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VECTOR ANALYSIS & CALCULUS

Vector Analysis: 5% Os

Dot Product, Cross Product, Properties of vectors and their modulus
Example PYQs-

Let &,b,C are some given vectors. Show that they possibly make a triangle. Also Find medians of
this triangle.

Vector Calculus = 95% Qs

() Differential (1) Integral

e Gradient e Line Integral, Surface Integral, Volume

o Directional derivative Integral

o Greatest rate of increase e Three Important Theorems

e Angle between two surfaces Green’s, Stokes, Gauss Divergence Theorem.
o Divergence, Solenoid Field, Change in per

unit volume per unit time (Rate)
e Curl, Rotation, Work done etc. Exactness.

Chapter 1: Vector Analysis

Vectors: (Vector Space): V(IF)
v

§ I I v

Anon-empty A field of scalar Vector Addition Scalar Multiplication
set of vector IF

e.g. A special kind of vector spaces : R" (R) [Euclidean Space]

R" = (a,8,...4,); a,a,...
are real numbers
Field is Real Numbers.

Vector Addition: (a,,a,,...a, )+(b;,..b,)
=(a,+b,a,+h,,..a,+h,)

Scalar Multiplication

a(a,a,..a,)=(aa,0a,..aa,)

More Specifically, Here we will deal with R*(R)

R3= {(%,az,%):ai,az,ag arereal number}
(3- Dimensional Euclidean Space)
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Representation
d=(a,a,a)=ai +a,] +ak

Xi

Operation on Vectors:
(1) Scalar product:

a-b for two vectors

For three vectors-
(Scalar triple product) &, b,c

é-(Bxé) = Volume of parallelepiped having edges 4, b,c

a a4 &
= bl bz b3
G G G
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bl b2 b3
b-(cxd)=lc, ¢, ¢

a a &
[a 66]:[66 a]:[c aB]

(2) Vector Product

axb =[][p|sinn,0<6 < 7

A is unit vector normal to the plane containing & and b .

jsb ]

(@]

o>

Vector Triple Product
Formula

Reciprocal Seat of Vectors

a,b,C are set to form reciprocal set of vector if

Note: é',ﬁ',é', a,b,C are said to be reciprocal

ifa=— o 9%
é~(b><6) [ab*]

5 cxa _ Cxa _Cxé

_5-(6x b [ ab
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Projection of @ on b
is given by a-b

where b = 2
g

A 4

I
Length p

Example: Find projection of

A=1-2]+3K onthevector i +2]+2k =B

o T2k .

A-B=(i —2j+3k)(5 A ) Lot WE_
‘. +2j+2k V1P+4+4 3

Q1. Without making use of cross product find a vector perpendicular to the plane of

A=2i-6]-3k

1

B-4i+3j—K
Solution.
Let € =ci +C,]+CK is required unit vector
. C-A=0
= (cf+c,j+ck)-(21-6]-3k) =0
2c, —6¢, -3¢, =0 ()
¢-B=0=4c +3c,-¢c,=0 ....(iil)
On solving (i) and (ii) we get
1 1
01:§C3'C2 :_gcs

Personalized Mentorship +91-9971030052



Mindset Makers for UPSC

6:—c3f—§cgi+3cgk
1 ~ n 1 o 1 2 n
C:E:E%l— C,J +Ck :E —§j+k
el L. 1., o [,
= = —+—-+1
\/4c3+gc3+03 19
Formula
(1) Area of parallelogram with touching side as AB
=|AxB

(2) Area of triangle with two adjacent sides A , B

:ﬂAxﬂ
2

Q. Prove that the necessary and sufficient condition for A,B,C tobe coplaner is A -(Bx C) =0

Solution.
The necessary part -

Letif A,B,C are coplaner then A-(Bxé):O must hold.

As we know that BxC represents a vector perpendicular to plane containing B and C
. A mustbe L to BxC

" A-(Bxé)zo

Sufficient Part -
Let if A.(Bx C) =0 then volume of parallelepiped with edges A, B,C must be zero.

= A, B,C must lie in same plane.

Q. Find the equation of the plane containing three vectors P, (2,-11),P,(3,2,-1),P,(-13,2)
Solution. We know that

Equation of a plane is given as
Ax+by+cz+d =0

*Two planes together represent straight line in 3D (if they intersect) represented by
ax+ay+az+a, =0

bx+b,y+b,z+b, =0

or in symmetrical form, Line passing through (X,, ;.2 ),(%,, ¥,.Z,) is given by
X=X — Y-V _ -1,

=X Y, Y% 4,4
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R(2-11)=2i-j+k=A
P,(32-1)=3+2j-k=B
(—1,3,2):—|+31+2I2

N

wU

V/(xy.2)

w3

I
>1»—-U
Ol

Il
osl}

(r~A)(r~B)(r~C) aecopaner
(AN >)=o
= ((x=2)i +(y+1) j+(z-2)k).

[(x=3)i+(y- 2)]+(Z+1)I2><( +1)i+(y-3) j+(z-2)k] =0

=11x+5y+13z2 =30

Q. Find the constant a so that the following vectors are co-planer
2i — j+k ,1+2]—2k, 3i +aj +5k

A B C
Solution.
A-(BxC)=0 (abc)

2 -1 1
=1 2 -3=0

3 a b5

= 2(10+30)+1(5+9)+1(a—6)=0
=20+6a+14+a-6=0
=34-6+7a=0

=28+7a=0



Mindset Makers for UPSC

CONCEPTUAL CLARITY FOR VECTOR CALCULUS

Vector Differentiation

Type (1) Problems

Simple Differentiation

e.g. Velocity, Acceleration, Momentum, Work done, K.E.
if position vector

r =xi+Yyj+zK

Parametric Form
e.g. if F=sinti +e'j+e® cost+k then find velocity at t =0 and acceleration at t =0
Note- Some added information from Vector Analysis will be needed here too.

Type Il Problem

(1) Gradient

e Finding gradient at some point

e Finding normal vector to cover surface

¢ Angle of intersection between two level surfaces
e Gradient and greatest rate of increase/decrease
(2) Divergence

(3) Curl

Similarly we can do for

Oxoy

PYQ [2012]
If A=xyzi —2xz°] + xz?k

B = 2zi + yj — X%k , then find the value of

Oxoy
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Solution. Hint:

2

C_(AxB)=2| L Ax8
OXoy ox\ oy

Method-(1) First find Ax B then derivative

Method-(2) Applying formula
2
Z_(Ax8)=2[ 2 (AxB)
OXoy ox\ oy
-9 Ax 2 xB+Bx 2 A
OX oy oy

=Ax£[£I§j+[£BJ£A+Bx££Aj£+Q(EAJ-I§
oy \ oy oy )oy ay Jox ox\oy
Q. For two vectors &, b given by
[2017]

=53+ —t°k
=sinti —cost |
-\ d

Determine %(é-b), E(AX I§)

a
b

Solution.
1(5.5)25@4_5.(1_9
dt dt dt
:(5t2f+t]—t3|2)-(costf+sint J) +(10tf+ j—3tZ|2)-(sintf—costf)
=5t?cost+tsint—t3-0 +10tsint —cost—3t%-0
=5t? cost +11tsint —cost
9 (axb)=ax L 52
dt dt dt

i k|| i %
=| 5t? t  —t3+|10t 1 -3t
cost sint O] |sint —cost O

Q. The position vector of a moving particle at time t is
[2017]

V =sintl +cos2t i+(t2+2t)I2
Find the component of acceleration & in the direction parallel to the velocity vector V and
perpendicular to the plane of V and V attime t=0.
Solution. Hint:
: V:sintf+c052tj+(t3+2t)k
_, dl_; o - 2~ n o~ A ~
V=——=costi—2sin2t J+(2t+2)k =V, +V, ] + VK
Dynamics
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_dv d¥W
A=—=—7
dt dt

=—sinti—ycos2t j+2k

Vector Analysis required here

If c=cji+c,j+ck

Here c,,C,,C, are component of

Let's say if it is given € is parallel to b =byi +h, ] +bk
G§_6_G
b, b, b

Let's say if € is perpendicular to d =d,i +d, ] +d.k

cd, +c,d, +c,d; =0

Using those condition (1) and (2)
Can we try to figure out

C1 =

C, =

C; =

We need
a_dHh_ %
Vl V2 V3

. 77xV:af+,Bj+7/I2
oo +a,a, +a,a, =0
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Vector Calculus

Scalar Field: If we can assign some particular scalar value to each point of a region D in some space
then this scalar valued function is called scalar function of the position and we say f (x, Y, z) is a

scalar field defined on region D.
e.g.
Temperature T(x, y,z):x2y+ yz*® on earth's surface is a scalar field because we can assign a

particular scalar value to each point on surface.
T(1,2,3)=1"-2+2-3°=56

Vector Field: Suppose to each point (x, y,z) in the region D in space there corresponds a vector
F(X, y,z) then f is known as vector function of the position (x, y,z) and we say that a vector

field f has been defined on D.
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Level Surfaces: Let's consider a function of 3 variables f (x, Y, z) whose inputs are points in R®
and whose outputs are humbers.

e.g.

f(xy.2)=x*+y*+2°

or f(xy,z)=x*+y°

or f(x,y,2)= z—(x2 + y2)

A function f (x, Y, z) is said to be of level K to be the set of all points in R® which are solution of
f(xy.z)=K.

e.g.

-7 =¢<X2, yz)

a<t<b cylinder.

. z:¢(x2,y2)
a<z<b
cylinder
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|
K_/
(i) Ellipsoid: —+§+z_2:1
2 2
(ii) Elliptic paraboloids: E %er_z
2 2
(iii) Hyperbolic paraboloids: é - VKZ
2 2 2
(iv) Hyperboloid in one-shed: ¥+y_2_c_2 =1
2 2 2
(v) Hyperboloid in two-shed: %—%-# =1

Personalized Mentorship +91-9971030052

Xy 422 =2




Mindset Makers for UPSC

Directional Derivative
of

o

f . n
a and a are directional derivatives of f along J and k .
oy 0z

is the directional derivatives of f along the direction of unit normal vector I

. of . N I . . . N .
ie., o is the directional derivative of the function f in an arbitrary direction n (along unit
n

normal vector fi)

Gradient and Level Surfaces

. . . . of A - .
For a scalar function f the gradient vector is defined as a—-n where fi is the unit normal
n

_ — . ) of .
vector to the level surface f at some point in the direction of increasing f and n is called the
n

normal derivative at that point.

Grad f:

f <[ 1 L)Lk S o[
oXx "oy oz oXx oy oz

A

>

n
n

Note:

of

df|=|—|IA

|grad f| ‘an A
=L 2

on on

For a function f , the gradient vector Vf has the properties:
e It points in the direction in which f increases most rapidly (fastest).
e It is perpendicular to level curves or surface of f .

Divergence

"Loss" per unit volume, per unit time
Vector valued function
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= ?-f:@+%+% (1)
ox oy oz
Let's consider a vector valued function

f=fl+f,]+fk=f(xy,2) +f(xy,2)j+f(xy,z)k which is defined and differentiable

at each point (x, Y, z) in a region of space. Then div( f) is defined by equation (1).
Although f is a vector valued function but div ( f) is a scalar.

e.g.
Find the Divergence of F =(e"*"+cosy)i+(z*+logx)]j+e”k at (Le*’,log5) over a

region in R® in which F is defined and differentiable.

V- fazi(ex"’gz +C0S y)+£(22 +log x)+g(e22)
ox oy oz

=" Jog z + 0 + 2e**

=log ze*'™* + 2e* at (1, V297 Jog 5)

V- f =log(log5)e ' + 26?°° = Jog5log (log5) +50

Q. A fluid moves so that it's velocity at any point P(X,Y,z) is V(X,Y,Z). Show that the loss of fluid

per unit volume per unit time in a small parallelepiped having centre at P(x, Y, z) and edge parallel
to the coordinate axes and having magnitude AX, Ay and Az respectively, is given approximately by

divv.
Y
A D v .
! v
Vo
' H
C :'
1 P(xz)
Apooee
e s il !
! ,/',AX At
\
B Ay G

Let X component of velocity V at P =V,
X component of V at centre of the face

1ov.
AFED =V, — = —1 AX approx.
175 ox pp
e X component of V at centre of the face

GHCB=V, + 1%AX approx.
2 OX
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Now it is clear volume of the fluid entering through the face GHCB per unit time
1

= (vl +—%ijAyAz
2 OX

d

t

t=Lv=d

Volume =dAyAz

Volume of the fluid existing through the face

AFED = (vl - %%ij AyAz
X

- y=

So loss in volume per unit time in X -direction
1ov, oV, oV.
=V, +=—2AX |AYAZ —| v, ——L AX |AYyAzZ = —L AXAyAz (1
[128xjy (laxjy ox @
Similarly loss in volume of the fluid per unit time in the y -direction
=%AxAyAz
oy
and in z -direction
:%AxAyAz
oz
.. Total loss in volume of the fluid per unit volume per unit time equal to

o AXAYAZ + Ny AXAYAZ + % AXAYyAz
OX oy 0z ov, oV,

= =—+%+—:V§ divV , where
AXAYAz oXx oy oz

Note:

The above article is true exactly only in the limit as the parallelepiped shrinks to P i.e.,

AX, Ay, Az approaches to '0". If there is no loss of fluid anywhere then |divV = V=0

known as equation of continuity for an incompressible fluid.
i.e., neither source nor sinks such vector V is known as Solenoidal.

Curl
Let's consider a vector valued function f = f,(x,y,2)i + f,(x,y,2) j+ f;(x,y,2)k

If F is differentiable, then the curl or rotation of F is defined as

~ S ~

Pk

arlE=vxF=|l O 2 ;% o, —j(%—@}rﬁ o, o
ox oy oz oy ot ox ot oX oy
fl f2 f3

Note:

. This is

At the time of numerical solution we should take care of e.g. f;, f; are functions free from y and

f,, f; are free from x and f,, f, are from z, then the calculation is very easy.
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= = 2 o ~ 2 n
e.g. curl F, Fz(eX cosx)|+e2yj+eZ log zk

]k

VxE R ﬁzi‘ o, _of, J[(’}f ij-i_k oA o = 0 (zero vector)
oX oy oz oy ot oX oz oX oy
f, f, f,

Note:

Suppose ¢ and A are differentiable scalar and vector functions respectively and both have
continuous 2nd partial derivatives, then following laws hold.
2 2 2 2
(i) V(?«ﬁ) Vip= 8 ¢ o f+ 0 ? where V2 =2 +8_+8_2 is called Laplacian operator.
é’y oz x> oy* oz

(ii) ?x(Vqﬁ):O i.e., curl grad ¢ =0

(iii) V(?x,&) =0 i.e., diveurl A=0
(iv) ¢ satisfies Laplacian equation if V¢ =0

Note:
This problem indicates that the curl of a vector field has something to do with the rotational properties

of the field (Because @ is present).
e If the field F is that due to a moving fluid e.g. a paddle wheel placed at various points in the
field would tend to rotate in regions where curl F =0, while curl F=0 in the region, there

would be no rotation and in this case, the vector field F is called Irrational.
e |f a field is not irrotational then sometimes it is also called as a "Vortex Field".

Vector Integration

Let's consider a vector valued function F = f,(x,Y, Z)f+ f,(x,y.2) j+f, (%Y, Z)IZ in a region D
of some space.

If F=xi+ yj +2K is the position vector of some point in this region D.

Let ¢ be a curve in this region and we want to find the value of the integral Ilf -dr i.e., integration
c
along the curve C.

IF .dF = I{ X, Y, +fz(x,y,z)j+f3(x,y,z)I2}-{dxf+dyj+dzl€}

= jlf~dF:j f,(xy,2)dx+f,(x,y,z)dy+ f,(x,y,z)dz

e.g. Evaluate the line integral Ilf~dF where F = Xy|p+(x2 + y2>j° and the curve C is the X -axis
(v

from x=2 to Xx=4 and the line x=4 from y=0 to y =12.
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YA
R y=12
A
M X=2 y—4

_[If-df’zjxydx+(x2+y2)dy

;\Iongthe Icine PQ; x=2to x=4, y=0and dy=0
jﬁ-dr:T(Xxoxdx)+(x2+02)-0=o

PQ X=2

Along the line QR
X=4=dx=0,y=0to y=12
= = T (12)
jF-df: j 4xyx0+(42+y2)dy:{16y+—} =1192+~"1 | =192+ 576 =768
QR y=0 3 0 3
. [Fedi= [ F-di+ [ F-di =0+768=768
c PQ QR

Conservative Fields
Suppose lfzvgzﬁ everywhere in a region R of the space where R is defined by

a <x<a,,b <y<h,c <z<c, and ¢(X, Y, z) is a single valued function and has continuous
partial derivatives in the region R . Then

R,
0] Ilf-df is independent of the path ¢ in R joining the points P, and P, in R .

R

(i) mlf~dF=O around any closed curve ¢ in R.

Insucha case F is called conservative vector field and ¢ s its scalar potential.
Q. Suppose F= V¢, where ¢ is single valued and has continuous partial derivatives. Show that the
work done in moving a particle from a point P, to P, (x, Y, z) in this vector field is independent of

the path joining P, and P,. Conversely suppose Ilf -dr is independent of the path ¢ joining two

points. Show that 3 a function ¢ st. F =V 4.
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Proof:
C4
Pl(xl’yl’zl) Pz(xz’yz'zz)
C5
Let E=vg=207,00;,99¢
ox oy o
R
Work done = [ F -dF = | 09;, 005,90 -(dxf+dyj+dzk)
5 B ox oy 0z
o )
j( 9 g+ ¢dy+ j jd )-4(R)

Since it is given that ¢ is single valued so whatever the path ¢, /c, /c,... joining the points P, and P,
is chosen, we get
Work done :_[If -dr = '[ If-drzjlf.dr =¢(P2)_¢(Pl)

)
Therefore if F = ?qﬁ the work done or the line integral f F.dr is independent of the path.

Conversely

Let F=Fi+F,j+Fk

We have to show

If Iﬁdf is independent of path c.

Then F = ¢p %J+a¢k
oX oy 0z
i.e., we have to show F =%, F, =%, F, _ 07
oy 0z
(x,y.2) (x,y,2)
(X, Y,2) I F-d I (Fdx + F,dy + F,dz) (1)
(% ¥1,21) (4. ¥1.21)
(x+AX,y,t)
L P(X+AX Y, ) = _[ Fdx+ F,dy + F,dz (2
(4 ¥1.2)
Target
% _ i (X+AX,Y,2)—p(X,Y,2)
OX  Mx—0 AX

On subtracting (1) from (2), we get
P(X+AX Yy, t)—p(X, Y, Z)
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(x+AX,y,7) (x,y.2)

= I Fdx+ F,dy + F,dz — j Fdx+ F,dy + F,dz
(x4 y1,21) (x.y1.2)
(% ¥1.21) (x+A%,y,2)

= I Fdx+ F,dy + F,dz + .[ Fdx+ F,dy + F,dz
(x.y.2) (4%,7)
(x+AX,y,2)

= .[ Fdx+ F,dy + F,dz
(x.y.2)

X+AX, Y,t)—@(X,Y,2
= 4 y)=9(x¥.2) _1 J- Fdx + F,dy +F,dz ..(3)
AX AX (yy.2)
Since we have taken the integral in the R.H.S. of equation (3) is independent of the path joining points

(x,y,z) and (X+AX, y,2). So, let's choose the path as straight line

(x,.y,z) (x.+Ax,y,z)
. dy=0,dz=0
So equation (3) becomes
(x+Ax,y,z)
j Fdx+0+0
X+AX, ¥,t)-@(X,Y,2 . XYz
:>Iim¢( +AX Y1) gy )=I|m (xy.2) :deldx:F1
Ax—0 AX Ax—0 AX
¢
. —=F (4
o (4)
0 _p 9 _¢

Similarly we can find —=F =
oy

s
Therefore, we have F = %f+% j+%|2
oXx oy 0z

—

F=Vg

Theorem
Suppose F is a conservative field then curl F =0 (i.e. F is irrotational) and conversely if curl
F =0 then F is conservative.

Proof:
Let F is conservative field, then by definition F =V ¢
. curl F =§x(§¢)=0

i.e., F is conservative =curl F=0.
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Surface Integral
The surface integral of a function ¢ over a surface S (which need not be closed surface or phase

surface). May be defined as:
Divide the surface S into m small elements AS;,AS,,...,AS, and form the expression

PAS, +$,AS, +...+ @, AS, , where ¢, is the value of the function ¢ at point P,. Now if m — oo we

land up with the surface integral I ¢-ds or for vector valued functions I F.ds.
S S

A

An

SurfaceS

T T
/// / P(Xy/z)

Let if A is the unit normal vector drawn outward to the surface S then we can define the vector
elementary surface area by

d§:{d§-ﬁ

=[dS =10
L

Elementary surface area

Note:
:.jﬁu§:jﬁﬁds
S S

Here F-A is the component of F along A i.e., normal to the surface S and _[If-ﬁdS is called the
S

total Flux across the surface S.
How to calculate Ilf .ds?
S

We know that T = xi + yj + zk =rcosai +rcos 3] +rcosrk
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v

The same concept we apply for the elementary surface area.
If dscosa,dscos ,dscosr are the orthogonal projections of the elementary area ds on the YZ-

plane, ZX-plane and XY-plane respectively.

Therefore, now we can write

dS = dscosai +dscos 3] +dscosrk

Here «, S, r are direction angles of ds with X -axis, Yy -axis and z -axis respectively.
A-ds =dscosai +dscos 4] +dscosrk

I -Ads = dscos o

i -Ads=dy- dz:ds—d:/.gz ()

j-nds—dscosﬂ:ds—dj :X ..(2)

K-Ads = dscosr:>ds—dx dy (3)

J-lf §:I'E Ads — ”F dxdy “-F ndydz _”F ndtdx )
5 X

Whlchever formin (4) swts you to eaS|Iy integrate (Accordlng to given condition); Apply that

Green's Theorem
Let's consider a closed region R in the xy-plane bounded by a simple closed curve ¢ and suppose

P(x,¥),Q(x,y) are continuous function with continuous derivatives in the region R.
Then

IP X, y)dx+Q(x,y)dy = J.J'(@—%jdxdy
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Note:
Unless otherwise stated, we will always consider that the line integral is described in the positive

sense (i.e. the curve c is transverse in the counterclockwise direction.

Note:
We can extend the proof of Green's Theorem in the plane to the curve ¢ for which lines parallel to the

coordinate axis may cut the curve ¢ in more than 2 points.

U
S T
Vv
ﬁhMM+NW=gt§_%§}kw 0
SJ;S Mdx + Ndy:g[%—%]dxdy ..(2)

On adding (1) and (2), we get
L.H.S.

Jrl=le]lof=]+]=]

STUS SVIS ST TUS SVI TS TUS SVT TUSVT

i

From the above description we just try to show that the Green's Theorem in the plane is applicable for
simply connected closed Regions.
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Simply connected closed Regions

Multiply connected closed Regions

Note:
The Green's Theorem in the plane is also applicable for the multiply connected Regions. It can also be
shown by the similar process as above.

Q. Express the Green's Theorem in the plane in vector notation.
Solution.
Let's consider a vector field function

o

F=M(xy)l+N(x,y)] and the position vector in the plane as T = xi +yj and dF =dxi +dy |

]k
Now, curl ﬁ:i i i =|ﬂ(_@j+i ﬂ _|_|2 @_%
ox oy oz (074 oy ox oy
M N O
o ISR
oX oy

Now the Green's Theorem in the plane can be written as []j F.dr = chrl F.k-dr

o A Generalization of this phenomena to the surface S in the space having a curve C as a boundary
leads quite naturally to Stoke's Theorem.

Q. Show that a necessary and sufficient condition for Fdx+ F,dy + F,dz to be an exact differential

is that ,where F =Fi +F,j+FkK.
Q. Show that (yzz3 COS X —4x3z)dx +2z°%ysin xdy +(3y222 sinx — x“)dt is an exact differential

of a function ¢ and find such ¢.

Solution.
] I k
0 0 0
ox oy oz

y’z8cosx—4x’z 2z%sinx  3y°z%sinx—x*
Proof:
Let Fdx+ F,dy+ F,dz is an exact differential

0 0 ¢ O

e, F=—,
OX oy 0z
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e, E=907,005,90¢ %y

ox oy oz
; ?xlf=§x(§¢)=0
Let VxF =0
Then F must be of the form V¢
ie, F-dFr =Vg-dr

= Rdx+ F,dy + Fdz :%dx+%dy+%dz
OX oy oz

= Rdx+ F,dy+ Fdz=d¢

. Fdx+ F,dy+ F,dz =d¢ is an exact differential equation.
Solution.
(yzz3 cosx—4x32)dx+ 27%ysin xdy+(3y222 sinx— x“)dz
= Fdx+ F,dy + F,dz
ie, F=Fi+Fj+Fk

- VxF =0 (on calculating)
= F is an exact differential i.e., 3 a function @ st
Fdx+F,dy+ Fdz=d¢
Y oo Fl,%= FZ,%= F,

oy 0z

= ¢ =y’z’sinx—x%z

i.e

¢, =2°y*sinx
¢, = y’z°sinx—x‘z

#(x,y,z)=y?2’sinx—x"z

Result
Consider a closed curve ¢ in a simply connected region then dex + Ndy =0
C

M N
iff 6_ = % everywhere in the region.

oy
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Volume Integral

Q. Let's consider some scalar valued function ¢(x, Y, z) =45x%y and let v be the closed region
bounded by the planes 4x+2y+z =8 and x=0,y =0,z =0. Then evaluate the volume integral

JIf,pav

4X+2y+12=38

Z
8-4x
2 o 8- (4x+2y)

V= j j J. 45x°y dxdydt
x=0 y=0 z=0
- J% j' 45x2y[z]§7(4x+2y)dxdy
x=0 y=0
4 4-2x
- J’ J‘ 45x°y(8—4x —2y)dxdy
x=0 y=0
- j“ 4'|‘2X(36Ox2y—180x3y—90x2y2)dxdy
x=0 y=0
4-2x

dx

j {360x2y2 180x°y* QOXZyT
AR 2 3
4

= [ |180x" (4-2x)" ~90x’ (4-2x)" ~30x" (4-2x)’ [dx

0

X
x=0
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- j‘ [180x2 (16-+4x> ~16x) ~90x* (16+ 4x* ~16X ) ~ 30x* (64 — 96X + 48X° —8x3)] dx

x=0

Gauss Divergence Theorem

Let v is the volume bounded by the closed surface S and F is a vector valued function of position
with continuous derivative then

deiﬁ:ﬂ F.AdS
\Y S

e Applicable only for closed surface.

e.g. If the surface Sis x> +Yy® =4, z =5 we cannot apply Gauss's Divergence Theorem here.
But if the surface Sis x> +Yy* =4, z=5 to z=8; yes we can apply Gauss Divergence Theorem.

Stoke's Theorem
Alternative definition of curl:
Suppose AS is a surface element at a point P, the boundary of the element being the closed curve Ac
and 1A is the unit normal vector at the point P drawn outward to the surface. Then we define a limit
[ F-dr

(curlF) = lim 2 ——
n o AS—0  AS
If this limit exists independent of the shape of the curve.

5>

AS

Ac

Here (curl If) is the component of a certain vector curl F along the normal fi to the surface.

n

Statement

The line integral of a vector field F around any closed curve is equal to ”curl F (i.e., the surface
S

integral of curl F taken over any surface of which the curve is a boundary edge.

Mathematically if F is any continuous differentiable vector function and S is a surface enclosed by a
curve C, then

jﬁ-dr:jjcurlﬁ.ﬁds
c S

Here A is the unit normal vector outward to the surface S.
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Gradient, Divergence and Curl «

2
1.1f A=x%yzl —2x2° | + xz%k, B =221 + yj — X’k , then value of oy
X

Examples: GRADIENT

(Ax I_3>) at (1,0,—2) is equal

to?
] i k
AxB=|x’yz -2xz* xz° :(2x323—xyzz)f+(2xz3+x4yz)j+(x2yzz+4xz4)12
2z y =X
a e = 28 4_7 2 ~ 82 - = 28 3.4 n
—(Ax B):—xz I +X"2) +2x7yzK,, (Ax B)z—z I +4x°z) + 4xyzk
OXoy

oy

2
so, at (1,0,-2), aiay(AX B)=—4i-8]

2.1f f (X, Y, Z) :3x2y— ySZZ, then grad f and the point (1, —2,—1) is equal to ?

o« of . oF o . = . .
f =3x2y—y%2%;, Vf =—1+— j+—k =6xy1 +(3x* =3y’z°) | - 2y°’zk
y-y 5 yi+( y’z*)j-2y

At (1-2,-1), Vf =-12i ~9j-16k

3. The gradient of f (r), is equal to?

)= K5 (1) =i (05 =Kt ==

Here summation is just representing next terms in symmetry With j and k

4. Vf (r)xf is equal to?

f 1
\%i (r) = fr) ' [as solved in previous question]

xr=0

j is equal to?

/_\
= | K




6. Vlogr is equal to?

~ 0 o 1o T
Viogr=> 1—logr=> 1=-—="> Ix=—
gr=3i Slogr=3 it X - LYk

7. Vr" isequal to ?
0 A -4 0r _ ~ o
vt =>i a—r” =>inr" 18_ =nr"?> ix =nr"%r
X X

8. If 4 is constant vector & F = XI + y] +zK then grad (F . 51) is equal to ?

arao[ rab ] =312 (r(ax6)) = 2i[ - (axB) | - X i-(ax6)) =axb
10. If & is a constant vector, ¢ is scalar field (é-V)¢ is equal to?

let a=a,i +a,]+ak

a-v= £+a g+ =
T 2 oy %%
_ op 04 _ 0¢
V)d=a -~ bt bl
(a-v)g a18x+a28y+asaz

11.If & is constant vector and T = XI + Y] + Zk(é-V)f isequal to ?

let a=a,i +a,] +a,k; a~V—a1§+a £+a3£
- ’ Ctox - oy Car

(a’-V)F:[ai§+a2%+a3§j(xf+ y]+zl€):a1f+a2j+aslzza

12. The unit normal vector to the level surface X%+ y2 —27 =4 at point (1,1, —2) is?

. Vi
Normal vector lies in direction of Vf .So, A=——

Vi

f=x2+y?—z; VE=2xi+2yj—K




At (11,-2); V=20 +2] -k,

vi|=49=3

. VE 21+2j-k 2. 2.
So, N= = =—l+—-]-
Vf| 3 3 3

k

Wk

13. The directional derivative of f (X, y,z): X2y2+4XZ2 at the point (1, —2,—1) in the direction of
vector 21 — i—ZkA is?

a

Vi = (nyz +422)f+(x22) ] +(x2y+8xz)lf
At (1,-2,-1), Vf =8i - j-10k

So, directional derivative of fin direction of 2i — | — 2K is equal to

v ~a=%(8f—j—10|2)-(2f—j—2|2)=3?7

14. The point P closest to origin on the plane 2X+Y—-2—-5=0is?

Closest point will be foot of perpendicular from origin

VS 2i+j-k

s~ &

S=2x+y-z-5=0; A=

2
Coordinate of P = [

2,1 1
NARNNG

j. ItliesonS So, I =

"

15. The temperature T at a surface is givenby T = X% + y2 —Z . In which direction a mosquito at the point
(4, 4, 2) on the surface will fly so that it cools fastest?

T=x+y’~z

Direction of fastest cooling will lie in direction opposite to the direction of gradienti.e. —VT

VT =2xi +2yj —K

A

=81 +8]—k

Xi +yj + zK

X+ y2+ 7

16. The scalar function f which corresponds to V =Vf ; Where V= is?




f:«/x2+y2+zz+c «

= |

Vi =

17. One of the point at which the derivative of the function f (X, y) =x° —Xy—Y+ Y vanishes along

I+;/§J is ?

the direction

v =(2x—y)I —(x+1-2y) ]

I ++/3]
Directional derivative in direction given by ;/_J

2-\3 (1—2@)y NE]

1 3
=Z(2x—y)-2(x+1-2y) = - -
2( X y) 2 (X+ y) 2 X 2 2

2
It becomes zero at (—1, —j
2\3-1

18. Which of the following is a unit normal vector to the surface Z = Xy at P(Z, 1 1)

The surfaceis f =xy—z=0
Vi =vyi+xj—K =—i +Xx] -k

i \Yi :f—2j+I2
G
19.Let (X, y)=InyX+Yy and g(X y)=4/X+Y.Thenthe value of V?(fg) at (1,0)?

f:In(x+y)]/2,g= X+Yy

fg=x+ylnyx+y

o* 0
Vz fg :[y-FWJ fg

—
nﬂ/x+y+1/x+ \/x+y 2\/x+y

0
5 (f9)




o° fg 1 -3/2 1 1 1 -3/2
Z 2 __ = I . _=

ox? 4(X+y) n(Hy)+2(x+y) 2.X+Y 4(X+y)
VZfg=0

20. The spheres X%+ y2 +2°=1and X* +(y—\/§)2 + 2% = 4 intersect at an angle?
X +y*+22 =1

X2 +y2+22-23y =1

They intersect at plane Yy =0

(O, 0,1) is one point of intersection which is lying on the both sphere.

Let us find normal vector at this point and find angle between them

o xf+(y—\/§)j+zI2
A=X+Yy+zk, A, = 5

C056’=ﬁ1'ﬁ2:% atpoint (0,0,1);  0=7x/3

21. For what values of a and b, the directional derivative of u(x, Y, Z) = axzyz +bxy22 at (1,1,1) along
I+ i—ZkA is \/6 and along I — j+2kA is 3\/6?

Vu= (Zaxyz + byzz)f+ (axzz + 2bxyz) ] +<ax2y +bxy? )IZ

a
|

The directional derivative of u(x, Y, Z) along ( + j—ZIZ) at (1,1,1)

o~ 2 n f+j—2|2 1 a+b .
2a+b)ir+(a+2b)j+(a+b)k-———=—=—"~+~(2a+b+a+2b-2a-2b)=——+-=+6 (G
( ) +( )1+(a+b) NG 6( ) 76 6 (Given)
So, a+b=6
The directional derivative of u(x, Y, Z) along (f— j+2l2) at (1,1,1)
:((za+b)i‘+(a+2b)j+(a+b)k).%:%(3a+b)=3£ (Given)
3a+b=18 .(2)

Solving (1) & (2); a=6,b=0




22. Find the directional derivative of f = x?yz® along x=¢€"',y=1+2sint,z=t—cost at t =0.
Solution. Vf = 2xyz°1 + x?2% ] + 3x%yz%k

Fort=0,x=e"'=1

y=1+2sint=1

Z=t—cost=-1

So,at (L,1,-1) Vf =-2i — j+3K

The curve is described by vector

F=e'l+(1+2sint) j+(t—cost)k

- dl_; o = - n
t :E =—e’ +2costj +(1+Slnt)k; the tangent vector (formula we read in chapter Curvature &
Torsion)

Att=0 T=—T+2]+k
_ LS, -
Unit vector along tangent, ; t = T

[ Delhi] T (—f+2j+i€) 3 3
Directional derivative along the curve at t=0=Vf -t = (—ZI —J +3k).T = ﬁ = 2

23.If T, and T, are the vector joining the fixed point. A(X,¥;,Z) & B(X,,Y,,Z,) respectively to a

variable point P(X, Y, Z) then find the values ofgrad(fl . Fz) & (flx fz)

Solution. The vector AP = I, = position vector of P-position vector of A

A

:(xf+yj+2I2)—(><1f+ y1j+le2) =(x=x)T+(y-v)j+(z-2)k

Gn




Fe[(x=x)(2-2) - (x-%)(2-2,)]]

I
I
=[y(z-2,)+2(Y, =) (N2, = ¥o2) [T +[ 2(% =%, )+ (2, ~ 2,) + (2%, ~ 2,%) | |
[x(yl—y2)+y(xz—X1)+(><1y2—><2y1)]'5

oG =(X=%)(X=%)+(y =y )(Y=¥)+(z—-2%)(z-2,)

I 0 /. .
V(F-T,)= |5;(r 6) =D 0(2x=%=%,) =D 0[(x=%)+(x=%,)]
= (X=%)+ D0 (X=%,) =T +T,
24. Find the equation of tangent plane and normal to the surface 2xz° —3xy +4x =1 at the point (1, 1, 2)

Solution. Vf =Zf§f =(22° -3y +4)i —3xj + 4xzk; At (1,1,2) Vf =9i —3]+8k
X

Let R=xl + yi +7K isa position vector of any arbitrary point (X, Y, Z) on the tangent plane at point P.

