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BRAIN STORMING: Fluid Dynamics UPSC CSE & IFoS

P(X,y,2):F =Xi +Yj + 2K

dy, dzp

dr _dxa dyf
dt dt

dt  dt

vel. Vector; §

u; vel. component of ¢ in x-axis

=ul +Vj + Wk

A 4

—

Viscous

v; vel. Component of § in y-axis

w; vel. Component of § in z-axis

Normal
Tangential

Fluid

dynamics

ce®
306\'] 002“395\

@

Axisymmetric
motion

________
- -
- .,

‘‘‘‘‘‘
.,

~~~~~~
............

Cylindrical
motion

force

Fluid particle
P(x, y, z) at time ¢

A
>

Cavity; vorticity/vortex Motion

me———
-

. -
- ~

_________________
- -~

- .,

- .~

-
-
-
___________

S

N -
- -
..........

Spherical motion
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Inviscous
(Ideal)
(No viscocity)
1.€., No stress/shear

Fluid ———

Liquid Gases

Compressible
&

Incompressible

Dcns}ty( p)

v

Constant
p = Constant

/-
dt

v
Variable
dependent

.](I:.f’(xﬂ y, Z)
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3-4 small categories

1. Fluid Kinematics 2. Motion in 2D

Basics chmrcd lo

proceed for fluid (LM) & Ideal
« Irrorational motion ~ dynamics study
* Ideal Fluid

#3 categories
of problem
#3 formulas

Fluid Dynamics 6. Viscous Navier

&«

stokes's eq:

#3 categories

5. Vortex
(LM) Revword motion Motion
yword: 7
Bodyforces
tdeal willycome (Igl) Vorticity

7 categorics Into picture Ideal Rolallonql MOI.IOI]
_ will come into picture
#2 categories & Ideal fluid
#2 categories

Basics form calculus required for fluid dynamics

» Del operator (V)= V Ig+jﬁ+k2
ox "oy oz

e.g. Applying V on some scalar function ¢(x, y, z) means:-
0

* Gradient of a scalar function ¢(X, Y, 2);-

-\
= °

@\XHY’L

Mathematically

<I> 0= 00
grad o=V = +ayj+6zk

« grad ¢ gives the direction; in which the change in ¢; occurs most rapidly (greatest rate of increase)

(—grad ¢) : gives the direction; in which ¢ decreases most rapidly.
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* grad ¢ in spherical coordinates (r, 0, ¢)

G=0,0 +0,] +0,k

Will be required in fluid
So, let’s say f =1 (r, 0, ¢);
then

of 1of 1 o
grad f =—e +=—€ +———F¢,
or r oo rsin® oo

where
er=sin 0 (cos ¢ +Sin¢j)+coselz
eo=cos 0 (cos i +sin¢j)—sin Ok

ep=-sind i +cos o]

» Gradient in cylindrical coordinates (r, 0, z)

Letf=1(r,0,2)

1 of of
g, +—¢e

grad fzqe + 2
0z

)

Where e; = cos 01 +sin 0 ]
eo=—sinBi +cos 0]

e, =k

(rsin 6, rsin 6, z)

Divergence of a vector field function :-

4—N——;"u

AZ
—X
- P(x, v, z)
T e “."';. P(r: es ¢)
Z =
P * :}_-y—’ n y
_y‘ , ,)A »
Yol ~%
5 2o |
X
VY-
z=rcosHO

x=(rsin 0)cos ¢
y =(rsin0)sin ¢

Qi +0j+0,k=G=ul+vj+wk=u(x,y,2) | +Vv(x,y,2) ] +w(x,y, 2) K

Div. : loss in the fluid per unit volume per unit time

Let F =Fi(x,y,2) | +Faxy,2) | +Falxy,2) k

v.ﬁ:(na .0 ~0

ox "oy oz

I—+ j—+k—j-(Flf+ F2i+F3I2)
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oX oz
v.g R Ok R
x oy a

V-F is known as divergence of F

Notice !! grad is of a scalar function but grad itself is a vector.
div. is of a vector function but div. itself is scalar

* In spherical coordinates:-

nd,) + rsinea_q)(q"’)

« Curl of a vector field function:-
As we know that W= %curl v ; where V is linear velocity

W is angular velocity

i.e. curl is associated with the “Rotational” property in motion

F=Fux y,2) i +Fax V,2) ] +Fs(x Y, 2)k

Pk
E-vxE-l2 2 2
ox oy oz
Fl F2 F3

el F=vxF=| L % n(ﬁ_%]p % _H
oy oz oz ox ox oy

Note:- We need mainly in cartesian form only (UPCS CSE / IFoS)

. §Xq:

= ,Ql)lg) ~>

i
0o 0
x o
u v

* Spherical coordinates

(]

=

re, rsinog,
1 0 0
r’sin@lor 00 N
q, rg, rsinog,

(o)}

Vx{=
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* Cylindrical coordinates

er r 0 é’z
ﬁxqzl_ 9 9
rlor 00 oz

g Q0 9,

« Laplacean operator (V?); V-V

Let’s consider a scalar ¢(X, Y, z), then

0= (990124720 2) (12,52 k2
vq)_(v V)(I)—(Iax-i-j +k Zj(l +Jay+k ]d)

oy az) | ox oz
82 82 62
= = +—=+—
[aXZ ayZ aZZJ(I)
2 2 2
« Cartesian form |V?¢ = 6_(1) + 5_42) + %
YT

* Spherical co-ordinate system:

2
qu/:izg(rzd—\v}+ 21_ 2(sinea—wj+—2 _12 6_\5
r-or or r<sin® oo 09 ) r°sin“0 oo

