(Lt)
IC: v(x0)=0, u(x,O)zg(l—x)
The variables separable solution of Eq. (7) is

u(x,t):icn cos(nzt)sin(nzx) (8)
n=1
Applying 1C v(x,0)= m,we get

—%(1— X) = icn sin(nzx)
n=1

Which is half-range Fourier sine series therefore
21 AX .
C, = T 0—7(1— x)sin (nzx)dx

1

=-A X(l_ X)cos nﬂx+J‘Mcos NzX dx}
Nz Nz

0

Il
|
>

1
—-2X . 2
>sin Nx————cos (nﬂx)}
_(nﬁ) (n7) .




oA 22 n=odd

3
(nﬂ) 0 ; n=even
4A & cos(2n—1) xt
=
Thus solution of original problem is
AX 4A & cos(2n—1) xt

Hence v(x,t)= sin((2n-1) zx) (9)

u(x,t)=7(1—x) g3 (2n—1)3 sin(2n—1) zx (10)
(c)Proceeding on the same line as in (a) we get
w, =sinx;  w(0)=0=w(x/2) (4)
Uy = Uy
And BC:v(0,t)=0=0(7/2,) (5)

IC :v(x,0)=0-w(x), v,(x0)=0
Solution of Eq. (4) is

W(x):gx—sinx (6)
T
Solution of Eq. (5) by variables separable method is
U(X1t):icn cos(2nt)sin(2nx) (7)
n=1

Applying IC v(x,0)=-w(x)= —Ex+sin X, we get
T

_B sinx= icn sin(2nx)

T n=1
Which is half-range Fourier sine series therefore

C, _ 2 ”/2(—£x+sin xjsin(an)dx
270 V4

8 7l2 . 4 72, .
:_?jo xsm(2nx)dx+;j0 sin x sin(2nx)dx

7l2

81 X sin 2nx 2 prl2

-2 Xcos2 < 2n-1)x—cos(2n+1)x)d
{ o COS2NX+ o) l +ﬂjo (cos(2n—1)x—cos(2n+1)x)dx

sin(2n —1)z sin(2n +1)%

8 V4 2 2
=——|——cC0Ss N1 |+— -
b 2n-1 2n+1

C2 o 2[(F)T (YT 2(-Y)" 2, e 4n
_E(_l) +Z{ 2n—1_2n+1]_ nz _;(_1) [4n2—1]




Hence u(x,t) _ _%g(—l)n ccr)]s(anrzltEsli)n(an)

Thus solution of original problem is

2. . 2&(-Y
’t = — X— _—
v(xt) ﬁx sin x ﬂ-nzl

(8)

" cos(2nt)sin 2nx

n(4n2 —l) ®)

PREVIOUS YEARS QUESTIONS

METHOD OF SEPARATION OF VARIABLES
Q1. Find the solution of the initial-boundary value problem
u-u,+u=00<x<l,t>0

u(0,t)=u(l,t)=0,t>0
u(x,0)=x(l-x), 0<x<I.[7c UPSC CSE 2023]
Q2. Solve the differential equation uf = u§ by variable separation method. [(6b) 2015 IFoS]

HEAT EQUATION: PARABOLIC PDE

o°u

ou
Q3. Solve the heat equation E = ? ,0<x<1,t >0 subject to the conditions
X

u(0,t)=u(l,t)=0
u(x,0)=x(I-x),0<x<I.[6a UPSC CSE 2022]

Q4. A thin annulus occupies the region 0<a<r<bh,0<8<2x. The faces are insulated. Along
the inner edge the temperature is maintained at 0°, while along the outer edge the temperature

0
isheldat T = KCOSE, where K is a constant. Determine the temperature distribution in the

annulus.

[8c UPSC CSE 2018]
Q5. Find the temperature u (X,t) in a bar of silver of length 10 cm and constant cross-section of

area 1cm?. Let density p =10.6 g/cm3, thermal conductivity K = 1.04 cal / (cm sec®C) and specific
heat o =0.56 cal/g°C. The bar is perfectly isolated laterally, with ends kept at 0°C and initial
temperature f (x)=sin(0.1zx)°C. Note that u(x,t) follows the heat equation u, =c’u,,,

where ¢? =K/(p o). [8a UPSC CSE 2016]




Q6. A uniform rod of length L whose surface is thermally insulated is initially at temperature
0 =0,. Attime t=0, one end is suddenly cooled to #=0 and subsequently maintained at this

temperature; the other end remains thermally insulated. Find the temperature distribution
o(x.t).

[UPSC CSE (6¢c) 2016]
Q7. Solve the heat equation

2
a—u:a—l:,0<x<l,t>0
ot ox
subject to the conditions u(0,t)=u(1t)=0 for t >0 and u(x,0)=sinzx, 0<x<1.

[UPSC CSE (7a) 2015]
Q8. Solve the following heat equation, using the method of separation of variables:
ou o
ot ox?’
subject to the conditions
u=0at x=0and x=1,fort>0
u=4x(1-x),at t=0 for 0<x<1. [(8a) 2013 IFoS]

O<x<1t>0

Q9. The edge r =a of acircular plate is kept at temperature f (6’) . The plate is insulated so that

there is no loss of heat from either surface. Find the temperature distribution in steady state.
[7b UPSC CSE 2012]
Q10. Obtain temperature distribution y(x,t) in a uniform bar of unit length whose one end is

kept at 10°C and the other end is insulated. Also it is given that y(x,0)=1-x, 0<x<1.