The position vector of point Pis I =

++2k

Equation of tangent plane at point P is

— of of of
(R—r).grad f=0 :>(X—1)5+(y—1)5+(z—2)520
=9(x-1)-3(y-1)+8(z-2)=0
O9x—-3y+8z=22

Equation of normal to the surface at point (1,1, 2) is

x-1 y-1 z-2 s x-1 y-1 z-2
FoE AT e 38
OX oy oz

25. Find the equation of the tangent plane and normal to the surface XyZ = 2 at the point (1, 2,1).
Solution. At point (1, 2,1) Vi =21 + j+ 2k
Let R=xl+ yi +7K be the position vector of an arbitrary point (X, Y, Z) on the tangent plane.

Y

Position vector of point of contact (1, 2,1); 2]+ +K




Equation of tangent plane is (ﬁ ) -Vf =0 :>(X_1)%+(y_2)%+(z—l)%=0

=2(x-1)+(y—-2)+2(z-1)=6; 2x+y+22=6
Equation of normal to the surface at point (1, 2,1)
x-1 y-2 z-1 So x-1 y-2 z-1
o —of o T 2 1 2

OX oy oz

26. Give the curve X° + y2 +2° =1, x+ y+2 =1 (intersection of two surfaces) find the equation of the
tangent line at the point (1, 0, 0) .

Solution At the point;  (1,0,0) VS, =21, VS, =i+ j+k
VS, . . d+]+k
The normal vector to surface S; & S, are given by 1, =—Sl =1, N,= J
Vs, Ne

Tangent to the curve of intersection will be perpendicular to both 1, & A, i.e. it lies in the direction of

A A o (i\+j+k\) 1 2 1 A
A xA, e Ix——~ =—— J+—=K

V3 3 4

>
o

So, equation of tangent passing through (l, 0, O) & parallel to vector —

i
[

x—lz y—O:z—O
* 76 s

Assignment-1

1. Find the directional derivative of the function f = x> — y2 +27° atthe point P(l, 2,3) in the direction

of line PQ where Q is the point (5, 0, 4) .
Hint. At (1,2,3), Vf =2i —4]+12k
Now, vector % = position vector Q-position vector of P = (Sf + 4|2) - (f +2 j + 3I2) =4 -2 j +K

—2j+k _4i-2j+k

\/l6+4+ J21

So, directional derivative of fin the direction of 4 = Vf -&

Unit vector in direction of P

Gn




2j+|2> 28
NIRRT

2. What is the greatest rate of increase of U = XyZ2 at the point (l, 0,3) ?

4z

:(2?-4i+121€)-(

Solution. At (1, 0, 3), Vu= Qj ;S0, maximum value of directional derivative
=Vu-4a with & being unit vector parallel to Vu =|Vu| =

3. Find the directional derivative of

(i) 4xz° - 2yzz2 at (2,—1, 2)a|ong Z axis.

(ii) XZyZ +4xz? at (1, —2,1) in the direction of 21 — j— 2K .

Solution.

(i) f=4xz®-3x’y?*z?

Vi = (423 —6xy222)|5—6x2y221°+(12xz2 —6x2y22)I2

At (2,-1,2), Vi =-16i +96 ] +48K

Along z axis, the directional derivative along z axis; = VT - k =48

>

(i) f=x"yz+4xz*; VE =(2xyz+42% )i +x°z] + (x2y+82x)I2 JAt (L,-2,1), Vf = ]+6

Unit vector in the direction of 2i — j—2|2; a= 2 - ]2k = 2 -] -2k
Jo 3

Directional derivative in direction of 2 — ] — 2k; =Vf.a= (J + 6&)(%} = —%

4. Find the directional derivative of f (X, y) = X2y3 — Xy at the point (2,1) in the directional of a unit

vector which makes an angle of 77/3 with x axis

Solution. At (2,1), Vf =5 +14]
T » 1 a 3 2
Unit vector making an angle of 7z/3 with x axis; & = cosgl +sm§ ] = EI +? ]

T
So, directional derivative of fin the direction of unit vector making angle of g with the x axis




2 2

-Vi.a =(5f+14j)-(%"+£ jj _5+143

5. Find the constants a and b so that the surface ax’ —byz = (a+ Z)X will be orthogonal to the surface
Ax*y +7° =4 at the point (L-12).
Solution. Two surface S; & S, are orthogonal

o i 0 VS VS _
Tt s |vs,)

VS,-VS, = 0= ((a—2)i —2bj +bk)-(-8i + 4] +12k) =0
=-8(a—2)-8b+12b=0 =-8a+4b=-16

Point (1,—1,2) lieson S, So, a+2b=a+2 =b=15o, a=g

Gradient, Divergence and Curl
EXAMPLES

1. divF equal to?

3. The value of constant a for which the vector f = (x+3y)f+(y - 22) j+(X+ az)IZ is solenoidal is?

-

Vector f issolenoidalifdiv f =0

div 1?=%(x+3y)+%(y—22)+§(x+az)=O =1+1+a=0; a=-2

4. If d is a constant vector, then V-(F’x a) isequal to ?

<an




v
=
jsb]
&
o))
(o)
(e}
=}
7
—t
Q
=}
~+
<
()
(@]
—+
e}
\ﬂ
(@]
c
=
—~
=l
X
jshll
N—"
&
()
Ko
c
L
—+
o
-J

] i k
vxf=| 2 2 O |_gm (3xz—2xy)i +€™ (xy—yz) j+€* (2yz—xz)k
ox oy 0z

L PN P
At (L11),; Vx  =e(i k)
7.1f f=xyi + 2x2yzj—3y22I2 ,then value of div f at (1,1,1) is equal to ?

4 (3yzz) =y?+2x*2-6yz; At (L11), div f=-3

div f = %(xy2)+%(2x2yz)—§

8.If 1?:(X2 —yz)f+2xyj°+(y2 —Xy)lz,the curl T at (1,1,1) is equal to?

] i k

curl f= 9 o 29 =—I+j—|€
OX oy 0z
X+y+1l 1 —x-y

+]- A) =—X-y-1+1+x+y=0

Assignment-2

1. Prove that div (I’"f) = (n +3) r"

. . N ~ 0 o ~ n 8[‘_’ naf’
Solution. div :(r r):z| &(r r)zzl,{nr l&r+r &}




:Z{nr”1§(f-f)+r”f-f}(g:§.£: f} =nr"? =5’ +r"El =nr" +3r" = (n+3)r"

2. Prove that Vz(r”r): n(n+3)r”*2r

Solution. Vz(r”?)=V(V-(r"F)) (from previous example); V-(F"F):(n+3)r”

a n
Vz(r”r):v(n+3)r” =(n+3)>71 g( ) =(n +3)an”lf% =n(n+3)r"?=xi

=n(n+3)r"°r

l_,-’
3

r ~ 0T ~| 1or o(1 |1 s 3 or
Solution.div] — =1 —| — =Y | =" 4+7F—| ==Y 1| =1+T| ——-—
oHen Iv(rsj 2 ax(ﬁj 2 [r3 x ax(r3ﬂ 2 {rs " ( r axﬂ

3. Prove that div ( =0

-

. 2
4. Prove that div €, = —
r

. r s Ofets ~(1lor o(1
Solution.V-€ =V — =Y 1-—| — | =) 1| =—+T7T—| =
olution r (rj Z ax(rj Z (I’@X ax(rjj

T B B e A I o T S . TS B S S e S S SO
=S (r|+r( rzjaxj_z(rl - r(l r)j_Ir P r32x =
5. Prove that vector f (I’)? is irrorational.
Solution. A vector function is said to be irrotational if its curl is zero
= ~ 0 2\ OF , qq @ Rl ey X =
Vx(f(r)r)= |x&(f(r)r)_2|x(f (r)axr+f(r)8xj_2|x(f (r)rr+f(r

_r) r(r)foxf+Zf (r)=ixi :fT(r)?xF+ f(r)=ixi =0

Since, curl of f (r)f is zero, hence f (I’)? is irrotational.

6. Prove that V? (%j =0

<an




7. Prove that divgrad r" = n(n +1) rn?

- 0 r g OF P '¢
Solution. grad r" =Z| a_r” — inr" 1o n-1
X

divgrad r" =Zdiv(nr”‘2f) = f.%(nrrﬂr) =an-(r"2 g+F%(rn2)j

X

= an(r”*zh r(n-2)r"? ?j =nr" 230 -0+ nzf((n ~2)r"® 4 Fj
=3nr"?+n(n-2) r”“‘Zx(f-F) =3nr"?+n(n-2)r"=x* =3nr"? +n(n-2)r"* = (n2 13 n)r”’2
8. Prove that V° (¢1//) =Ny +2Vp-Viy+yVe

Solution. V*(gy) =v-(v(¢y/)) =V-(We+Vy)=V-(yWe)+V- (N y)
=YV 9 +2V-Vy + Ny

9.1f A and B are irrotational, prove that Ax B is solenaidal

Solution. AxB are irrotational . So, V x A=0 & VxB =0

-3 B ix 2| | Bl =8 i 230 | BrA =B ar A-A i 2
OX OX 0 OX OX




10. If fand g are two scalar point function prove that div ( ng) = fVv?g+Vf.vg.
Solution. We can use a vector identity; V(¢F) =V¢- F+¢V- f Where ¢ is a scalar function & f isa
vector function . So, V-(fVg)=Vf.-Vg+fV-(Vg)=Vf-vg+ fV3g

Other way.

0 Ggp ag » ag »
fvg="f —g|=f=1+f=j)+f =k
J (Z axg] OX ' 6’yJJr oz

v-(ng)_ﬁ[f—gj AR [fagj
16 OX 6y oy oz\ oz
(09 of &g (o'

+_9ﬂ_9
ox ox  ox oy oy oy o oar

:f(82g+8zg 829J+[5f g of ag o 69}

o oy o) \axox oy oy e ox

_fvzg+ i|+ij ik ag gj+a—gi€ =fVZg+Vf-Vg
oXx oy oz ax ay oz

11. Prove that div (Ax 7)=7-curl A when A is a constant vector

SN—"

=nr"(2Xi)-(AxT)+r"Zi-(@xi ) = nr?r - (@x ) + 1S -(dxi) =0

13. Prove that

Solution. V-(¢Vy —yN @) =gV —yN’¢p = N*y +V¢-Vyr

V(W) =yV-(VP)+Vy -V =yVh+Vy -V

VAV V)= (NVu V-V ) (BB VY V) = VY -y

<




14.If 3 and 6 are constant vectors, prove that

(i) div [(fxé)xlﬂ:—ZB-é (i) curl [(fxﬁ)xﬁ} =bxa

Solution. (i) div [ (Fxa)xb |= V[ (Fxa)xb | :Zf-g[(rxa)xﬁ] :Zf-{[gxa”jxﬁ}

bak—ba i)+(b a f—banR)+(ba j—ba f)
ba,—b,a,)i+(b,a -ba,)j+(ba,~ba )k =bxa

y y—X

15. Let F = XI + yj +2K and r =|F'| .If ascalar field ¢ and a vector field U satisfy Vo =V xU + f (I’)F
where fis an arbitrary differentiable function, then show that Vz(p =rf '(r)+3f (I’) 3

Sqution.V¢=VxU+f(r)F;
Vig=V-Vg=V-(Vxt)+V-(f(r)F)=0+i ( (N)F) =2 (1-F)f( +z|f =
WSS =it ()3t ()

16. If T is the position vector of the point (X, Y, Z) w.r.t. origin. Prove that ; V2 f (r) =f "(I’)+§ f '(I‘)

Find f (r) such that V2 f (r)=0.

Solution. V*f (I’)zV-Vf (r)

)=3i 210 =Tit (L =5i e ="




- 2ot L emyre e

i L X e e T e

zz{_frﬁf) x(i r)+%f"(r)§ (i F)+%f (r)i f}

0w Mo Lrm - D e 2o - e 2

Now, let us find f (r) such that V2 f (I’)=0
Let g(r)=f'(r)
Now,sz(l’)=0:>f"( ) f ( ):

:>g'(r)+§g(r): 3?+ A3 dgg 2dr 0

. dg dr 2 C
Integrating ; | —+2| — = tant => gr°=C, " g(r)==—=
ntegrating j : J - = constan g e g(r) =

af C
ar_s,

C
= f:jr—;dwcz; f(r)=—=2+C,

PREVIOUS YEARS QUESTIONS ANALYSIS

INTRODUCTION: VECTOR ANALYSIS

Q1. Prove that the vectors a=3i + j—2l€, b = —f+31+4l€ ,C= 4f—2i—6|2 can form the sides
of a triangle. Find the lengths of the medians of the triangle. [Sb UPSC CSE 2016]

Q2. Prove that ﬁx(BXE)z(éxﬁ)xC, if and only if either b =0 or T is collinear with @ or b
is perpendicular to both @ and T . [8c 2016 IFoS]

Q3. For three vectors show that: a x (5x6)+ bx(cxa)+ (_:x(éx 5) =0. [5e 2014 IFoS]




VECTOR DIFFERENTIAL CALCULUS

Q1. The position vector of a moving point at time t is T =sinti +cos 2tj°+(t2 +2t)l2. Find the
components of acceleration ain the directions parallel to the velocity vector V and
perpendicular to the plane of T and V attime t=0. [5e UPSC CSE 2017]

Q2. If A= x2yzl —2xz2°] + xz%k , B =2zi +yj —x’k

2
find the value of

(AxB) at (1,0,-2). [Se UPSC CSE 2012]
OXoy

Q3. For two vectors aand b given respectively by d=5t% +tj—t°k and b =sinti —cost]

oo d L dl -
determine: (i) a(a-b) and (ii) a(axb) [5e UPSC CSE 2011]

Q4. The position vector T of a particle of mass 2 units at any time t, referred to fixed origin and
. o 1 2 1 ~ . . . . .
axes, is T :(t2 —Zt)l +(Et2 +1j J +Et2k . At time t=1, find its kinetic energy, angular

momentum, time rate of change of angular momentum and the moment of the resultant force,
acting at the particle, about the origin. [8d 2011 IFoS]

GRADIENT, DIRECTIONAL DERIVATIVES

f" 2 — o 2 a
Q5(e) Show that V2 [V-[—ﬂ =—, where T =Xi +y] +zK . UPSC CSE 2021

r r
Q5(e) Determine constants a,b,c so that the directional derivative of
#(x,y,2)=axy’ +byz+cz’x’ at (1,2,-1) has a maximum magnitude 88 in a direction parallel to

z-axis. IFoS 2022

Q1. Prove that for a vector @, V(é-?) =d;where F =Xl +Yy]+ le, r= |F| . Is there any restriction

X
. 3(a-r)(b-F) 5.5
on a ? Further, show that é-V(b-V%j: ( )5( ) a-b .

Give an example to verify the above. [5e 2020 IFoS]

Q2. Find the directional derivative of the function xy® + yz* + zx* along the tangent to the curve
x=t,y=t?,z=t* at the point (1,11). [5e UPSC CSE 2019]

Q3. Find the angle between the tangent at a general point of the curve whose equations are
Xx=3t,y=3t*,z=3t* and theline y=z—-x=0. [5b UPSC CSE 2018]




r
5

Q4. Find f (r) suchthat Vf = ;

and f(1)=0. [8a UPSC CSE 2016]

Q5. Find the angle between the surfaces x* +y*+2z°-9=0and z=x*+y’ -3 at (2,-1,2).

[5e UPSC CSE 2015]
Q6. Find the value of A and u so that the surfaces AX* — uyz =(A+2)x and 4x’y +2° =4 may

intersect orthogonally at (1,—1,2). [6c UPSC CSE 2015]

Q7. A curve in space is defined by the vector equation T =t2|p+2tj°—t3kA. Determine the angle
between the tangents to this curve at the points t =+1 and t =-1. [8b UPSC CSE 2013]

Q8. If u=X+y+2,v=x*+y*+2° W=Yyz+2X+Xy prove that grad u, grad v and grad w are
coplaner. [5e 2012 IFoS]

Q9. Examine whether the vectors V,V, and V , are coplaner, where u,v and w are the scalar

functions defined by:u=x+y+z, v=Xx"+Yy*+2z°and w=yz+zx+ Xy . [8a UPSC CSE 2011]

Q10. Find the directional derivative of f (X,y)=x’y’+Xy at the point (2,1) in the direction of
a unit vector which makes an angle of /3 with the x-axis. [1e UPSC CSE 2010]

Q11. Find the directional derivation of V%, where, V = xy*i +zy’] +Xxz’Kk at the point (2,0,3)

in the direction of the outward normal to the surface X*+y? +2° =14 at the point (3,2,1).
[5f 2010 IFoS]
Q12. Find the directional derivative of -
(i) 4xz° —3x’y*z* at (2,-1,2) along z-axis;
(ii) X’yz+4xz* at (1,—2,1) in the direction of 2i — j - 2K . [5f UPSC CSE 2009
DIVERGENCE

Q8© For a scalar point function ¢ and vector point function f, prove the identity

fn-

V.(0F)=Vd.f+(V.F) . Also find the value of V.[ .

j and then verify stated identity.

UPSC CSE 2023 (15)

QLIfF=xi+Yyj+2K and f (r) is differentiable, show that div[f (r)ﬂ =rf'(r)+3f(r).




(T
Hence or otherwise show that dIV(Fj =0.[5e 2018 IFoS]

Q2. Calculate V? (r”) and find its expression in terms of r and n, r being the distance of any point

(x, Y, z) from the origin, n being a constant and V? being the Laplace operator.
[8a UPSC CSE 2013]

Q3. Prove that div( f\7) = f (div\7)+(grad f)-V where fis a scalar function.

[6¢ UPSC CSE 2010]
j f'(r)+f"(r), where r =x* +y?+2° . [4. 82 2010 IFoS]

Q5. Show that div(gradr")=n(n+1)r"? where r = /X’ +y*+2° . [Se UPSC CSE 2009]

=[N

Q4. Show that, V*f (r) = (

CURL

Q5 (e) If a=sin i +cosi+0k, b=cos0i —sinBi —3k , ¢ = 2i +3i —3k then find the values of the

derivative of the vector function ax (Bx E) w.r.t Oat 0= gand 0=m.

UPSC CSE 2023
Q5(e) Show that A= (6xy+ 23)f+(3x2 — z) i+(3xz2 1 y)kA is irrotational. Also find ¢ such that
A=V ¢. UPSC CSE 2022

Q7.(a) Derive vector identity for divergence of cross product of two vector point functions. Given
a relation between linear and angular velocity as V =@xT .

If @ is constant, then show that (i) curl V =2 (ii) div V =0.

(b) Given that y, = X’ is a solution of the differential equation. IFoS 2022

Q5(e) IfF = y%—Z% f+(2%—x%jj+ x%—y% K, then prove that
0z oy OX oz oy OX
F-(FxVg)=F -T=F-V¢=0.IFoS 2021
_ _ ~ _ 82 62 62
Q8. F being a vector, prove that curlcurl F = graddivF —V*F where szy+y+y.
X z

[Sc 2013 IFoS]




Q9. If u and v are two scalar fields and f is a vector field, such that uf = gradv, find the value of
f -curl f . [5f UPSC CSE 2011]

Q10.If T be the position vector of a point, find the value(s) of n for which the vector r"r is (i)
irrotational, (ii) solenoidal. [8¢c UPSC CSE 2011]

Q11. Prove the vector identity:

Curl( Fx@): f divg—gdivf+(g-v) f—( 1?~V)_Cj and verify it for the vectors f = xi +zj + yk

and § = Vi +zK . [8b 2011 IFoS]

PYQs Analysis: Vector Analysis

1. Given a=3i+ -2k, b=—1+3]+4k, =41 —2]—6k there.
5+6=(—i+3J°+4I2)+(4f—2j—6l2)=3f+j—2l€=é

. a,b,C form the side of triangles.

Let AP, BQ, CR he the medians of AABC .

Now, using triangle law of vector addition,

In ABQC,
b —
a+—=8B
5 Q
_= 1 o 2 ~
B =( ——jl+(l+—]j+(—2+2)k
—_. 5. 5. 50 5
BO=—1+— = [—=—
Q=2i+2] BQl 5 ZJ_
In AARC,
CR+AC = AR

ﬁ:(zf—j—sﬁ)—ﬁ

CR=3i-4j-7k |CR|=\/9+16+49 =74

<an




In AAPC,

PC +AC = AP
(§—1jf+(l+3jj+3ﬁzﬁ
2 2
— 1. 7. _~ — 50 1
AP ==1+—J+3k. APz‘/—+ =—4/86
2 2J ‘ ‘ 4 2\/_

Given b = 0 or c is collinear with ‘@’ or, b is perpendicular both & & C
To Prove: éx(BxC)z(é’xB)xC
(1) Ifb=0,then

éx(ﬁxé)zo & (éxﬁ)xézo

(2) If €=ma then

éx(BxC)z(éxB)xé
Similarly, if éx(BxC)z(éxB)xC
= (ac)b-(ab)c=-{(cb)a-(ca)}b

. Either b=0 or x¢=0 e, a & b are collinear




or, b.c=ab=0
3. éx(5x6)+5x(6x§)+6(§x5)=0
VECTOR CALCULUS

1. Position vector F =sintl +cos2tj + (t2 + 2t)|2

g sz—:=costf—25in2ti+(2t+2)l2

_dr . .o
d=——=-sinti —4cos2t] + 2k
dt
Att=0, F =]
V=i+2k
a=—-4]+2k
. L N _ (é.\7) v
Required equation in the direction of V = ﬁxﬁ
v v
4 \7 4 o o~
Required equation in the direction of V. =—=x— =—(1+2k
NN 5( )
i j ok
Anvector Llvto I and V is, C=F xV; EYE00 0 =2i —k
10 2
.. Required equation in the direction of T is.
cac -2 € 2.
== x— =—(2I -k
Icl1el V5 5 5 ( )
2. A=x%yzi —2x23] + xz%k
B =2zi + yj — x°k
T
AxB=|x’yz -2x2® xz? =(2x323—xyzz)f+(2x23+x4yz)j+(x2y22+4xz4)12
2z y  —x?
Now,
0

—(Ax l§) =—xz2%1 + x*7] + 2x?yzk

oy




b~

ax_aay( x E):—22f++4x3zj+4xsz2
% [+
ax—ay(Ax B)

=41 -8]
(10,-2)

3.  a=5t4 +tj—t3k,b =sini —costj
(1) ab =5t%sint—tcost
%(“.5):5[t2.cost+2tsint]—[t(—sint)+cost] = (5t2 —l)cost+(10t+t)sint

A

P K
(2) axb=[st? t - =—t3costf—t3sinti—(5t2cost+tsint)|2
sint —cost O

E(ax 6) —[{t3 (—sint)+3t? cost} P+ (t3 cost +3t2 sint) j.[S{tz (—sint)+2t cost} +t.cost +sint}l€}
%(ax 5) =t3sint - 3t? costi —t? (tcosO +3sin6t) J. —{(—5t2 +1)sint +11t cost}IZ :

4. f=(t2—2t)f+ 120154102 & m =2 units
2 2

V=—=(2t-2)i +{ +tk

2
Now, K.E = %m|\7|2 :%XZX(\/(Zt—Z)Z +1? +t2}

~1x(V2)’ [Att=1]
K.E =2 units

Att=1, V=]j+k

I

Now, Angular Momentum (I:)z r+mv =-1 :2f+21°—2|2 units.

0

N N W —»
NN XS




d. d N L dav dr _
(o} E—a( )—rX E-FEX( )
%zfxmd—v [ \7=d—r 50, V x( )=0}
dt dt dt
d—V=2f+j+I2
dt
i oK
Now, %z a2 31 =2f+4j—8l€ units
dt 2 2
4 2 2

Now, Moment of resultant force is given by

=FxF

Al

Lo v
=Fxm—
dt

al

I

Hy =L

NN W —
NN XS

4

T|t=1 =2f+4j—8l2 units

5 (c) CSE 2021

= VZK(_Z)FS XE)-F+ r XB} {using V(f(r)) = f'(r); & Vi =3}
= Vz[_erz +3r’2]= Vz(r—lzj= V.V (r?)= V{( 2)r?° E} [using the same as above]
V- (of
=)V . {r'r}= —Z[V(ﬁ‘) F+r7V F} (¢ z
=(v§)- f+o(V-f)




r 2
VZ(VFJ =r—4

5(e) IFOS 2021
@ (x, y, 2) = axy* + byz + c2°x®

Directional Derivative of ¢ is given by grad ¢
A@ = (ay? + 3¢z i + (2axy + bz) | + (by + 2czx°) k
Now, (Vo)u,2-1) = (4a + 3¢) I+ (4a-b) j +(2b-2c) K

The maximum magnitude is in a direction parallel to z-axis so,

4a+3c=0 (1)
4da-b=0 (2)
And, max. magnitude is 64.
2b-2c=64
= b—c=32 w(3)

Now, from (2) + (3),
4a—-c=32
c=4a-32

Using (c) in (1),
4a+120-96=0

160 =96
- = & b=
Q1. 2020 IFOS
Leté=alf+azj+0312 & FZXi\-‘ryj\-f-le

a-r =xai+ya;+za;s

LV (d-7)=

o 8 ~ 8
(aix+ay+asz) | + — (aix+ a2y +asz) K + P (awx + azy + a3z) ...(1)
A

2|

If V(a-7)=4a=ai+a,j+ak,then

From (1) we can see that it is possible only when a3, a, as are all constant values, that not includes any
variable x, y or z

Now, V[lj = _—g-fi"+_1lj+_1-5|2: Lr
r r




" LHS = RHS .". Verified.

Q2 CSE 2019

@(x, v, 2) = xy* + yz* = 2x*

Now, D.D.= V¢

D.D.=(y2+2zx) | +(2xy+22) | +(2yz+x*) K
(D.D)w 1= 31 +3]+3K ..(1)

Now, for the given curve,

% =1, ﬂ =2t, % =3¢?
dt dt dt

Now, at point (1, 1, 1) the curve gives the value of t = 1.

.. Now, vector along the tangent to the curve is given by,




5o O, e

= —l+— ]+
dt dt dt
a=1i+2+3t%k
d=1+2j+3K [at t = 1]

Now, Directional derivative in the direction of a is given by,
(f +2]+ 3I2) 18

Jrda+9 14

=(V@)y,1,y. a= (3f+3j+3l€)-

2018 CSE
3.  From the given curve,
X z
& =3, dy = 6t, d =9t
dt dt dt
. vector along the tangent to the curve is @ =3I +6t] + 9t’k

For the line,

o<
|

y=z-x=0.. y=0,z=x .

| >
RN

For the line, the dr’s in vector form is, b=1+k

Now, if B is the angle between the tangent & the line, then

osp = &0 3+0+9t? y 3+9t?
aljb]  Vo+36t7 81t xv2  3W2y1+4t? +0t*
05 6 < 1+3t? 62 cos-! 1+3t°
J2Jott +ar? +1 J2ott +4t2 +1
4. CSE 2016

Given, Vf(r) = rr;s &f(1)=1

0= 10 o 002 o v(e)- D 1 0K

f'(r). . f'(r). ,
V£r) = ( )r = == ( )r [given] = f (r) =r
r r r

On integrating w.r.t. r,

-1 : . .
flr)= P + ¢, where c is some integration constant

r
Now, " f(1)=0

.. Now, vector along the tangent to the curve is given by




5. CSE 2015
('pl(xl ylz)=X2+y2+zz_9l @2 (XI ylz) =X2+y2_3_z

Now, V1= 2Xi +2] +22k & Vo= 2xi +2yj —k
(V(-pl)(Z,—l,Z)z 4;-2]*-412 (V(PZ)(Z,—1,2)= 4?-2]-k\

Now, both V@1 & V ¢, are normals to the given surfaces so, the angle between the two is given by

(vd)l )2,—1,2 ) (V(bz )2,—1,2

cos 0 =

‘(Vd)l)(z,fl,z) ‘(V(I)Z )2,71,2‘

16+4-4 16 4 8
cos0=———; cosf=——; B=Cc0S ———

J36 /21 J21x6 321
CSE 2015 Q6

Let @i(x, y, 2) =M —uyz—(A+2)x=0
Qax, y,2) =4y + 22— 4=0

Now, grad @1 = V@1 ={2Ax— (A + 2)} I+ (—uz) j - uylz
grad o= Vo =8xyi +4x2 | — 322k
Now, angle between @; & @; at (1, -1, 2) is given

i} grad¢, - grad¢, |
|grad¢1||grad<|>2||(1'71’2)

cos 6

((zx—x—z)—zuj+u|2)-(—8f+4j+12k‘)
JO =2 +(-2u) +n2 64 +16+144

= 0=-8A-2)-8u+12u = -2A+u=0= 2A-pu=4..(1)

cos 90° =

Also point (1, -1, 2), lies on @i(x, y, z)
SOAN+2u-A-2=0{p=1

s from (1), (A =E
2

7.2013 CSE
Fo=ti+2 -tk

Now, ‘;—: = 2ti + 2] —3t%k




ar

dt

ar
dt

=d=2+2]-3k

t=1

=b=-21+2]-3k

t=—1

Now, the angle between the tangents @ & b is,

ab -4+4+9 9 1
cos B = —;Ccos 0= ;c0s0=—; 0=cos | —

|a|.‘b Ja+a+9a+4+9 17 17
8.2012 IFOS

UsSX+y+z2,v=xX2+y’+22,W=yz+2x+ Xy
Now,gradu=f+i+l€
grad v = 2xi +2yj + 22k
gradw=(z+y)f+(z+x)j+(x+y)l€
Now,
P K
gradvxgradw=| 2X 2y 27

Z+y Z+X X+Yy

A

gradvxgradw=2[(xy +y? =22 =xz) | +(Z+2zy—xX2—xy) | +(xz+x*—yz-y*)Kk]
Now, grad u . (gradvx grad w) = 2[xy + y>* =22 —xz+ 2> + 2y — x> —xy + x2+ x* —yz—y*] =0
Now, .. gradu, gradv & grad w are coplanar.

10 CSE 2010
f,y)=x*y>+xy
Directional Derivative at (2, 1) is given by (V)@ 1

A= (2P +y) T+ (3 Y 4X) |
(), 1 = 51 +14]

. . T . -
Now, A unit vector which makes an angle § with x — axis is

d = rcosOi +rsin6j; a = cos—i +sin—j;;a = 1f+£j
3 3 2 2

.. D.D. in the direction of unit vector (&) is= (V)(Zl) -a= (5f+14j)-(%f+§ ]J = g+7\/§

.. Now, vector along the tangent to the curve is




11.IFOS 2010
V =xy2l +22 | +x2K
V2 = x4+ 2% + x4
" D.D.of V2= VV 2= (2xy* + 2x2%) 1 + (Ax3 + 42%3) | + (2zy* + 4233 k
D.D.of V2 at(2,0,3)=3241 +48k ...(1)
Now, Let p1=x*+y?*+ 72— 14

Now, normal to the surface ¢, is given by

Vi = 2Xi +2y] + 22K
(v¢1)(3,2,1)=2[3f+2j+|2:| = a (say)
. Req D.D. of V2 in the directional & is given by

6l+4J+2k) 324x6+16x27x2 972+432 1404

J36:16+4  2+4s1 4

(3240 +48k) (

12. CSE 2009

I Let 1 = 42%x — 3x%y?2?

V1= (422 — 6xy22%) | +-6x%yz> | + (1222 — 6x%yz) k
(Vp1)o, 1,2 =(32-48)1 +96 ] +(96—48)k

(V)a 1,2=—-161 +96 ] +48 k

Now, D.D. of @ in the direction of z-axis is = (V @1) 2, -12) = 48
II. Let @, = x?yz + 4x2°

Dpa = (2xyz +42%) 1| +x%2 | + (x%y + 8xz) K
(Vo)u,2,1=(-4+4) 1 + ] +(-2+8) k

(Va)u, 21 = j+6K

Now, D.D. of ¢, in the direction of 20 — j—ZIZ is
(ZI -] —2k)

Jf (-2

. Now, vector along the tangent to the curve is




DIVERGENCE
8.c FIOS 2015

let f=fi+f,j+fk
v-(qﬁ) = v-(¢fli”+¢f2j+¢f312)=

=05+ g2 B Sy a—¢3-[a¢f %y 0

x oyl a

-9t 2 y), 2
—ax[f(x) j+ay(f(r) )+ [f(r) j
¥

=f(r) x [+—Xx§}+x—2f(r)+fr)F— }
r r r r

2 2 2
+ 210 +£ 0 F—%}Z—zf'(r)
r Fir r

2
=f(r) {g—r—s} + f'(r)x iz (R +y*+2)
r r r

v.[ﬂrj - () +f0) 2
r r

To verify stated:-
From (1),

V-(of )=(Vo)- T+¢(V- ) .(a)

Here ¢ = m, f
r

(V) f =(v@j-r
oX\_ r oy\ r oy\ r
=Hr f(r)—+f(r) —x?} {yf(r) £(r)- y}

| =

0 0 0
&(¢f1)+5(¢f2)+8_2(¢f3)

+ f3]+¢{
z

o

OX

NP

oy oz

}




{—f (- (= } } = {f'(r)r—f(r)}-h T, e 10

T : S
(Vo) T = £/(r)- f(r)

Now, ¢(v-F)=fTr)[v.r] T 1414

o(v-F) = 210

Now, - (V) f +o(V-f)= f’(r)+§f(r)

S V. (f(r) j f’(r)+§f(r) Verified

1. 5e 2018

F=x +Yj+2zK

div[ f(r)F] = v.{xf(r)f+yf(r)j+zf (r)R}
o 8 8
= &(Xf (r) +5yf (r) +§Zf (r)j

- X f'(r)§+ f(r)+y72f’(r)+ f(r) + éf’(r)+ £(r)

f'(r)

i {C+y?+ 22} + 3 (r)
= F'(r) x r? +3f(r)
r

div[f(r)F] =r f'(r)+3f(r)

Now, V- (Laj =V (r*r)=(Vrd)- 7+ (V. r)—{ —3r- —} F+r°x3
r r

= —3I’75(I7-F)+3I’73=—3r‘5-r2+3r‘3; V(sz =0
r
2. 2013 CSE

2 — — n-1 F _ n-2 =| _ n-2 =\ _ n-2 4 n-2 =
V(r")-V.V(r")-V-{nr -F}_V-{nr Fl=nv-{r r}-n[(Vr )-F+r (V-r)}

:n[{(n—z)r”x%}-?+3r”‘2}: n[(n—Z Jriir? +3r" ] ni(n=2)r"2+3r" 2 =nr"™2[n—-2+3]

V2(r)=n(n+1)rm
Q4. 2010 IFOS




:v.{_.