* Cylindrical co-ordinate system

Vz\lj:li(rzd_\vJ_Fiaz_w.Faz_w
ror or ) r?oe* oz°

* Some important observations :-

(i) div (curl F)=0i.e., V(%ﬁ):o
(ii) curl (grad ¢) = 0 i.e., %(%):6

(iii) A vector field F is said to be “solenoidal” if divergence of F is always (during motion) is zero
ie., V-F =0

i.e., there is no loss in the fluid per unit time per unit volume,

(iv) A vector field F= VxF =0

i.e., there is no rotation in F during the motion

then there exists a scalar
function ¢ st
Interpretation < F=V¢
we will take
in fluid dynamics]

orlf:—ﬁq)(

!

If F irrorational; then there must exists a function ¢ such that F is of the form grad ¢.
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If, F=Fi+F,]j+Fk;then F = V¢—a¢l+—j+—
PET S
OX oy oz
* VVector Integration
* Line integral (1D)

_[If -dr; where c is the curve over which the line integral _[If -dr is being calculated

e.g.

C is a curve: parabola y = x? form (0, 0) to (1, 1)
© [Fedr = [(Ri+F,j)-(dxi + dyj)
(0,0)

3\

o

(1, 1)

v

dr = dxi +dyj
C:y=x from (0, 0) to (1, 1)
: dy = 2xdx

[ —
T
[oX

-df = Jl' F (% x*)dx+F, (x,x*)-2xdx

jlf dF = Ji' Fl(\/y,y)%dw Fz(\/y,y)dy

e.g. Line integral in 3D

Let F =F1 (X, y,2) | + Fa(X, Y, 2) ] +Fa(x, Y, 2)k
& path is x = ¢(t), y = w(t), 2 = 9(t);

Where t is a parameter running; t = ato b.

then the line integral

[F -ﬁzj‘(Fler Fj+ F3I2)-(dxf+dyi+dzI2)

c

= T R (D)¢'(dt + F, (y'(0)dt + Fy (D) g'(t)dt

t=a
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Surface Integral:-

ds = dscosai +dscospj + dscosyk

Where ds cos a, ds cos B, ds cos y

Are orthogonal projection of ds on the yz plane, xz plane & xy

plane respectively:

So, ds cos o =dy dz, ds cos = dz dx
ds cos y=dx dy

Projection of above plate on some plane.

dS = dydzi + dzdx] + dxdyk

l
AdS = dydzi + dzdx] -+ dxdyk
dyd SO
= [-Ads=dydz+0+0= ds=ﬁ pane
i1-h
j-Ads =0+ dzdx+0= ds=%
J-n
1
K - Ads = dxdy = ds=w o
-4

ds cos o = dy dz

_[If-d§: “Ads

| I |

- . dxd - _dzd - . dyd
.[.!F-n‘l;g‘/ or, !!Fnﬁ or, ”Fnﬁ

[Py S—
™

* Volume integral

Ilfdv =III{F1(X, Y, 21 +F, (%, y,2) ]+ F (%, y,z)}dxdydz
\% Xyz

Or If Fis ascalarf:

Ide:IIIF(x, y,z)dxdydz

\ Xyz S
V is the volume enclosed by the surface S

» some important theorems: defining relation between line, V= dv surface, volume
integrals : -

(i) Gauss’ Divergence theorem(GDT):-
Gives relation between volume & surface integral
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TN

/

-Ads = jdiv F dV; when V is the volume (region) enclosed by a “closed” surface

~ 5 sphere

GDT is not applicable GDT is applicable
-+ S is not closed S is closed

(ii) Stoke’s Theorem:
Gives relation between line integral & surface integral

_[If -dF = jcurl F -Ads; where ¢ is a closed boundary enclosing surface S

C : circular boundary
(open)

Bowl imagine

S

Stoke's
") not applicable

Stokes applicable

(iii) Green’s theorem in the plane (xy-plane)
Let R be the region enclosed by closed curve c; then
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Fluid Kinematics

Brainstorming

G =uf +Vvj +wk; velocity vector §

TYPE-(I): PROBLEMS : “STREAMLINES”

These are imaginary lines which are along the motion (in the direction of velocity)
Mathematically,

GxdF =0 (" g is parallel to dr)

A ~

I ] kK
=lu v wl=0
dx dy dz

= (vdz —wdy) I + (wdx — udz) + (udy- vdx)
=0i +0j +0k

= vdz —wdy = 0, wdx —udz = 0, udy —vdx =0

Exam point
OX i
u Vv w

Gives equations of streamlines.

Type I1: Equation of continuity (conservation of mass)
Flux:- “Rate of flow of mass”

"""""""""""""""""""""""" -\ pg -hdA
(i) i(m)—i(volumexdensi T I A e '{ !
el ty Fluid — [T > 1
g entering |\ [ T B Fluid
Inflow) \_/ T B ul
:a(AXXXp) (Ufow) - Al L cxiting
A J- 0 o) (Outflow)
- Vv
=p- A% ; As motion is along one axis i.e. Xx-axis ot P

=p.A u,if pis constant

(ii) In general; flux is written as

pG-dA=pg-ndA

where 1 is unit outward normal vector to the surface area A

distance
time

Speed =

for per unit time speed = distance length

Mathematically; for equation of continuity (or conservation of mass)
We have