[6c UPSC CSE 2011]
Q11. Solve the following heat equationu, —u,, =0,0<x<2,t>0
u(0,t)=u(2,t)=0,t>0
u(x,0)=x(2—x), 0<x<2.
[6c UPSC CSE 2010]
ou o
Q12. Solve a = 4?

given the conditions
(i) u(0,t)=u(m1t)=0,t>0
(ii) u(x,0)=sin2x, 0< x < 7. [(6c) UPSC CSE 2010]

LAPLACE EQUATION: ELLIPTIC PDE
Q13.1Show that the solution of the two-dimensional Laplace’s equation

*9(x.y) , 2%(xy)
ox2 8y2

=0, xg(—oo,oo),yZO

Subject to the boundary condition




0(x,0)= f (x),x &(—o0,)

Along with ¢(x,y)—0 for |x|—>o0 and y|— oo can be written in the form

_y 7 f(g)ag
o(xy)= “_jw i [6a UPSC CSE 2024]

Q13.2. Let I" be a closed curve in xy-plane and let S denote the region bounded by the curve I".

Let

o*'w  o*w
+ =f(x,y)V(x,y)eS.

If fis prescribed at each point (X, y) of Sand w is prescribed on the boundary I" of S, then prove

that any solution w= W(X, y), satisfying these conditions, is unique. [5d UPSC CSE 2017]

o’u o
—+—=0 subject to the conditions
ox° oy

u(0,y)=u(l,y)=u(x0)=0and u(x,a) :sin(#j . [(8d) 2017 IFoS]

Ql14. Solve Laplace's equation

Q15. Using Method of Separation of variables, Solve Laplace Equation in three dimensions.

[(6a) 2012 IFoS]
2 2
Qie. Solve%+a—g=0, 0<x<a,0<y<h
satisfying the boundary conditions
u(0,y)=0, u(x,0)=0, u(x,b)=0
ou

X (a,y)=Tsin*ZY _ [6b UPSC CSE 2011]
OX a

WAVE EQUATION: HYPERBOLIC PDE
o°u o

Q17. Solve the partial differential equation a’ — == O<x<L,t>0
ox® ot
subject to the conditionsu(0,t) =0, u(L,t)=0,t>0
u(x,0) =x, (ﬁ_uj =1,0<x<L (20 marks)
ot )i
2 2
ou_ou O<x<L, t>0

Q18. Solve the wave equation a° — = —,
q o o

subject to the conditions

u(0,t)=0, u(L,t)=0

ou

u(x,O):%x(L—x),E =0. [6a UPSC CSE 2021]

t=0




Q19. One end of a tightly stretched flexible thin string of length / is fixed at the origin and the
I

other at x=1. Itis plucked at x = 3 so that it assumes initially the shape of a triangle of height

hin the x—Y plane. Find the displacement y at any distance x and at any time t after the string

horizontal tension
: =c”. [8a UPSC CSE 2020]
mass per unit length

is released from rest. Take,

O’y _ ,0%
Q20. Given the one-dimensional wave equation ? =C F; t>0,
X

T

where ¢®> =—, T is the constant tension in the string and m is the mass per unit length of the
m

string.

(i) Find the appropriate solution of the above wave equation.

(ii) Find also the solution under the conditions y(0,t)=0, y(I,t)=0 for all t and

[@} :O,y(x,O)zasinﬁTx, 0<x<l,a>0.[8a UPSCCSE 2017]
t=0

ot

Q21. A tightly stretched string with fixed end points x =0 and x =1 isinitially in a position given

. X
by y=1Y, sin® (”Tj It is released from rest from this position, find the displacement y(x,t).

[(6d) 2017 IFoS]

o%u u
Q22. Solve the wave equation ? =c? ? for a string of length / fixed at both ends. The string
X

is given initially a triangular deflection

Ex, if0<x<l
2

u(x,0)=
2 o |
=(1-x), if -<x«<I
I 2
with initial velocity u, (x,0)=0. [(8c) 2015 IFoS]
. . _— . . ou  ou _
Q23. Find the deflection of a vibrating string (length = 7, ends fixed, e = pv) ) corresponding
X

to zero initial velocity and initial deflection f (x)=k(sinx—sin2x) . [7a UPSC CSE 2014]

0 o4

24. Solve — =—, 0<x <1t >0, given that
Q o ox 8

(i) u(x,0)=0,0<x<1

(ii) Z—l:(x,o):xz,ogxsl

(iii) u(0,t)=u(1,t)=0, for all t. [8a UPSC CSE 2014]




Q25. A tightly stretched string with fixed end points x=0 and x=I is initially at rest in
equilibrium position. If it is set vibrating by giving end point a velocity A.x(I-x), find the
displacement of the string at any distance x from one end at any time t. [6¢c UPSC CSE 2013]

Q26. A string of length /is fixed at its ends. The string from the mid-point is pulled up to a height
k and then released from rest. Find the deflection y(x,t) of the vibrating string. [6b UPSC CSE

2012]

Q27. A uniform string of length / is held fixed between the points x=0 and x=1. The two points
of trisection are pulled aside through a distance & on opposite sides of the equilibrium position
and is released from rest at time t =0. Find the displacement of the string at any latter time t >0
. What is the displacement of the string at the midpoint? [(6a) UPSC CSE 2011]

Note: Analysis and answers are detailed through examples of each category. Refer examples
for answers of PYQs
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	Example12: (a) The four edges of a thin square of a thin square plate of area are kept at temperature zero and the faces are perfectly insulated. The initial temperature is assumed to be  by applying the method of separation of variables to the two di...
	Solution: (a) The given IBVP is defined as