V2f(r)=V-V (f(r)=V - {f’(r)-;}

= Hl f"(r)+ f'(r)><_—21}><i]l?+§ f(r)
r r r r

{using Vf(r) = f'(r)x%}
f (r) 3

v2f(r)={%f"(r)w(r);—i}x%+§f'(r) -2 ()

VeF(r = f"(r)+§f(r)

CURL
.0 0 0 ~ 0 2 0 ~ 0
7(a). V. (UixV)=|i—+]—+k— [(GxV)=1.—(UxV —(UxV)+k.—(UGxV
(a) (UxV) ('ax”af aZJ(uxv) |6X(uxv)+jay(uxv)+ az(u><v)
n{ﬂ ov ol ﬂ} sl OV ou A{ﬂ v ol ﬂ}
=1UX—4+—xVi+ JqUX—+—xV+KUx—+—xV
OX OX oy oy oL oz
o OV ~OU s OV 20U ~ OV ~oU
=[| = +[|—v}+ Ju—|+| J—V +{ku—}+{k—v
OX X oy oy 0z oz
_a0U _.0u _~ou OV NG _ A OV
=[VI—}+ V]— +{vk— —[m—}— uj— —[u k—}
OX oy Z OX oy oz

V.(0xV)=v.curl 0—d.curl v

Let W=wi +W, | +Wg;K

|Q) >

<
Il
=1
X
=
1]
o =

OX oy oz
H— YW XWg —ZW,  XWy — ZW,

= 2Wi +2W, | + 2wsk

Curl V =2w

(i) div V=V =i(zw2 yw3)+g(xw3 — 2w )+ — (2w — Xy )
ox ay oz

divv=0




5(e). F =[y@—z@]f+(z@—x@jj+(x@—y@]ﬁ

oz oy ox oz oy =~ ox
Now,
Pk
FrxVo=|x y z =f{y?—z@}+j{z?—x?}ﬂ?{x@—y?}
% o o z oy X z oy X
oXx oy oz

FVo=F = F—(fxV¢)=0
op o op o o 0

Now, IE.F:xya——xz—+ YZ— — Xy +XZ—— Yz
z

oy OX oz oy OX
Fr=0

Eyve_00, 00 20 30 b % 2 2 b 20 2 20
OX 0z Ox oy oy OX oy Oz 0L oy O  oX

FVo=0.. F—(fxV¢)=F.r =F.V$=0
Q2. V=vi+V,]+Vk
Curl (curl V) = Vx(VxV) =V(V¥)=(V.V)¥ [Using @x (b xc)=b(ac)-(ab)]
=V(div) -V
Curl (curl V) =grad (div V) = —V2V
8. let F=FRi+Fj+Fk

A

Pk

crl E=|L & 9 s R +j{3|:1—ﬁ|:3}+|2 3IZZ—QFl
ox oy oz oy oz 0oz OX OX oy
R R R

Curl (curl F)=

\%)lQ) —
%l@) =>

]
9
OX

o/ oF, oOF O 0 0
Z3_ 2 1 —F,-—F
OX oy

A, '3

oy 0r 0L OoX




2 F ) o o),
oy\ ox oy oz\ 6z OX
i 0°F; 9°F, [8°F, °R o0 O°F, °Fy (%R O°F,
oyor 72 ox2  oxoy X0z ox2 oy?  oyor
2 2 2 2 2 2
curl (curl F)=i 8F2+8F3 i 8F2+6F1 +K ﬁJrﬁ
OyoX 00X oyoz  oxoy oxoz  oyoz
2 2 2 2 2 2
ir 62F1+6 l;l ile IZ2+8 IZZ L0le 53+a F23
oy oz oz OX OX oy

j 0| 0F OF +j3{@+ﬁ}+ﬁﬁ Cli i}
oyl oz  ox or| ox oy

o o> b
o oy? a2

19k k2 f3+jﬁ+|2ﬁ .(F1|A+sz°+ngA)—VZIE
ox "oy

](Flh R i+ Fsk)

Curl (curl F)=grad (div F)- V?F
9. Given uf =gradv.
wcurl (uf ) =0= Vx(uf ) =0
= (Vx f')u+vax f=0 [using V x(9A) = (V) x A+¢(Vx A)]
= uf (Vx )+ f.(V+f)=0
= uf curl f+0=0 [ra(bxa)=0]
= feurl f =0

10. (1) Vx(rnF):(Vrn)xf+rn(VxF)

]k
=(nr”‘1%}<?+r“x§ % % =nr”‘1(er)+r”><0=0+0
X y z

curl (r”r)zo.-. r"F is irrotational for any antitreaty value of n




(2) V.(r”f):Vr”.FH”(V.r) =r{nr |:|} F+r"x3 =nr"2(F.F)+3r" =nr" +3r"

V.(r”F) =(n+3)r" . r"F issolo dial only if n = -3.

11. Let f=fi+f,j+fk, G=gi+0,]+0sK

Now,
]k
fxg=|f, f, fa|=(f03— f30,)1 +(f30;— f105) ] +( 0, — f,0; )k
0 092 03
] i K
= 0 0 0
(Fxg)=| < 9 <
curl (F<g) ox oy o
fa03— 30, a0, — 195 f19,— fr0
~| ¢ 09y af1 09y 8fz 09y 093 dgs  ofy
=14 f —f,=—-—= — ==, + f, =4+ — A
{16y ayz 2ay 6y 37, 6291 17> a93 (A)
g+ k)

Now, calculating the I compliment of RHS, we get

f(V.6) =01 (V.T)+(aV) f, - (V)

09y a92 093 ofy | oy 8f3 ofy ofy Ml (09 . 99 09;
_ 2 Bs|_o )M My s M 0, g, %
{ + 01 + + 0= X +0; +g3 pe o 2~ oy 35

ox oy oz ox oy oz oy
09, 0g; of, 6f3 of; of;
18y+ 17 8yg 91 _ay92+_az 03
09, 0g; of, 8f3 of 6f1 691 09, 09,
¢ £ M3 M, O g, P, B F (B
18y+1az 8yg 91 ayg 93 oy 38y 37, (B)

From (A) & (B)
The coefficients of I are same for both LHS & RHS

Similarly, the coeff. of | & K can also be shown equal.

.. The identity is proved.

Now, f =Xi +2j + YK, G=Vyi+2K.
"

fixg=Ix z y:zzf(yz—xz)j—yzkA
y 0 z

<




K
9
0z

Q)lQ) —_
u%lQ) —

NX

..oeurl (fxg)z
22 y2-xz -yz
curl (fx@):(x—z)f+22j+(—z)l2
divg=1 divf=1

6 o 2 ~ o ~
+ZEJ(X| +2)+ yk) =yl +1j

+z—+y§}(yf+ 212) =271 + yk

S RHS= f.1-G.l+yi+zj—zi —yk
=Xi +2j+yk—yi —zK+yi + Z] — i — yK
RHS = (x—2)i +22] — 2k

From (A) & (B):

curl (fxg)=fdivg—gdivf +(gv)f—(Fv)g

(A)




Line Integral & Green's Theorem

Part-1
Ex 1. Show that F :(2xy+23)f+ x?]+3xz%K is a conservative force. Hence, find the scalar

potential. Also find the work done in moving a particle of unit mass in the force field from
(L-2,1) to (3,1,4). [6c 2018 IFoS]

] ik

= _vxE=| & 9 9_i(0- 2_3,2) 1 4+ (2x—2x)K

Sol. curl F =V xF = ™ 5 =i(0 O)+(32 3z )]+(2X 2x)k
2xy+z3 x2  3xz?

Curl F=0.. F isaconservative force . So 3 a scalar potential ¢ s.t F =grad ¢

= (2xy+ 23)f+x2i+3xzzlzza—¢f+a—¢j+a—¢l2
oy oy oz
. o9 3 0 _ o2 80 . 2
So—==2 (1), — =3x".....(2), —=3xz°.....(3
o =2y ze(l) o (2) o, =3 (3)

On integrating (1), (2) & (3) w.r.t x, y & z respectively we get

o(x,y,2)= X2y +23x + f (v.2)

o(x,y,2)= X2y + 9(x2) where f(x, y, z), g(x, z) & h(x, y) are into constants
o(xy,2)=x2° +h(xy)

Appropriately choosing the values as, f(y,z)=0, g(x,z)= xz3, h(x,y)= x2y

We have, ¢(x, y,z)=x2y+xz3 eee(A)

Now, Work done by a particle of unit from P(1, -2, 1) to Q(3, 1, 4) is given by

Q
W=[Fdr ; W=[(v¢)dr
P P

W= | o=[o(xy.2) [, =0(3L4)~$(L-21) =9+3x64—{-2+I} = 202 units.
i -2

Xi +yj + 2K

Ex 2. For the vector A= > T
X“+y +2

examine if A is an irrotational vector. Then determine ¢

such that A=V ¢,

X+ Y+ K
A=
X“+y°+12

P




Curl A=

N Sl)lQ) >

]
0
o
X

x2+y2+22 X2+ 2

+Z x2+y2+22

<M< %|Q) —

—2zy 2zy A —22X N 2xz2

=i + + ] 5
(x2+y2+zz) (x2+y2+22)

(x2+y2+zz)2 (x2+y2+22)2 ?

A —2Xxy N 2Xy

(x2+y2+22)2 (x2+y2+22)

2

Curl A=0.. Aisirrotational. So, 3 a scalar potential ¢ s.t A=V¢

Lo X %_ Y P 0B

= (1) 5 wen(2); S
OX x2+y2+z2 @) 2 2) 0z x2+y2+z

y X+ y2+z
Integrating (1), (2) & (3) w.r.t x, y & z respectively
(1>(x,y,z)=%log(x2 +y?+ 22)+ f(y.z)

o(x,y,2) :%Iog(x2 +y2+ 22)+ a(x.y) ¢ where fly, z), glx, z) & h(x, y) are integ. constants

(1)(x,y,z)—%log(x2 +y? +22)+h(x, y)

Taking Appropriate values of f(y,z)=g(x,z)=h(x,y)=0 .. ¢(x,y,z)=%log(x2+y2+zz)

Q1. For what value of a,b,c is the vector field

V =(4x-3y+az)i +(bx+3y+52) j+(4x+cy+3z)l€ irrotational? Hence, express V as the
gradient of a scalar function ¢ . Determine ¢.
Hint: Put curl V = (c—5)f—(4—a)j+(b+3)|2=0, get c=5 a=4, b=-3.
-V = (—4x—3y +42)i +(—3x+3y +52) | + (4x+ 5y +32)k
V=Vgp= %=(—4x—3y+4z), %=(—3x+3y+52), @=(4x+5y+3z)
OX oy oz
On integrating; and comparing three expressions for ¢ after taking integration constants appropriately as

f(y, z)=gy2+5yz+gzz, g(z,x)=—2x2+4xz+gzz, h(x, y)=—2x2—3xy+gy2,we get

2

Scalar potential as; ¢ = —2x° +g Y’ + g 7> —3xy +4xz +5yz




Part 2: LINE INTEGRAL
Ex 1. If F =3xyl —y?] determine the value of Ilf -df where C is the curve y =2x? inthe Xy plane

from (0,0) to (1,2).

Solution.
The curve lies in Xy plane, so z=0. z can never be taken as independent variable z is a dependent

variable. Now, out of xand Y, and one variable can be taken as independent.

e Suppose X is taken as independent variable

y=2x",dy=4xdx, F-dF=3xydx—y’dy =6x’dx—4x*-4xdx = (6x° —16x° )dx
6 1

_162 ] =
6 0

So, lf =j' ~16x° dx=6X7:1

0

7

6

0

o If y is taken as independent variable then X can be expressed in terms of y as x = \/g

y 2 3 2
dy. So, f-dr =3xydx—y?dy =3y f dy - y?dy = ( y-y ]dy
2,/ / 2 2\/ J

2
N/

Ak

3

2
T v . 3 y
So, | f -dF reduces to a definite integral = [| =y —y? |dy == y* — -
J g !by yjy IS

Ex 2. Find the value of I[(X +y? ) dx + (X2 = y) dy} taken in the counter-clockwise sense along the closed
C

0

curve C formed by straight line y = X and curve y* = x°.

Solution.

y
A

> X

0(0,0)
The curve C consists of chord OA and curved part AO as shown in figure.
Equation of OA is y = X and curved partis y® = x*.
Along chord OA, X can be taken as independent variable and y = X.

If-df:(x+ yz)dx+(x2—y)dy :(x+x2)dx+(x2 —x)dx = 2x%dx




Along OA, x varies from 0 to 1. On curved part AO, let y be taken as independent variable & dependent

variable x canbe putas; X = ya/z,dx = g ymdy.

dF = (x+y?)dx+(x* —y)dy =(y** +y? )3y]/2dy+(y —y)dy = (y3+gy5/2+gy2—yjdy

y varies from 1 to 0.
1 0 3 3
E.dr=[F.dr+ [ F-dF = [2xdx+ ( 0,352, 30 jd
U; ] ! !y Yy oy |dy

1 0

2 s 14,3 7/2 15 1,
==X +=y'+ +-y =
3 4y 7y 2y 2y N

Note: If the integral is carried out in clockwise direction. The answer will differ only in sign.

= 1
[ﬁ F .dr in clockwise direction = — .
< 84

Ex 3. Evaluate the line integral J'If~dF where F =(x+2y)i+(2y—x) ] and Cis curvein Xy plane
Cc

consisting of the straight lines from (0,0) to (1,0) and then to (3,4).
Solution.

Yy

(3.4)

o % @o

C, is straight line from (0,0) to (1,0) i.e. y=0, C, is straight line from (1,0) to (3,4).

ie. y—0= (z gj (x-1) or, y=2x-2

So, along C,,y =0,dy =0 (x is an independent variable); F -dr = xdx
Along C,;y=2x—2,dy =2dx (let us take x as indepe.) F-d =(x+2y)dx+(2y—x)dy
on C,, F-dr =(x+2(2x-2))dx+(2(2x~-2)—x)-2dx = (11x—12) dx

—

1 3 2 3
So, [F-dF = [ F-dF + [ F-dF = [xdx+ [(11x-12)dx =~ + (1—1x2—12xJ =205
c C, c, 0 1 2, 2 1
Ex 4. Evaluate [Ijlf F where F = (x2 + yz)f—nyj , where curve C is a rectangle in the Xy plane
C
bounded by y=0,x=a,y=b,x=0.

Solution.
A

P




The curve C as shown in figure consists of four pieces of smooth curves C,,C,,C, & C,.
F-dr =(x*+y?) dx—2xydy

On C,,y=0,dy=0,F -dF =x%dx, On C,,x=a,dx =0, F -dF =—2aydy

on C3,y=b,dy=0,ﬁ-df=(x2+b2)dx, On C,,x=0,dx=0,F-dF =0

fiF-dr jF dr+j|: dr+jF dr+Ilf-dF:Tx2
Cq Cy 0

a

o'—-,z:

aydy+f x +b2 dx+IO dy

3 0 3 3
+[—ay2]b+ Xoibix| =2 _an?— & _ap? = 2ap?
0 3 3 3

a

3

0
Ex 5. Find the total work done in moving a particle in a force field given by F = 3xyi —5zj +10xk

alongthe curve x=t>+1,y=2t*,z=t> fromt=1to t=2.
Solution.
On curve C, the coordinates X, Y,z are expressed in terms of parameter t.

X=t+1,dx=2tdt; y=2t*,dy=4tdt; z=t,dz=3t°dt; t variesfromt=1to t=2.
F-dr = 3xydx —5zdy +10xdz =3(t? +1)- 2t° - 2tdt - 5t*4tdt +10(t* +1)- 3¢t
= (12t° +10t* +12t° + 30t* ) dt

6 5 4 3
So,w=jﬁ-dr=j2(12t5+10t4+12t3+30t2)dt= 128 110t +12t 130t | =303
! 1 6 5 4 3

d

Ex6.If F = (3x2 + 6y) | —14yzj + 20xz%K . Evaluate j F -dF where C is a straight line joining (0,0,0)
to (111).

Solution. Equation of straight line joining (0,0,0) to (1,1,1) is given by )1(_8 = I_OO = i_(()) =1, where
t is parameter.
In parametric form equation of curve is given by
X=t=dx=dt;y=t=dy=dt; z=t=dz=dt ;t varies from 0 to 1.
F-dr =(3x* +6Y)dx—14yzdy + 20xz°dz = (20t° ~11t* + 6t ) dt

1 1

= 11 13
[ F-dr = [(20t°~11t* +6t)dit —[St +3t J
C 0 3 0
2 2

Ex 7. Calculate jlf .dF where F = zy 1 - 2X > ], where C is the semi-circle r =~/a’ —x* .

X*+y X*+y

Solution. The curve C is the semi-circle; y =+/a® — x*
Parametric form: x=acos@ = dx=-asin@d@;y =asind = dy =acosfd@; @ varies from0to

E.dr y2dx — x2dy azsinzH(—asin@)d@—(azcoszﬁ)-acosade
.dr = —

A . —a(sin® @ +cos’0)d6
X2 +y a




J‘If-df'z—a]['(sin39+c0539) :—aj5|n 0do — ajcos 0do
C 0
/2

—2ajsm 0do— O(Slnce Icos 0do = 0) \/_\/\/__ 3

2dx : : .
Ex 8. Evaluate I% where C is the quarter of the astroid x =acos’t,y =asin’t from the
+y*

point (a,0) to the point (0,a).
Solution.

»
"<

(0.a)

»
X

@)
Xx=acos’t = dx =-3acos’tsintdt ; y = asin’t = dy = 3asin’ t costdt
(x,y) varies from (a,0) to (0,a); So, t varies from 0 to 77/2.
2y - ydx @ cos®t(3asin’ tcost)dt —(a®sint)-(—3acos’ tsint )dt
X7 4y a5/3(cos5t+sin5t)

The integrand 2

=3a*?sin®tcos’ tdt
The line integral reduces to

i 2 2 43 lyzlyz _ 3ra’?

3a*° j sin?tcos® tdt = 3a e T

Ex 9. Find the circulation of the field F =—x?yi +xy?] +(y3 - XS)IZ around the curve C, where C is the

intersection of the sphere X+ Yy®+2? =25 and the plane z=3. The orientation of the curve C is

counterclockwise when viewed from above.
Solution.

X
If:—xzyf+xy2j+(y3—x3)I2

C is the curve of intersection of surfaces; X* + y> +z° =25,z2=3.So, x>+ y* =16




If-df:xzydx+xy2dy+(y3—x3)dz
For curve C, z=3,dz=0. So []jlf-dfzf—xzydx+xy2dy
Let x=4c0sd,y=4sind

27 27
[ﬁlf .dr = j (256c052 0sin? 6d 6 + 256 cos? Hsin’ 9)d0 - 512] sin?@cos? 0do
0

/2
_512x4jsm 0cos? 6do —2048|Z|§|7 —1287

Ex 10. If ¢ =2x2yz, F = xyi —z%yj + X%k and C is the curve x=2t,y =t%,z=t> from t =0 and t =1
. Evaluate the line integrals (a) j #dr (b) j F xdr.
C C

Solution. (a) Along C,¢=2x?yz =2(2t)"-t?-t* =8t", F =2ti +t* ]+t ; dr:(2f+2tj+3tZ|2)dt
h £ on . o o A 16 . 12 -

j¢dr=j8t7(2| +2tj+3t2k)dt =i [16t7dt+ j[16t°dt + K [ 24t°t = 2f +—j+—k

C 0 0 0 0

(b) Along C, F = xyi — z2yj + x?k = 2t —t® ] + 4tk

] kK
Fxdr =2t —t° 4t =(-3t" -8t°)i +(8t" —6t°) j+(4t* +2t° )k

2 2t 3t
- N ‘ ; 47. 5. 46
({derzul(—m“’ *)dt+ ] £8t2—6t )dt+k £4t +2t°)dt S+ oK

Ex 10. Evaluate I(yz + zz)dx+(z2 + xz)dy+(x2 + yz)dz where C is the part for which z >0 of the
C

intersection of the surfaces X* + Yy + z° = 4x, x> + y* = 2x and curve beings at the origin and runs at first

in the positive octant.
Solution.

x

The C is the intersection of the two surfaces (X —1)2 +y® =1 (Cylinder) & z° = 2x (Parabolic cylinder)
The parametric equation of C is given as

— - 2 - dx = —2sin @ 7
X=1+c0s@=2cos" 6/2; dx =-2sin Acoséd@




y=sin6’=25in6/0036/; dy =cos@dé, z=4/2(1+cose)=2c0392; dz=—sin%d9

)dx+(z +X )dy+(x2+y2)dz

(4sm ~cos? —+4cos gj(—Zsingcos§d0j+(4cosz§+4cos4§jcosﬁd9

+| 4cos* —+4S|n Qcos Q —sing do
2 2 2

So, the Ilne integral becomes

T(y2+zz)dx+(22+x2)dy+(x2+y2)dz

= —I 4| sin? Qcosz Q+cosz 9 sin 0d0+4j cos’ 9 1+cos’ 4 cosadé —4I cos’ Qsingde
- 2 2 2 et 2 2 et 2 2
The first and third integral vanishes since, the integrand is an odd function

So, integral reduces to | =4I coszg[1+ cos® g)cosede = J'(Zcos2 g)(2+2cos2 chosede

;‘,'—.N ;‘,'—.N

(1+cosd)-(3+cosd)cosHdo = Ic0539+4cosze+3cosed9

/2 /2

cos 9d9+4fcos 0d0+3_[c050d9 chos ¢9d0+16j cos 0d0+6j cosodé

0+16-—+0=47r
4

Ex 11. Find the integral j(y+z)dx+(z+x)dy+(x+y)dz where C is the circle

C
X*+y*+z7°=a’,x+y+2=0.
Solution.

X

m(y+z)dx+(z+x)dy+(x+ y)dz :mydx+zdx+zdy+xdy+xdz+ydz :md(xy+ yz+2x)=0
The integral is an exact differential. i.e. F =V 4. So, mlf .dF =0
Ex 12. Evaluate Ixzysdx+dy+ zdz where C is the circle x* +y*=R?,z=0.

C

Solution. X =Rcosd,dx=Rsinddé; y=Rsind,dy =Rcosfdé




2z 2
| =f)(x2y®dx +dy + zdz) = [ R?cos? 8- R®sin® @(~Rsin0)do+(fid| y+*
[ﬁ(xy X+ dy + zdz) I cos sin® 9(—Rsin ) +[ﬁ (y+2j

0

27 7/2 5/13 6
=—R° [ cos? fsin* 0d0+0 =—-4R° [ sin* Ocos? 0d6 =—4R° b I
0 0 2|Z- 8

Ex 13. Evaluate _[Rdf along the curve Xx*+y’=1z=1 from (0,11) to (L,0,1) if
C

A=(yz+2x)i +xzj+(xy+22)K .

Solution. The curve C is the circle of radius 1 with the centre at (0,0,1) lying in a plane parallel to xy

plane. F-dF =(yz+2x)dx+xzdy +(xy +2z)dz =d (xyz+x2 + 22)

F-dr is an exact differential. So, line integral _[If -dr is independent of curve joining initial and final
Cc

points; J.If.dF:J.d (xyz+x2 +22) =[xyz+x2 +22](1'0'1) =1
C

(0,L1)

Ex 14. Evaluate _[c yzdx + zxdy + xydz where C is the arc of curve X =bcost,y =bsint,z = ;—t from
T

the point it intersects z =0 to the point it intersects z=a.
Solution.

y

The curve C is a spiral given by x =bcost,y =bsint,z= ;—t

A
Since, z varies from z=0 to z=a, hence, t varies from0to 2
2w
. ab? .
The line integral jc(yzdx+zxdy+>wdz) =jcd(xyz)=[xyz] {;tsmtcostl =0

Ex 15. Evaluate L y?dx+z%dy +x°dz where C is the curve of intersection of the sphere

x> +y?+2"=a” and the cylinder x*+y?=ax(a>0,z2>0) integrated anticlockwise when viewed

from the origin.
Solution.

Gn




2
. . . a a
C is the curve of intersection of X+ y* = ax:(x—EJ +y° :Z’XZ +y*+z72=a’

=7’ +ax=a’ =7’ =-a(x-a)

Let X=E+ECOSG :>dx=—gsin9d0; y:EsinH :dyzgcosﬁdﬁ
2 2 2 2 2

ZZ:a(a—x):a 2_ 2050 :azsinzg So, z:asinQ:dz=Ecost6;9 varies from 0 to
2 2 2 2 2 2

2r.
The line integral | :Iyzdx+zzdy+x2dz

27 2 27 2 2z 2
_I—S|n 9(—Esm9d9Jde+I (1- cose)zcosedmj 1+cose)2§cos%de

327r 327r

_O+Z£(cos¢9 cos 9)d0+—j.coss‘yda_—j.cosé’de——fcos 9d9+—jcosS—d9

2 Ve
=-a° j cos’ 0d9+a3jcos5 gdg (¢=0/2) :_T+O =
0 0

Part-3: Green’s Theorem

Ex 1. Verify Green's theorem in the plane for Dj(xy+ Xz)dx+ x’dy where C is the closed curve
-

of the region bounded by y = x and x* =4ay.
Solution.

y

(4a,4a)

y=x x? = 4ay

e Here Mdx+ Ndy = (xy+ xz)dx+ x*dy

M =xy+x2:>a—M:x, N=x*=-—=2x
OX
Let us first evaluate the double integral over Region R bounded by x* =4ay (curve C )& y=x

(curve C,)as

N oM X 4a 2 3 4 |42
”[———)dxdy I | xdydx:jx(x—%]dx:%_lz_ao _

0 x2/4a 0

16a°
3

* Now let us evaluate the line integral dex+ Ndy on closed curve C.

<an




The curve Cis a piecewise smooth curve consisting of C, and C,.
2
X X
eOn C,y=—, dy=—adx
vV =4 Y " 2a

2 2 X, 2 X 3 X
de+Ndy:(xy+x )dx+x dy =| —+x° |[dX+ X —dx =| —-—+x° |dX
4a 2a 4 a

X varies from O to 4a on C,.
3 4a

So, I Mdx + Ndy :T{i—XS+X2de :ix4 +X_ _8a®+ 64a° _ 208a’
z )\ 4a 16a 3, R
eOn C,, y=x,dy=dx
Mdx + Ndy = (xy + xz)dx +x°dy =3x%dx
X varies from 4a to 0.
p 0
So, I Mdx + Ndy = jszdx = X3La =—64a’
208 16 ,

* So, Ide+Ndy jde+Ndy+Ide+Ndy_Ta3—64a3:§a

Since, ”(———] dxdy = [ﬁMdX+ Ndy; So, Green's theorem is verified.

Ex 2. Apply Green's theorem in the plane to evaluate [ﬁ{(y—sm X) dx +cos Xdy} where Cis the
©

triangle enclosed by the lines y=0,x=7, 7y =2X.
Solution.

(=.2)

Y

y=0 C,

Here, Mdx+ Ndy = (y —sin x)dx+cos xdy

So, M:y—sinx,aﬂzl, N =cos X, a—N=—sinx
oy OX

According to Green's theorem, deX+ Ndy = ”[@—%jd dy

where R is the region enclosed by the piece wise smooth curve C consisting of curve Cl(y = 0),

curve C,(x=7) curve C,(y =2x) as shown in Figure.




So, ”[@_@] EI —sinx—1)dxdy = Icosx x|’ 2 Y

2
I( ~1-7— cos—+ ] Y ”y =-2-r
5 T 2 4

0

Ex3.If F :(Xz—yz)f+2xyj and T = Xi + Y], find the value of [ﬁ(x2 —yz)dx+2xydy around
the rectangular boundary x=0,x=a,y=0 and y=D.

Solution.
y
A
C3
(0.b) < (a.b)
c.Y
R Ac,
0 - C, (a,0) -
Here the curve C s a piecewise smooth curve consisting of C,(y=0),C,(x=2a),C,(y=b) &
C,(x=0).

The region bounded by C is shown in figure.

mlf -dr :[ﬁ(x2 L yz)dx+2xydy =dex+ Ndy
Here, M =x*—y?, %\A:—Zy,N =2xy, aa—I;I:Zy
Applying Green's theorem
N oM he "
JiMdx+ Ndy = [ X oy dxdy :4”ydxdy:4af ydy = 2ab?
00 0

Ex 4. Use Green's theorem to evaluate the integral mxzdx+(x+ yz)dy , Where Cis the closed

curve given by Yy =0,y =X and y* =2—X in the first quadrant, oriented counter clockwise.
Solution.




y>=2-x y=X
¥ |
D
g
y

The given integral is
mxzdx+(x+ yz)dy:dex+ Ndy; So, M =x% N =x+Yy?

According to Green's theorem, dex+ Ndy = ﬂ[ﬂ—%j dxdy

oy

(R is the region of integration as shown in Figure)

So [ﬁxzdx+(x+ ?)d :ded —Iljz_yzdxd —.[1(2— 2—y)dy =| 2 _ﬁ_ﬁl_z
, y*)dy y=[,[ " oy =] yyy—yszo—6

Ex5.Let F :( — Xy ) +y?] . Using Green's theorem, evaluate the line integral jlf -dr, where
C
C is the positively oriented closed curve which is the boundary of the region enclosed by the x-

axis and the semi-circle y =+/1— x* in the upper half plane.
Solution.

Y

F=(X"—xy*)T+y*]
So,F-dF-( y) +y?)
According to Green's theorem

mF -dr = H(@—%jd dy (R is the region of integration shown in Figure)

:J' I 2xydydx —J.x[ ]de =Illx(1—x2)dx:0ﬁ f (x)=0if f(x)isoddfunction}

—a

Ex 6. Evaluate by Green's theorem m(cos Xsin y—xy)dx+sin xcosydy where C is the circle
X’ +y*=a’.
Solution.




]
NP

The given integral is
Eﬁ(cos xsin y —xy ) dx +sin x cos ydy

C
Where curve Cis a circle of radius a and centered at origin enclosing region R as shown in Figure.

. oM . oN
Here M =cos xsin y—xy:>5=cosxcosy—x; N =sin xcosy:>6—=cosxcosy
X

Using Green's theorem, deXJr Ndy = ”‘[@—%J dxdy
alr

= [[ xdxdy = Hrcos@rdedr_jr [sin@]." dr=0

1
Ex 7. Show that the area bounded by a simple closed curve C is given by medy— ydx . Hence

find the area of the ellipse x=acosé,y=bsiné.
Solution.

According to Green's theorem, if R is a plane region bounded by a simple closed curve C as shown
in Figure according to the Green's Theorem

.”(@ —ﬂj dxdy = []j Mdx + Ndy

Letus put M =—y/2,N=x/2

So, —ijdy ydx = _” (—j——[—ljdxdy ”dxdy Area of region R bounded by C.
So, area of region bounded by simple closed curve Cis given by

1

medy— ydx

For as ellipse, x=acos@ = dx=-asindd@, y =asind = dy =acos&dd

xdy — ydx = acos b cos §—bsin §(—asin 8)dd = abd g

2 2z
So, area of region bounded by ellipse = 1D‘]Xdy— ydx = 1 I abdg = labj' dé = rab
2 25 2




xdy — ydx
Ex 8. Evaluate the line integral [ﬁ% taken in the positive direction over any closed «
X2 +y
C

continuous curve C with the origin inside it.
Solution.

[

The given integral is

EﬁM [Mdx+Ndy Here, M =— o N=— "
X“+y X*+y? X“+y

Since, M & N are not continuous at origin O. Hence, Green's theorem will not hold good for the

given curve C.

Let us enclose the origin by a circle I' of radius €

Consider the region R enclosed by curve C' made of C,C,,I',C,.

M and N are continuous function of X and Yy having continuous partial derivatives 88_'\; and %—T
inR.

M 6[ y j (X2+Y) y2y = =Y I U7 R

oy y\ Ky (x +y ) (x2+y2)2 (x2+y2)2

N ( j x+y —X-2X  y?2_y?
x x| X +y? x +y (Xz+yz)2
So, line integral

ngdx+Ndy jj[@—@jd dy

:[ﬁde+ Ndy:_[de+ Ndy + | Mdx+ Ndy+j|v|dx+ Ndy+j|v|dx+ Ndy =0
C C c, r o

But dex+ Ndyz—j Mdx + Ndy :dex+ Ndy=_[de+ Ndy+jde+ Ndy =0
o c, C c r

So, jde+ Ndy:—j Mdx + Ndy (1)
C r

In the figure curve I is oriented in negative direction.
Onthecurve I', x=ec0s@ = dx=—esinddd

y =esind = dy =e cosfd o

@ varies from 27 to 0.

dey—ydx B j’- €cos@-ecosfdh—esinf(—esing)do ¢

XZ + y2 GZ

r 2z




So, from (1) jde+ Ndy = —j Mdx + Ndy = 27
C r

Ex 9. Using the line integral, compute the area of the loop of Descarte's folium x° + y® =3xy.
Solution.

2
Putting y =1tX in the equation of folium X+yi=3xy; x= 3t3;y: 3t -
1+t 1+t
Let tzlztanﬁ where @ varies from 0to /2. So, t varies from O to .
X
3(1-2t° 3(2t—t*
dx:(—z)dt, dy:(—z)
(1+t3) (1+t3)
1 9% tkdt 3
Area of loop A== | xdy —ydx =— ==
p 2([yy 3 of 2

xdy — ydx
Ex 10. Evaluate D‘]dzy—élydz round the circle x* + y* =a’ in the positive direction using Green's

X" +4y

C
theorem.
xdy — ydx
Solution. The given line integral is D‘]M = m Mdx + Ndy
< X" +4y

Comparing the two integrals,
y oM xXP—4y* X244y’
X2 +4y*’ oy __(xz +4y2)2 B (x2 +4y2)2
XN —xP+4y°
x> +4y® " ox (x* +4y2)2
The curve C is the circle of radius a. R is the region enclosed by the circle x*+y*=a*.Mand N

are not continuous at origin. So, the Green's theorem will not hold good for the given line integral.
Proceeds similarly as done earlier.

0 f—esinf(—esing)de
Ide+ Ndy=—Ide+Ndy: J.Xdy ydx _ IECOS EZCOS g €sin 2(_ EZSIH )
c T LX2+4y? 5 e cos“f+4¢e sin“ 0
(put Xx=€cosd,y=esind)

_I 1 4o _T sec’ 6
o Cos* @+4sin’ 6 . 1+4tan® 0

/2 0

4 2 2
[0 do-4] 9 gg_af L _4l. a2
oy 1+4tan® 0 o 1+4tan® g 1+4t 2

o0

=7

0




PREVIOUS YEARS QUESTIONS ANALYSIS: Application of curl and vector integration
Q1. For what value of a,b,c is the vector field

V =(4x—3y+az)i +(bx+3y+5z) ] +(4x+cy +32)k irrotational? Hence, express V as the
gradient of a scalar function ¢. Determine ¢ . [5¢c UPSC CSE 2020]

Hint: Refer example 3 page 3 part-1

Q2. Let V =V,i +V,] +V;K . Show that curl (curlV)=grad(divV)—V?V . [8a UPSC CSE 2018]
Hint: refer examples solved for Gradient, div and curl.

Q3. Show that F :(2xy+ 23)f+ x?]+3xz%K is a conservative force. Hence, find the scalar
potential. Also find the work done in moving a particle of unit mass in the force field from
(1-2,1) to (3,1,4). [6c 2018 IFoS] & [8a 2010 IFoS]

Hint: Refer example 1 part-1 page 1

Q4. For  what values of the constants a,b and C the vector
\7:(x+y+az)f+(bx+2y—z)j+(—x+cy+22)l€ is irrotational. Find the divergence in

cylindrical coordinates of this vector with these values. [5d UPSC CSE 2017]
Hint: Refer example 3 page 2 part-1

Q5. A vector field is given by F = (X2 + xy2)|5+(y2 + X2y) ] . Verify that the field F is irrorational

or not. Find the scalar potential. [7c UPSC CSE 2015]
Hint: take help from example 1 page 1 part-1

Q6. Examine if the vector field defined by F =2xyz’l + X223j+3X2y22I2 is irrotational. If so, find

the scalar potential ¢ such that F =grad¢. [6d 2015 IFoS]
Hint: take help from example 1 page 1 part-1

Xi +yj + zK
such that A=V ¢. [6d 2014 IFoS]
Hint: Refer example 2 part-1 page 1

Q7. For the vector A= examine if A is an irrotational vector. Then determine ¢

Q12. Show that the vector field defined by the vector function V = Xyz(sz+XzT+xyIZ) is
conservative. [1f UPSC CSE 2010] Hint: take help from example 1 page 1 part-1

Line integral
i +Xj
X2+y?