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%_\[pde—‘/[p«q'ﬁdA

- %!”dv :‘idiV(Pq)dV ; applying GDT

= %dev =—Jﬁ(pq)dv

= H%N-(pq)}dv =0

=

op

X iv(pd)=0
5 HV(pd)

...(1) called eq. of continuity

Supporting stuff from calculus:-

i o "6
V-(pd)=| T =+ j—+k—
(pd) {I +]—+ p

0 :0

oy

Z

Point to be noted:
f=f(x,y,21)

of

of

(2

df :—dx+—dy+idz +th
OX oz ot

df ﬁ(dx) of
=
dt  ox

%y

dt

“al

={(uf+vj+wl2)-[f§+j

d_y)+i(d_z
dt oz \ dt

0

. 0

— + k—

oy oz

J+

a
ot

J

]-(puf+pv]+ kaA)

;).(unmwﬁ)}+{(uf+vj+w;2).(
(

a
|

L]
ox
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*k d = a -
—=(¢-V)+—|Exam point...(3
" (a-v) ~ point...(3)

Yp=Ep (X Y.zt

o dp (. =
#Epzd—?—(q-v)p (4

Using (4) & (2) in (1)

(ﬁ . q) + 1dp =0| ; Also an expression for equation of continuity

(?-G)Jr%(logp)zo

Note:- If fluid is incompressible i.e., p = constant = % =0

Then equation of continuity is (V-g)=0

Exampoint:- For an incompressible fluid ; (steady flow)

Motion is possible only when; eq. of continuity holds i.e., V-G =0
Category 3:- Irrotational motion; finding velocity/scalar potential ¢
Curl g =0

VxG=0

i.e., there exists a scalar function ¢ s.t

G=-Vdé| here ¢ is called velocity potential

U
0b: 20 20,

Ui +vj +wk =——i - = j—
x oy &

On comparing we get

. SR
aX_u...(l),ay V...(2), p w...(3)

(3) is giving differential eq. and by solving these, we get required ¢
Exampoints:-
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d 0o —
1. —=—+(G-V
i G-v)

2. flux = —[ f,-dA=—[ f,-AdA
A A
3. type |

Streamlines are given by: Ox_dv_dz

u v w
4. typell

For possible fluid motion (Incompressible fluid/ steady flow) eq. of continuity V-g =0 ; must hold.
5. type Il
Finding velocity potential :

VxG =0 G=-V¢

S Ul v ewk=—20p 005 Oy
oy oz
o __, 0 __,%__,

EXAMPLES TO SUBSTANTIATE
Example 1. Find the eq. of streamlines for the flow

G = -1 (3y?) — ] (6x) at the point (1, 1)
Solutions: We know that, for streamlines
Gxdr=0
eg- of streamlines are given by,

%:ﬂ; where §=ul +vj
u v

Given u = —3y?, v = — 6x

eq. of streamlines are given by

& _dy
-3y?  —6X
6xdx = 3y? dy

On integrating
3x% = y® + c; ¢ is integration constant
At (1, 1) we have,

3-1=c =>c=2

Required streamlines are given by
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IC+y =2

Example 2.  The velocity components of a two dimensional flow fluid for an incompressible fluid
are given by u = e* cosh y & v =—e*sinhy. Determine the eq. of streamline for flow.
Solutions: we know, eq. of streamlines is given by

dx

dx _av {"> g x dr =0}; where g=ui +Vj
u v

Given, u = e*cos hy, v=—e*sin hy

) dx dy
e*coshy —e*sinhy

coshy
sinhy

e ¥dx =—

dy

On integrating,

e—2x

=—log (sin hy) + log ¢, where c is integration constant.

e ® = 2log(sinhy) — 2logc
H 2
e =Iog(smhz y]
c
1

Example 3:  Show that cy=e* are surfaces which are orthogonal to streamlines for an

incompressible homogenous fluid at the point (x, y, z) with the velocity distribution given by

2 2,,2
—C C°X
:—zy,v=—2,W:O,where
r

r

u

r denotes the distance of (x, y, z) from z — axis
Step (1):- Finding streamlines:

ox_dy _dx
u v w
dx dy dx

—c’y x> 0

5 Ox_dy
L dy —x2

—=——...(1) is the diff. eq. of streamline
y

(&)

Now, replacing % by in (1)
X
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-1 =X

N

2
%ZX_; d_)::ﬂ :>__1:|ogy+logc = _—1=|09(YC)
dy vy x* y X X

;l
=>exzcy

Revising from ODE; Orthogonal trajectories
Curves which behaves according to some predefined condition/rule
Let fi(x,y) =c¢1...(1)is

Some given family of curve; then orthogonal trajectories to (1); is the family of curves which cuts every

member of (1) at an angle of 90°

Geometrically speaking:-

* Given family fi: y = mx ; family of straight lines (*." m is a parameter/arbitrary constant)

Yy=X, Y =X y:éx
) ) 5 %o

f,. Family of concentric circles is an orthogonal trajectories of family of straight lines
At any point of intersection, we can crosscheck;

(2)e(d) -
dx /i \dx /g

> mxXxm=-1

= f1 & f, cuts orthogonally

* Determining/ finding any oblique trajectories for some given family of