Q1. Evaluate Ilf -dr, where C is an arbitrary closed curve in the xy-plane and F=
C

UPSC 6(c) CSE 2021




a
|

Q2. For the vector function A, where ,5\=(3x2 +6y) —14yzj —14yzj + 20xz%K, calculate
.[C A-dr from (0,0,0) to (1,1,1) along the following paths:

(i) x=t,y=t*,z=t®

(ii) Straight lines joining (0,0,0) to (1,0,0) thento (1,1,0) and then to (1,1,1)

(iii) Straight line joining (0,0,0) to (1,1,1)

Is the result same in all the cases? Explain the reason. [6b UPSC CSE 2020]

Q3. Find the circulation of F round the curve C, where F = (2X+ yz)f+(3y—4x) ] and Cis the

curve y =X’ from (0,0) to (1,1) and the curve y* = x from (1,1) to (0,0). [6b UPSC CSE 2019]
(23)
Q4. Evaluate J‘ (10X4 —2xy° )dx—3x2y2dy along the path x* —6xy*® =4y?. [Se 2019 IFoS]

(©0)

Q5. Evaluate J.e‘x(sinydx+cosydy), where C is the rectangle with vertices
C

(0,0),(x, o),(n, %Mo, %) . [8c UPSC CSE 2015]

GREEN’S THEOREM
Q1. Verify Green's theorem in the plane for m(3xz—8y2)dx+(4y—6xy)dy, where C is the

¢

boundary curve of the region defined by x=0,y=0, x+y=1.[6c UPSC CSE 2022]

-

Q2. Let F = xy27+(y+ X) ] . Integrate (Vx If)-lz over the region in the first quadrant bounded
by the curves y = x* and Y = X using Green's theorem. [8c UPSE CSE 2018]

Q3. Using Green's theorem, evaluate the jF(F)~dF counterclockwise  where
C

F(T)= (X2 + y2)|p+<x2 - y2) jand dr =dxi +dyj] and the curve C is the boundary of the region
R= {(x, yi<y<2- xz} . [8¢c UPSE CSE 2017]

Q4. Verify Green's theorem in the plane for [ﬂ[(nyr yz)dx+ dey] where Cis the closed curve
of the region bounded by y =X and y = x’. [8b UPSE CSE 2013]

Q5. Find the value of the line integral over a circular path given by x* +y*=a* z=0, where the
vector field, F =(siny)i +x(L1+cosy) j.[8b 2012 IFoS]

Q6. Verify Green's theorem in the plane for m[(BXZ —8y2)dx+(4y—6xy)dy}, where C is the
C

boundary of the region enclosed by the curves y = \/; and y = x*. [8c 2011 IFoS]




Q7. Verify Green's theorem for e *sinydx+e ™ cosydy the path of integration being the

boundary of the square whose vertices are (0,0),(z/2,0),(7/2,7/2) and (0,7/2). [8c UPSE

CSE 2010]

Q8. Use Green's theorem in a plane to evaluate the integral, I[(ZXZ - yz)dx+(x2 + yz)dy],
C

where C is the boundary of the surface in the xy-plane enclosed by, y =0 and the semi-circle

y =+/1—x2 . [8b 2012 IFoS]

Q9. If A=2yi —zj—x?k and S is the surface of the parabolic cylinder y® =8X in the first octant
bounded by the planes y =4,z =6, evaluate the surface integral, ”A AdS . [8c 2010 IFoS]
S

2 2

y

X
Q10. Find the work done in moving the particle once round the ellipse £+E =1z=0 under

a
|

the field of force given by F =(2x—y+2) +(x+ y— 22) j+(3x—2y+4z)l€ . [8a UPSE CSE 2009]

LINE INTEGRAL

1. Hint: " The given curve C is closed & bounded. Also, F= y2| == x12 P=— y > & Q== X >
X“+y X*+y X +y
P & Q are continuous & posses partial derivatives
So, here Green's theorem in xy-plane is applicable; Ide+ Qdy = ” oy dxdy
: ox oy

2 2\ _ 2 AN
@:(X Y ) )Z'ZX _ y:-x* - @:(X ) ) );.Zy - X'y ~; use in above integral.
OX (x2+y2) (x2+y2) ay (x2+y2) (x2+y2)

1 1
2. Hint: (i) j Adr = j (3t? + 6t2)dt —14(t%)(t*)d (%) + 20(t)(t*)?d (t°) = j ot’dt — 28t°dt + 60t°dt =5
t=0 0

(i) y=0,z=0,dy=0,dz=0; x=0to1.
IA.dF = j. (3x? +6(0))dx —14(0)(0)(0) + 20(x)(0?)?(0) =1

x=0

For (10,0) to (4,1,0);x=12z=0,dx=0,dz=0;y=0to1; jA.dr:o
For (11,0) to (111);x=1y=1dx=0,dy=0;z=0to1; [Adr=20/3
Therefore, total IA.dF =1+0+20/3=23/3

(iii) in parametric form; x=t, y=t, z=t and then solve IA.df =13/3

~

3. F=(2x+y°)i +(3y—4x) ]




Now, the given region R is closed & bounded by the curve C=C; + C» y=x

And here, F=Pi +Qj , when (1. 1)
> C
P=2x+y?, Q=3y-4x a/

C,
ie., dex+dy j(@—@ X 0, 0) (1, 0)
R oy x =y
@:2)/,@ .
oy OX

1

Now, J(2x+y)|+(3y 4x) ] j f(4 2y)dxdy——j +4y+y] dx

Xny x=0

1
:—j {4\/;+X—(4x2 +x4)}dx = :_{4xgxg+x_2_4x_3_x_5} =_{§+l_ﬂ_l}
0

x=0

{80+15—40—6} _ 49
30 30

4. Question ; dex +Qdy we get,P = 10x* — 2xy® & Q = -3x¥?dy.. F= (10x4 - 2xy3)f + (—3x2y2) i

] j K
- Circle F= L dy |1 0i +0]+k(—6xy” +6xy°) = OF +0j+0k
OX oy
10x* —2xy* -3x’y* 0
So, F=V¢; where ¢is scalar potential % =10x* —2xy* & % -3x%y?,

O(x, y) = 2 = xy* + £ (y) & §(x, ¥) = — xy* + g(x),
After taking suitable values of constants we get, ¢(x, y) = 2x° — x%?

(21 (21
(2)

I Fdr = J' do = [o(x, y)](oo)—6474= 60

(0,0) (0,0)

5 |1 :J'e’X (siny dx + cos y dy)

Here, the region R is bounded by the closed curve C=C;+ C,+ C3+ C4 [0 TCJ
"2

= a 2~ C
Here, F=P1 +Qj, where ‘3 (ng
P=e*siny & Q =e™cosy; which are continuous & possesses partial C
derivatives G, ?

So, here Green’s theorem in xy plane is applicable

dex +Qdy = H(@ —%}dxdy




Q

L —=-e7Ccosy & &® =—e " cosy

OX
n w2
a j X(sin ydx + cos y dy) = _f j —2e*cosy dxdy= -2 j e [siny]"d —2[—e’*]:: 2(e-1)
c =0 y=0
GREEN’S THEOREM
1.1= Dﬁ(sz —~8y®)dx + 4y —6xy)dy , N
where ¢ is bounded by x=0, y=0& x+y =1 G,

From integral we have, P = 3x’— 8y, Q = 4y — 6xy

As, the curve C = Cy + C, + Cs is closed (0, 0)

Enclosing the region R & also P & Q are continuous f. & possess partial derivatives.
So, green theorem in plane is applicable here,

0Q oP
i.e., I = [[|Pdx + Qdy = (———dedy ............... (A)
f n2-£
Now, For C1:y=0,dy=0;x=0to1
ForCauy=1-x dy=-dx; x=11t00

ForC3:x=0,dx=0;y=1t00

1 0 0
Pdx +Qdy = j 3x2dx + _[ {SX2 ~8(1-x)" —4(1-x)+6x(1- x)} + I 4ydy
x=0 x=1 y=1

1 1

= [x3]2+ j {3x2 —8+16x—8x? —4+4x+6x—6x2}dx + [Zsz: =1+ j (—11x2 +26x—12)dx—2

x=0 x=0
3 0
=1+ -1 a3 —1ox| =1+ 134 10= 4 M0
3 1 3 3 3
Now,
5Q P 1 1-x 2 1-x 1
H[———dedy = | [ (-6y+16y)dxdy =10 j{ } dx =5 [ (1-x)"dx =5
x=0y=0 0 x=0
5 5 , o
= ?[0—1] = 3 . Green’s Theorem is verified.
2.
] ik
F=xyll+(y+x)j;Curl F = R Of +0j +(1-2xy)k
! x oy o
xy> y+x 0




Curl F = (1-2xy)k .. (Curl F).k =1-2xy

Now, By Green’s Theorem, H(V x If).lzdxdy = IPdX + Qdy

U{a(y(;X)‘ (o’ }dxdy_ﬂ[@_@)dxd

~Q=y+x & P = xy? y=x
Now, the curve C = C1 + C»
deX—i-Qdy = dex+Qdy+ J Pdx+Qdy  ----- (A) G, y=x

1 2 C‘1
Now, For C1y = x*= dy = 2xdx; x=0to1l

Ide+Qdy = j‘ x><x“dx+(x2 +x).2xdx
C, x=0

ForC,:y=x%, dy=dx; x:1to

3

0

x* I
dex+Qdy_ Ix3dx+2xdx—{7+x2} =—==1

1
Dc']de+Qdy = g—g =
3. 1
E = (x2+y2)f+(x2—y2)j&dF:dxf+dyj : (0,2)

C is boundary of region R = {(x,y) : 1 <y <2 —x°} (-1, 1) (1,1
As, the region is closed & bounded so,

Here Green’s Theorem is applicable
Also, here, P = x2+ y* & Q = x> — y? ( )

Which are cont. f & possess partial derivative.

2=y

e, Ddex+Qdy-”(———yjdxdy Zf I X —y)dxdy

y=lx=—\[2-y

=2 j{%_yx} = dy =2 i [(Z;Zy)—y«/ﬂ—(z;zy)—y\/ﬂ}dy =4 yiy\/ﬂ dy

Putt=y-1;dt=dy




—4j(t+1)\/1j dt

Put t = Sin%0; dt = 2sin® Cos0do,

A
=_4 f (1+ sin? 9)cos¢9.23in 0cosOdo

6=0

; 7 AR
=-8 J'siné?cos2 0do + J'sinsecosz 0do |= -

1+

0=0 6=0

N~
N\H

N |-

+

M\w
N~
N | o1
X
Nlw ([N -
NN

——42 4 —4><21+2
3 15 3 5

8 7 _-56
Pdx+Qdy = —ox ! = ~2°
[ﬁ O =357 1

4.1 = [ﬁ(xy+ yz)dx+ x?dy ; ¢ is the bounded region betweeny = x & y = x?

As, the region R is closed & bounded, & here P = xy + y*& Q = 32

x%; which are cont. f & posses partial derivative.

So, Green’s Theorem is applicable

e EﬁF’dX+Qdy = H[aQ g;jd Ay creeennn. (A) C,

ForCiy=x*> —dy—2xdx;x:0to1 (0, 0)

(L 1)

ForCaxy=xdy=dx;x:1to0.

Ddex +Qdy = I Pdx + Qdy + I Pdx + Qdy
C C C,

i 3, U4 2 h 2 2 Xt X x* " x> X ° 31
= j{(x +X )dx+x .2xdx}+ J' (2x dx + X dx): {Z+€+2_} +{2?+—} = Z+§+(_l) ==
= 0

x=0 x=1 4

H{@_@J = Jl' j 2x—(x+2y)dxdy = j' I 2x—(x—2y)dxdy = j[xy—yz]zxz dx

x=0 y:)(2 x=0 y:)(2 x=0

= sz—xz—(x3—x4)}dx = {%S—X?Al = %—% = _5284 = ;—; UdeX+Qdy jj(@—%dedy

x=0

5.F =sinyi +x(1+cosy)] :Sisx*+y*=a’&z=0




Clearly, the region R is closed & bounded
& here, P =siny, Q =x (1 + cos y); which are continuous & possess partial derivative

. Here, Green’s Theorem is applicable

ie., [ﬂde +Qdy = J‘J'(@ - %)dxdy

U’]de+Qdy=ﬂ((1+ cosy)—cosy)dxdy = ”dxdy =1 % a2
R R
_[sin ydx + x(1+cosx)dy = ma’

6.1 :Uj{(?;xz —8y2)dx+(4y—6xy)dy} ; where C is the boundary between y = \/x &y =x?
As the region R is closed & bounded by C = C; + C, & here

P = 3x2—8y? Q = 4y — 6xy; which are cont. & possess partial

derivative

.. By Green’s Theorem,

U‘jpdx +Qdy =] (@ —@jdxdy A) =V
oy

Now, For C;; y=x% dy=2xdx; x:0to1

For Cy; yzﬁ:dyzidx; X:1t00. ©0,0)

2Jx
" D‘dex+ Qdy = _[ Pdx + Qdy + _[ Pdx + Qdy
C C C,

U‘]pdx +Qdy = j‘ {(3x* —8x*)dx + (4x* — 6x°)2xdx]} + j). {(SXZ —8x)dx + (4«/;— GX&)% dx}
< iy x=1 X

= j (—20x4 +8x3+3x2)dx+ j)‘ (3X2 —11X+2)dx :[_4)(5 +2X4+X3]Z [ s 11x°

x=0 x=1 2

=—4+2+1+{0 (1—%+2J} -1-3 121 %4_11—3/2

N | W

2 ¥ 2 !
”[aQ and dy = jj —6y +16y)dxdy = 10[0{ } dx_5j(x x“Ydx =5 {%_%} -

Xny X=l X2 x=0 0




.. Green’s Theorem verified.

7.Given |= He’x sinydx+e *cosydy; the region is the square with . C,
R (0-—J ® <€
vertices 2
C, Y R
o (59} (33)2 (3
2 2 2 2 »- >
As, the region R is bounded by the curve ©0,0) G [qu]
C=C1+Cy;+C3+Cs&here P=e*siny & Q=e"*cosy B

So, here by Green’s Theorem,

gjpdx+Qdy=j£a —E]d dy N
c R oy
For C;: y=0, dy=0; x:0 to g
T T
For C,: Xx=—, dx=0; :0 to —
2 2 y 2
T T
For C,: ==, dy=0 X:— to 0
3 y 5 y 5
For C,: x=0, dx=0; y:g to 0
/2 /2
Udex+Qdy_ .[ 0dx + .f e ™2 cos ydy + J' e *dx + J' cos ydx
x=0 y=0 X=m/2 y=n/2

T

T ™
=e 2[+siny]§’2+[fe X]X/R/ZJF[SIHV] 2= _E—[l—e_“/2]+(0—l) —2e 2-2 =2(e‘“/2—1)
/2

/2 /2
J‘J.(— - —jdxdy = J. J. {—efx cosy—e *cos y}dxdy
x=0y=0
/2 7/2 /2 22 /2
=2 J- I e % cos ydxdy =2 I cos y[—e_xJ =2 J (e_“/2 —1)COS y = 2(e‘“/2 —l)
x=0y=0 y=0 0 y=0

" EE] Pdx + Qdy = ”(@ — %}dxdy

8. I=I(2x -y )dx+(x +y2)dy;Cis the boundary in xy plane y=\/1—x2 &y=0

(¢}




=

N
Cd

-1,0) C (1, 0)

Clearly the region R is closed & bounded by curve c=c, +¢, & here P=2x*> —y? & Q=x%+y?;

which are cont. & posses partial derivative So, here Green’s Theorem is applicable here,
oP

ie., D]de+Qdy=”[%—E xdy=”(2x+2y)dxdy
c R R

[Jdex+Qdy=2“(x+ y)dxdy =2 } ]E r(cos6+sin®)x rdrd®
c R r=00=0

2 F . 2% . T
=3 j (cose+sm6)d6=§ I sin6do { cosezo}
=0 0=0 0=0
_ 4
3

9. A=2yi—-7z}-x%k;S;y?*=8x = 8x—Yy?*=0 & bounded by planesy =4 &z =6,
VS 81 —2yj And dS:dydzz dydz

Here i = ‘A=
VS|" \J64+ay? 8
/84 +4y?

~

1.N

. . (8T-2y) dyd
.[IA.ndS:.y[.Z[(Zyl _ZJ_XZk)’\(/64+4y2 x 3232
|64+ 4y?
S Rl | BTy

y=012z=0

J16+Yy°

2 6
8+2)dz = 2{82 +%} = 2[48 + 18]= 132 units

0

yz 4 g é
(8+z)x[7} dz :Z-[

0 z=0

10. F=(2x—y+2)i +(x+y-2%)]+(3x—2y +42)k

X2 y2 C xz 2

. . . 2 y

The given ellipse is, —+-—=1,z=0 (0, 4) —+—=
25 16 ’ —{ 16

As, the given surface is closed & bounded by thec=c1 + ¢, /- o

So, that Stoke's theorem is applicable -5, 4)\C>~ﬁ 3.0




ie., U]ﬁ.dT :chul F.Ads

Now,
i i K
Curl F= % % % —i-2-22)+ j{1-3)+K{1+1)
3x—-2y+4z

2X—y+7 X+y-17°

Curl F= —2(1+2)i —2]+2k

dzdy _ dxdy

Ak
~.from (1),
[f]lfﬁ =J' J'dedyz 2 x Area of ellipse=2 x x5 x 4=40x [..Area of ellipse = = ab]

Hence, A=Kk ..dS =

Xy




P

Surface Integral
Ex 1. Evaluate Ilf AdS where E = yzi + 2xj + xyk and S is that part of the surface of the sphere

X® +y? +z* = a® which lies in the first octant.

Solution.

The sphere belongs to a family of level surface givenby S=x"+y“+2z°=c
VS xi+yj+zk

So, the unit vector fi at any point P is given by; fi= =
VS| a
Ak=2
a
- IRBE Xi +yj + zk
F-ﬁ:(yzi+zxj+xyk)-( )=3xyz
a a
ds = dXdy — 2 dxdy
z
y
X2 + y2 — a2
R
= . 3xyz a
F-AdS = dxdy 3xydxdy
a
J.IE ndS = 3J.J. Xy dx dy (The region of integration of double integration given by R)
S
4 7/2

7/2 a
BI J'r cos@sin@drdé = 3'[{ } cosHsin@d@:s% I cos@singdeo
00 0

0

- g{sinz QT/Z - §a4
4 2

0

Ex 2. Evaluate
| = ” xdydz + dzdx + xz*dxdy




where S is the part of sphere x* +y*+z? =a” in the first octant.

Solution.
z

X
Sis the part of sphere x*+y? + 22 =a? lying the first octant as shown in fig.

S belongs to family of level surface given by S : x*+ Yo+ 7% = constant
Outward drawn unit normal vector to S,
VS xi+yj+zk

|vs| a
f.k|=Z
a
dg = XAy
Akl z

The given integral can be written as
” xdydz + dzdx + xz?dxdy = J(xf+ j+ szIZ)-ﬁdS = j F-AdS

a a

I ﬂ. (¥ +y+xz®) dxdy = J-I[\/ax:iy x(a’ =x* —y*) |dxdy

(R is the region of integration as shown in fig.)
y

F-i (XI +j+X22k) (szi(x%erxf)

X

I x*dxdy 2 dxdly

3 al-x -y gmdyd“gx(az—xz—y)




=j”j2 rsioszfdé’dlurjil”f r Smé; d0dr+-?ﬁfr2 a’-r? cos@d@dr
7T a2
ZZ-([ = dH}[—’—az—r dr+I (a’r®—r*)adr

ra® a‘zm ,rt r*) ga® za? 288
+| a +
6 4 15
Ex 3. Evaluate the integral IxzyzdS where S is the hemisphere z =@’ —x* -y .
S

Ty
\]/

S is the surface of hemisphere zZ = \/az —~x*—y%

An outward drawn unit normal vector is S.
A=xi+Yyj+zk
-k

Solution.

ds =

J.xzyzdS ” dxdy
(Ris the reg|on of double integration as shown in fig.)
r°sin®@cos’ @

:LJ'dedy I_[ o

5

/2
Ir—sm 6 cos® 6dodr
0

dadr




Ex 4. Evaluate _[X dS where S is the portion of the sphere x* + y*+z* =1 lying in the first octant.

Solution.
z

X +y?=1

S is the surface of sphere lying in the first octant as shown in fig. and belongs to family of level
surface S:x*+Yy*+2z° = constant.
An outward drawn unit normal vector to S.

A VS o 2 n
A=——=X+Yy]+zK

VS|

A-K=2z
dxdy 1 1

dS = —= ==dxdy = ——dxdy
n-k J1-x2—y?

(Ris the region of double integration as shown in fig. )

y
R
X
17/2 2
:J-J- r Cosgdedr
00 V1- r2
1 2
:j r_ar=2
0 1—r2 4
Ex 5. Evaluate the integral J-Jl—xz—yzdS where S is the hemisphere z =4/1-x* —y? .
S

Solution.

S is the surface of hemisphere z =4/1-x* —y°

P




An outward drawn unit normal vector to S
A=xi+Yyj+zK
_ dxdy dxdy

ds = % = 2
ﬁ-k‘ z

R

S
= H dxdy = Area of region R
R

(Ris the region of double integration as shown in fig.)

Ex 6. Evaluate the surface integral mZCOSGdS over the surface or sphere X*+y’+2°=a’

where @ is the inclination of normal at any point of the sphere with the Z axis.
Solution.

A

z k
A A

X Sz

Sis the surface of sphere consisting of

upper hemisphere S,:z = \/m and

lower hemisphere S, :z = \/m as shown in fig.
e Over S,,dScos@ =dxdy,z = m

zcos@dS :\/mdxdy

e Over S,,dS cosd =dS cos( 7z —¢)=—dS cos ¢ = —dxdy
zcosads = \/m dxdy

Since projection of S, and S, is samei.e. X’ +y*=a’

I zcos@dsS = J zcos@ds
S, S,




So, jzcos@ds :Izcoseds +jzcos¢9d8
S S S,

= ZH«/aZ —x*—y?dxdy (R is the region of integration as shown in fig.)
R

alr a 4

=2H\/a2—r2rd9dr :47zj\/a2—r2rdr AP
00 0

3

Ex 7. Evaluate jlf~ﬁd8 where F=zi+xj—3y?zk and S is the surface of the cylinder
S

x* +y? = a’ along with the bases included in the first octant between z=0 & z=b.
Solution.

z S,

e

X

The cylinder is a piecewise smooth surface consisting of S;,S, and S; where S, is lower base

S,

z=0, S, is upper base z =D, S, is the curved surface of cylinder, as shown in figures.
A is an outward drwan normal to surface.

z

ds

adg

jﬁﬁdS: ﬁ.ﬁd3+jﬁ-ﬁd5+ F.AdS
S S, S, S,

eOn S,,i=—Kk,z=0,dS = dxdy
:If-(—k):3y22=0 (as z=0on S,)

eOn S,,fi=Kk,z=b,dS = dxdy
F-A=3y’z=-3by?

Gn




So, j F-AdS :—3b” y2dxdy
S,

72

7/2 a 7/2 472
. . . 3
=-3b | [r*sin’odrdo =-3b | T sun29d9:—§ba“js.n29de - - ra'h
5% o L4, 4 5 16
e The curved surface S, belongs to family of level surface S = x? + y?= constant
The unit normal vector to the surface S, is given by:V—S _ X+
VS| a
B . o (XY
eFor §,, F -ﬁ:(ZI +x1—3y22k)-u ==(z2x+xy)
a a

e dS =adfdz
*On S;,x=acosd,y=asind

- .1 . )
So, F-n=—[azcos€+azsm9c039]=zcos¢9+asm6’cos€
a

The surface integral becomes
b 7/2
I F-AdS :I I (zcos@+asin@cosd)addz
S, 00
2

b b b
=a_[[zsin9—§00326?}dz:aj(z+Esz:a “EF.S =a—b(a+b)
) 4 T2 PorZ IR

o [F-nds=[F-nds+[F-nds+[F-Ads -3 e+ PL(asb)
d : { 18 2

5

Ex 8. Evaluate j(x+ y+2z)(ax+by+cz)dS where S is the surface of region x*+y?<10<z<1
S

Solution.

Ur

_—
N |

o

X
Sis the surface bounding the region x> +y*<1& 0<z<1

<




Sis a piece wise smooth surface consisting of
S, : lower base z=0

S,:upperbase z=1

S, : curved surface of cylinder, x* +y? =1 as shown in fig.
y

N
NI

2:1

X

On S,:z=0,dS =dxdy
j(x+ y+2z)(ax+by+cz)dS

—H x+y)(ax+by)dxdy
_jj ax’ +(a-+b) xy +by? dxdy

(
(
i

Il
-bl'-‘ O'—.g’ O'—iﬁ

(ar cos® @+(a+b)r’sin@cosd+br’sin H)rdrdé’

4 1
(acos2 0+(a+Db)sin@cosd +bsin’ 6’)% do

0
2z

I a0052¢9+bsin29+(a+b)sinecos¢9d9)
0

27 27
:—aj.cos2 0d9+9-'|'cos2 0d9+(a+b)-jsinacosﬁd9
4 0 4 0 4 0

=(a+b)%

S, X +y’ =1




On S, :z=1dS = dxdy
J-(x+ y+2)(ax+by+cz)ds

S

:H X+ y+2)(ax+by +c)dxdy

_J'J' X+ Yy)(ax+by) dxdy+j lj'y a+c)xdxdy+_1[ 1_[Xz(b+c)ydydx+cj-_|'dxdy
1 h-y? L

(a+b)4+c;z

On S;:x=cosd,y=sing,dS =dfdz,
I(x+ y+2z)(ax+by+cz)ds

~(a+b) ZCT”
X+Yy+z)(ax+by+cz)dS
J( ) )
S
[+

S S, S

T 27C
=(a+b)= 2 (a+b) 1 +c;z+(a+b)7r+T

:g(a+b)7r+sc—ﬂ
2 3

Ex 9. Evaluate IXdS where S is the entire surface of solid bounded by the cylinder x* +y* =a’
S

and z=0, z=X+2.

Solution.

S is piece wise smooth surface consisting of
S, : Base of cylinder, z=0

S, :roof of cylinder, z=x+2

S, : curved surface of cylinder X* +y* =a’
On S,, dS =dxdy




S, belongs to family of level surface given by S, :z—X = constant.

So, outwards drawn unit normal to S,

So, J.de:\/EJa' aJ.y xdxdy =0
Sz

,LW
On S;, dS =ad@dz, x=acosd, y=asiné
Z variesfrom0to X+2 i.e.0to 2+acosé

27 2+acosd

deS:_[ j acosfadzdo
S

0 0

2
:az'f0 cosd-(2+acosd)do
=2a’ .[02” cosddo +a’ .[02” cos” 6do
=ra’ (_[02” cosAdo = 0)
So, UjsF-ﬁds =LlF -ﬁdS+Lz F-ﬁdS+J‘SSF-ﬁdS = za®
Ex 9. Find the value of surface integral _U yzdxdy + xzdydz + xydxdz where S is the outer side of

the surface formed by the cylinder X* + y? =4 and the planes X=0,y=0,z2=0 & z=2.

Solution.
z

7

o

Sis a piece wisesmooth surface bounded by S;:x=0,S,:y=0,5;:2=0 & S, X%+ y2 =4,
H yzdxdy + xzdydz + xydxdz = [ﬁ( Xzl + Xy] + szZ) -AdS

S
= [J|F -nds
On S,,A=—1,dS =dydz,x=0,F-A=xz=0
So, [ F-ids =0

Sy




On S,,y=0,A=—],dS =dxdz,F-A=xy=0
So, [F-Ads =0

S
On S,,z=0,A=—k,dS =dxdy,F-A=yz=0
So, [ F-fids=0

S,

Xl +Yj

onS,,xX*+y*=4,A= ,X=2c0s6,y=2sind

x’z+xy? 4zcos’§+8cosdsin’ O
2 2

=2zc0s* 8 +4cosfsin’ @

dS =2d6adz

J‘Sd F-AdS :_”'(22 cos” 0+ 4cosdsin’ 9) 2dOdz

/2

T

So, F-i=

Ex 10. Evaluate Djlf-ﬁdS where S is the entire surface of the solid formed by

x*+y*=a’,z=x+1 and A is the outward drawn unit normal and the vector function

F=2xi—3yj+2k.
Solution.

S,

Q}(z=x+1




S is the pricewise smooth surface consisting of S,:z2=0, S,:z=x+1 and S,:x*+y’=a’
(curved surface) as shown in fig.

X2+y2=a2

dh
N

~

On S,z=0,fi=—k, F-A=-2=0
so, [ F-fidS =0

OnS,,z=x+2, = (as done in previous question)

ﬁ.ﬁ:iz(-2x+z):_(-x-1)
ds = dAXdE’ — /2dxdy
n.

(R is the region of double integration as shown in fig.)

ol

= 7ra’

S, belong to family of level surface S;: x* +y® = constant.

xdxdy = OJ

Outward drawn unit normal vector.

Ao VS _ XI +Y]

VS| a
On S, If-ﬁzé(sz—Syz), X=acosd,y=asind
dS =adé@dz

ﬁ.ﬁds:(2x2—3y2)adt9dz

<an




-a’ (20052 0 —3sin? H)dzde

Z varies fromOto x+1,i.e.0to 1+acosd
27 (1+acosd)

Iﬁ.ﬁdszj j a*(2cos® 0 -3sin’ 0) dzd6
S 0

0

= a3I02”(20052 6—3sin? 6?)d6?—a“.[02”(2cos2 6 —3sin? Q)COSHdQ

=—za’
50,¢Lﬁ-ﬁdszjsﬁ-ﬁd3+jsﬁ-ﬁd3+ _F-nds

=0+za’—ra’
=ra’(1-a)

Ex 11. If F :2yf—Zj°+X2|2 and S is the surface of the parabolic cylinder y*> =4x in the first
octant bounded by the planes Y =4 and z =6 then evaluate IIE -AdS .

Solution.

The parabolic surface as shown in fig. belong to family of level surface S =4x—y? = constant.

. VS 2i-y]
The unit normal vector to the parabolic cylinder is given by N = = Y
VS| [y?+4

F-A (2y|—21+x k) (\/y :/J4) j}i’/:‘i
. 2
n-1 =

VY +4
dydz «/ y° +4dydz

F-AdS == (4y+ yz ) dydz

So, the surface integral reduces to double integral whose region of integration R is given in fig.




o)
Jlf-ﬁdS :%J‘J‘(4y+yz)dydz
R

S
Region R is the projection of parabolic cyIinder on Yz plane

6 6
f !0 4y +yz)dydz = jzy +y22 dz :j(16+4z)dz:162+22222168

0 0
Ex 12. Evaluate J-If-ﬁdS over the entire surface of the region above Xy plane bounded by the

cone z2=x%+Yy? and the plane z=4 if F =4xzi +xyz?]+3zK .
Solution.

X
The conical surface S, as shown in the fig. belongs to a family of level surface given by

S =x*+y*—17° = constant.

VS xi+yj-zK
|VS|_\/x2+y2+z2
(Xf+ Yj—ZK) _AXPz+xy?7’ -3
\/x2+y2+zz - \/x2+y2+22

The unit normal vector to cone is given by N =

F-A= (4xzf+ xy22j+32I2)-

—Z

,/xz +y°+27°

n-k=




dxdy «/x +y +7°

nk‘

ds =

F-AdS = %(4xzz +xy’z? —322)dxdy
=(4x® +xy*z—3z) dxdy
= (4x® +xy*z—3z) dxdy
=( X2+ xy2 X2 + y? 3\/x2+y2)dxdy
So, IF~ﬁdS :LI(4X2 +xy2\/x2 +y? —3\/x2 +y? )dxdy

S
(Ris the region of integration given by projection of cone on Xy plane as shown in fig.

y
X*+y* =16
X
e
:4”x2dxdy—3'|‘j«/x2+y2dxdy; jf l}y xy® /X + y*dxdy
Y
2 4 2 4 271':.-61):1 2z 3
:4J'J'r3c0326?drd9—3'['[r2drd0:4j nl cos® 6d 6 — SJ'
00 00 0 0

2r 2r
- 256 j cos? Ad 6 — 64 j d@ = 25671287 =1287
0

0
e0n S,, fi=k, dS = dxdy

N=3z=12
F.AdS :12] j dxdy =192

""—- N

eSo, [F-ids=[F-ndS+ [ F-NdS =1287+1927 =320

S S, S,
Ex 13. Evaluate []‘](X2 + yz)dS where S is the surface of the cone z? = x* + y* bounded by z=0

& z=3.




Solution.

Upper part of a cone is given by

= w/xz +Yy? as shown in fig.

It belongs to family of level surface given by

S:\/X*+Yy? —7 = constant.

Outward drawn unit normal vector is given by
X ~ s
I+ y J—k
VS \/x2+y2 \/x2+y2

vs| X2 %
J1+ X2 + 2 u 2 2
y2 X4y

A=

ﬁ.ﬁ_i
2

ds = df‘dk}’ = /2dxdy
n-

Sis a piecewise smooth surface consisting of conical part
S, :yX*+y*—z=0and S, :z=3 as shown in fig.
e0n S, dS =+/2dxdy
So, I(x2 +y*)ds = H(x2 +y*)/2dxdy
R

S,
The region of double integration R is projection of cone X° + y2 = 7% on the Xy plane as shown

in fig.




X“+y° =9

dh
N

273 B 2/rr43 _81\/§2n _81\/5
:ﬁ!!rZ.rdrde—ﬁ!IOdG_T!de_T;T
eOn S,,z=3, dS =dxdy =rdrdéd
2, .2 T ° I’43 81°%F 81
S{(x +y )dS=Mr rdedr:.([ZOdHIZ!dH:?ﬂ
*So, I(x2+y2)d8:I(x2+y2)dS+J(x2+y2)dS :¥ﬁ+%ﬁ:%ﬁ(\/§+l)_
s 5, 5,

Ex 14. Evaluate the surface integral Id—s where S is the portion of the surface of hyperbolic
r
S

paraboloid Z=Xy cut by the cylinder x*+Yy®=1 and r is the distance from a point on the

surface to Z axis.
Solution.

Surface of hyperbolic paraboloid belongs to the family of level surface S :Xy—Z = constant.
The unit | vector to surface is given by fi= > yi+xj—k
e unit normal vector to surface is given by N = =
VS| X +y?+1
1

JX+y’+1

n-k




ds = dAng = X% + y? +1dxdy
n .

So, the surface integral reduces to a double integral

"Id_s_,”‘/x +y° +1OIOIy

R X+y

where R is the region of the integration of double integral as shown in fig. which is projection of
surface on Xy plane.

.”'V\X/%Fldxdy 27{ 1+r? —Iog(r+\/1+_rﬂ n[ﬁﬂog(la@)}

Ex 15. Evaluate Ixyz dS over the portion of X+Yy+z=a, a>0, lying in the first octant.
S

Solution.

X
S is the surface given by x+Yy+z=a in the first octant. It belong to family of level surface given
by S:X+Yy+2Z =constant as shown in fig.
Unit normal vector to the surface S
VS i+j+k
e

1

V3
ds = ‘df‘d}’ — J3dydx
So, Ixyz ds = ” xyz\/§dydx
S R

aa—x

:ﬁj I xy (a—x—y)dydx

(R is the region of double integration as shown in fig.)

A=

>

A -

<




X+y=a

Ex 16. Evaluate ”(XZ dxdy + xy dydz + yzdz dX) where S is the outer side of the pyramid formed
y
by the planer x=0,y=0,2=0 and x+y+z=a.

Solution.
z

X
Sis the piece wise smooth surface formed by
S5,:x=0.5,:y=0,S5,;:2=0,5, =x+Yy+2z=a as shownin fig.

” xzdxdy + xydydz + yzdzdx = 'U(xyh yZ ]+ X2 IZ)-(dydz | +dzdx ]+dxdyl2)
S
=I(xyf+ yz j+le2)-ﬁd8

S

F=xyi+yz]+xzk

Here, []jﬁ-ﬁds=j|f-ﬁd3+jﬁ-ﬁd3+jﬁ-ﬁd5+jﬁ-ﬁds
s S, S, Ss S,

On S,:x=0,A=—,F-A=-xy=0

jﬁ.ﬁdszo

Sy

OnS,:y=0A=—]),F-A=—yz=0




S, belongs to family of level surface
S, X+ Yy+1Z =constant
VS, i+]+k

Vs 4

A=

R 1

F-A=—=(xy+yz+zx
ﬁ( y+YZ+12X)

dS=dAXdk},=\/§dxdy
n.

J' F-AdS :H(xy+ yz + zx )dydx
S, R

(R is the region of integration as shown in fig.)
y

X+y=a

j [xy+(x+y)(a—x-y)]dydx

X

Q

O ey |

Il
QO | O—» Ot—— Ot——,d

(ax+ay —x* —y* —xy )dydx

2 3 a—X

3
axy+aL—x2y2—y?—& dx

2 2

0

a2

X —2ax? +x3+%(a—x)3 dx

N

)

Ex 17. Evaluate Ilf-ﬁdS, where F :(X+ yz)f—in+2yZI2 and S is the surface of the plane
S

X+2Y+3Z =06 in the first octant.
Solution.




X
The plane belongs to the family of level surface given by S = x+2y+3z = constant
. VS i+2]+3K
A unit vector normal to the surface is givenby A= = ]
vs| 14

ﬁﬁ:%[(x+ yz)—4x+6yz} =%[x+ y? —4x+2y(6-x-2y)| (z :§(6—x—2y)j

1

— = (12y-3x—-3y?—2x
J1_4( y y?—2xy)

ds = dXdy V14 ixdy

3

F-AdS = %(lZy—?;x—?;y2 —2xy ) dxdy

o=l

(2]

—X

2y—3x—3y2—2xy)dydx (The region of double integration is shown in

V)
[ —
'I'Il
3)
||
Wl

figure )

(0]

X+2y=6




Ex 18. Evaluate Ilf -AdS where F = yi +2xj — zZK and S is the surface of the plane 2X+y=4in @
S

the first octant cut off by the plane z=4.
Solution.

2x+y=4

z

The surface of the plane 2x+ Yy =4 belongs to family of level surface S =2Xx+ Yy = constant.
A unit vector normal to the surface
VS 2i+]

"Civs T B

a
|

The integral If-ﬁ:(yf+2xi—ZI2)-[2\/%jj
1 2
=—(2y+2X)=—(Xx+
=2y 2X) =~ (x i
+ gk s 21
A-J=——=(2i+]) J=—F=
j Jg( j) ] N

Now, taking projection of the surface on xz plane as shown in figure

d8=f3(—df:\/§dxdz
-]

2
‘AdS = —(Xx+ 5dxdz =2(x+ y)dxdz
g y)V (x+y)

2(x+4-2x)dxdz (y=4-2x from the equation of surface)
2(4—x)dxdz

Il T

So, Surface integral becomes
2
2

42 4 .
[Fonds=2[[(4-x)dwdz =2[ 4x~| dz =12[dz =48
s 00 0 2|, .