curves:-

"o+ ¢ =y ; in the figure external angle is y
a=y-0

tan o = tan (y — ¢)

tany —tan¢

tan o =
l+tanwytand VA

e.g. To get orthogonal trajectory a = 90°

tany —tan ¢ A

S tan 90° =
l+tanytand

1 _ tany-tan¢ ¢

0 1+tanytand

tan ¢ tany =-1
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HEDRS
dx J; \dy :

dy -1

— | =—...(1
(d) @) W

dx /g
1. indicates that If we replace % by a—; in the differential eq. of given family then we get diff. eq.
gt
dx

for required family.

Example Lety =mx ...(1) is given family
Y _m
dx
Codiffeg. (1) is,y = ﬂ-x = ﬂzl ...(2) is the diff. eq. of given family.
dx dx X
dy -1 .
Now, replace —= b in (2), we get
place - by ( dy j (2), we g
dx
-1 —X
(o)
dx
dx_-y
dy x
xdx —y dy
X2 y2
> +? =c| = family of concentric circles

Example 4 : Determine the streamlines and path lines of the particle when the components of the
velocity field are given by

- X -y -z
u= V= W=
1+t 2+t 3+t
streamlines are given by O _dy_dz
u v w

dx dy dz

X y z
(I1+t) (2+t) (3+t

(1+t)%:(2+t)ﬂ :(3+t)% ..(D)
X y z

Taking first two fractious,
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Q) X =prp Y
X y

[ldx—gdyj =t[ﬂ—ldxj
X y y X

On integrating
log, x —2log, y =t{log, y —log, x} + logc,

t
X y
log.| — |=log.| = lo
ge(yzj ge(xj+ gc

X
Path lines are given by:
%: u= x..(I)
Yovay o
% =w=1z..3)

(1), (2), (3); gives req. path lines
Taking last two fractious of eq. (1).

ey Y =@sn &
y z

[gdy_ﬁdzjzt(%_d_yJ
y 2 z Y

On integrating,
2 loge y — 3 logez = t (logez — logey) + log C2

2 t
log, [y—B,j =log, [ij +logc,
z y

y—j:(il c, ..Q2)
2y

Eq. (1) & (2) are required streamlines:

Path lines:-
% = = %:i
dt dt 1+t
L, Ox_ dt

X 1+t

logx=1log (1 +1)+logc
x=(@1+t)cs...(A)
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Similarly ,y=cs (2 +1) ...(B)
z=Cs(3+1)...(C)

~. (A), (B), (C) are required path lines.
Example 5: Show that the velocity potential ¢ = g(x2 + y? — 27%) satisfies the laplace eq. Also,

determine streamlines.
Solutions:

a— = ax, @ = ay, @ = -2az
OX oy z
2 2 2
@:a,a_zza,ﬁ_qz)zfza
X oy Z
2 2 2
. a—xcl)-f-%-‘r% =a+a—-2a=0

= ¢ satisfies V2 ¢ =0 = ¢ satisfies Laplace’s eq

" ¢ is given = velocity potential exists = §=-V¢

> ol ewk 2 =20;_g ety
ox oy oz

= Uu=-ax,v=-ay,w=2az
" streamlines are given by,

ox _dy _dz

—ax -ay Z2az

)

Taking first two fractions of (1),
ax _dy
Xy

logx=logy +loge; = x=yci...(A)

Taking last two fraction of (1)

dy _dz
—ay 2az
dy _-az
y 2z

-1
logy = 5 logz=1logc
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_ CZ
logy = log ﬁ

-1

y=c 2% ...(B)
. Eq. (A) & (B) gives the required streamlines.

2 2 L2
Example 6 : § 2[3%3_)gzkz_5r] For an incompressible fluid. Find the value of k for which it
r’.r r
constitutes a possible fluid motion. Also find the scalar potential ¢.
Exampoint:-
P=x®ry?+22 ...(1) )
2[‘2 =2X = g = Z
X ox T We always have these in
oy > back of the mind;
E T whatever needed we use
accordingly
o_z
or r_J
we know that for an incompressible find, eq. of motion is possible where
V-G=0;ie, AU N, i)
OX oz

3xz 3yz kz*-r’
r r

e glven q’ = [ r5 I e T

oy
Similarly, —=3y—| =<
imilarly yay(rsJ
ov -5y* 1
5232{ r7y +F} (B)

2_2 _
w_ofKe-r ). (K22—I’z)-—65><5+i5><{K.22—2|’-£}
0z oz r° r° rr dz
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ow -52(Kz* —r*) 23

MV T k-
0z r’ +r5( )
ow -57° 2z| 3z

M_okIE L 220,°0
oz { r’ rs} r° ©

Using (A), (B) & (C) in (2),
5x* 1 -5y 1 -572° 2z| 3z
32{ o +r_5}+32{r—7+F}+K{ 7 +F +r—5=0

%{32 +32+ 2Kz + 32} = % {3x? + 3y? + K%}

5z
9+ 2K =F{3x2 +3y? + Kz}
Gives possible choice for K = 3,

LHS=9+6=15

RHS = %(3#):15

.. Req. value for K = 3.

Now, for finding velocity potential ¢ taking

4=-V¢
= Ui +Vvj + wk =—@f—@]—@ﬁ
oXx oy oz
g b o0 0
OX oy 0z
3xz -0 3yz -0 32°-r* —0¢
> (A, =2-=—" ...(B), =— ...(C
5T (A) oy (B) 5 pe ©

From (A), (B) & (C),

3xzdx + 3yzdy +(3z* —r?)dz
@dx+@dy+@dz = —{ y y5 ( ) }
OX 0z r
—3z(xdx + ydy + zdz) + r’dz
do = 3

r

_ =3zrdr +r’dz _ r’dz-z3r%dr

G

do = d(%)
;

On integrating ; |¢=—;

1|N
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Example 7 : Consider a two dimensional incompressible steady flow field with velocity component in
1 rosj
+—— |cosO

2

r3

spherical coordinates (r, 6, ¢) are given by v, =e, (1—%5
r

where r > 1o >0 and where C; & ro are arbitrary constants.
Is the eq. of continuity satisfied?

Solution: "." fluid is incompressible .". z—‘t) =0
. for possible fluid motion, eq. of continuity is V-G =0, where G =v,i +v, ] +v,k
" In spherical coordinates,

p(ﬁ . q) = p (Divergence of §)

= Bg(rzvr)Jr P e£(sin6v9)+ p_0 (V¢)

reor rsin® 00 rsin® o
3 3
=@£ r2—§r0r+lri cosO — p_cl 1—%—1% i+0
reor 2 2r rsin® 4r 4r° | 00
3 3
= —% 2r—§r0—li2 —p_—cl 1_3i_lr_03 x 2 sin 0 cos 0
r 2 rsin0® 4r 4r
3 3
= P4 2_§£_lr_03 cosf —P% 2—3i+1ri cosf
n 2r 2r r 2r 2,
= p(V-4)=0

= V-g =0 holds eq. of continuity

Q.1.  What is the irrotational velocity field associated with the velocity potential ¢ = 3x* — 3x + 3y* +
16t% + 12zt. Does the flow field satisfy eq. of continuity?

Solution

" There exists velocity potential ¢ = 3x* — 3x + 3y?+ 16t* + 12zt
S §=-Vé = fluid g ie. G = ui +vj+wk then

Eq. of continuity V-g =0

V-(-V$) =0

-V%$=0

— @.}.@4_6_24) =0
o oy oz
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—-(6+6+0)=0
—12 =0 : Not possible

i.e., V-§ = 0 not satisfied.
.. Eq. of continuity not satisfied.

Q.2. In a fluid flow, the velocity vector is given by, V =2xi +3yj—5zk. Determine the eq. of
streamline passing through a point (4, 8, 1)

" V=2xi +3y] —5zK =ui +v, ] +wk

JoUp=2X%, v =3y, Wi = -5z

Now, eq. of streamline are given by,

O _dy _dz

ul Vl Wl

dx d dz

2—=—y:— (A
x 3y -5z

On taking 1* two fraction of (A)
1 logx + 1 logy + log c
2 3 '

1 1

x2 = y3¢, ...(1)
On taking last two fractious of (A)

1 -1
= logy= Elogz+I0902

3
1
s C
Y= .2
Zg

<. passing through (4, 8, 1);

11
L 42=8% =>c=1

Ioc
Also, 8° =2 = ;=2
15

. Req. eg. of streamline are given by

Q.3.  for an incompressible fluid flow, the component of velocity (u, v, w) are given by u = x* + 2y?

+ 372, v =x%y —y*z + zx. Determine the third component w so, that they satisfy the eq. of continuity also
find the z-component of acceleration.
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Solutions
. for incompressible fluid; eq. of continuity is V-§ =0

On integrating w.r.t z

2
w =2y Z? —x%z —2xz +f(xy) {"-" XV, z are independent variable}

Sow = yz? Xz — 2xz + (X, y)
where f(x, y) is an integrate and

"." z-component of velocity = w

“. Z-component of acc. = E

dw ow /. -
BN ING .V
eV )w
dw oW oW
,=—=0+U—+V—+W—
dt 15 oy oz

= U X (—=2XZ — 22) + V() + w(2yz —x* — 2X)
= (X% + 2y? + 37%) (-2xz — 22) + (X¥y — Y’z + 2X) (%) + (y2% + X’ — 22X) (2yz — X* — 2X)
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Chapter 2: Motion in 2D
G=ul+vj

Streamlines:- %zﬂ = vdx—udy =0

u \'

Exampoint
Along streamline ; y (X, y) = constant

Exact differential eq:-

dy _f(xy)

Let’s consider a differential eq, — =

dx g(xy)

The differential eg. (1) is said to be exact; if there exists a fun./ curve u(x, y) = c; c is arbitrary constant
S.t

(D)

The total differentiation of (2) gives (1) directly (without any manipulation/substitution)
e.g.:- The diff eq. ;
x dx +y dy = 0 is exact

Because 3 x*+y*=cs.t

d(x* +y?) = d(c)

= 2xdx + 2ydy =0 ...(1)

* The necessary & sufficient condition for the diff. eq. M(x, y) dx + N(X, y) = 0 to be exact is
oM  ON

oy x
Discussing Stream function.’. vdx —udy =0...(1)
Now, if 9 (v) = 9 (~u)
oy OX
then the differential eq. (1) is exact differential eq.

| . by def. of exactness,

3 v (X, y)=c...(2) ; such that

the total differentiation of (2) gives (1)

Total diff. of (2) : dy =d(c)
dy=0
o . oy
—dx+—dy=0 ...(3
Yy Y y 3)
<+ (3) & (1) must be same
. we get |v v “l—u _ov|- Exam points
OX oy
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Hence y (X, ¥) = C; v is called the “stream function”

Type | problem

Finding the stream f "- if G =ui +Vv] is given

v..(1)

=U...(2)

22 2|2

v & U are given, so use & get
Observation (Imp for Exam)

* Let if “irrotational” motion
l

Then exists velocity potential ¢