Ex 19. Evaluate the surface integral m(xf +y)+ Z|2) -AdS where S is the positive side of the cube i

formed by the plane x=0,y=0,2=0 and x=1Ly=1z=1.

Solution.
z

X
S is piece wise smooth surface consisting of

S,:x=0,5,:y=0,5;:2=0;S,:x=1S,:y=1S;:2=1 as shown in fig.
On S, :x=0,dS =dydz,A=—1,F-A=—x=0

[F-nds=0

S

2

On S,:y=0,dS =dxdz,Ai=—],F-A=—y=0
[F-nds=0
5

A

On S,:z=0,dS =dxdy,i=—k,F-A=-z=0
[F-nds=0
S

On S,:x=1dS =dydz,A=1,F-A=x=1
jﬁ.ﬁd5=jjdydz=1
S,

On S,:y=1dS=dxdz,i=],F-i=y=1
jﬁ-ﬁdS:”dxdz=1
55

On S,:z=1dS =dxdy,A=k,F-A=z=1
jﬁ-ﬁd5=”dxdy=1
SG

So, mﬁ.ﬁd5=jﬁ-ﬁd5+jﬁ-ﬁd5+jﬁ-ﬁd3+jﬁ-ﬁd3+jF”.ﬁd5+jﬁ-ﬁds
S, S, S, S, Ss Ss




Ex 20. Evaluate j(x003a+ ycos S+zcosy)dS where cosa,cos B,cosy are directional cosines «
S

of the outward drawn normal to the surfaces where S is the outer surface of the ellipsoid
2 2 2

X z .

—+y—2+—_1 lying above the Xy plane.

a® b* ¢

Solution.

y>  7?

2t

Sis the outer surface of the ellipsoid —+ — =1lying above the Xy plane.
c

a
An outward drawn unit normal vector to S is given as

A = cosal +Cos ] +Cos yk
dydz dydz
cos o

ds = = dydz=dScosa

Similarly, dxdy =dScosy
dxdz =dS cos g

I =.|.(xc05a+ycos,8+zcos;/)d8 :”xdydz+ydxdz+zdxdy

S

(H xdydz = H ydxdz = ” zdxdy = volume of ellipsoid in the above xy plane= 2?7[ abcj

So, j'(xcosﬂ+ ycos 3+zcosy)dS :3x2§abc =2rabc

S




Gauss Divergence Theorem

Few examples to understand GDT by taking different possible functions. It’ll help us in
expressing mathematical language.

Ex 1. Green's Theorem. Let ¢ and y are scalar point function which together with their

derivatives in any direction are uniform and continuous within the region V bounded by closed
surface S then

oV -V 9)-nds = [V -pVig)de
Psroof: By Gauss Diverge\r/me theorem
fIF-Ads = [v-Fde

Llet F=¢Vy —yVé
V-FE=V(Vy)-V-(yV9)

=V +VIVy) - Wi+ V. V)

=V —yV’e

so, [[[(#Vw —yV¢)-nds = [(¢V?y —yV’4)dz (1)
S \Y

Extra: Since, Vi :a—l/n/ﬁ
_99 .

Vo= e n

So, (1) can be written as

[ﬁ( a—V’—y/%jds =j(¢v2y/—wz¢)dr n(2)

<L on on v

Note: Harmonic function: A scalar function ¢ is said to be harmonic function if it satisfies
Laplace's equation V?¢ =0
If gand y both are harmonic, i.e. V¢ =V%y =0 equation (2) reduces to

oy 0P o _
Eﬁ( - wande—O.

Ex 2. Prove that

[vedz=[gnds

Proof: Let F = ¢#C where C is any arbitrary constant non zero vector(just to get an expression
like to get the target)

V-E=Vg¢.C+¢vV-C

=Vg¢-C (asV-C :O)

Applying Divergence theorem




F-AdS = jv Fdr
hereS s boundmg surface of V.
¢C-nds = [v-(¢C)dr
C-[fjpnids =C-[Vgdz
- C-UV¢dr—[ﬁ¢ﬁdS]=
Since, é'U-V¢dT—|;ﬁ¢ﬁ dS] is zero for any arbitrary non-zero vector C.
so, [Vgdr—[fjgnds =0
Hence, [Vgdr =[[jpids

—h £ o=

Ex 3. Prove that ijgdr:mﬁxgdS .

Proof: Let F = § xC where C is any arbitrary non-zero vector.

v-ﬁ:v(gxé):émmng—gmmné

=C-curlg ( curlézo)

Applying Divergence theorem

fIF-nds =[v.Fdz

:>Dj xC-AdS = jC curlgdr

:>Dj fixg)-CdS = jC curlgdr( (Axg)-éz(éx,&)-é)
Ucurlgdr fiaxgds ]

Since, Ucur gdr Uj xd dS] is zero for any arbitrary non-zero vector C,

So, jcurlgdr Uj gds

ijgd :Uj

\Y S

Exd. Let F =Xi +2y] +32K, S be the surface of the sphere X>+y®+2°=1and fi be the inward

unit normal vector to S. Then mlf -AdS is equal to?

fIF -nds =—{f)F -n'ds
Where A" is outward drawn unit normal vectortoSi.e. A=-A"
= —JV- Fdz (Gauss Divergence theorem) =—6xvolume of sphere (Since, V-F =6)=-8r




Ex 5. Let S be a closed surface for which ”f -Ado =1. Then the volume enclosed by the
S

surfaceis ?
U‘jr-ﬁds -1

= IV -fdz =1 (Using Gauss Divergence theorem)
= 3[dr=1(since, V-F=3)

Volume V :J‘drzé

Xi + yj + 2k

Ex 6. Let {(X,y,z)eRs:%SX2+y2+ZzSl}and F = for (x,y,z)eV .Let A

(x2+y2+22)2
denote the outward unit normal vector to the boundary of V and S denotes the part
1 ~
{(X, y,2) e R :x2+y? +7° :Z} of the boundary of V. Then IF -AdS is equal to?

S

Sol. Outward unit normal to boundary of V.
Xi +yj + 2k

ﬁ:—T:—2<xf+yj°+zI2)
_E xi+yjrzk) . 1
IF-ndS=ZIW-(XI+yj+Zk)dS=ZImdS

:—8de (Since,x2 +y*+7° =%onsj :—8><47z'-%:—872'

Ex 7. The value of the integral [[L F.AdS, where F =3xi +2yj+ zK and S is the closed surface
given by the planes x=0,x=1,y=0,y=2,z=0and z=3 is?

By divergence theorem

mﬁ.ﬁds:jv-lfdr :Gﬁ dxdydz =36
00

O ey

Ex 8. For any closed surface S, the surface integral mcurl F-AdS is equal to?
S

By divergence theorem

flcurl F - ids = [div(curl F)dr =0 since, V-(VxF)=0

Ex 9. For any closed surface S, the integral [ﬁf ‘AdS is equalto?
S

By Divergence theorem
mf-ﬁds = jV'Fdr = I3dr (V-F =3) =3xvolume enclosed by surface S=3V




Ex 10-. If F =axi +byj+czk,a,b,c are constants, then the integral [ﬁlf-ﬁds , S as a sphere of «
S

radius I is equal to?
By Divergence theorem

fIF-nds = [v-Fdz

S \

Where V is bounding surface of volume S.
Let F = axi +byj +czk

fIF nds =gj(axi‘+byj+cz|2)-ﬁds

= IV (axf+ byj +CZI2)dr (By Gauss divergence theorem)

=(a+b+c jdr =(a+b+c)xvolume of sphere of radius r —(a+b+c)g7rr

Ex 11. If A is the outward drawn unit normal vector to S then the integral jdivﬁdr is equal to ?
\
By Divergence theorem

[v-Fdz=[f|F-nds
So, [V-Adz =[f]A-AdS =[flds =S
\Y S S
Ex 12. Let S be the surface of the cube bounded by X=-1y=-1z=-1,x=1y=12z=1. The
integral [ﬁf—ﬁds is equal to ?

Using Divergence theorem

[ﬁr-ﬁdszjv-rdrzsjdr—3 dxdydz = 24

I—\'-_'H
I—\Q—-'H

1 11
jdxdydz =3><8”
-1 00

O L




Examples: for CSE & IFoS
Exl. S be the surface of  sphere X*+y*+z°=9. The integral

”[(x+ z)dydz +(y +z)dzdx +(x+y)dxdy | is equal to?
S

The surface element
AdS = dydz i + dxdz j + dxdy k
So, ” X+12 dydz+(y+z)dzdx+(x+y)dxdy]
J.J.[ X+2)i+(y+2) J+(x+ y)k] [dydzf+dzdxj+dxdyl2]

U‘jx+z (y+2)j+(x+y)k-nds = J'V ( X+2)1+(y+2) J+(x+Y) )dz’z'[Zdr
2x

2 (P =722

Ex 2. Use divergence theorem to evaluate J.J. x>dydz + x?ydzdx + x*zdxdy where S is the sphere
S

X*+y?+2° =1.
Solution.
I H x3dydz + x® ydzdx + x*zdxdy = Uj(x3f + X2y + xzzIZ) -AdS

= IV~(X3f + X2y + xzzlz)dz' (By Gauss Divergence theorem) = SHI x*dxdydz
2z

=5J'”rzsin29cosz¢-rzsin odrdod ¢ :SﬁJ‘r“sin3ecosz¢-d¢d0dr
000

17/2

=57rJ1‘]£r sin® @dadr _107r“' r*sin®*@dodr =107 - —J rtdr _g
00

;z 1 1
jfsinwde: 2% _ [ =§

25 5.3,
2




Ex 3. Using divergence theorem, evaluate m,&-ﬁds where A=x%+y*j+2°k and S is the
S

surface of the sphere X* +y?+2° =a’.

Solution.

Using divergence theorem
2

D‘l A-AdS :IV-Adr :3.|.(x2 +y? +22)d2' :3”E r’r?sin@drdd¢
\Y 00

O e

:3jozzj.o”sing[§}ad9d¢:gasjoz”fo”sineded :—aJ' —cos 4] d¢__ J.O”d¢=%72'a5
0

Ex 4. Evaluatem(y222f+ 222 )+ zzyzﬁ)-ﬁds

where S is the part of the sphere x* + y*+z° =a® above the Xy plane bounded by this plane.

Solution.
x> +y* =9
R
X

z

X

By divergence theorem
m(y22f+ X% + zzyZIZ)-ﬁdS = IV-(y222f+ 7%x? j + zZyZR) dr = ﬂszydedydz

2z

=m'2rcose- r2sin? @sin® ¢-r?sinodrdod¢g = 2 j r®sin® @cos @sin? ¢d pd Odr
0

O e
O 1

5SII’] 9

dr = ZJ‘arsdr = i7ra6
270 12

—271'_[ I r®sin® @cos odr —Zﬂj

0

Ex 5. Evaluate by divergence theorem the integral
J'J'S xz2dydz +(x2y— z3)dzdx+(2xy+ yzz)dxdy

Where S is the entire surface of the hemispherical region bounded by z =\/a2 —x*—y* and
z=0.

z




The surface is shown in Figure

AdS = dydzi + dxdzj + dxdyk = ” xz*dydz +(x*y — z° ) dzdx+(2xy + y*z ) dxdy
m(xz -+ (XPy=2°) j+(2y+y° z)k)-ndS

S

S is the surface of hemispherical region bounded by Z =\/a2 —x*—y? and z=0 as shown in
Figure.

IVV-<x22f+(x2y—z3)]+(2xy+ yzz)K)dr
(By Gauss Divergence theorem []jlf -AdS = IVV- Fdr)

2 a =/ ¥ a
[r?-r?singardodg = [ jf% sin6dod ¢
0 0

oY

_m. 2°+x° +y dxdydz_f
0

27a’
5

Ex6. If F :(X + y—4)| +3Xy | +(2XZ+22)|( . Evaluate L(Vx If)-ﬁdS where S is the surface of

:_{ jgmww¢_—j w%9d¢——J”¢=

the sphere x° +y* + 2> =a’ above Xy plane.

Solution.
z

| i
S_ N

A=—k
The surface Sis sphere x*+ y? +2° =a’ above XY plane as shown in Figure.

So, Sis a open surface. But, Gauss theorem applies only to surface integral on closed surface. Had
the surface S been closed, the integral LVX F -AdS would have been zero because

[(VxF-nds =[V.(VxF)dr=0
S
Since, divergence of curl F will be zero.

Sis open surface. Here we will make use of the fact that J-V x F -AdS over the closed surface will

be zero.
Consider a closed piecewise smooth surface S, consisting of spherical surface S: x* +y® +2* =a’

and S':z=0enclosing a volume V.




[ﬁ(Vxlf).ﬁdS: jv-(lef)dv =0 :ijlf-ﬁd5+jV><|f-ﬁdS=o-: v-(lef):o
S, v S s
:>IVx|f-ﬁdS=—ijlf~ﬁdS

S s

A

And On S',z=0,dS =dxdy,i=-k

» X

]
VxF = 2 i —
OX oy 0z

X*+y—-4 3xy 2xz+7°
=27 +(3y-1)k
So, V><|f~ﬁ=(—2zj+(3y—1)|2)~(—12)=—(3y—1)
So, [ VxF-fidS =—[ VxF-nds = [[(3y-1)dydx

a Jaixt
= SJ- J- ydydx—” dydx =0 - Area of base = —za’
fa @22

Note: In this problem, we have converted as integral over a curved surface to integral over a

plane surface.
Ex7. Using Gauss's divergence theorem, evaluate the integral JﬁﬁdS, where
S

F =4xzl — y2j+4y2|2 , S is the surface of the solid bounded by the sphere x* +y*+z° =10 and
the paraboloid X* +y? =z—2, and A is the outward unit normal vector to S.

Solution.
z
« X2+y?=2-2
<« X*+y?*+2z°=10 y
y
/ /N e
NV
X

4xzi — y?j +4yzk

F=4z+2y
sing Gauss divergence theorem

F-ﬁdS:jv-ﬁdr
V

o= S < T

Gn




- Ll“ " (42-+2) dadydx (dr = dxdlydz)

+y 242

~off[z ] oy

:ZH(6—5 x +y )—(x2+y2)2+y(m—x2—y2—2))dxdy

Surfaces bounding the volume are x*+y*+2°=10 & x*+Yy® =2—2 as shown in Figure.
So, curve of intersection of surfaces is given as

X*+72-2=10=1z=3

X2 4y’ =
z2=3
Putting X =rcosé, y =rsing,dxdy = rd&dr

(r is the region of integration of double integration)

mlf -AdS = 2[:]02”[(6—&2 - r4)+ rsin 9(\/10— r? —(r2 + 2))} rdodr
S
= 2_|‘01.|':”(6—5r2 - r“)rd@dr + ZJ.:J‘OZ” r2 (\/10— r? —r? —Z)Sin od odr

2z .
Now, I sin@dé =0 So, integral of second term

} Curve of intersection

2 [7r ( 10—r2 —r2— )sin@d@dr:O

FDei-

Ex 8. Let S be the surface {(X, Y, Z )e R :x*+y*+27=27> 0} ,and let A be the outward unit

5r re}l 19
6 0

[]jF -AdS = 4;zj[6r 5ré—r® |dr —47{3r -

normal to S. If F =yi + XZJ¢+(X2 + y2)|2, then evaluate the integral Ilf -AdS .

Solution.

(0,0,1)

S:x*+y*=-2(z-1)
is a paraboloid with vertex at (0, 0,1) as shown is Figure

F=yi+xj+(x*+y*)k; V-F=0




Consider a closed surface S which consists of two piecewise smooth surface S and S", where S' is
base of Paraboloid and S is paraboloid

mlf-ﬁdS:_[Vlfdr:O
z

—

F-fidS = [ F-Ads+| F-fds=0
[ F-fids=—[ F-nds
“A=-k dS =dxdy
So, [ F-fds =—[ F-fds
N

4
' do=2r
0

:—”<yf+xzj+(x2+y2)I2)-(—I2)dxdy =[] (5 +y?)dxay :Tfrzrdedr :IOZE 7
00

Ex 9. Use divergence theorem to evaluate mV-ﬁdS where V =Xzl + yj—XZZkA and is the

boundary of the region bounded by the paraboloid z = x* +y® and the plane z=4y .

Solution.
z

X
Applying Gauss divergence theorem

Uj\7~ﬁd8 = J.V-\7dr = Idr (This region of volume integration is as shown in Figure)

= J'J. jy 2 dzdxdy = ”(4y— X% — yz)dxdy

X4y
The region of integration of double integration in the projection of region Von Xy plane as shown
in Figure

<an




X+ y? =4y =X +(y-2) =4
In polar form, r =4sin @

7 dsi 4sin@
I—J'J' 4y —x* —y*)dxdy = '([4.[ (4rsin—r?)rdrde = j{—r sm@—%} do

0

w
Nl\)\l—\

T

:@j”sin“ede—mj sin 00 =122 _gz | ["sin* 6do - P2
3 ), 3 16 : 243 2x

Ex 10. Evaluate by using Gauss divergence theorem

(i) []':L(azx2 +b?y? +0222)1/2d8

(i) D‘]S(azx2 +b?y? +c222)4/2 ds
over the ellipsoid ax*+by? +cz* =1.

Solution.
Sis the ellipsoid belonging to family to level surface as shown in Figure.

S:ax® +by? +cz’ = constant
axi +byj +czk
\/azxz +b’y* +c?z°

The outward drawn unit normal vector i to S is given by i =

(i) [].](azx2 +b?y? +c22)% ds = []] F -AdS
Comparing the integrals
F-fi=(a’ +b%y +c222)%

: (axf+byj° +czl€)

202 | m2u2 L ~252\7
=(a®x® +b?y? +c?z
a’x? +b?y? +c?z? ( )

F -(axf+byj+czl2) = a?x? +b?y? +c?z?
For using Gauss Divergence theorem, F should continuous and should have continuous partial
derivatives in region V enclosed by ellipsoid S. The surface F can be taken as




F =axi +byj +czk
So, U.](azx2 +b?y? +0222)VZ ds = [].](axf+byj+c212)-ﬁd8 =.[VV-(axf+byj°+czl2)dr
S S

According to Gauss Divergence theorem
4rr(a+b+c)

Ujlf-ﬁds :IV- Fdr :(a+b+c)jvdr =(a+b+c)><volume of ellipsoid :W

(ii) []](azx2 +b?y? +c222)7% ds = Uj F -AdS
y

\alx%rby%cz2 =1
X

Comparing the integral
F-fi=(a* +b?y? +c222)_%
(axf+byj°+cz|2) 1
\/azxz +b?y® +¢%7? ) \/azxz +b?y? +¢°2?
The function F can be taken as
F=xi+Yyj+zk
A =(xf+ vl + zIQ)(axf+byj°+czl€) =ax? +by?+cz=1 (on S,ax? +by’ +cz? =1)

E.
Ul(ax2+by2+cz)ds :[ﬁ(xf+yj°+zI2)~ﬁdS =IV-(Xf+ yj+z|2)dr :3jdr

:>If-(axf+byj+cz|2):1

=F-

4
= 3xvolume of ellipsoid = i
Jabc

Note. While evaluating surface integration, we can incorporate the equation of surface.

Ex 11. Verify the divergence theorem for F=4xi — 2y? j + 2K taken over the region bounded by
x*+y*=4,7=0 and z=3.
Solution.




SZ
AT
|

| dz

iﬁ_,ﬁ

2d0

_—

0
S, 2d6

X
Let us first calculate the volume integral

F=dxi-2y?’j+z°%k;  V-F=(4-4y+2z2)

IOV- Ifdr:”j:(4—4y+22)dzdydx :H[(4—4y)z+22]z dydx :Ij(21—12y)dydx

The region of double integral is shown in Figure

2 Jax? a

”(21—12y)dydx = Zlﬂdydx—lzj j ydydx = Zlﬂdydx—o ( I f(x)dx=0if fin odd]
-2 Ja_x? -a

=84r

This volume V is bounded by the surface S which is a-piecewise smooth surface consisting of

lower base S,(z=0), upper base S,(z=3) and curved surface S\,}(X2 +y’ = 4).
y

N
L/

On S,,2=0,dS =dxdy,A=—k,F-A=0
[ F-ids=0

On S,,z=3,dS =dxdy,A=Kk,F-A=22=9
L F -AdS =9L dS =9x Area of circle of radius 2
=367




On S,x=2c0sd,y=2siné
Equation of S, belongs to family of level surface S: x* + y?=constant

An outward drawn unit normal vector

Ao VS _ Xl + ]

vs| 2
F-fi=(2x*-y®) =8cos’ 0 —sin’ 0
dS =2d@dz

£ .1ids =16 [ [*(cos? 9—sin’ 6)dzdd — 48[ (cos? —sin® 6)do
7 2 Jo 0

- 48]02”cos2 9d9—48j02”sin3 0do (joz”sinS 040 = o) — 487

The surface integral over S
fIF -nds =L F -AdS +L F -AdS +L F-AdS =0+367+487=84rx
S 1 2 3

Hence, mlf-ﬁds =IVV~ Fdr
S

Ex 12. Using Divergence theorem evaluate | :_U x>dydz + x*ydzdx + x*zdxdy where S is the

closed surface bounded by the planes z =0,z =b and the cylinder x* + y* =a”’.

Solution. ]
A Y
N_ |

/df y

~_adég

o
. adé
X
I :H x*dydz + x? ydzdx + x*zdxdy :m(x3f+x2yj+x2zI2)-ﬁdS :_.'V~(X3f+ x2yj+xzzlz)dr
= S_U J'; x*dzdxdy = SbH x2dxdy
R

(This region of double integral R is given by projection cylinder on Xy plane as shown in Figure)




a

2r a 4
:SbHrzcos2 ordrdé :5bJ'2 "1 cos?odo :§a“bj2 cos? 9d9=§ﬂ'a4b
00 ° 4 0 4 ° 4

Ex13.1f F=xi—yj +(z2 —1)I2 find the value of m AdS where S in the closed surface bounded

by the planes z =0,z =b and the cylinder x*+y* =a’.
Solution.

y
_—
L
/_ y \J
By Gauss Divergence theorem

glﬁ-ﬁdszj V.Fdr
F=xi—-yj+ (22—1)I2; V-IE:ZZ

IV Fdr = ﬂf 2zdzdxdy = H ” dxdy

(The region of integration R is prOJectlon of volume region V.on Xy plane as shown in Figure)

X

=b?x area of circle of radius a = 7a’b’

Ex 14. Verify divergence theorem for F =2x°yi — y2j+4XZZI2 taken over the region in the first

octant bounded by y*+7°=9 & x=2.
Solution.

<an




" 2y Z
S3_> i i \An
z i w2+y2=9
FAQN y
- 1
j s, 3d0

Let us first find the volume integral jv V-Fdz, Vis the volume enclosed by surface y*+2z°=9

& X =2 infirst octant as shown in Figure.
F =2x%yi — y? ]+ 4xz%k ; V-F =4xy—2y+8z2
2

dydz

2
IVV- Fdrz”jo (4xy —2y +8xz Jdxdydz :LIZXZy—ny+4x22
0
(R is the projection of Vis Xy plane as shown in Figure).

3 . )
= 4;!.[04(rc056?+4rsin @) rdodr :4I§r2 [sin 6’—40036’]? dr = ZOjjrzdr =180

Now, let us calculate the surface integral over S. S is a piecewise smooth surface consisting of
5,(x=0),8,(x=2),8,(2=0),8,(y=0),5;(y*+2° =9)
On S,,x=0,dS =dydz,A=—1,F-A=0
So, L F.AdS =0
On S,,x=2,dS =dydz,A=1,F-A=8y
- 3 77 3
So, Lz F -AdS :8” ydydz :8.([J.Ozrcoserd0dr =8.(|; r’dr =72

On S,,2=0,dS =dxdy,A=—k,F-A=0
So, [ F-fidS =0
on S,,y*+2°=9,dS = 3dddx

yi+2k,lf-ﬁ:%(4xz3—y3)

Let y=3c0s8,z=3sind
F.f= 9(4xsin3 0 —cos® 6’)
F.AdS = 27(4xsin3 0 —cos® e)dedx




L F.AdS = 27_2[_[0%(4xsin3 0 —cos® G)dedx
° 0

7T, 7 1 1
jésin%?dezj/zcoss@d@:'—zm: 2l _2
° ° 2% ,.3 1 3
2 2

=18 (4x~1)dx =18[ 2x* ~x || =108
So, surface integral [& F -AdS is give as
Ul F -AdS :L F -AdS +js F -AdS +L F -AdS +L F -AdS +L F-AdS =0+72+0+0+108

-180
So, gjﬁ-ﬁdszjv-ﬁdr

Hence, Gauss divergence theorem is verified.

Ex 15. Let S be the boundary of the region consisting of the parabolic cylinder z=1— x> and the
planes y=0,y=2 and z=0. Evaluate the integral [ﬁlf-ﬁds, where
S

F= xy|p+(y2 +e ) j+sin(xy)l2 and A is the outward drawn unit normal to S.

Solution.

The surface S is shown Figure

2
JLF-nds=[ v-Fdr =jjf3ydxdzdy=3”y72 dx dz
0

0

1132 1 ) 3 1 2
=6 | dxdz=6_1(1—x )dx:({x—glﬂzxg:s

-1 0

Ex 16. Evaluate mlf -AdS over the entire surface of the region above the Xy plane bounded by

the cone z2=X?+Y? and the plane z =3 if F =4xzi + xyz? ] +3zK .
Solution.
By Gauss Divergence




DlF-ndS=IVV-Fdr .

. . o 22 n

__[VV (4x2|+xyz j+32k)d2'

(Vis volume enclosed by cone z* = x* + y* and the plane z =3 as shown in Figure )

dxdy

X2 +y?

- 3 47 + xz° + 3)dzdxdy = 222+xz—3+3z3
T 5 (224X

X2 +y?

(The region of double integration R is projection of volume V on Xy plane as shown Figure)

[ 9-x*-y?) 3(27 (x* +y) )+3(3—\/m)}dxdy
j_zﬁ

3

1 27 rt
45 CIRUE —3r)+ rcos@(27 r) rd@dr =27 S-r? —— —r®| =108z
3 2 2

0 0

Ex 17. By using Gauss Divergence theorem, Evaluate m(xf+ yj+ ZZIZ)-ﬁdS

where S is the closed surface bounded by cone X° +y? = z* and the plane z=1.

Solution.

./

X
Using Gauss Divergence theorem

DlﬁﬁdSzjVV-lfdr

L(xh yj + ZZIZ)-ﬁdS :J'VV-(xf+ yj + sz)dr = 2” j[ (z+1)dzdxdy

X2 +y?

(V is volume enclosed by cone X + y* = z* & the plane z =1 as shown in Figure)




1

2
:ZHRZ—+Z dxdy
2 ey
(The region of integration of double integral R is the projection of volume V on Xy plane as shown
in Figure)
271
=J.J'(1—x2 —y2)+2(1—~/x2 + yz)dxdy = II(3—2r—r2)rdrd6
00
3 4t
_(° § 2_2_r_r_ dgzl ? d9:7—ﬁ
o 2 3 4 1270 6

Ex 18. Let W be the region bounded by the planes x=0,y=0,z=0 and x+2z=6. Let S be the

boundary of this region. Using Gauss divergence theorem, evaluate IﬁﬁdS, where
S

F=2xyl +yz2° ] + xzk and A is the outward unit normal vector to S.

Solution.
z

X+22=6

0
Y «— Yy=3

/

Using Gauss Divergence theorem
fIF-Ads = [v-Fdz

= [[](2y+ 2 +x) dxdydz =J'”;(x+2y+ 2*)dydxdz = [[ xy+y* + 2%y
6-x

2 gy = %Jj(—xs +6x° ~72x+512)dx

0

3
dxdz
0

_ J'OGJ'SZX(BX+322 +9)dzdx = '[063xz +9z+7°

6

1 X4 3 2
:§ —I+2x —36x°+512x| =2355

0

Ex 19. Verify Gauss divergence theorem for F = ny+ zzj+2yZI€ on the tetrahedron
X=y=2=0,x+y+z=1
Solution.




X+y=1

X X
e Let us find volume integral J-V- Fdr

Vis the region bounded by X=0,y=0,Z2=0 and X+ Yy+2z=1 as shown in Figure
F=xyl +2%]+2yzk; V-F =3y

IV. Fdr = 3_[”:7#)/ ydzdxdy = 3” y(1—x—y)dxdy
R

Where R is the region of double integral obtained by taking projection of V on the Xy plane as

shown in Figure
1

e e
(

0
e The volume V is bounded by surface S. S is a piecewise smooth surface consisting of S, (X =

S,(y=0),5,(z2=0),S,(x+y+z=1)
On S, x=0,Ai=—,dS =dydz, F-A=0

 F-fds=0
On Sz,y:O,dS:dxdz,ﬁz—j If-ﬁ:—

1

4 1
LZF AdS = J.J.zzdzdx_—j :——j —x :_2(1_)() OZ_E
On Ss,z=0,dS:dxdy,nz—k,F-nzo
[, F-nds=o0

On §,, equation of S, belongs to family of level surface given by
S X+ Yy+Z=constant

Outward drawn unit normal to S,

. VS i+j+k

A= =
vs|” 3




= 1

F-ﬁ:—(xy+22+2yz):

(xy+(1—x—y)2+2y(1—x—y)) = (xz—y2+xy—2x+l)

Sl
5l

w

ds = &Y _ Aaxay

11-x

So, L F -AdS :I I (xz—y2+xy—2x+1)dydx
! 00

(The region of double integration is given by projection of Von Xy plane as shown in Figure )
y® xy 3 (1—x)2

—I x —2x+1)y——+ dx = I ——— ldx
3 2|, 2

1. Wl 1fx 2¢ x| 11(121] 5
_ Loy LA Xy 11t 2t
6 ,2l47 3" 2) Te2la 3 2)
So, [fL F-idS = [ F-dS+[ F-ds+[ F-ndS+[ F-fds =0+ |+0+> =%
Sy S, S3 Sy 12 24 8

Hence, [ﬁs F -AdS =j-VV- Fdr

Ex 20. Verify divergence theorem for F=4xzi —y* ]+ szZ taken over the cube bounded by
x=0,y=0,z=0,x=a,y=a,z=a.
Solution.

(0,0,a)

\ (0,3,0)

wol/

X
Let us first find the volume integral

aaa

IV Fdr = ”I 4z y dxdydz

000

:ﬁ(4z—y)[x]z dy dz :aj4yz——

22 a
Y| oz :azj 47-2dz =a2| 222 -2 :Ea“
2 0 0 2 2 0 2

The region V is bounded by S. S is a piecewise smooth surface consisting of S, (x=0),S,(x=a)
, S4(y=0),S,(y=2a),5,(2=0),S,(z=a)

n




dS+_[F ndS+_[F ndS+J'F ndS+IF AdS  ...(1)

it
T
=%
o
w

Il
—_—
TN
=%
o
(.D
3) ,\gﬂ!—.
Tll
3)

=0,dS = dydz

I,F-A=4az,dS =dydz
So, j F -AdS :” 4az dydz =I4az[y]§ dz =4azjzdz =4a’
00 0 0

On S,,y=0,A=-],dS =dxdz,F-A=0
So, Ilf~ﬁdS=O

S

On S, y=anN= J,F-n=-a?dS =dxdz

So, j F .AdS :—Hazdxdz =-a*

S, 00
On S,,z=0,A=—k,F-f=0,dS = dxdy
So, jﬁ-ﬁdszo

On S;,z=a, A=K, F-A=ay,dS = dxdy

_[F nds = ”aydxdy— o

6

From (1)
4 4
mlf-ﬁd8=0+2a4+0—a4+0+% _%a

Hence, mlf-ﬁds =IV- Fdr
S \

Ex 21. Verify divergence theorem for F =(X2 —yz)lp+(y2 —ZX) j+(22 —Xy)kA taken over the
rectangular parallelepiped 0<x<a,0<y<a,0<z<a.

Solution.
z

(0,0,a)

(0.a,0)
wa)/ |/

n




Let us first calculate the volume integral
F :(xz—yz)f+(y2—zx)j+(22—xy)I2
V-F=2(x+y+2)
The volume integral

aaa a

—2aa — dyd
jV Fdr = ZHI X+Yy+2z dxdydz _([ﬂ +x y+z} ydz

000 0

aa aa a 22 a )

=2a”( y+z dedz— af 5 y| dz = 2a* J‘[ +2+z)dz—2a {az+?} =3a
00 0 0

The surface S enclosing volume V consists of six pieces of smooth surfaces,
S,(x=0),S,(x=a),S; (y=0),S,(y=a),S(z2=0),Ss(z=a).
[IF-Ads=[F-AdS+[F-AdS+[F-nds+[F-nds+[F-AdS+[F.Ads

S S S, S S, S S

a

0

On S,x=0,A=—,dS =dydz, F-Ai=yz
4

_[F ‘AdS = ”yzdydz_j

On S, x=a,fi=i,dS =dydz, F-n=(a’ - yz)

Ilf AdS:ﬁ(az—yz)dydz=ﬁ 2dydz—jljlyzdydz :a“—a—4=§a4
S, 00 00 00 ¢ /4

On S,,y=0,A=—],dS =dxdz, F -i=2zx
4

IF -AdS = ”zxdxdz_ 2

3

On S,,y=a,ii=j,dS =dxdz, F-i=(a’ - 2x)

jﬁ-ﬂSzIZ(az—zx)z%zga“

On S,z =0, =—k,dS =dxdy, F-A=xy

R aa a
F-AdS = | xydxdy = —
s{ [Py =
On S;,z=a,A=k,dS =dxdy, F-A=a”—xy
R aa 3
F-AdS=||(a’—xy)dxdy ==a*
JFnds =] [(a-)ady =
4 4 4 4 4 4
SO, Ujlf AdsS :a—+3i+a_+3i+a_+3i:3afl
4 4 4 4 4 4




Hence, mlf-ﬁdS:J.V-F-dr

Ex 22. Evaluate ” xzdydz + yzdzdx +2z (xy —X— y)dxdy where S is the surface of the cube
0<x<a,0<y<al0<z<a

Solution.

AdS = dydz i + dzdx j + dxdy k

x*dydz + y*dzdx + 2z (xy — x — y) dxdy =(x2f+ y* ) +2z(xy —x— y)lZ)-ﬁdS
So, j'[xzdydz+ y*dzdx + 2z (xy —x—y ) dxdy :I(x2f+ y*]+2z(xy—x— y)l?)-ﬁdS
S

= IV-(x2f+ y2j+22(xy—x— y)IZ)dr (By Gauss Divergence theorem)

Zja'j. xydxdy = —
00

<
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Stoke's Theorem
Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theorem.

e Green’s Theorem relates a double integral over a plane region D to a line integral
around its plane boundary curve.
e Stokes’ Theorem relates a surface integral over a surface S to a line integral around
the boundary C curve of S (a space curve).
Oriented surface with unit normal vector A.
e The orientation of S induces the positive orientation of the boundary curve C.

e If you walk in the positive direction around C with your head pointing in the

direction of A, the surface will always be on your left.

Z A
n

C
0

x/\’"’

%

Let:

e Sbe an oriented piecewise-smooth surface bounded by a simple, closed, piecewise-

smooth boundary curve C with positive orientation.
e F be a vector field whose components have continuous partial derivatives on an

open region in R® that contains S. Then Ic F.dr =Icurll3.ﬁd8
S

e Stokes’ Theorem becomes: in 2D plane J.c If.drzﬂcurllf.ﬁds=ﬂ.(curllf).l2dA; Thus,
S S

we see that Green’s Theorem is really a special case of Stokes’ Theorem.

Example 1: Evaluate .[c F.dr, where: F(x, y, z) =—y? i + xj + 2% k. C is the curve of intersection

of the plane y + z = 2 and the cylinder x* + y? = 1. (Orient C to be counterclockwise when

viewed from above.)

Learnings: _[C F.dr Could be evaluated directly, however, it’s easier to use Stokes’ Theorem.
We fist compute for F (x, y, z) We first compute for F (x,y, z) =—y?i+xj+2z*k:
i

j k
0 0
— —|{=(1+2y)k
oXx oy oz (+y)
X z?
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ZA

=2

There are many surfaces with boundary C.

e The most convenient choice, though, is the elliptical region S in the plane y + z=2

that is bounded by C. If we orient S upward, C has the induced positive orientation.