stg=-Vo
= uf+vj:—@,v:—@
ox oy
=u= __64)'\/: —0¢ (D
OX oy

« for any fluid motion (be it irrotational or not there exists stream function ¥ s.t

y= - =

oy o

Q)

Exampoints:-
For an irrotational fluid motion, we have

cu=___ v
ox oy
..(3)
ey _ov
oy Ox — Relation between ¢ & y
% _ oy
X oy
(4
%__%
oy OX

From complex Analysis:-

A function w = f(z) = u(x, y) + iv(x, y) ; analytic f, then Cauchy—Riemann eq. are satisfied
(C-Req.)

Herez=x+1y
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ou_ov g M ou_ ov
oX ay oy  ox
Clearly ¢ &  satisfy C-R eq. (see (4))

So, we can define a function

\w= f(z)=¢+iy|; wis an analytic (differentiable) function

Here w is called the “complex potential” for the given fluid motion.
Exam point:- (Summary for Type | problems)

Let’s say (given) §=ul +Vvj =u(x, y)i +V(X,Y)]
". we can find :

dy

. dx
* Eq. for streamlines — =—
u \"

* stream function vy (X, y) = C:

W
ox

By usingu= —,v
oy

* Now, we can find ¢ (for it irrotational motion)

_ S -0 -0
B =-Vdie,u= — ,v= —
Yy q 0 o oy

dw

» Magnitude of velocity i.e. speed = I
z

el (5] =

dw _ ;0

" ax oy

» Stagnation point:-

Speed =0

d_\N =0

dz

* Velocity components in terms of y in polar coordinates
10 0

qr = __\lj’ qe \V
r oo or

« Stationary points: where velocity is zero.

* stream function is also known as current f.
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Example 1: If ¢ = A(X* — y?) represents a possible flow phenomenon, determine the stream function.

Solution
.o _ow % _ oy

x oy’ oy o
=>2Ax=@, —2Ay=—a—w

oy OX

Integrating w.r.t. y, Integrating w.r.t. X
= y(x,y) = 2Axy +1(x), v(x, y) = 2Axy + g(y)
Where f(x) is integration constant where g(y) is integration constant

Clearly, we can choose f(x) = g(y) =0 ; then
Getting y (X, ¥) = 2Axy in both cases. This is the required stream fun.
Example 2: Determine the stream function y (X, y, t) for the given velocity field u = Ut, v = x.

o v v
oy OX
g @ =-Ut , @ =X
oy OX
Integrating w.r.t. y On integrating w.r.t. X,
XZ
v =-Uty + f(x, t) ...(1) Y= oo +g(y, t) ...(2)
f(x, t) Integration constant o(y, t) Integration constant

Now, if we choose integration constants appropriately
For (1) & (2), to be same,

2

f(xt) = X? L 9(y, ) = Uty

.. Required stream function is
2

X
—Uty=21
v -Lly >

Example 3: The velocity potential function for a two dimensional flow is ¢ = x(2y — 1). At a point (4,
5) determine the speed & the value of stream function.

Solutions: we know,

% _ oy % _ oy

ox oy oy OX

2y—1= wn . 2Xx= —~

oy OX
On integrating w.r.t. y, On integrating w.r.t. x,
Y=y + 1) =y (% y)-..(1) K +gW) =y (xY) ...(2)

Now, if we choose appropriately f(x) = —x* & g(y) = y* -y
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We get,
v y) =y -y-x
S w(4,5)=25-5-16=4

. Req. sped :-

dw_ (@] o)
dz OX oy
dw _ 2 2
= =2y +(20)
At (4, 5)

‘Z—\;V = 49?2 +8% = /165

Ex4. If ¢=A(X* —y”) represents a possible flow phenomenon, determine the stream function.

Sol. Here p=AX"-y")...(D) X
Oy [0y = 0¢/0x = 2AX, using (1)
Integrating it w.r.t. ‘y’, w=2Axy + f(x), ...(2)

Where f(x) is an arbitrary function of x. (2) gives the required .,
stream function.

dah

Ex. 5. The streamlines are represented by (a) w=x°—y?

and (b) w=x*+y° Then

(i) determine the velocity and its direction at (2, 2) v

!

(if) (i) sketch the streamlines and show the direction of flow in pattern of streamlines
each case. for y=x" +y’

Part (i) Given that

Now, u=0ow/oy=-2y and V=—0/0X=-2X.

At (2,2) u=-4 and V=4 5 el .
YOV A

The resultant velocity = (u2 +v2)]/2 = (16 + 16)*2 = 42 units. e L P\~ 8 /‘*‘ /& / 5

And its direction has a slope = v/u = 1 showing that the velocity vector is } 7! 7‘ [\ l? 1\

inclined at 45° to x-axis. y

The required stream line are given by w = ¢, where c is a constant, i.e. x> — y? = ¢, which represents a
family of hyperbolas. In figure, we have sketched the steam lines for various values of . The direction
of arrowhead shows the direction of flow in each case.

Part (ii) Given that w=x+y°
Now, w=x+y° V=—0w/0X =—-2X
At (2, 2) u=4 and v=-4

.. The resultant velocity
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= (u2 +V? )V2 = (16 16)*2 = 42 units.

And its direction has a slope = v/u = -1, showing that the velocity vector is inclined at 135° to x-axis.
The required stream lines are given by y = ¢, where ¢ is a constant, i.e. x> + y* = ¢, which represents a
family of circles. In figure, we have sketched the stream lines for various values of y . The direction of
arrowhead shows the direction of flow in each case.

Next, m2 = the slope of tangent to = —M :ﬂ :—X, by (3)
oy/oy -2x X

m?= slope of tangent to stream lines w = ¢y at (2,2) = — (2/2) =-1

Here m1m2 = -1 showing that the streamlines and the potential lines intersect orthogonal.

Ex.6. Determine the steam function (X, y,t) for the given velocity field u = Ut, v = x.

Sol. We know that u=—(dw/oy) and V=0 /o
oy /oy =-Ut (D)
Oy [oX = X. .(2)
Integrating (1), w(xy,t)=—Uty+f(xt), ..(3)
Where f (x, t) is an arbitrary function of x and t.
From (3), Oy |ox =of [ox 4)
Then (2) and (4) = of /ox = x. (5)
Integrating (5), f(xt)=x*/2+F(t), (6)

where F(t) is an arbitrary function of t.

Form (3) and (6), w(x y,t)=-Uty+x*/2+ f (t).

Ex. 7. To show that the curves of constant velocity potential and constant stream functions cut
orthogonally at their points of intersection.

OR
To shows that the family of curves ¢ (x, y) = c,and (X, y) =¢,,c,,c, being constants, cut
orthogonally at their point of intersection.
Proof. Let the curves of constant velocity potential and constant stream function be given by

¢(X’ y)=Cl and l//(X, y)=C2
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where c¢1 and c; are arbitrary constants.
Let m1 and m; be gradients of tangents PT: and PT, at point of intersection

P of (1) and (2) A .
Then, we have yi@; N

_0X and =X 3 5 T
We know that ¢ and y satisfy the Cauchy-Riemann equations,
0p/ox=0y /oy and  O¢/oy =—0Dy [OX. ...(4) 0

(00/2X)(0w/0x) _ (0w/2y)(@w/oX)

Now, from (3), , = = ,by (4

. from ©) = ooy owiay) (v ooy

Hence mim, = -1, showing that the curves (1) and (2) cut each other orthogonally.

Ex.8. Find the lines of flow in the two dimensional fluid motion given by
¢ =xy =—~(n/2) x (x + iy)” e™"

Prove or verify that the paths of the particles of the fluid may be obtained by eliminating t from the

equations.

rcos(nt+6)—x, =rsin(nt+6)—y, =nt(x, — Y,.)
Sol. Given ¢+iy =—(n12)x(x+iy) e,
Let x=rcosd and y=rsind Then x+iy=r(cosé+isino)
So (1) becomes ¢+iy=—(nl 2)><(re“9 )2 ¥ =—(n/2)x i)

Equating the real and imaginary parts on both sides of (2), we get
b=—(n/2)xr?cos2(6+nt) and w=—(n/2)xr?sin26(6 +nt)
The lines of flow are given by y = constant,

—(n/2)xr*sin2(6+nt) = constant or r’sin2(6+nt) = constant.

We now proceed to find the path of the particles, we have

dr  0¢

—=——"L=nrcos2(@+nt)=nrcos24, by (2 ...(3

- (6+nt) y (2) 3)
do 104 . .

And r—=—=-—L_=-nrsin2(@+nt)=-nrsin24,by (2) ...(4
R (6+nt) y@) .4

Where nt+0=2A2

Now 3)= nrcosz/‘tzgzﬂd—ﬁzi(%+nj by (5)
dt didt daldt
or nrcosZ/lzg—;(—nsin 24+n), using (4)
or (2/r)dr—[2cos24(1-sin22)|dA=0
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Integrating, 2logr +log(1-sin21)=lagC or r’(1-sin24)=C

or r?(sin® 2+ cos® A - 2sin Acos 1) =C o [r(cosi-sin2)] =C
or r(cosA—sinA)C', where  C’(=\C) is are arbitrary constant. ...(6)

Initially, let 2 =6, and r =r,when t=0. Then (6) gives

.. (6) becomes rcosA—rsinA=x,—-Y, (7

or rcos(@+nt)—x, =rsin(6—nt)—y,, using (5) ..(8)

Now, from (5), dA/dt=n+(dg/dt) or dA/dt=-r—nsin24,using (4)

or d_—/lzndt or d—i_zz ndt
1-sin24 (cosA—sinA)
d—i_zzndt or —d—gznt+D
(cosA—sinA) u
(puttingl—tanA=u  sothat —sec’ 1dA=du)
or 1=nt+D or ! =nt+D
u 1-tanA
or Lﬁ_ =nt+D
(cosA—sin )
As before, initially A =6,andt=0. Hence (9) gives
o cos 490_ _ I, Cos g, . _ % s before
cosd,—sing, rycosg,—r,singy, X, —Y,
Then, (9) becomes L‘%_ =nt+ %
rcosA—rsinA X + Yo
rcos(é+nt
or Q:nu % or rcos(@+nt)=nt(x, — Y, )+ %
Xo = Yo X0+ Yo
or reos(nt+6)—x, =nt(x, -, ) ...(10)

.. Then, from (8) and (10), we have
rcos(nt+6)—x, =rsin(nt+6)—y, =nt(x, -y, )