The projection D of S on the xy-plane is the disk x? + y?> < 1.

N

lF.dr:j!curl F.dS:jE[(lJrZy)dA = fj;(lJrerine)rdrde =2ﬂ%+§sin9jde

=%(2n)+0=n

Another example: Use Stokes’ Theorem to compute ”curl F.dS where:
S

o Flx,y,z)=xzi+yzj+xyk

e Sis the part of the sphere x? + y? + 72 = 4 that lies inside the cylinder x*> + y? =1 and

above the xy-plane.

To find the boundary curve C, we solve: x> + y> + Z2=4and x> + y* =1

e Subtracting, we get 7> =3, and (since 2> 0), z :\/§
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e So, Cis the circle given by: X2 + )2 =1, 7=4/3

A vector equation of C is:
r(t)=costi+sintj+ 3k 0<t<2mn
e Therefore, r'(t)=—sinti+costj

Also, we have:
F(r(t))=\/§costi+«/§sintj+costsintk

Thus, by Stokes’ Theorem,

[[eurlFds=[F.dr =TF(r(t)).r'(t)dt =T(—\/?costsint+J§sintcost)dt =J§TOdt=O
S c 0 0] 0

** Note that, in Example 2, we computed a surface integral simply by knowing the values
of F on the boundary curve C.
% This means that:
e If we have another oriented surface with the same boundary curve C, we get exactly
the same value for the surface integral!
¢ In general, if S1 and S; are oriented surfaces with the same oriented boundary curve C

and both satisfy the hypotheses of Stokes’ Theorem, then
chrl F.dS :jF.dr :I I curl F.dS
S c S,

* This fact is useful when it is difficult to integrate over one surface but easy to integrate
over the other.

We now use Stokes’ Theorem to throw some light on the meaning of the curl vector.

e Suppose that Cis an oriented closed curve and v represents the velocity field in fluid

flow.

Consider the line integral J.V.dr = Iv.Tds and recall that v - T is the component of v in the
C C

direction of the unit tangent vector T.

e This means that the closer the direction of v is to the direction of T, the larger the




Mindset Makers +91_9971030052

value of v - T.

Thus, Iv.dr is @ measure of the tendency of the fluid to move around C.
C

e |tis called the circulation of v around C.

Solved Examples
Based on definitions

1. The value of mf-df is equal to

Using Stoke's law
fir-dr =[Jvxr-Ads =0 as (VxF =0)
C S

2. The value of m¢Vw-df+EﬁW¢-df
[ﬁqﬁvw-dmquﬁ.dr=[ﬁ(¢vw+w¢)~dr =jv(¢y/)-dr
g

=IVX(V¢I//)-ﬁdS =0 (By Stoke's theorem [ﬁ ~df=IVxlf-ﬁdS )
S C S

(as Curl of gradient of scalar function = 0)

3. The value of [ﬁ¢V¢~dF for closed curve Cis equal to
C

m¢V1// dr = J.V x(¢V¢)-dS (Using Stoke's law)

Cc

= [(VgxVg+ N xV)-AdS =0 (as VgxVg=0 & Vx(V)=0)

«h
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EXAMPLES FOR CSE & IFoS
Ex 1. Verify Stokes theorem for F =yi +2zj+xk where S is the upper half surface of the

sphere x*+Yy®+z° =a’ and Cis its bounding curve.

Solution.

X
S is the surface of sphere X*+ y?+z* =a® lying above xy plane and bounded by the circle

C:x*+y*=a’
Oncurve C, x=acosd,y=asind,z=0
dx=-asin#df,dy =acosdd#,dz =0

So, F-dF = ydx+zdy+xdz = ydx (z=0onC)

fjF-dr = yax = —Tasine-asin 0d6 = —aszin2 0d0 = —ra’
0

j
2
oy

z
Consider a closed piecewise smooth surfaceS,consisting of spherical surface
S:x*+y?+z°=a’ and S':z=0enclosing a volume V.

JI(VxF)fds= [V-(VxF)dV =0= [VxF-AdS+[VxF-Ads =0 V-:(VxF)=0

S, v S s

= [VxF.Ads =—[VxF-fidS
g :

A

On S', outward drawn unit normal A =-k
U i=(-F - j-R)-(-K)=1
So, ijF nds——ijF ‘AdS ——jds—

Hence, [ﬁ JV xF-AdS. Stoke's theorem is verified.
C

“h
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Ex 2. Verify Stoke's theorem for the function F =zi + Xj+ ylz where curve Cis the unit circle

inthe xy plane bounding the hemisphere z=/1-x" -y’ .
Solution.

C
X
The curve Cis a unit circle X* +y? =1,z =0 bounding the surface S which is a hemisphere of
unit radius given by z = \J1-x* - y?
OnC, x=c0sd,y=sind,z=0
dx=-sin@dé,dy =cos0dé,dz =0

F -dr = zdx + xdy + ydz = xdy on curve C

2z
So, Ujlf-df=jxdy = J.cos2 0d6 =
C 0
Now, let us evaluate the surface integral IVX F-AdS.
S

Consider a closed piecewise smooth surfaceS,consisting of spherical surface

S:x*+y’+2z°=1and S':z=0enclosing a volume V.

[ﬁ(Vx If).ﬁdS: IV-(VX If)dV =0 :>ij If-ﬁdS+IVx F-AdS=0" V'(Vx IE)
v S S

S,

0

:ijﬁ.ﬁdS=—ijﬁ.ﬁds
S s

i)k

On S'A=-kK, dS=dxdy ;VxF = o 9 9 =i+ ]+k
ox oy oz
zZ X Yy

OnS'; VxF-A=-1

So, ijlf~ﬁdS=—IV><lf~ﬁdS =JdS =areaofbaseS'=rx
. 5

S

S
Hence, mlf -dr = J.Vx = .AdS . Thus, Stoke's theorem is verified.
C S

“«h
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Ex 3. Using Stoke's theorem evaluate the line integral I(yf+zj+xl2)-df where C is the «
C

intersection of x*+Yy*+2z°=1 and x+Yy=0 traversed in the clockwise direction when
viewed from the point (1,1,0).
Solution.

S=x+y=0

~

Using Stoke's theorem
fIF-dr=[vxF-nds
m(yf+2j+X|2)-d?=IVX(yf+ zi+x|2)-ﬁds

ﬁ:—v—sz—ﬂ;sisthesurfaceofplane.
VS| 2
i
vx(yivdenk)=| S L Lo ook
ox oy oz
y Z X

I(—f— j—ﬁ)-[—%jds :\/EJ‘dS =/27; Note that the plane passes through the point
(0,0,0) as x=0,y=0,z=0 satisfies given equation of plane. Also the center of given sphere is
(0,0,0). So we find that given plane passes through the center of sphere and so the radius of

circle will be equal to radius of given sphere. (intersection of plane and a sphere is a circle)

Ex 4. Evaluate using Stoke's theorem [ﬁ(y+z)dx+(z+x)dy+(x+ y)dz where C is the
C

circle X*+y*+2*=1,x+y+z=0.

Solution.
z
y
X
The bounding curve C is the curve of intersection of sphere x*+Yy®+z°=1 and plane
X+y+2=0.

Let the surface S be a disc of radius 1 with centre at origin bounded by C
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(O +2)i +(z+%) j+(x+y)k)-or

So, F=(y+2)i+(z+x)j+(x+y)k
] ] k
curl F = 9 o 9 =0
oy 0z
Y+Z Z+X X+Y

By Stoke's theorem [ﬁlf~df=IVxlf-ﬁdS =0
C S

Ex 5. Evaluate Icurl,&-ﬁdS where S is the open surface x*+Yy*—4x+4z=0,z>0 and
S

A:(yz+zz—x2)f+(222+x2—y2)j.

Solution.

(2,0,4)

X
S is the open surface x°+y? —4x+4z =0 (paraboloid) above xy plane. The bounding curve

C of the surface S is given by x>+ Yy’ —4x=0= (X—2)2 +y® =4 i.e. circle of radius 2 with
origin (2,0) in xy plane.

Oncurve C, x=2+2c0s0,y=2sin@,z=0; dx=-2sin8df,y =2cosfdH,dz =0
If-dF:(y2+22—zz)dx+(222+x2—y2)dy :(yz—xz)dx+(x2—y2)dy

= (4sin® 0 —4—4cos’ 0—-8cos6) (—2sin 0)d 6 +(4+4cos’ 0 +8cos 6 —4sin’)(2cos ) d6
:8[—sin36’+sin 0 +cos® @sin @+ 2cos @sin @ + cos 6 + cos’+ cos® 4 + 2c052¢9—sin20c039]d0
:8[c0530—sin39+c05263in 0 —sin® @cos @+ 2¢cos” @+ 2cos dsin 6’+cos€+sin0]d0

@ varies fromOto 27

2r
Eﬁlf .dr :8j (cos3 6 —sin® @+ cos? @sin @ —sin? 6cos 6 + 2cos? @+ 2cos &sin @+ cos G +sin Q)dH
0

27
~16 j cos? 6d@ =167
0

Ex 6. Apply Stoke's theorem to prove that J.ydx+ zdy + xdz = —2\/27a? where Cis the curve
C

given by X*+y®+2°—2ax—2ay =0,x+y=2a and begins at the point (2a,0,0) and goes
first below the Xy plane.
Solution.
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(0,2,a)

0
\/(a,om "

Curve C is the curve of intersection of sphere x*>+y®+z°—2ax—2ay=0 and plane
X+ Yy =2a as shown in Fig.

The centre of sphere (a,a,0) and radius J2a.

(x—a2)+(y—a)2+c2 =2a?

The centre of sphere (a,a,0) lies on the plane x+y=2a.

So, the curve of intersection is the greatest circle. Let the surface enclosed by greatest circle
is a disc of radius \/Ea as shown in Fig.

For given orientation of curve C, the normal to the surfaces Sis fi= %

Djydx+ zdy+xdz=Uj(yf+zi+xI2)-dF:Ujlf-df’
C

o
So,lf:yf+zj+xI2;Vxlf=g 9
ox oy

z

y
vXﬁ.ﬁ:_(nm).[ﬂJ:_ﬁ
By Stoke's law
mlidF:J.Vxlf-ﬁdS =—\/§de =—/2 x area of disc of radius \/532—2\/572'82
C S S

Ex 7. If F :(y2 +7° —x2)|“+(z2 +x% - y2) j+(X2 +y° —22)12, evaluate _[Vx F-AdS taken
S

over the portion of the surface x*+Yy*>+2z°—2x+z=0 above the plane z=0 and verify

Stoke's theorem.

Solution.
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<

r=2cosd

Sis a part of sphere X* +y*+2*—2x+z=0 i.e. (X_l)z +y? +(Z+1/2)2 :% of radius ? It

is bounded by circle x*+y* —2x =0 lying in xy plane.

Let us first evaluate the surface integral IVX F-AdS . Consider a closed piecewise surface
S

S, consisting of hemisphere S and its base in Xy plane S'.

By Gauss divergence theorem

[IVxF-fids = [V-(VxF)dr=0= [VxF-AdS+[VxAdS =0
z S S’

So, jwﬁ.ﬁd3=—jwﬁ.ﬁds
S

3

:(y2+22—xz)f+(zz+x2—y2)i+(x2+y2+zz)I2

] j k
VxF = % a% % =2(y-2)i+2(z-x)j+2(x-y)k
2

V+z22-x* P+xP-y? XPtyr-7°

On S'A=-k VxF- ‘A=-2(x—y); dS =dxdy
7/2 2cosO

So, IVxF ndS_—IVxF AdS = 2” x—y)dxdy = 2] I r(cos@—sin@)rdrdé

-7/2 0

/2 3 2cosé z/2
—Zj cos@ S|m9) :—Gj cosé — sme cos® Adé
3 3

-r/2 0

7/2 72 i
_16 J cos* 0d6 - j cos® #singdg :3_I oS ng_g [ o
3| 22 2 3 ) Ea

Let us now evaluate the line integral mlf -dr

The curve Cis a circle (X—l) +y®>=1in xy plane.
X=1+c0sd,dx =-sindd@,y =sinf,dy =cosddf, z=0,dz=0
If-dF:(y2+22—xz)dx+(zz+x2—y2)dy+(x2+y2—zz)dz

10
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y: =)o (x° - y*dy = (x* —y*) (dy - x)
(1+cos2 0 +2¢0s 0 —sin? 6’)-(cose+sin 9)de

cos® @ —sin® @+ cos® @sin @ —sin? cos @+ 2¢cos? & + 2cos &sin &+ cos 6 + sin 49)d6’

So,

27
mlf-df = I(cos*°‘«9—sin:“6?+cos2 @sin @ —sin? 6cos @+ 2cos® &+ 2cos dsin 6+ cos & +sin H)dH
0

27
:Zj cos’0do =2
0

Hence, mlf -dr = ij F-AdS . So, Stoke's theorem is verified.

Ex8. By converting into a line integral, evaluate ijlf-ﬁdS where
S

F= (x2 + y—4)f+3xy i+(2xz + 23)12 and S is the surface of
(i) the hemisphere x*+ Yy’ +z* =a’ above xy plane.
(ii) the paraboloid z = 9—(X2 + yZ) above the xy plane.

Solution.
(i) S is the surface of hemisphere Xx*+y*+2z*> =a® above the xy plane and bounded by the

circle C x* +y*=a® in xy plane as shown in Fig.

z

O{r

X
OnC, x=acos#,y=asing,z=0
dx=-asin#dd,dy =acosddgqg,dz =0

F.dr :(x2 + y—4)dx+3xydy+(2xz + z3)dz

=(a*cos’ 6 +asin 6—4)-(—asin 6d6)+3a’ cos fsin 6 (acos 0)do
= (—a’ cos® sin @ —a’ sin” 0 + 4asin 0+ 3a° cos’ Hsin ) d 6

By Stoke's theorem

27
IVxF-ﬁdS =[]jlf~dr - I(—a%oszGsine—azsinz¢9+4asin6’+3a3coszesin9)d0
S C 0

27
=-a° I sin® 0d@ = —ra?
0

(i) Sis the surface of paraboloid above xy plane bounded by curve Cin Xy plane.
Bounding curve Cis circle x*+ y* =9 of radius 3 and centre at origin as shown in fig.

11
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C

())(n C, x=3c0s0,y=3sin6,z=0

dx=-3sinddé,dy =3cos0dd,dz =0

F.dr :(x2 + y—4)dx+3xydy+(2xz+ z3)dz

=(9cos® 0+3sin 0 —4)-(~3sin #dH) +81cos’ Gsin HdO + 0
= (54cos’ Osin 6 —9sin’ 6+12sin 6)d6

So, By Stoke's theorem
2

ij F.AdS = [ﬁ F.df = j (54cos2 @sin @ —9sin? H+12sin e)de :—QTsinz 0do = -9
S C 0 0

Ex 9. Verify Stoke's for the vector F =3yl —xz ]+ yZZIZ where S is the surface of the
paraboloid z = x* + y* bounded by Zz=4 and Cis its boundary.

Solution.
y

X
Sis the surface of paraboloid z = x*+Yy® and bounded by z=4.

The bounding curve C will be a circle x* +y*=4,2=4.

For a given surface, if fi is an outward drawn normal, then the corresponding orientation of
curve will be clockwise if seen from above.

Let us first evaluate the line integral

OnC, x=2c0s60,y=2sinf,z=4

dx=-2sin8d#,dy =2cos0dd,dz =0

12
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F -dr = 3ydx — xzdy + yz°dz
=-120sin* 9d6 —16cos’ 96 +0

[ﬁﬁ .dr :-12? sin? 9d¢9—16jq cos? 6do
2 27

=28rx
Now, consider a closed piecewise smooth surface X consisting of parabolic part S and base

S'at (z=4).

So, by Gauss divergence theorem

[lVxF-fds = [V (VxF)dr=0= [VxF-AdS+[VxF-idS=0
= S 5

So, IVxlf~ﬁdS=—IVxlf~ﬁdS
S S’

On S A=K, dS =dxdy; F =3yi —xzj + yz?k

~

R T
Vxlf:a—éx % % :(22+x)f+0i—(z+3)I2
3y —xz yz*

onS', VxF-A=—(z+3)=-7 (2=4 on$)
So, IVxlf~ﬁdS=—IV><If~ﬁdS =7IdS =7 x Area of base =287
S S' S’

Since mlf~df=IVxlf-ﬁdS
S
Hence, Stoke's theorem is verified.
Ex 10. Evaluate the surface integral IVX F-AdS by transforming it into a line integral, S
S

being that part of the surface of the paraboloid z=1-x*-y* for which z>0 and
F=vi+zj+xk.

Solution.
y
F=yi+27+xk
Az X +y*=1
S X
y

X

C

13
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S is the surface of paraboloid z=1—x*—y? lying above xy plane and bounded by curve C,
which is a circle x* +y* =1 lyingin xy plane

F=yi+z]+xk

F -df = ydx + zdy + xdz

OnC, x=c0s0 =dx=-singd@
y=sind = dy =cos@&dd

z=0=dz=0

So, F-df =—sin®0do

So, by Stoke's theorem
2z

jwﬁ-ﬁds :Eﬁlf-df :—jsinzede =7
0

Ex 11. By converting into a line integral, evaluate ijA-ﬁdS when

A:(x—z)f+(X3+yz)j—3xy2|2 and S is the surface of the cone z=2—/x* +y* above the

Xy plane.

Solution.

z

(0,0,2)

S
y
X C

S is the surface of cone z = 2—\/X2 +y? above the xy plane. It is bounded by curve Cin Xy
plane.

The curve C: is circle of radius 2 and centre at origin in Xy plane.

Oncurve C, x=2c0s0,y=2sin#,z=0

dx=-2sin0d@,dy =2cos@dd,dz =0

A-drf :(x—z)dx+(x3 + yz)dy—3xy2dz = xdx + x*dy (as z=0,dz=0 on C)
=-4cos@sinfdH +16¢cos’ §-do

OnC, @ variesfromOto 27

_ 2z 2z /2 5
ng-dr =—4j cos &sin 9d9+16j cos® 6do =0+64j cos* 6d0 = 64- z% —127
0 0 0

Exam point: Working with Cylinder
Intersection of Plane and cylinder- We may have different scenarios depending on the
nature of cut the cylinder by plane.
E.g. If Plane is at right angle to axis of cylinder, then it cuts into a circle.

14
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If not above and utting the cylinder then it may be an ellipse kind of or a tilted circle
kind of.
Similarly, we can think if plane is parallel to the axis of cylinder etc.
Mathematically we work as: parameterization process
Example : Intersection of X* +y*=a’ x+z=1.
x=a.cost, y=a.sint; z=1-acost.Here 0<t<2r.

So, for LINE INTEGRAL: the boundary curve is : (acost,asint,1—cost);0<t<2r.
2

And for surface S; the projection on xy plane which is circle x> +y* =a

General

Example : Intersection of X* +y* =1,z =y".
x=1.cost, y=1.sint; z=sin’t.Here 0<t<2r.

So, for LINE INTEGRAL: the boundary curve is : (cost,sint,sin’t);0<t<2r.

And for surface S; the projection on xy plane which is circle x> +y* =1

Beautiful instrument to verify Stoke’s theorem for such intersecting scenarios:
So here the boundary curve C is a circle bounding the Lower base S, and Curved surface S,

of cylinder. So if we include the plane surface S, with these two surfaces of cylinder, then
we’ll have a closed surface and so Gauss divergence theorem will be applicable and more
beautifully, we can evaluate the surface integral on two surfaces S, & S, as

[ Fads, + [ Fiids, + [ F.Ads, =0;  div(curl F)=0

S, S2 S,

IF.ﬁdsl + j F.Ads, = —J F.fds,. Now evaluating RHS integral is easier.
S, S2 S,
Ex 12. Evaluate by Stoke's theorem [ﬁyzdx + xzdy + xydz where C is the curve of intersection

of X*+y?=1z=Yy’.
Solution.

X
The curve C is the curve of intersection of x*+y? =1 and X = y* as shown in fig.

15
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myzdx +xzdy = (yzf +XZ] + xyIZ) .dr

where F = yzi + xzj + xyk
]k
0 o0 0 , , T _— .
curl F=[— — —|=0 ByStokestheorem[ﬁPdr:jcurIF-ndS=O(ascur| F=0)
X 0oy oz a 3
yZ Xz Xy

Ex 13. Verify Stoke's theorem for F = (X2 + yz)f—nyj taken round the rectangle bounded
by x=+1a,y=0,y=Db.

Solution.
A y
C - y=b B
x=-ay x=a
D y 0 A N

C is piecewise smooth curve consisting of y=0,x=a,y=b & x=-a. The curve C encloses
as plane surface lying in Xy plane as shown in fig.

Let us first evaluate the surface integral ij F-AdS.
S

A

Let us orient the curve in anticlockwise direction. With this orientation A =Kk.

] ik
io O 0 2y
OX oy oz
xX*+y> 2xy 0
VxF-A=—-4y

The surface element dS = dxdy

ab
[VxF-nds=—4] ['ydydx = —4ab’
S -ao0
Now, let us evaluate the line integral
[Fdr=[F.dr+ [F.dr+ [F.dr+[F.dr
C AB BC CD DA

F -df:(x2 + yz)dx—2xydy

b
On AB,x=a,dx =0,y varies from 0 to b ,; F -dF = —2aydy ; I If-df’:—ZaJ‘ydy:—ab2
AB 0

16
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OnBC, y=Db,dy =0, x varies from a to —a; If-dF:(x2+b2)dx

= o [ 2 2 N 2a° 2
[ Fedr=[(x+b?) dx—§+bx =-=—2ab

BC

0
On CD,x=-a,dx =0, y varies from b to0.; F -dF = 2aydy; I If-drf'=2aj-ydy=—ab2
CD

a 3
On DA,y =0,dy =0, x varies from —a to a; F-dF =x%dx; Ilf-d?:fxzdx:z%
DA

= e = e = e = = e , 2a° 2 , 2a° 2
[ﬁF-dr=IF-dr+ F.dr+ F-dr+_[F-dr = b’ = -~ 2ab’ ~ab®+ = =~4ab
D DA

Ex 14. How much work is done when an object moves from O > P —>Q >R —>0 in a
force field given by F (X, y):(x2 - yz)f+2xy J. Along the rectangular path shown in fig.

Find the answer by evaluating the line integral and also using the Stokes' theorem.
Solution.

y
A
P > Q(ab)
A
4
<+ R >
0(0,0) X
] i ok
— a 2 = a 6 6 ~ ~
F=(x*-y*)i+2xy]; VxF=| — — —|=(2y+2y)k=4yk ..(1
(¥ —y?)i+2xy j; Vx 5 @ (2y+2y)k =4y (1)
xX>-y> 2xy 0

For OP,x=0,dx=0; jlf dr =

o

0]
a 3 a3
For PQ,y=Db,dy=0; I :j X —b2 ——bZX _&
PQ 0 0
0 0
For QR,x=a,dx=0; j F-d IZaydy ay?| =—ab?
QR b b

3
For RO,y =0,dy=0; jﬁ.drzszdx:_%

3

3
Using (1) [ﬁlf-df'=0+(%—ab2j—ab2 —% =—2ab?

17
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Using Stoke's theorem
fIF-dr =[vxF-nds
For given orientation of loop, fi = —k,dS = dxdy

[vxF-nds =—ﬁ4ydxdy = —2ab?
00

Ex 15. Let C be the boundary of the triangle with vertices (0,1,0),(1,0 (2,1, 0). If

)
F.df when C is

F(xy,z)=-yi+y 271+ 2xk , then use Stoke's theorem to evaluate I
C

traversed counter clockwise when viewed from above.

Solution.
y
y=1
0,1,0
Xx+y=1
y=x-1
10,0)
According to Stoke's Law
adl [;
[]]If dF=I(V><If) AdS = 82 5 % =—yi-zj+k
S
-y vz

For the surface bounded by triangle, A= K.
(Vx ) =1,dS = dxdy,

1y+1

Jo(vxF)-nds = [ds =[ [ axdy = I2ydy 1

01-y
Ex 16. Evaluate by Stoke's theorem [ﬁexdx+2ydy—dz where C is the curve X*+y* =9 &

1=2.
Solution.

18
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S—

X

The curve C is a circle of radius 3 units at a height 3 units from Xy plane and having centre
on the z axis. Let the surface enclosed by this curve is a disc of radius 3 as shown in figure.
Students kindly note that the man with head in the direction of A and moving along the
given orientation along the perifery should see the surface on his left. So, the direction of A
and orientation should be matched accordingly

[ﬁexdx+ 2ydy —dz = Uj(exf+ 2yj—l2)-d?
So, F =" +2yj—k

ik

o o0 0 = — : =~
CurlF =|— — —|=0;By Stokes theorem[ﬁF -dr =jcur| -AdS =0 (Since, curl F=0)

ox oy oz 3

e 2y -1

Ex 17. Use Stoke's theorem to evaluate the line integral [ﬁxzyadx+dy+ zdz where C is the
C

circle X*+y*=4,z=0.
Solution. The curve C is circle X*+Yy® =4 in xy plane. Let the surface enclosed is a disc of
radius 2 lying in Xy plane and bounded by C.

A

For anticlockwise orientation, A=k
mxzygdx+dy+zdz :m(x2y3f+ j+zl2)-df' :mﬁ .dr

So, F =x2y% + j+zk

19
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vxE=| 2 2 9 =-3x2y%k
ox oy oz
Xy 1z

onsS, A =k,dS =dxdy,z=0
VxF-A=-3x%y’
So, by Stoke's theorem
27 2

Ujlf~dr=IVx F.AdS =—3ﬂx2y2dxdy :—Bj jrSSinzecosz odrdé
C S S 00

27 6 2 3/]3
:—3I | sin? 6cos? 49d49=—128|2|2 =-8735.
21 6 2.3

20




GAUSS’ DIVERGENCE THEOREM

Q1. Evaluate the integral ”(3y222h422x2j+22y2k].nd3 where S is the upper part of the
S

surface 4x° +4y2 +42% =1 above the plane z = 0 and bounded by the xy-plane.

Hence, verify Gauss-Divergence theorem. [6b UPSC CSE 2023]
Ans. Hint: Refer example 4 GDT page number 6; z=0 means xy plane.

Q2. Using Gauss' divergence theorem, evaluate , where F = xf—yj°+(z2 —1)I2 and S is the

cylinder formed by the surfaces z=0,z =1,x* + y* =4 . [8c UPSC CSE 2022]
Ans. Hint: Refer example 11 GDT page number 12.

Q3. Verify Gauss divergence theorem for F =2x?yi —y?]+4xzK taken over the region in the
first octant bounded by y* +2z° =9 and x=2. UPSC CSE 2021
2 3 \o-y? R
Hint: [[F-fds= [ [ [ divF dxdydz
S x=0y=0 z=0
Q4. Given a portion of a circular disc of radius 7 units and of height 1.5 units such that x,y,z>0
. Verify Gauss Divergence Theorem for the vector field f= (Z, X,3y22) over the surface of the

above mentioned circular disc. [7c 2020 IFoS]

Hint: It’s the cylinder of radius 7 and height 1.5. So we consideritas z=0,z =1.5,X* + y2 =7.
Now Refer example 11 GDT page number 12.

Q5. State Gauss divergence theorem. Verify this theorem for F= 4Xf—2y2j + szA, taken over

the region bounded by x*+y?=4,z=0 and z=3. [8c UPSC CSE 2019]
Hint: Refer example 11 GDT page number 12.

Q6. If S is the surface of the sphere x*+y°+z°=a’, then evaluate
ﬂ[(x+ z)dydz +(y+z)dzdx +(x + y)dxdy] using Gauss' divergence theorem.
S

Hint: Refer example 1 GDT page number 5. [6d UPSC CSE 2018]

Q7. Evaluate the integral: ” F -fAds where F =?>Xy2|p+(yx2 — y3) j+32x’k and S is a surface of
S

the cylinder y® +z° <4,-3<x <3, using divergence theorem. [8c UPSC CSE 2017]

Hint: Refer example 11 GDT page number 12. Only difference is the circle is in yz palne and height
is according to x now. So while solving Surface integral for middle curved surface, we take
projection of either ds on zx palne or on xy plane.

Note: If we solve by converting into cylindrical coordinates then




ds=4d@dx; 0<6<2, —-3<x<3

Way.2 Apply Gauss div theorem. Get

iz
”F ndS_I _[ I dldexdydz_2887r

X==3Yy=-27-_\J4-7?

Q8. If E be the solid bounded by the xy plane and the paraboloid z=4—-x*—y?, then ” F-dS
S

where S is the surface bounding the volume E and
F= (zxsin yz+x°)i+cos yzj +(3zy2 —et )IZ [Se 2016 IFoS]
Hint: Refer example 8 GDT page number 9. Here given paraboloid is S: x> +y* =—(z—4).

Hint: Apply gauss div theorem ”F -dS = 5j TAJI 3r’rdrd@dz =327

r=06=0 z=0

Q9. Using divergence theorem, evaluate J.J. X3dydz + X2 ydzdx + x zdydx) where S is the surface
S

of the sphere x*+Yy®+z° =1. [7b 2015 IFoS]
Hint: Refer example 1 GDT page number 5.

1 #l2 2n
Apply gauss div theorem ”F -dS = SI j I(rsm@cos;ﬁ)z r’sin@drdéde¢ =27/3

r=06=0 ¢=0

Q10. Verify the divergence theorem for A=4Xf—2yzj+ZZkA over the region X°+y’=4,
z=0,z=3.[8c 2014 IFoS]
Hint: Refer example 11 GDT page number 12.

Ql11. By using Divergence Theorem of Gauss, evaluate the surface integral

1
J.J.(azx2 +b?y? +c222) 2dS, where S is the surface of the ellipsoid ax*+by? +cz*=1a,b and ¢

being all positive constants. [8c UPSC CSE 2013]
Hint: Refer example 10 GDT page number 11.

Q12. Evaluate Ilf~d§, where F =4AXi —2y°] + 2’k and s is the surface bounding the region

x> +y?=4,2=0 and z=23.[6b 2013 IFoS]
Hint: Refer example 11 GDT page number 12.

Qi3. Verify the Divergence theorem for the vector function
F= (x2 - yz)T +(y2 - Xz) T+(22 - Xy)lz taken over the rectangular parallelopiped
0<x<a,0<y<b,0<z<c.[8b2013 IF0S]

Hint: Refer example 21 GDT page number 22.




Q14. Verify Gauss' Divergence Theorem for the vector V = X2 +y?j +z°k taken over the cube
0<Xx,y,z<1.[8d UPSC CSE 2011]
Hint: Refer example 20 GDT page number 21. Take a=1 here.

Q15. Use the divergence theorem to evaluate H\7 -fidA where V = x%zi +yj —xz?k and S is the
S

boundary of the region bounded by the paraboloid z = x* + y* and the plane z =4y ..
Hint: Refer example 9 GDT page number 10. [7c UPSC CSE 2010]

Q16. Use divergence theorem to evaluate, H(X3dydz+xzydz dx + x°z dydx) where S is the
S

sphere, x* +y®+z* =1.[8b 2010 IFoS]
Hint: Refer example 11 GDT page number 12.

Q17. Using divergence theorem, evaluate ”S A-dS where A=x+ y3j°+23l€ and S is the

surface of the sphere x* +y*+z° =a”. [8b UPSC CSE 2009]
Hint: Refer example 11 GDT page number 12.

STOKE’S THEOREM

Q1. Given that C is a curve of the intersection of the cylinder x*+y®>=4 and the plane
X+Yy+2z=2 and C is described counterclockwise. Verify Stokes' theorem for the line integral

I—y3dx +x%dy — z°%dz . [6¢cIFoS 2022]
C

Hint: Cylinder and plane. Refer example 1 in the explanation of Stoke’s theorem on first page.

Q2. Using Stokes' theorem, evaluate ”(Vx If)-ﬁdS , where
S

F :(X2 + y—4)f+3xyj°+<2xy+zz)I2 and S is the surface of the paraboloid z :4—(x2 + y2)

above the xy-plane. Here, fi is the unit outward normal vector on S. [8cUPSC CSE 2021]
Hint: Refer example 5 page 8

Parameterize:

Xx=2c0sd,y=2sind,z=0.

2z
Icurllf.ﬁdS =jlf.df = .[ (4cos? @ +2sin @ —4)(—2sin 0d6) +12cos Osin B(2cos 0d6) + 0 = —4x
S C 0=0

Q3. Verify Stores' theorem for F=xi+ 22j+ yzkA over the plane surface: X+ Yy+2z=1 lying in
the first octant. [7aUPSC CSE 2022]




e oA . . . dxd
Hint: find i for the given plane’s equation by gradient method. Then take ds = lkA Ayl
A
x and y take from x=0, y=0 and from x+y=1. For line integral, work for three segments, xy plane
i.e. z=0, yzpalneie x=0, zx plane i.e. y=0.

IcurIFndS_J' _[Z(y @—x- y)ddy 0

. Limits of

Q4. Verify the Stokes' theorem for the vector field F = xyl + yzj + xzK on the surface S which is
the part of the cylinder z° =1—x* for 0<x<1,-2<y<2;Sis oriented upwards.

Hint: Cylinder and plane. Refer example 1 in the explanation of Stoke’s theorem on first page.
[7a UPSC CSE 2020]

Q5. Evaluate the surface integral ”Vx F-AdS for F = yi +(x—2xz) j—xyk and S is the surface
S

of the sphere x*+ Yy’ +z° =a’ above the xy-plane. [8b UPSC CSE 2020]
Hint: Refer example 1, 7 page 5,9.

Q6. Evaluate by Stokes' theorem E&exdxvL 2ydy —dz, where Cis the curve X’ +y* =4,2=2.

Hint: Cylinder and plane. Refer example 1 in the explanation of Stoke’s theorem on first page.
[8c UPSC CSE 2019]

curlF =0.Ans. 1=0
Q7. Verify Stokes's theorem for V = (2X— y)f— yz? |- yzle, where S is the upper half surface of

the sphere x*+ Yy’ +2° =1 and Cis its boundary. [6¢ 2019 IFoS]
Hint: Refer example 1, 7 page 5,9.

[Fdr=z=[Fnds

C S

Q8. Evaluate the line integral I—ysdx+ x*dy + z%dz using Stokes's theorem. Here C is the
C

intersection of the cylinder Xx*+Yy?=1 and the plane X+Yy+z=1. The orientation on C

corresponds to counterclockwise motion in the xy-plane. [8b UPSC CSE 2018]
Hint: Cylinder and plane. Refer example 1 in the explanation of Stoke’s theorem on first page.

curlF =3(¢ + y*)K, =1 +k curlF A =30 +y?). I—H\/_(X +y)?y 2
NG

J3
m[(x+ y)dx+(2x—z)dy+(y+ Z)dZ], where C is the boundary of the triangle with vertices at

Q9. Using Stoke's theorem evaluate

(2,0,0), (0,3,0) and (0,0,6). [6¢ 2017 IFoS].




Observe: Here it same as question 3. Only we need to do is: writing equation of plane passing

y

X A
through given three points. It is E+_+_ =1.

dxdy
k|

Hint: find A for the given plane’s equation by gradient method. Then take ds =
: 2 2 2 2_ 1 2,1 ,» 1 9
Area of triangle; A" =A"+A "+A," = (5.3.6) +(§.2.6) +(§.2.3) — A =314 from 3D.

curlF A= L; I F.df = L?)«/ﬂ =21; on applying stoke’s theorem.

N 7ARE A7

Q10. Evaluate ”(Vx F)ﬁdS , Where S is the surface of the cone, z = 2—\/X2 + y2 above xy-
S

plane and f =(x—z)i +(x*+yz) j—3xy?Kk . [7d 2017 IFoS]
Hint: Refer example 2 page 6.

Q11. Prove that [[L fdr = ﬂs dS x Vf . [8b UPSC CSE 2016]

Hint: refer definition based examples given on page 4.
Q12. Evaluate j (Vx f_)~ﬁdS for f = (2X— y)f— yz? |- y2z12 where S is the upper half surface
S

of the sphere x*+y® +z° =1 bounded by its projection on the xy plane. [6d 2016 IFoS]

Hint: Refer example 2 page 6.

Q13. State Stokes' theorem. Verify the Stokes' theorem for the function f =xi +zj + 2yI€ , Where
c is the curve obtained by the intersection of the plane z =X andthe cylinder x*+y*=1 and$S

is the surface inside the intersected one. [7a 2016 IFoS]
Hint: Cylinder and plane. Refer example 1 in the explanation of Stoke’s theorem on first page.

A

- s 1. P
curlF =1, for the plane, x—z=0, Ai=—F4%=1+0.]——

J2 J2
. [ curlF Ads = jj =3 dXdy —jj dxdy = —7 ..(i)

For line integral, parametrize, X=c0s8,y =sin@;z=cos@; 0<0<2x

k ; for downward, we take negative sign,

S 3 1 )
IF.dr: I (—=sin@+—c0s20—=)d@ =—r ..(ii)
2 a2 2 2

Ql4. If F = yi +(x—2xz) j—xyk , evaluate ”(Vx If)-ﬁdS , where S is the surface of the sphere
S

X* +y?+ 2% =a® above the xy-plane. [8b 2015 IFoS]
Hint: Refer example 1, 7 page 5,9.




Q15. Evaluate by Stokes' theorem J(ydx+zdy+xdz) where r is the curve given by
r

X* +y? +12° —2ax—2ay =0,x+Yy = 2a starting from (2a,0,0) and then going below the z-plane.

[6¢c UPSC CSE 2014]
Hint: Refer example 6 page 8.

Q16. Evaluate ”Vx A-ndS for K:(x2+y—4)f+3xyj°+(2xz+zz)I2 and S is the surface of
S

hemisphere x°+ y* + 2% =16 above xy plane. [7b 2014 IFoS]
Hint: Refer example 1, 7 page 5,9.

Q17. Use Stokes' theorem to evaluate the line integral L (—y3dx+x3dy—z3dz), where C is the

intersection of the cylinder x*+y® =1 and the plane x+y+2z =1. [8d UPSC CSE 2013]
Hint: Cylinder and plane. Refer example 1 in the explanation of Stoke’s theorem on first page.

Q18. If F =yi +(x-2xz)]-xyk , evaluate ”(? X If)-ﬁd§ where S is the surface of the sphere
S

x® +y? + 2% = a® above the xy-plane. [8c UPSC CSE 2012]
Hint: Refer example 1, 7 page 5,9.

Q19. Find the value of J.L(ﬁxlf)-d§ taken over the upper portion of the surface
x*+y?—2ax+az=0 and the bounding curve lies in the plane z=0, when
If:(yz+22—X)T+(22+x2—y2)i+(x2+yz—zz)lz.[6b2012IFoS]

Hint: Refer example 6 page 8.

Q20. If T =4yl +X] + 22k , calculate the double integral ”(V X U) -dS over the hemisphere given

by x> +y?+z*=a* z>0.[8b UPSC CSE 2011]
Hint: Refer example 1, 7 page 5,9.

Q21. Evaluate the line integral [ﬁ(sin xdx + yzdy—dz), where C is the circle x*+Yy*=16,z=3,
C

by using Stokes' theorem. [5e 2011 IFoS]
Hint: Cylinder and plane. Refer example 1 in the explanation of Stoke’s theorem on first page.
It’s simple now. As only to evaluate surface integral on circular disk. Because z= constant, so its

intersection with cylinder will be just the circular disk x>+ y*> <16. Now evaluate as we did in
surface integral for upper surface S, .

Q22. Find the value of J.L(ﬁx If)-d§ taken over the upper portion of the surface

x* +y? —2ax+az =0 and the bounding curve lies in the plane z=0, when




F=(y" +2°=x*)i+(22+x* —y*) j+(x* +y* = 2° )k . [8c UPSC CSE 2009]
Hint: Refer example 6 page 8.

<




CHAPTER: CURVES IN SPACE, T N B FRAME, CURVATURE & TORSION

e Curve in a Space: A curve in space in described by a position vector 7 = xi + yj + zk, where x,
¥, Z may be some function of parameter 't',
x=f(t),y=9(t)| TangentLine:Itisthebesttool
z=h(t) tool toget theapproximation
r=xi+yj+zk of curveatany particular point.
E.g.x=t,y=1t? z=2t;acurve
Point on Curve:
NQ(r or,0 + 80)

Q(F +4r.0+50)
F&r
30
Ouc2) 0
Differential
Calculus

. P( v, 6) P(_'.", e)

Vector Calculus

Tangent at point:-

© /
When the point Q approaches to P, chord PQ or the arc PQ may be treated as a straight line

Let A be fixed point on curve s.t AP (arc length) = s, AQ (arc length) = s+ &5

I . r
By definition, Tangent vector = lim or
350 0S

Mathematical explanation about tangent vector at point P.

- . 5r . of ot . - dr dt

T=Ilim—=lim —x—; je. T=—.=

55500S 85000t IS dt ds
ot—0

Unit vector along the tangent to given curve
Taking the reference from previous discussion.

. OP=r,00=r+or, PO=5r

P




Now, unit vector along the chord PQ = 5—[ = ﬁé—f
|oF| 55 |oF|
Let Q — P, then chord PQ be the tangent at P

.. Unit vector along the tangent at P

. Or 05 . or( arcPQ
=lim ——=Ilim—| ————
QP 55 [6F| QP &s| chord PQ
[ Q—>P
. dr .~ dr dt . A _ |dr||dt dr||dt ds| |dr
chord PQ

Exam point (1): CSE & IFoS

g dr f=(dj
d

s’ 7 |dr
—dt

o
=l

=l
—

Ex. Find a unit vector along the tangent to the given curve r = ausin uf+a(1—cosu)f+bul2
Sol. Given; F = ausinuf +a(l—cosu)i +buk

Hence x = a u sinu, y = a(1 — cos u), z= bu, when u is the parameter

dar
Required unit vector along the tangent; { = g—lrj
du
dr . a . 2 ~
I:|d— =a(ucosu+sinu)i+asinu | +bk
u
r - -
j_ =\/a2(u cosu +sinu)’ +a?sin?u +b? =+Ja’u? cos?u +2a%sin’u + b’ +usin2u
u
OF - a(ucosu +sinu)+asinuj + bk

Ja2u? cos? u +2asin? u +usin 2u

Supporting stuff to study about curvature & Torsion: (Not directly Question required/asked)

. ~ dr . -
Unit vector along tangent at P; t :d— It is also denoted by, r'
S




Let R be position vector of Q on the tangent line at P.
(tangent line parallel to f or r'); @z‘P—Q‘F:ZF‘, when 1 is source parameter.
- OQ=0P+PQ; R=F+Ar",which is the required equation of tangent line at P.

Equation of tangent line at P

o R=Xi+Yj+2ZK; R(XY, Z); variable point on the tangent line.

. F=xi+Vj+2zk; Point P(x, y, 2)
. F:ﬂ {s— arc length}
ds
g Xf+Y]+ZI2=xf+y]+zl€+ﬂ,(%f+ﬂj+gl€j: X—x=/1%, Y-y= ﬂ z-7-2%
ds ds ds ds ds ds

X=x Y-y Z-z

BIRIR

Note:(1) If the curve is given is parameter t i.e., F =Xi +Yj +zk , where x= f (t),y=9(t),z=h(t)

= A, isthe tangent line at P on curve 7.

il — X Y R gF

BReNak

Note (2) If the given curve is intersection of f;(x,y,2)=0& f,(x,y,z)=0, then finding equation

of tangent line at P(x,y,z) on the curve.

- fi(xy,2)=0= %:0: %%+%ﬂ+%$: ..(1)
ds oxds oyds ozds
Also, f,(x,y,z)=0= M oo o dpdy hpdz_o (2)

ds xds oyds ozds

) &) (&)
. dx dy dz ds ds ds
Solving (1) & (2) for —,—,—; = = =k
BRI G as as’ T, oho, o, onef, ono, oo,
0y 0z 0z oy 0L OX OX 0L OX oy oy ox
Lot T dfp Oh ofy _ Moy oo, _ O oy O Oy _
ya aoy &z X ox or X oy oy X

.. Req. equation of tangent line is {using exam point}

X—-Xx Y-y Z-z
A B C




Ex-1. Show that the tangent at any point of the curve whose equation referred to rectangular
axis are x = 3t, y = 3t%, z = 2t> makes a constant angle with the liney=z-x=0

Ex-2. Find the equation of tangent line at the point t = 1 to the curve x=1+t,y=-t?,z=1+t>

*+ given curve F=xi +Yyj+zK

X=1+t, y=—t2, 7=1+t°
dt dt dt

Att=1;x=2,y=-1,z=2

atr=1; Hoy Yo, 2_,
at o odt

X —

)

7 —

@

So, Required equation of tangent line at point (t = 1) i.e., P(2, -1, 2);

x

-y
3
dt

|

—

X-2_Y-(-1)_z-2

1 -2 2
Revising from Analytical geometry:

X _X-f _2-pn s X=f _2=7p 2)
L my N I, m, n,

Angle between lines (1) & (2) so given by; cosé = kl, +mm, +mn,

Direction cosines (d.c.s)/, m, n Direction ratios (d.r.s) a, b, ¢
a M= b ne c
Ja? +b2 + ¢ Ja? +b? + 2 Ja? +b? + 2

So, Answer to our question; For tangent line at some point on given curve

If a, b, c are given then, | =

O gty g i
dt

3= = 6t?
dt dt
Equation of tangent line at any point («, £, 7)

X—a _y-f_Yy-y. X-a_Xx-f_i-a .,

s WG
dt dt dt

Level (2): Another example

..(2)

y=z-x=0; y=0,z=x=




3 3 1
J32 +36t2 436t ai+a? +art (1+2%)

- From (1); |, =

6t 2t 6t2 2t?

3(1+ 2t2) (1+ 2t2)' e 3(1+ 2t2) ) (1+ 2t2)
1

1
From(2), I, =—, m, =0, n, = —
( ) 2 \/5 2 2 2
1 2t2 (1+2t2)
Now, cos6 = lil, + mym, +nyn, ; cosO = +0+ = C0s0 =

\/§(1+2t2) JE(1+2t2) ﬁ(1+2t2)

@ =45°, which does not depend on t. .. Angle between lines is constant.

Osculating planes equation at some point P on source given curve r
Osculating Plane: A plane which touches at each point of given curve.

f : unit vector along tangent, b : binormal, A : principal normal.

NI

Normal Osculating
plane
- a
[~ Binormal
Osculating + Osculating plane
plane Tangent
P

Mindmap: Categories of Questions
— Equation of osculating plane— Equation of binormal— Torsion & curvature
— Frenet serret (FS) formula (Proof type) Easy but after understanding

Osculating Plane:

Oscullating plane

Curve

B: arbitrary point on required osculating plane, f : unit vector along tangent

1
c0s0=—

N7




arcAP=s,arc AQ=s+38s, OP =F(s), 0Q = (s+35s) «

-+ PB,f,PQ are coplanar = Their scalar triple product must be zero = [PBf@J =0....(1)

Note:'w F(s+8s)=F(s)+8sr'(s)+ (825) ri(s)+——-

2
F(s+8s)=r(s)+dsr'(s)+ (8) r*(s) {Neglecting higher power of B(s)}

Exam points:

1-  Equation of osculating plane if given curve is 7(s) is given by,

[R —7(s), r'(s), F"(S)J =0 can be written in deferent form.

2- Ifgivencurve risin parameter t then equation of osculating plane is

x—x(t) y-y(t) z—z(t)
X(t) y(t) 2(t) [=0
1 oyt ()

Ex- Find the equation of osculating plane at a general point on a cubic centre given by

X

fz(t,tz,t3)': F=xi+yjz+zk=ti +t2j+t3k .. x=t,y=t3,z=8

.. Required equation of osculating plane at (x, y, z) = (t,tz,t?’) is given by

x—t y—t? z-t

12t 3 |=0= (x-t)et’ —6t(y-t*)+2(z-t%) =0
2 et




Normal: Let if f(x, y, z) = 0 is given surface then equation of normal at any point p(x, y, z);

F=xi+Yj+2zK is given by, (Ifi—f).Grad f=0|.

Normal plane: Plane through P and perpendicular to the tangent line at P is called normal

plane at P is the given curve. Given by (FLF).F:O = (ﬁ—?).fzo

Cartesian form:

1. (X =x)x+(Y —y)y'+(Z—2z)z'=0; in case of parameter ‘s’.

2. (X=x)x+(Y —y)y+(Z—-2)2=0; in case of parameter ‘t'.
Note:Normal plane is perpendicular to osculating plane.

Exam point:- Equation of osculating plane at a point on the curve of intersection of two surface

(R-7).(grad f;) (R-7).(grad f,)
fi1(x,y,2)=0&f,(X,y,2)=0 is given by, ~ =
i ) 2( ) |F.(grad f,)] |F.(grad f,)]

Two special Normals:

° Principal Normal: The normal which is in the osculating plane at a point on the curve.

° Bi Normal: The normal which is perpendicular to osculating plane at a point. The unit vector
along binormal is denoted by b

° Direction (Direction ratios drs) of binormal:-
-+ Binormal is perpendicular to osculating plane and osculating plane is perpendicular to
the vector FxF . So, Binormal is parallel to FxF ... d.r.s yZ—2y,2X— XZ, Xj — yX

° Dr’s of Principal Normal: - Principal Normal is perpendicular to tangent and binormal,

therefore principal normal is parallel to cross product ?x(?x f)

.. Required dr’s may be found from above cross product expression.
Curvature

Curvature of a curve at some point P is defined as the rate of rotation of curve (i.e. tangents
at the point P & at a point Q which is closer to P will be giving idea about it).

If the angle between tangents at P & Q is 0@, then the curvature at the point P is given by

.36 do
Kk = lim—=—
(Kappa) 8s—00S  ds
. do 1 . . .
Exampoint: (1) K:d— (2) ==p is called radius of curvature at that point.
S K




To find the expression for «:-

‘Q—A‘ :1,‘@‘ =1 {-+ unit velocity along tangent}

= |QAXQB|=1.15in80 => [f x(f + 5 )| =sin30 = [f x| =sins6 {. fxf=0}

. of| sindd . of| sindo &6
:> tx— == t)(— = X —
ds 8s ds 30  8s
Now, proceedingas Q — P, i.e.,, 86 > 0; = fxa—t = lim 1.@ == fxs—t (1)
0S| 8s—0 OS 0s
Now, “+ f is unit vector ... .t =1; Differentiating w.r.ts; f.%-l—%f:o = 2f.j—t=0 = f.d—t=0
s ds s s

A

. t is perpendicular to j—t:f'
S

df
ds

. T

From (1); K=|f|%5|n5:>1<= :x:%(g—gj {-_-f:d_r:r"}
S

da°r
ds?

= =7

K=

eTorsion of a curve at some point on curve: Def- Arc rate of rotation of binormal vector at point.

1 . op d
Denote by t and = is called the radius of torsion. t= lim —d):—(b
T 8s—00s  ds
Expression for Torsion: ‘Q—Ax @‘zl.lsin 3 = b 2P| _Sind% 3¢
oS op Os
AsQ— P, B2 im 3 — |5 3P =1...(1)
0S| 8—003S 0s

-+ bb=1.So on Differentiating w.r.t. s; 6.3—b=0:> b is perpendicular (;—b
s s




R R  Q—>P,s0,0s >0

From (1), 1= UL N r:‘ﬁ‘ﬁsinE sb db
3s ds 2 Solim —=—
35—090s ds

db

T=—

ds

hrob B

M)

° Screw Curvature:-Arc-rate of rotation at which principal normal changes the direction. It’s

. I . dr ~ .
magnitude is given by i + 12 ie., & as P(r) moves along the curve is called the
S

screw curvature.

° SERRET-FRENET Formulae:- (Proofs are asked Multiple times)

df db cloil A -
1 —=xA 2 e =Tl 3 —=1b—«t
(1) e (2) " (3) o
. dr . df s . .
Proof(1) ot = t.—=0 {~~ tt =1, on difference w.r.t. s we get it}
S s
= {f'=0 =fis Ltof"

e equation of osculating plane.

[ﬁ—? r r—"]:O ie., [ﬁ—?, f f']:O {Condition of coplanar}

f' is in the osculating plane, which is perpendicular to binormal b= ' is perpendicular to f
and b.

-+ £'is parallel to f xb = ' is collinear with A
o |f'|=\r—"\=1< = {'=+kh
We choose the direction of fi such that curvature « is always positive.

=xA. —=xhA Remember




(2) Target: ? =1
s

Proof: -+ f and b are perpendicular .. fb=0

Diff. w.r.t.s, fb'+f'b=0= f.6'+(1<ﬁ).6:0 { f'=%=KA}
s
= fb'=0 ....(1) = b" is perpendicular to f,
Now, bb=1; Diff. w.r.t s,ZLB.?]zo = Db.b'=0 . b is perpendicularto b'......(2)
s

° From (1) & (2),

A

b' is normal to the plane courting f &b .. b' is parallel to bxf i.e., b' is parallel to A.

° A':@:r o b'=+1A ; @:irﬁ
ds ds
By tradition, we take b’ is taken oppositeto A .- 3—b=—rﬁ Remember
s
dan -~
(3) Target: —=1b—xnA
ds
Proof:- We know that, i=bxf
. di  ~ df dpESEEET QU DEINt 1 dnen " A .
Diff. w.r.t s, 5 :bx_s+EXt = bx(xA)+(—th)+t= K(bXﬂ)—T(nXt)— K(— )—r(—b)
@:rﬁ—xﬁ Remember
ds
Exam point:-

F-S Formulae can be written in matrix form.

—

t 0 x« O
; Called: f ib frame

O, D
Il

o |
A

|

a S

S A

o> S

Note:
Proof type things

Demand of CSE/IFoS /
AN

Numerical type Q.
(Formula based)

F=xi+yj+zk=f(t)i +g(t)j+h(t)k ; representation of a curve in space with parameter t.




Formula: for r:for t & «.
(1) If Fis position vector of any point P one the curve, then.
dr _drds__.ds

F=—s=———=r—=rs=f3..(1) . |f|=
dt ds'dt ot

~

ts

=5...(2)

Diff. w.rtt, ©={8+f'(s)’ = F=f&+(ich)(3).....(3)

Taking cross product of (1) & (3), we have,

PxP=tix{i(s)f +88] = Fx=x(s)°(Exh) { Ext=0]

f}XIL’:=K(S')36 er(8) = ‘?xﬂ:‘x(s’f".l
K= F‘X‘: {r*zs' (from (2))}
r

(2) Formulafor Torsion t:- Exam point: |t=

. 3
x|
— B
Formulafor «& t for r'; (1) KZ‘F"X r (2) peniea Siaen ]
‘r‘x r‘
Explanation:- - r'=f & r'=«xA .. r'xr'=f{xxAi=kb { fxﬁ:B}
‘FXF"ZK,' [ b :1]
cri=f &r'=«n w(2)
Diff- equation (2) w.r.ts,
r_"‘:K@+d—Kﬁ = r"=x- kXl +x"NA....(3) |:'.'@=’C6Kf:|
ds ds ds

Equation (1), (2) & (3) can be written as,
=1 +0A+0b, r*=0f+kA+00, r"=—«k’f+K'A+KkIbd

Writing triple product in determent for, we get,




e [F ] [F ]
|: " r'":|= 0 Kk O|l=x“t1= 1= > = T==T"5
2, K ‘rxr"‘
—K K KT
r’+r?
e Radius of curvature (in polar form) if r = f(H) is given curve is given by p:ﬁ
re+2r—rr

Subjective Examples

Ex-1: The necessary & sufficient condition for the curve to be a straight line is that the curvature

Ans:

Ex.2:

Sol.

k =0 at all points on curve.

Just Fundamental:

Vector equation of straight line,

r=sa+ 5, when a &b are constant vectors

Also, in symmetrical form,

X—o_y-p_z-y
| m n

Let if curve is a straight

|

& .. F=sd+b,when &b are ... on diff. w.r.t.s,
ST ) = : S AN |4
=N d—gza:r o Ezr=0= oo KZ‘I’ T ‘:\axo\:\o\zo

The necessary & sufficient condition for a given curve to be a plane curve is that t=0 at
all points of the curve.

Let if curve is place then we have to prove t=0

.. By a plane curve means the tangents & normals at all points of the curve is in the plane
of curve.

So, we can conclude that osculating plane at all points of the curve, is the plane of the curve
. b; the unit vector along binormal is constant.

b = constant = @:0
ds

. 1=0

Exampoint: Osculating plane at all points of the curve, is the plane of curve, then b is constant.

° The condition is sufficient i.e.,

If t=0 then we have to prove given curve is a plane curve.




*
°e

Let if t=0 at all points of curve . 3—b = _1i=0 ..b is constant vector

s
d/ .~ df » _db_ .- .
s —(fb)]=—b+r.—={fb :{using (1
ds( ) ds i ds { g (1)}
d/.~ A ) A
E(r.b):o {-~ t &b are perpendiculari.e, tbh=0}

= F.b =constant. So, F.b is constant.

We know that, F.b denotes the projection of ¥ on b i.e., projection of position vector ¥ on b
is same at all points of curve . So, curve is a plane curve.

Ex.3: The necessary & sufficient for the curve to be a plane curve is [r—' re r—] =0

e Letthe curveis plane curve. So, t=0 at all points of curve.

We know that, [F’ rr Fm]:& :>[F' rr F"-]zo

o letif [F‘ r F"]zo at all points of curve, then we want to prove curve is a plane
curve As, [F‘ rr F--}:o: >t =0; Either x=0 or t=0

Note: if possible =0 at some point of curve then in the neighborhood of this point
120 = « =0 is the neighborhood of this point
=0 on straight line contradict to assumption.

Q. Find the radius of «curvature & radius of torsion of the helix
X =acosu, y =asinu,z = autana

dr d’r dr d’r d°r
du du u du du
Ans: We know, K= ... (1) and <= 3 weer(2)
dr Food2r
bl dr d-r
du aw” a?
“ F=xi+yj+zk = F=acosul +asinuj +autan ok
df . o 2 ~ dzf: o . 2 ~ 3F o 2
— =-—asinuUl +acosuj +atanok, — =-acosui —asinuj+0k, — =acosul —acosuj
du du? du®

<an




A A

. . J k
dr d?r .
—Xx——=|—asinu acosu atano
du du .
—acosu —asinu 0

=i{0+a2 sinutanoc}— j{0+a2 cosutanoc}+ kA{a2 sin® u +a® cos? u}

2

—a’sinutanal —a?

cosutanoj + a2k

=l

dr d%r d%F

—asinu acous atana
du du® du3}

=|-acosu -asinu 0 |= atanoc{azcoszu+azsin2u}= a’tana
asinu —acosu 0

dr d?f dr

—x— —yJa*tanla+a* =a%seca, |—|=./a® (1+tan2a) — aseco

du du du

. 1 (aseCOc)3 5 o

.. Radius of curvature = —=-5——=a’sec’a
K a‘seco
2 : 6.2 2

. . 1 (a seCa) a®sec’ o a
Radius of torsion = == = = — a? cosecasec’ o,

T a’tana  a’sina.seco  sino.cos? o

PREVIOUS YEARS QUESTIONS
CURVATURE & TORSION

Q70© If the tangent to a curve makes a constant angle 6 with a fixed line, then prove that the
ratio of radius of torsion to radius of curvature is proportional to tan 6. Further
prove that if this ratio is constant, then the tangent makes a constant angle with a
fixed direction. UPSC CSE 2023 (15)

Q8(c) If a curve in a space is represented by T = f(t) , then derive expressions of its torsion and

curvature in terms of f, F and F. Find the curvature and torsion of the curve given by
F =(at—asint,a—acost,bt). IFoS 2022

Q1. Atangent is drawn to a given curve at some point of constant. B is a point on the tangent at
a distance 5 units from the point of contact. Show that the curvature of the locus of the point B
is




12
[25;&2 (1+ 25K2)+{K‘+5d’(+251{3}:|
ds

(1+257)"

Find the curvature and torsion of the curve T =ti +t?] +t°k . [6¢ 2020 IFoS]

Q2. Find the radius of curvature and radius of torsion of the helix x=acosu,
y=asinu,z=autan« . [7b UPSC CSE 2019]

3—

- : r. - o = - o
Q3. letr=r (s) represent a space curve. Find F in terms of T,N and B, where T,N and
S

— 2— 3—
= r r r
B represent tangent, principal normal and binormal respectively. Compute d— d—zxd—3 in
ds ( ds® ds
terms of radius of curvature and the torsion. [5d 2019 IFoS]

Q4. Derive the Frenet-Serret formulae. Verify the same for the space curve
x=3cost,y=3sint,z=4t. [7c 2019 IFoS]

=

Q5. Find the curvature and torsion of the curve T =a(usinu)i +a(l-cosu)j+buk.

[7b UPSC CSE 2018]

Q6. Let a be a unit-speed curve in R? with constant curvature and zero torsion. Show that « is
(part of) a circle. [7d 2018 IFoS]

Q7. For a curve lying on a sphere of radius a and such that the torsion is never 0, show that

1Y ([« Y
(_j +(_2j =a’ [8c 2018 IFoS]

K KT

Q8. Find the curvature vector and its magnitude at any point T :(6’) of the curve
r= (acos 6,asin 0, a49) . Show that the locus of the feet of the perpendicular from the origin to

the tangent is a curve that completely lies on the hyperboloid x* + y* —z° =a?.
[7a UPSC CSE 2017]

Q9. Find the curvature and torsion of the circular helix F:a(cosﬁ,sin Q,HCOt,B), B is the

constant angle at which it cuts its generators. [8c 2017 IFoS]




Q10. If the tangent to a curve makes a constant angle o, with a fixed lines, then prove that
. . K.
xcosatzsina=0. Conversely, if — is constant, then show that the tangent makes a constant
T
angle with a fixed direction. [8d 2017 IFoS]

Q11. For the cardioid r=a(1+cosé), show that the square of the radius of curvature at any
point (r,0) is a proportional to r. Also find the radius of curvature if 6 = 0%% . [8d UPSC CSE
2016]

Q12. Find the curvature and torsion of the curve x =acost,y =asint,z="bt.

[5¢ 2015 IFoS]

Q13. Find the curvature vector at any point of the curve T(t) :tCOStf+tSintj, 0<t<2x. Give
its magnitude also. [5e UPSC CSE 2014]

— 2 ~
Q14. Show that the curve X(t) :tf+(1¥t] i+(1 tt jk lies in a plane. [Se UPSC CSE 2013]

Q15. Derive the Frenet-Serret formulae. Define the curvature and torsion for a space curve.
2

Compute them for the space curve x=t,y=t*,z = §t3 . Show that the curvature and torsion are

equal for this curve. [8a UPSC CSE 2012]

Q16. Find the curvature, torsion and the relation between the arc length S and parameter u for
the curve: T =T (u)=2log, ui +4uj +(2u” +1)k . [8a 2011 IFoS]

Q17. Find x/7 for the curve

7 (t)=acosti +asintj +btk . [1c UPSC CSE 2010]

Hints:
PYQ 1: refer example
PYQ 3: Theory done in class notes
PYQ 4: Theory + application like PYQ (2 & 3)
PYQ 5: Similar to PYQ 3
Verify the answer
a\/b® +2a’ (cosu—1)° _

[\/b2+2a2 (1—cosu)T’ \/b2+a2 (1-cosu)’




PYQ 6: Theoretical explanation (class notes)
PYQ 7: Hint: Let x=x(s) lie on the sphere with centre y, and radius a. Then for all &

(X(5)=Yo)-(x(s)=¥o) =2’
Differentiating 2(x— yo).;< =0 or (x—y,).t=0
Differentiating (x— yo).lt# x.t=0

Note it follows that x =0 and (x—yo).x:_—1
X

[ 0
Differentiating again x.n+(x—y,).n

~

PYQ 8:- - K':g—t, where { is the unit tangential vector.
S

.~ dr dr/de dr| |ds ar . .
f=2"2= , =>|—|=|—| - — Isunit vector
ds ds/déo do| |déo ds
dr dr/dé
—=ay2,T=
de V2 ds/dé
1 .y . -1/. = [
r=——(-asinfi+acosdj+ak)=—=|sin@i—cosdj—k
a@( j+ak) ﬁ( i=k)
- S 0 :—i(cosé?hsin49]).'.|1c|:i
ds/d6 2a 2a
PYQ 9:- Similar calculation like PYQ2
Answer verification:
1 cos
= 'T=
a(l+cos’ )" a(l+cos’ B)
PYQ 10: Theory
PYQ 11: Radius of curvature (in polar form) if r= f(@) is given curve is given by

ort4r?
P o e
Given r =a(1+cos#) ; using this in above formula

P’ :(ga)a(Hcose) =p'ar

Now when =0, p=4a—/3

<an




When 9=£, p= 2/2a 1+i
4 3 2
When sz,p: 22a
2 3
PYQ 12: Similar to PYQ (2)

Answer verification: x=a/ (a2 n bz)

r=b/(a2+b2)

PYQ 13: Similar to PYQ (2)
e 2+t?
Answer verificationn. K=——+——
(1+t%)3/2
PYQ 14: Calculate 7 by this formula
_[xoxmxm]

x>
Given curve is plane.
PYQ 15: Theory

PYQ 16: Similar to PYQ (2)
PYQ 17: Similar to PYQ (2)

Mentor’s advice: Although less number of questions asked from -this theoretical perspective from
following segment in CSE & IFoS. But if students are interested and have time to read, they can follow

these few pages.

Source: These pages have been taken from a research paper but content is managed according to demand

of CSE & IFoS examination.
1. Introduction

e |t is a well-known fact that a space curve is uniquely determined, up to a choice of coordinate

system,

by specifying the curvature k and torsion t as functions of its arc length s. The functions k(s) and 1(s),
which describe the deviation of a curve from linearity and planarity, are known as the “natural” or

“intrinsic” equations of a curve.

¢ In general, the curvature and torsion are independent, but certain “special” curves with distinctive
geometrical properties correspond to the existence of relationships between them.

The simplest cases are the helical curves, identified by the proportionality condition

1(s) = k(s) = ¢, a constant.




Equivalently, the curve tangent t maintains a constant angle W = cot™ ¢ with a fixed direction in
space, the axis of the helical curve.

If k and 1 are both constant we have a circular helix, while a general helix corresponds to non—
constant k and t.

e A slant helix may be regarded as a variation on the general helix, in which the curve principal

normal A (rather than the tangent t ) maintains a constant angle with a fixed direction in space. This
incurs a more complicated relation between k, 1, and the derivative of the t = k ratio. The slant helices
encompass the general helices as the particular case where the T = Kk ratio is a constant; a proper slant
helix has a nhon—constant t = k ratio.

The rectifying curves are identified by a torsion/curvature ratio that is a linear function of the arc
length, rather than a constant, i.e., ©(s) = k(s) = as + b where a = 0 and b are constants. A rectifying

curve ays) satisfies the condition <a(s),ﬁ(s)> =0, where N (s) is the principal normal, i.e., at each

point the position vector lies in the rectifying plane, spanned by tangent and binormal.

The Salkowski curves may be viewed as generalizations of the circular helix, since they exhibit a
constant curvature but non—constant torsion. The Salkowski curves are proper slant helices.

The spherical curves (i.e., curves that lie on a sphere) are a further related category.

The identification of characterizations for helices, rectifying curves, slant helices, and spherical curves, and
the study of their inter—relationships, are interesting basic problems in the theory of Frenet curves.

e An important concept associated with a unit—speed Frenet curve o(s) is its centrode

o=1tt+kb,i.e., the
locus traced by the angular velocity vector, which determines the variation of the Frenet frame along
a(s). The centrode has been employed to characterize rectifying curves.

2. Preliminaries

A unit—speed curve a(s) : | — E*is said to be a Frenet curve if k(s) > 0 at every point, and 1(s) # 0.
The Frenet frame (t; n; b) consisting of the curve tangent, principal normal, and binormal satisfies
the Frenet—Serret relations

t'=kn,n'=—kt+tb,b'=—1n........ @
where primes denote arc—length derivatives.

e A Frenet curve a(s) is a general helix if a fixed unit vector u exists, such that <t(s), u> = cos V¥ for




some fixed angle ¥ (the helix angle). The Lancret characterization states that a space curve o(s) is
a general helix if and only if

where ¢ = cot Y. When k and 1 are both constant, a(s) is a circular helix.

e A curve a(s) is whose principal normal n(s) makes a constant angle with a fixed unit vector is
called a slant helix. It is known that a(s) is a slant helix if and only if its curvature and torsion satisfy

K*(t/k)y

( )3 = =C  (3); for some constant c.
k2 + 12

e A rectifying curve a(s) satisfies <a(s),n(s)> =0, i.e., the position vector a(s) always lies in the

curve rectifying plane [4, 5]. It is known [4] that a(s) is a rectifying curve if and only if its torsion
1(s) and curvature k(s) satisfy

s
% =as+b, (4); where o= 0 and b are constants.
s
e A spherical curve, i.e., a curve that lies on a sphere of radius r with center at the origin, may be
characterized [19] by the relation

(p’c)'+B:O,Where pzl,czl. (5)
(¢} K T

It is known [4] that a Frenet curve a(s) is a rectifying curve if and only if a unit—speed spherical
curve

¥(s) : | — S?exists, such that

a(s) = a sec(s + so) y(s),
where S? is the unit sphere with center at the origin, and a = 0 and so are constants. If {k, 1, t, n, b} is
the Frenet—Serret apparatus of the rectifying curve a(s) : | — E* and k, is the curvature of the unit—
speed curve y(s) : | — S? then we have [7]:

1 1 .
k :gcos3(s+so)~/1<$ -1, rzgcos2 (5+5)sin(s+3) /2 —1. (6)

The centrode of a unit-speed curve a(s) is defined by
o(s) = (s) t(s) + k(s) b(s), ()
i.e., itis the locus traced by the angular velocity vector (or Darboux vector) of the Frenet frame along
a(s), which describes the variation of the frame vectors through the relations
'=oxt,n'=oxnb'=wxb,
which are an alternative expression of equations (1). The centrode of a unit speed curve has been
used to characterize rectifying curves [4, 5]. Also, the curve defined by




o(s)

g (s)=—-+

e

is called the dilated centrode, and for a non—helical unit speed Frenet curve, it is shown in [7] that
wd (S) is always a rectifying curve.

3. Characterizations of slant helices: Read only for learning the general procedure to address
demand of questions in CSE & IFoS.

In this section, some properties and characterizations of proper slant helices and Salkowski curves
are derived. In particular, we will show that a unique general helix may be associated with each
proper slant helix, and that the centrode of a Salkwoski curve is a proper slant helix. Let a(s) : | —
E2 be a unit—speed slant helix, with Frenet—Serret apparatus {k, t, t, n, b}. Then a fixed unit vector u

and constant ¢ exist, such that (u, n(s)) =c, s I [14].

For a proper slant helix, with ¢ = 0, we show that no point so € | exists, such that <u, b(so)> =0.
Differentiating (u, n(s)) = c and using (1) gives; k (u,t(s)) =1 (u, b(s)). 9)

If (u, b(sg)) =0, this equation implies that (u, t(s)) = 0, and consequently u = £ n(so) since u is a

unit vector, so ¢ = 1. Writing u = (u, t(s))t(s) = n(s) + (u, b(s)) b(s)

and taking the norm of both sides then gives; 1=\/<u,t(5)>2 +1+<u,b(s)>2 ,
which can only be satisfied if (u,t(s)) = 0and (u,b(s)) = 0, i.e., u=#n(s).

Differentiating this and using nequations (1) gives k(s) = 0 and t(s) = 0, in contradiction with the
assumption that a(s) is a proper slant helix. Hence, <u,b(s)> # 0 for all s € I, and equation (9) gives
o(s) _ (ut(s))
—L =g (10)
k(s) (ub(s))

Lemma 3.1. If a(s) : | — E® is a proper slant helix with the Frenet—Serret apparatus {k, t, t, n, b} its unit
axis vector u is given by

1-¢? V1-c?

U=—=—(t/k)t+cn+——=——ub. (12)
1+(t/k)? 1+(x/k)?

Proof: We have u=(u,t)t+cn+(u,b)b, (12)
which gives hu; u =<u,t>2 +<u,b>2 =1—c?. From equation (10) we obtain

k2 () +(ub)  1-c?

K (ub)*  (ub)




Since <u,b(s)> does not change sign on the connected interval s e I, we may choose the direction @

2
of u that gives a positive value, and write (u,b) = B el

1+(x/k)?
Substituting this and (10) into (12) yields the stated form (11) of u.

Corollary 3.1. A unit-speed Frenet curve a(s) : | — E* is a proper slant helix if and only if its curvature
k(s) and torsion t(s) satisfy

(t/k) c 1 c
= K, = T (13)
L,/u(r/ K2 ) 1-¢2  (J1+(/k)? ) V1-¢?
for some non-zero constant c.
Proof: Suppose the curve a(s) is a proper slant helix. Then differentiating (11) and equating components

yields the relations (13).

Conversely, suppose that the two relations (13) hold for a unit—speed Frenet curve. Then the first
relation gives

(x/K) ! - ! il oy
JL+(t/k)? JL+ (e k) J1-c?

and substituting the second relation of (13) into the above yields

K,

= A
J1-c2 & | 1+ (/)2 1-¢?

which reduces to (x/x) __° K.

(1+(r/1<)2)3’2 1-c?

Since this is equivalent to equation (3), the curve is a proper slant helix.
Theorem 3.1.

° A unit-speed Frenet curve a (s) : | — E* with Frenet—Serret apparatus { «, T, t, n, b} is a proper
slant helix if and only if

t/lk= where f = CJ.K ds (14)

1-f2
and c is a non—zero constant.
Proof : Suppose the Frenet curve (s) satisfies the condition (14). Then we have
f CK

- o) o) L e




These equations give L)s’/z =CK
(1+ (c/ K)Z)
e which with ¢ # 0 is equivalent to the condition (3) for a proper slant helix.
Conversely, suppose a(s) is a proper slant helix. Then by Theorem A in [15], the indefinite

integrals of k and 7 satisfy; (J.de)2 + (J-rds)z =tan?0, (15)

o where 0<0 <%n is the angle between n(s) and the fixed direction u. From this, one can easily

deduce the relations

2
Z?:Zg(jms)z <1 f:—— . (16)

Now from (15) we obtain
2
(jrds) _ sin?e

(jde)Z " cos? 6(]de)2 |

and on using the second relation in (16), this becomes

1+

2
in? cos® O( [ «ds
pin" 6 5, from which we obtain (x/x)% = (I )

1+ (/1) =———— 2
cos? e(jxds) sin% 0 —cos? e(jde)

° This is equivalent to the stated condition (14) with ¢ = + cot 0, and we note from (16) that f* < 1.

As a consequence of Theorem 3.1, and the fact that every Salkowski curve is a proper slant helix, we
have the following characterization of Salkowski curves — essentially a result in [20].

Corollary 3.2.

° Corollary 3.2. A unit-speed Frenet curve a (s) : | - E® with curvature® « = 1 is a Salkowski curve if
and only if its torsion is of the form

cs .
1(S) =——— where ¢ is a hon—zero constant.
[ 2.2
1-c“s
° It is interesting to observe, as the following theorem shows, that a unique general helix may be

associated with each proper slant helix, such that the principal normal vector field of the slant helix
coincides with the binormal vector field of the general helix.

Theorem 3.2.
Let a (s) : | = E® be a proper slant helix with axis vector u and Frenet-Serret apparatus {x, T, t, n,
b}

where x > 0 and < u, n > = c¢. Then a unique general helix B(s) : | — E? exists with curvature




VT2 +12 [1—c? , torsion y/12 + k2 , and binormal vector field n.
C@ltsb t—(c/b

p= , 9=
N JL+ (e K)?

along the curve a(s). Then one can easily verify that (p, g, n) is an oriented orthonormal frame along
a(s), withpxq=n,gxn=p,nxp=aq.

Proof: We define the following unit vector fields

(17)

Differentiating equations (17), and using the relations (13) for a proper slant helix, we obtain

©?+x%q, q = r2+1<2{n—

b‘
I

pl, (18)
1-c? 1-c? J

2

and we also have n' =—xt +th = —Vt% + k°q . (19)

Equations (18) — (19) indicate, by the existence theorem [19] for curves, that

( C 242 <2 +K2,p,q,nJ . is the Frenet—Serret apparatus for a unique unit-speed

i-c?
curve B(s) : | — E3, and that B(s) is a general helix.
1) The assumption k = 1 is conventional in the study of Salkowski curves [20], and can be achieved
for any curve of constant curvature by an appropriate scaling.
Remark 3.1.
For the example of a proper slant helix on page 161 of Izumiya—Takeuchi [14], we obtain the

associated circular helix with constant curvature ¥ =b/+/a? —b? and constant torsion T =+/a% —b?
Remark 3.2.

The Salkowski curves considered by Monterde [20] are proper slant helices, with curvature k = 1
xS

(8)=—F—re,
' Jtan? ¢ —s?

«+ where ¢ is the constant angle made by the principal normal n with a fixed direction u (see Lemma 1
and Theorem 1 in [20]). Thus, setting ¢ = cot ¢, the curvature i and torsion T of the general helix
c _ 1
, T= .
J1—c21-c%s? J1-¢2s?
«»  Every Salkowski curve is a proper slant helix, but there exist proper slant helices that are not Salkowski
curves (for instance, the example given in [14]). The centrodes ® = t t + k b of Frenet curves are
valuable in analyzing the kinematics of joints [13, 27], and it is of interest to ask whether the centrode

of a proper slant helix is always a proper slant helix. The answer is negative, as illustrated by the
example

and torsion

associated with a Salkowski curve are given by K=

a(s)= -2

2 _p2 cos((@+h)s) _cos((@a-b)s) sin((a+bs) sin((a-b)s) 2 osbs
2a | (a+b)’ (a-b)*> ' (a+b)? (@a-b)* "pya? b2 '




in [14]. For 0 < b < a, this is a unit-speed proper slant helix, with curvature and torsion
«(s) =va? —b? cosbs , (s) =+va? —b? sinbs

The centrode o = t t + « b of this curve has parametric speed v, = ‘w'(s)‘ , Curvature x,, and torsion

. a
T, given by v, =bva?-b?, K, =———,

bya? —b?
Thus, the centrode of af(s) is is an arc of a circle, and not a proper slant helix. On the other hand, one
can show that the centrode of a Salkowski curve is a slant helix, as follows.

=0.

(o]

Theorem 3.3. A Salkowski curve a(s) : | — E® has a centrode @ = T t + « b that is a proper slant helix, but
is not a Salkowski curve.
Proof: The unit-speed Salkowski curve a(s) has curved and torsion given [20] by
+
k(s) =1, () = =M ) (20)
1-m?s
where m = 0, +1/+/3 is a real number, and the domain of a(s) is given by |ms| < 1. Thus, the centrode

tms

of the Salkowski curve is m(s) = ——t(s) + b(s),
J1-m?s?
. I ' tm
from which we obtain o (8)=—F=1(9). (21)

(1_ m252 )3/2

If s is arc length along the centrode w(s), its parametric speed v, is

ds ' m
Vols) = 2o oy 9] = — 0L (22
ds (1_ mzsz)
and by the chain rule we have
d_1d 23)
ds, v, ds
From (21) we obtain the tangent to the centrode as
t,(5) =28 _1y(s). (24)
)
Its curvature k,, and principal normal n! are obtained using (22)—(23) from
dt, _*tdt
ds, v,ds “

and since dt = ds = k n with k(s) given by (20), we have
312
(1— mzsz)

|m]

Ky (S)= , N, (s)==£n(s). (25)

n




Equations (24)—(25) give the centrode binormal vector as b, x t, x n, = b. Since
do, _1db

—_— = — _'c
ds, v, ds

mnw’

and db \ ds = — © n where t(s) is given by (20), we obtain the torsion of the centrode as
rm(s):i(l—mzsz)s. (26)

Since n,(s) =+n(s), the centrode is a slant helix. Moreover, it is a proper slant helix, since the ratio

T(S) / Ko(S) is non—constant. The constant ¢ in equation (3) can be found as follows. From (23) and
(25)-(26),
we have

1 d t, 1 1drg,  +m

I+

_xm

o N2 de 7 5 o\2y dex /. 5 N3 2
(Kfﬁri) U5 Ky (K(20+Tz)) Vo 05 Ko (1—m232) Ko

Hence, the centrode of a Salkowski curve is a proper slant helix with constant ¢ =+ m in in equation
(3), and it is not a Salkowski curve since «, = constant.

Remark 3.3.

The torsion/curvature ratio properties of general helices and rectifying curves indicate that they are
mutually disjoint families of curves. It is not known whether a proper slant helix can also be a
rectifying curve. However, Theorem 3.3 and the following Corollary show that the centrode of a
Salkowski curve is both a proper slant helix and a rectifying curve.

Corollary 3.3.

The centrode o = tt + kb of a Salkowski curve a(s) ;.| — E2 is a rectifying curve.

Proof: Using equations (25) and (26), we have

t(s) _Im]s
Ko (8) \ll—mZSZI

Consequently, if s, is arc length along w(s), using equation (23) we have

d 1d . e i
H o %% =1; so »(s) is a general helix, since it satisfies (2) with non—constant t,, and
ds, K, V, dSiK,

Ko

Moreover, integrating the above relation with respect to s, gives To _ Sq +b,

4.

()
for some constant b, i.e., the centrode is a rectifying curve satisfying (4).
Associated circular helices of Frenet curves
Among all Frenet curves in E3 the helices have a special stature due to their widespread
applications in science and technology. In the present section, we highlight the importance and
ubiquity of helices by showing that every Frenet curve is either a general helix, or else has a
unique circular helix associated with it. We begin by proving this very general result.




Theorem 4.1.

Let a(s) : | — E° be a unit—speed Frenet curve of class C¥, k > 4 with Frenet Serret apparatus {x, T,
t, n, b}. Then o(s) is either a general helix, or there is a unique circular helix associated with it,
defined by

B(S):i 1 t/x
V2| (14 (e Lk (e )2

Proof: Suppose that a(s) is a Frenet curve that is not a general helix, i.e., (t / )' # 0. Then p(s) : | — E*

,tanl(t/K)] 27)

| | . _ ds, | |/
defined by (27) is a regular curve, with parametric speed  vg(s) =——= ‘B (s)‘ =—,
ds 1+ (t/x)

where sg is arc length along B(S). Hence, using the Frenet—Serret relations, the Frenet—Serret
apparatus of B(s) can be computed as

K=ty = e, g =t | UK L 1
S AN I Ty e |

I i(t/K,—l,«/l+ (t/1)? ) |
1+ (t/ k)2 241+ (2] )?
Thus, B(s) is a circular helix, since tg/ks = 1. Hence, the unit speed Frenet curve a(s) is either a general
helix, or there is a unique circular helix B(s) defined by (27) associated with it.
Definition 4.1.

For a unit speed Frenet curve o(s) : | — E3 of class C¥, k > 4 that is not a general helix, the unique
circular helix B(s) identified by (27) is called the associated circular helix of the Frenet curve a(s).

. In the remainder of this section, we use the circular helix associated with non—helical Frenet curves
to formulate new characterizations for slant helices, Salkowski curves, spherical curves and
rectifying curves.

° Note that a given proper slant helix a(s) : | — E* has two helices associated with it: the general helix
identified in Theorem 3.2 and the associated circular helix (27). We now prove the following
characterization for a proper slant helix.

Proposition 4.1. A unit-speed Frenet curve (s) : | — E2 of class C¥, k > 4 with Frenet—Serret apparatus {x,

T, t, n, b} is a proper slant helix if and only if the circular helix associated with it is given by

B(s):%( 1- f2,f,sin! f),

Where f =cfkds and c is a non—zero constant.

Proof : Let a(s) be a unit-speed proper slant helix, which by the prof of theorem 3.1 satisfies Then
substituting t/x = tan 6 in equation (3) yields = 6’ cos 6 = ¢ k. Absorbing the sign ambiguity into the
constant ¢ and integrating we find




sin=cfids=f.
Since ¢ = 0, a(s) is not a general helix. The circular helix (27) associated with a(s) is thus given by
1 . 1 | )
S)=——=(co0s0,sin0,0 =—( 1-f“,sin" .
B(s) JE( ) NA N
Conversely, let the circular helix associated with the unit-speed Frenet curve a(s) : | — E* be given by (28)

and f = T/

1
1- 2 N

,Wheref = CJ.K ds, Which by theorem 3.1 shows that a(s) is a proper slant helix.

where f =cjxds,c¢0. then we have, 1+ (t/x)? =

Thatis, t/t= f

J1-f2

Recalling [20] that every Salkowski curve is a proper slant helix, we now find the constant c in equation
(3). The curvature and torsion of a Salkowski curve a(s) are given by (20) with m = cot ¢, where ¢ is
the constant angle made by principal normal with a fixed direction and s is are length. Hence, for a
unit-speed Salkowski curve, we obtain

M and 1+ (/)% = —

(t/K)=——" .
(1—m2s2)%2 1 m2s2

Thus, the equation (3) takes the form

k2 (/)"
(‘CZ + K2)3/2

curves in terms of their associated circular helices.

=+m, And the constant is ¢ = + m, this leads to the following characterization of Salkowski

Proposition 4.2. A unit-speed Frenet curve a(s) : | — E2 of class C¥, k > 4 with Frenet-Serret apparatus
{x,t,t,n,b}is a Salkowski curve if and only if the circular helix associated with it is given by

B(s) = %(\/1 —m?s? ,J_rms,isin’l(ms)), where m # 0, + 1/+/3 is a non-zero constant.

Proof : Let a(s) be a unit-speed Salkowski curve with curvature and torsion given by (20). Since a(s) is a
proper slant helix satisfying (3) with ¢ = =m, its associated circular helix is given by equation (28) in

Proposition 4.1 where f = imIK ds = + ms + b. By the re-parametrization s — s — b/(£m), we obtain

f = +ms and then equation (28) reduces to the stated from (30).

Conversely, suppose the unit-speed Frenet curve a(s) has the curve (27) as its associated circular helix.
1
2
Which by proposition 4.1 indicates that o(s) is a proper slant helix with curvature k¥ = 1 and torsion t

satisfying (29) so that

2
_|_
1+(3j 1% e, 7(s) = ——mm>__

Setting f =J_rms=c_|.ds,this becomes B(s) = ——=(y/1— f2, f,sin"! f),

1 1—m?s?

n




Hence, a(s) is a Salkowski curve [20],
We consider next the circular helices associated with spherical curves.

Proposition 4.3. A non-helical unit-speed Frenet curve o(s) : | — E* of closs C¥, k > 4 with Frenet-Serret
apparatus {x,t,t,n,b}is a spherical curve on a sphere of radius c if and only if the circular helix

associated with it is given by

B(s) =

, Where f = ¢ t cos (J'r ds) and c is a positive constant.

«/1+ f2 «/1+ f2

Proof: Suppose that a(s) is a non-helical unit-speed spherical curve that lies on a sphere of radius c. Then

I2

1
by integration of equation (5) we have — + klf‘ > =C,
K

Which gives ———— =+t

K\/Kz—l/Cz

And on integration this yields; ¢ k = + sec (Ir ds).

Absorbing the sign ambiguity into the constant ¢ and setting f = t/x, this is equivalent to

f= C‘ECOS(J.‘CdS).

Hence, the circular helix (27) associated with a(s) is given by

B(s) =

—F —CTCOS(J"CdS).

\/1+ f2 «/1+ f2

Conversely, suppose that the circular helix associated with a(s) is given by (31), where f = C‘CCOS(J.’C ds)

which ¢ a non-zero constant. Then the first component of B(s) gives t/k = f, and consequently we have
p=cC cos(jr ds).
Differentiation this twice yields
(p'o)'= —Crcos(.[r ds),
And combining these two relations indicates satisfaction of equation (5), so that a(s) is spherical curve that

lies on the sphere of radius c.

Finally, we consider the circular helices associated with rectifying curves. We first obtain the following
result, characterizing rectifying curves in terms of their dilated centrodes wq(s) defined by (8).

Proposition 4.4. A unit-speed Frenet curve a(s) : | — E® with Frenet-Serret apparatus {,t,t,n,b} is a

@y (S)

(t/x)'

rectifying curve if and only if its position vector is given by a(s) =

Where wq(S) is the dilated centrode of o(s).




Proof: Suppose that the unit-speed curve a(s) : | - E® with Frenet-serret apparatus {i,t, t,n,b}.
Where a and ¢ = 0 are constants. Differentiation this relation yields o’(s) =t + ((s + a)x — ct) n = 1t, since

o(s) is unit speed. Hence, we have rlxzﬂand (‘E/K)'=l.
c c

wy (S)

(t/x)"

Conversely, if a(s) is of them form (32), we have (a(s),n(s)) =0 for s e, since ws = (t/ k) t + b, and thus

Consequently, using equations (7)—(8) and (33), we have a(s)=c(t/x)t+cb=

a(s) is a rectifying curve.
Proposition 4.5. A unit-speed Frenet curve a(s) : | — E* of class C¥, k > 4 with Frenet-Serret apparatus
{x,t,t,n,b}is a rectifying curve if and only if the circular helix associated with it is given by

L( c s
V2| 2452 2 4 2
Proof: Suppose that a(s) is a unit-speed rectifying curve. Then by equation (4), we have

)

B(s) =

tan"I(s/ c)], Where c is a hon-zero constant.

=as+b,
K(s)
Where a = 0, b are constants, the re-parametrization s — s — b/a yields
ﬂ =as
K(8)

And since ay(s) is not a general helix, its associated circular helix is given by Theorem 4.1 as

i 1 as
2 \/1+ (as)? \/1+ (as)?

Which is the required form (34) withc =a*,
Conversely, suppose that the unit speed curve has the associated circular helix (34). Then from equation

,tan"!(as) |,

B(s) =

(27) we have L. E,
K C

i.e, the torsion/curvature ration of a(s) is a non-trivial linear function of arc length, and hence it is a
rectifying curve.

Remark 4.1. Recall that there are essentially two ways to generate rectifying curves: through the dilated
centrodes of a Frencet curve, and by the dilation of certain spherical curves. Note that for teach
rectifying curve a(s), there is a unique unit-speed curve y(s) (excluding great circles) on the unit sphere
S? with center at the origin [7] such that

a(s) = a sec(s + So)y(s),

Where a = 0 and so are constants. However, this expression does not define a unit-speed curve — if s, is are
length along a(s), its parametric speed (assuming that a > 0) is

<an




_ % = a'(s) |= asec? (s +$p),

U(l
ds
Since [y(s)| = (s)| = 1 (y(s),7'(s)) = 0. The curvature k. of a(s) are given by equation (6). Integration (35),

the are length of a(s) is s, = a tan(s + so) + b for some constant b, and using the re-parameterization

S, — S, — b and equation (6), we obtain

Since a(s) is a rectifying curve, it is not a general helix, and its associated circular helix is thus obtained

from (27) as

L ! s/a tan"!(s/a) |,

V2 1+ (s/2)? 1+ (s/a)?

Which is in agreement with the expression as given in Proposition 4.5

B(s) =

<




CURVILINEAR COORDINATES
Orthogonal curvilinear coordinate systems

Suppose that Cartesian coordinates (x, y, z) are expressed in terms of the new Coordinates
(x1, X2, X3) ; X=X (x1x2,x3), Y=Yy (X1 X2, x3), Z=2(x1X2, X3)

Where it is assumed that the correspondence is unique and that the inverse mapping exists.

TrTrTIrTErIETYITYT
Fetrtrerererete
Frt et et e reereee
et et et et ereee
Pt e rerererere
|55 20 £ 20 £ £ £ 45 4 25 2 45 4 £
Fetestetererrete
Fetetesereretre
Fttetesererete
| IR0 A 40 b i 4 48 o 2
R R R R R R
Petetererdresse
Pebetetartrete

V)

A conformal map acting on a
rectangular grid. note that the
orthogonality of the curved
grid is retained.

Figures above show Cartesian and orthogonal curvilinear coordinate systems and conformal
mapping.

For example, circular cylindrical coordinates (x1, x2, x3) = (1,0, 2);  x=rcosO, y=rsind, z=z
i.e., at any point P, x1 curve is a straight line, x2 curve is a circle, and the xs3 curve is a straight

line,i.e. r=yx>+y? , B=tany/x, z=z

The position of a point P in space: R = Xi + yj +zk

® R =(rcos0) i+ (rsin®) ] + (z) k for cylindrical coordinates
e A vector tangent to the x1 curve is given by:

Ry = xxli + yxlj + le|2 (Subscript denotes partial differentiation)
E.g. R, =cos6i +sin6j

Similarly, for x and xs; Rg=—rsin0i+rcos6j, R, =Kk

e So that the unit vectors tangent to the x; curve are

www. mindsetmakers.in https://www.youtube.com/@PreparelnRight\Way
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A _RXl A RXZ A _R
€3 =

e]__ hl!ez h ’
2

Where h1 = ‘Rxl‘ are called the metric coefficients or scale factors

E.g. for cylindrical coordinates: h, =1, h,=r, h,=1
e The arc length a curve in any direction is given by

ds? = dR.dR = hZdx,® + hZdx3 + hy2dx?

0, i1#]
Since dR = R, dxi=hidxi €, R, =hié andxiare orthogonal, i.e., & €; ={1 - J

On the surface x1 = constant, the vector element of surface area is given by
ds; =dR;, x dR3 =hydX,€, x hydxXa€3 =& hyhydx,dxs

Where since x; are orthogonal

€1 =€,x83, 8,=83x8, &,=853x¢

and —é; =é;xé,,—8, =8, xé; and —&;=6,xé sinceaxb=-bxa

With similar results for x, and x3 = constant

ds, =dR3 x dR; =&,hsh dxzdx;

ds, = dR; x dR; =é,hshdx;dx;

An element of volume is given by the triple product

|dV =ds3.dR3 =dR; xdR,.dR3 = (hdxé x hydX,6,).hadxXz€5 = hihyhydxydx,dxs |

dV = Jdxdx,dx;; Where J =hh,h, is the Jacobians of the transformation.

Gradient |Vf =iiél +iié2 +iié3
oy = hox, = hyoxg

By definition: df= Vf. dR = f, dxi

If we temporarily write Vf =46 + 2,6, + 1363 and using dR =R, dxi = hidxié;

Then by comparison; df = f, dx; =A;hjdx; = A; _1a
' by X
1o, 106, 10,
st 66
hy 0% h, ox, hy Ox3
. o, 10, 0, oo .
Exam Point: |V=—¢ +—-—¢&,+—§&,| for cylindrical coordinates
or r 0o oz
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Note V, =—=R,

5|

A

e By definition (curl(grad f) =0); VxVx =Vx—-

=0
hi
Also & é—zxé—3=VX2><VX3
hohg 1y by
« By definition (V. (Vfx Vg) = 0); v( J v[ €2 sz,( & j:
hyhg hghy hihy

Divergence

1
VF= rhhs {8 " (hohgFy) + —(hathz) + _(hthFS):|

A

V.(Ré) = V.{hzthl(he; H Using V.(ou) = gV.U + UV

23
e'l' él é2 és
V(h,h;F;)using V[ )zv_[_jzv(_jzo
1
(hohsFy)
" hyhyhs 8X1
Treating the other terms in a similar manner, we get

hlhlzhg[ o (aoF) 2 (hsthz)Jr—(hlths)}

1| 0 0 0
Eg. VF==| —(rF)+—(F)+—(rF
g r{ar( 1) 86( ) 62( 3)}

———(r F)+ ——(F2) —(F3) for cylindrical coordinates.

Curl

hé  hé, hgés

hhhohg 10X 0% OX3
hF R R

VxF=Vx(F&)+Vx(F8&)+Vx(Fé;)
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V x(F) =v{(h1|:1)(%ﬂ

%xV(thl)Usmg Vx(pU)=0oVxU+VoxU;(Vox U =-UxVe) and th—zo

_ & [ L1oMR),  1ahR), 1 0hR) és}

hl hl aXl h2 axz h3 8X3
% 9 ppys & 0

hyh, Ox, (hWF)+ h3h1 OX3 (hl &

1
= hlh2h3|: —hses :|(h1Fl)
hé  hpe, hgés

So, VxF = °c 9 29

hiohy| %, %, Oxg
thl hZFZ h3F3

r T€p z
10 15} s !
E.g.VxF==|— — —| for cylindrical coordinates.
rior 00 oz
FR R R

Laplacian acting on a scalar

vero_ 1 [ o(tehgof ), o (tehy ot |, o[ty of
hhohy 6x1 by Ox ) 0%\ hy O, ) 0OX3\ hg Oxg

viey.y-y. Lt 9g, 1 08 1 0,
hl aXl h2 aXZ h3 8X3

1 hohy 0 |, O (hety 0 ) 0 [hh, O

hlh2h3 6x1 hy 6x1 X\ hy 0%, ) Ox3 hy 0Ox3
v2_1 E[rﬁ}i(li}i@ﬁj
rior\ or) o06\ro0, oz\ oz

E.g. V2 =1£[r2j+1£(liJ+lg(rij for cylindrical coordinates.

ror\ or r oo\ r 0o roz\ oz

Laplacian acting on a vector: |V’F = V(V.F) -V x (V xF)
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10, 10, 10,

Using Vzaalel+ggzez +E§393
and V.-t { 0 (hohgFy )+ (h3h1F2)+i(hlh2F3)}
hhyhg | 0% X3

V(. )—ii{ 3 [axl(zhs 1)+ (hssz)+%(mths)ﬂél

hy 0%, | hhyhg
1 0] 1 [o ) d ]
-2 2 (hohaFy) + =L (R Fy ) + -2 (hyhoFs) | |8
+h2 5X2|:hlh2h3 _6)(1( by 1)+8x2( 3hy 2)+9 3(hl ?) 3)192

D>
w

10 1 [0 P 5
T AL —(h,hzF, R F _ h,F
+h3 8x3{h1h2h3 _axl( 213 1)+8X2 (hghy 2)+ax3(h1 2 3)1

e hoé; gy
1o o o
thohg | OX  OXy  OXg
bR hF R

Using VxF =

VX<VXF>-ﬁL‘Z[£ﬁi§J“ )2 08)| |- 2 e 2 s - axl<“3F3>m
+rh1hs_5i3[h;‘iaxz(h3|:3) ais(hZFZ)D axl[h;iz{axl(hZFZ)__(thl)D:l ’

it e - | -

Combining those two terms gives V°F = V(V.F) -V x(VxF)

1 9{ ! {a (hohgFy ) + 2(h3h1F2)+£(hlh2F3)ﬂél

h.L ox | hyhphg | 0%

e ] 2 ur- )| 2 e [ 2 ) - 2 e

+— L g { : {8 (hzhs F)+ %(hsthz)JF%(hlths)ﬂéz

h, Ox, | lhhohg | O

s e e 2 ) o -3
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0

X, (h3h.LF2)+%(hlh2F3 )Hf%

10 1 [0
+— h,h, F
hy axg[hlhzhg[ (RahsFy )+

h1]|:12 [axl {hﬁs [aas (P )_é_il(mFg)D_é[his [ai (PsF3) - 6(33 (hZFZ)més

E.g. For cylindrical coordinates (r, 0, z), hi1 =h,=1, ho=he=r, h3=h,=1, and use the definition

of Laplacian operator acting on a scalar V*f

2 18( 8) 8[16j a( a) 1@( a) 1 9% &%
Vot == | r— |+ | = |+ | T r—|+—=
rpor\ or) o0\rob) oz\ oz ror\ or) 662 872
1o 9° 1 &
—+t— —
ror o 29 o
1 2 oF F, 2 0F
V2F =aé, +béy +c8, =| V2F - = F - 2 la +[V2E -2+ =M a4 (V2FE e
r 0 z ( 1 r_2 1 r2 ae} ( 2 r2 2 0 ( 3)
10 1 0 0 P
Wherea =—— h,hy F hhF, )+ —(hhF
hlaxll:hlhzhs {axl( heFp) + Xz( s Fy ) axg(hl ) 3)ﬂ
1| afh |0 0 h [ o
X —~ N —hF P B E E
hahs l:axz[hlhz [5)(1( ) 29 U 1)D [h1h3 {8x3(h1 1) = (hs 3)D}
ol1] o 0 P
=——| =(rk F)+—(rF
6r[r_ar( 1)+ 55 (R 5 3)ﬂ

A2 22w 2m-L2m))

i F
:2 1 F1+rﬁ+ﬁ+ra_3
ri or 09 oz

F
_l a l F2+rai_% _g r%_ra_s
oo\r or 00 oz\ oz or

1 0F,

F oF
:2 1F1+ﬂ+__+_3
roo oz

r or

2
o1 (R 1R R
rioolr o r oo 072

?*F (-10F,) 10°F, O°F
+—+| = += +
or? r2 00 r oro®  oroz

0 Fy
ozor

10k
+__
r or
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Derivatives of the unit vectors in orthogonal curvilinear coordinate systems

The last topic to be discussed concerning curvilinear coordinates is the procedure to obtain

the derivatives of the unit vectors, i.e. a_éi =&;
X.
j

1 1 L, )L
eij ZVV, Sij 2(eu +eu ) 2(VV+VV), (Dij =§(eij ij ) 2(VV+VV)

To simplify the rotation, we define:

in =1, in =hiéi =0, —R =r; and ai h :hij

OX; i
Note that rjjis symmetric, i.e. rj =rji
L =he;, r; =hye,,r;=hss

Iy =aé +b8, +Cey =18 + My, Mo =8 +h€y, Tz =hze +héys

E.g. Derivation of |é;; = _@ez _ hl3 8
hs

2

non=h, 0=y, 0o =hhp, g =hhs,nrp=0
o(n-n

1

rl'rgZO'—)%ZO'_”H'@+r1'r31=0,—>r11'r3=—r1-l‘13,—>l’11'r3=—h1|'h3
1
rll:hllél_ﬂéZ LR L8 e3 — ey + e >ern=— hl2 _M A3a,
h, hg h hy
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Just few examples:

Curvilinearcoordinate(qi, g2, q3) Transformation from Scale factors
Cartesian (x,y,z)

Spherical polar coordinates x=rsin0cos ¢ hi=1
(I‘,O,d))e[O,oo)x[O,n]x[O,Zn) y=rsin65in¢ hy=r
z=rcos 0 hs =rsin 6
Cylindrical polar coordinates X =rcos ¢ hi=h3=1
(r,(I),Z)G[0,00)X[O,TC]X[O0,00) y=rsin¢ h2=r
z=2z
Parabolic cylindrical coordinates x :l(uz _Uz) h=h, = [12 + 02
(U,0,2) €[~20,0) x[0,00] x[20,20) 2
hs=1
y=uv
z=z

In Fluid Dynamics (paper-2); we’ll have following results. So here it’s just given for that purpose.
Incompressible N-S equations in orthogonal curvilinear coordinate systems

Continuity equation V.V=0

Since V-F= hlh];hS |:axil(h2h3|:l)+axiz(hSthZ)+aXis(mh2F3):|

and V =vje1 +V,e2 +Vze3

.oV 1 . .
Momentum equation Y +(V-V)V=-=Vp+ VW2V , (Where p piezometric pressure)
P

Since V =v;e1 +V,e2 +Vze3, we can expand the momentum equation term by term

ale

OVa ~

Vo ~

Local derivative N = e+
ot ot
Convective derivative (V. V) V

. ~ ~ ~ V.
Since V =vje1+V,e2 +Vvze3 and V'V:ﬁi+v—2i+—3i
hyox  hyOx; g Oxg

(V-V)V =(V-V)(vger )+ (V- V) (vze2 )+ (V- V) vae3)
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Vi 8(V1é1) +V_2 8(V1é1) +V_3 G(Vlél)

(V-V)(vlél) ==

hh 0% h, 0x, hy 0Oxs
_Vidng  vade Vg VOl Vs o Vay d8
hy 0% by ox  hy Ox hy Ox; g Oxg hs Ox3
_(won v ou vsom gﬁ(m;mmgmmgls]
by Ox  hy Ox; g O3 hy hy hg
(wm o v u gﬁm(_mgz_m;%} ﬂ(@gz}m(@g?,j
hy O hy Ox; g O3 hy hy hs hy (hy hs \ hy
- E%JFV_z%JFV_s% él+[V2V1h21_V1V1|"h2 jé2+(V3V1h31_V1V1hlsjé3
by O hy Ox;  hg O hyhy huhy hshy hghy
. (v,e2 a(v,e2 a(v,e2
(V-V)(v2e2)=ﬁ (2 )+V—2 (2 )+V—3 (2 )
b 0x h, 0x, hy Ox3
JMdg, 082 Vo Qoo VoV 02 Vs Qg VoV 082
hy 0% by o hyox hy %, g oxg hy Ox3
_ ﬁ%+v_2%+v_3%jg2+vlvzg21+vzvz§22+V3V2g23
by Oxg My Xy g X3 hy 2 hs
_ ﬁ%ﬂ_z%g’_s%};ﬁm(mgl} Vsz[_Mgl_@gg}ﬂ(@gg
by Oxg My Xy g O%g h { hy hy U h hs hs \ By
_ [ vahip _V2V2f121][a +(ﬁ%+V_2%+V_3%Jé2+(V3Vzh32 _Vszhzsjés
hihy hohy b oxg My oxp by Oxg haohs hohs
. o(vqes o(vqe3 o(vqe3
(V-V)(v3e3)=ﬁ (3 )+V—2 (3 )+V—3 (3 )
h o h X hy O
= ﬁ%éB +%%+V_2%é3+ﬂa_é3+v_3%é +m%
hy O% b ox hy % hy O%  hg Oxg hy O3
= ﬁ%+v—2%+v—3%]é3+vlvsé31+vzvsé32+V3V3é33
by ox  hy O hgoxg hy hy hs
_ V_1%+V_2%+V_3%jg3+M[$§1]+%(%§ZJ+ %(_hgl_@gz
by oxg  hyoxy g oxg h ( hg hy \ hs hg \ Py hy
_ [ avahis _V3V3h31jél+[V2V3h23 _ VgVghgy jé2+[ﬁ%+v_2%+v_3%]ég
by hghy hohg  hghy by Oxg  hy Oy hg O3
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Pressure gradient Vp = L towe, Ly
hl oy Ox hg O3

10 1 0 0 0 A~
Viscous term V2V= —— hohavy ) + —(hehy v, )+ ——(hihovs ) | e
AR ATE ] |

hzlhiaiz[hﬁiaal(h 2) (h“)D 52{“;2‘3{5)(3%1) 5X1(hgvg)mé

1 0 1 0 0 0 A
h,h —(h —(hh
"h hy axz{hlhzhia 1( ? 3Vl)+5'xz( 3hlv2)+5x3(hl 2V3):He2

Rl e e

+ = 1 0 |: 1 |:a (hzhgvl)+§(h3hl\/2)+§(hlh2v3):|:|ég

hg OX3 | oy | 0% 2 3

s fallEmgon] 2z

Combine terms in é; direction to get momentum equation in é; direction

M i Vo V3 Vivahip VoVl  ViVshig VgV

o hog hoxg Mo hh by by hghy

_1llop 10| 1 |0 0 4
S Tohag axihlhzhs {a 1(hZ“SV“*%(m%”%(mhﬂg)ﬂ

sl o] oo

Combine terms in &, direction to get momentum equation in &, direction

N Vol Vivihip Vi Vp Vo OV V3 OVp | VpVafpg  Valghy,
ot hhy  hh hog Mmox, Mo hhy o hhy

- 11lo 10 { : { ‘ (hohgvy ) + 682(h3h1v2)+%(hlh2v3)ﬂ

i ol -0 ) |

Combine terms in é; direction to get momentum equation in &; direction

V3 Vel  Vivifhg  VaVolly  VoVolpg vy Qv vp OV | V3 OV

ot hh Ry hohy s A hy O hgoxg
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11ep 10| 1 |0 0 0
b 1y 0% +Vh_3‘3_x?[h1h2h3 {_(h2h3vl)+a_(h3h”2)+_(hlhzvg)ﬂ

0% Xo OX3
1|o(h|o o o h | o 0
—V— —| = — () ——(hgV3) | |- —| ——| —(hgv3)——(h,V.
hlhiaxl{hlhiaxg(hl 1) 6x1( 3 3)D axz[hzhiaxz( i) axg( 2 Z)M
PREVIOUS YEARS QUESTIONS
Q1. Derive expression of Vf interms of spherical coordinates.

Prove that V*( fg)= fV?g+2Vf -Vg+gV*f for any two vector point functions f (r,6,4) and
g(r,0,¢). Construct one example in three dimensions to verify this identity. [8a 2020 IFoS]

Hint: Refer the article for this already discussed above in theory part. Take help from the
cylindrical coordinates example below that article.

. , 0 0 0 . . ) ) X
Q2. Derive V° =— +—+— in spherical coordinates and compute V

ox*  oy* oz’

in

3
(x*+y*+2°)?

spherical coordinates. [8c 2019 IFoS]

Hint: Refer the article for this already discussed above in theory part. Take help from the
cylindrical coordinates example below that article.

Q3. For what values of the constants a,b and c the vector
]

V =(x+y+az)i +(bx+2y—2z) j+(-x+cy+ 22)l2 is irrotational. Find the divergence in
cylindrical coordinates of this vector with these values. [5d UPSC CSE 2017]

Hint: curl=0; get a,b,c. already solved in line integral example#3.

For other part- Refer the article for this already discussed above in theory part. Take help from
the cylindrical coordinates example.
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