Ex. 9. A single source is placed in an infinite perfectly elastic fluid, which is also a perfect conductor
of heat. Show that if the motion be steady, the velocity v at a distance r from the source satisfies the

equation (V - Ej@ & and hence that r= ievz/‘”‘.

vjor r NY
Sol. Since we have an infinite perfectly elastic fluid, there would be hardly any change in temperature,
and hence Boyle’s law would be obeyed and so p=kp ...(D

Since the motion is symmetrical about the source, the equation of continuity may be written as

pr?v = constant, ..(2)
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Where v is the velocity at a distance r and p is the density of fluid. The pressure equation takes the

form
dp
j +Y = constant  or k J' +— = constant, by (1) ...(3)
p 2
Differentiating (2) and (3) w. r. t. ‘r’, we have
—+ —+2rv |=0 ...(4
o P @
and K2 g ie., 9 __Vp N (5
o, 6r or or k or

Substituting the value of dp/ar given by (5) in (4), we get

vr? (—V{?jﬂo(rz ?+ 2rvj =0
r r

r—@(k V') =-2rv or (V—EJEN 2k, ...(6)
k or o r

Which proves the first part of the problem.
Integrating (6), (v¥/2) —k log v = 2k log C, C being an arbitrary constant.

or (1/2)xlogv +logr —logC =v?/4k or rJv = Ce"/

or r =(1/«/V)ev2/4k takingC = 1

Ex. 10. Prove that the radius of curvature R at any point of a streamline y = constant given by

(u2 +Vv2 )3/2
R= where u, v are respectively the velocity components of a fluid
u®(ov/ox)—2uv(du/ox)+v? (av/ay) P y yeomp

motion along OX and QY.

Sol. From Differential Calculus, we know that the radius of curvature R at a point (x, y) streamline
(x, y) = constant is given by

»732
1+(dy/d
R=[+(;/Xz} (1)
(d y/dx*)
Given streamline is w(xy)=0 (2
Also, we have u=-ow/oy and v=—0y/ox ...3)
Differentiating (2) w. r. 1. X, (0w /ox)+(ow/oy)(oy/ox)=0
or v—u(dy/dx)=0 or dy/dx =v/u ..(4)
Differentiating (4) w. r. t. X dzzl =2(!j+i(!jﬂ
dx= ox\u/) oy\u)dx
or dzg, _ u(ov/ox) —zv(au/ax) .\ u(av/ay)—zv(au/ay) v using (4)
dx u u u
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a?y _ ulu(@v/ox)—v(ow/ax) ]+ u[u(ov/ay)-v(au/ay)]

or

dx? u*
) oy o (av/ax)—Zuv(jg/é‘X)+V (ou/2y) 5)

{,@:g(a_wjzi(@_wj:@_u,by@)}

oy oylox ) oxl oy ) ox

Putting the values of dy/dx and d®y/dx* from (4) and (5) in (1), we get

. (1+v2/u2)3/2 _ (uz/vz)g/2
‘{uz(av/ax)—ZUV(au/ax)—vz(au/ay)/u3}‘ lu? (av/ax) - 2uv(au/ax) —v* (au/dy) / u°|

Ex. 11. Show that u = 2cxy, v = ¢ (a? + x? — y?) are the velocity components of a possible fluid motion.
Determine the stream function.

Sol. Given u = 2cxy v=c(a+x*-y?) (1)
Equation of continuity in xy-plane is given by
ou/ox +ov/oy =0 ...(2)
From (1), ou/ox=2cy and ov/oy =—2cy, putting these values in (2) we get 0 = 0, showing (2) is
satisfied by u, v given by (1). Hence u and v constitute a possible fluid motion.
Let i be the required stream function. Then, we have

u=—(dy/oy) or Oy oy = —2cxy ..(3)

and v=0w/ox  or ay//ax=c(a2+x2—y2) ..(4)

or X +iy = C(cosgcosiy —singsiniy )

or X +1iy =Ccosgcoshy —iCsingsinhy

Equating real and imaginary parts, (2) gives

x=Ccosgcoshy and y =—Csingsinhy

so that COS¢ = X and sing = _y
Ccoshy Csinhy

Squaring and adding these, we obtain

2 2

X + y =1
C%cosh’y  C’sinh’y

Which give the streamlines in two-dimensions.

Again, given that the streamlines are confocal ellipses
xz/(a2 +/1)+ yz/(b2 +/1):1
Since (3) and (4) must be identical, we have
C’cosh®w=a*+1 and C?sinh®w =b*+ 1

C(coshl//+sinhy/):\/a2+/I+«/b2+/1 or Ce” =vJa?+ 1 +b*+ 4
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[ coshy =(e” +e)/ 2} and

sinhy = (e +e)/2

or w:log(Ja2+/1+\/b2+/1)—logC

If ¢, are velocity potential and stream function, so also will be A¢ and Ay where a constant. Hence
(5) may be-written as

W=Alog(\/a1+ﬂ,+\/b2 +/1)+B

From (1), g—zz—Csinw=—C 1—c:oszw=—C(1—22/Cz)]/2
w

- JC =7 - [[C+2)(C-2) =i,

Where rl and r2 are the focal distances (radii) of any point. P(z) from the foci S (C, 0) S” (- C, 0) of the
ellipses.

Thus p =|dw/dz|=1/\[r,r,

Ex. 12. A velocity field is given by g = —xi + (y + t)j. Find the stream function and the streamlines for
this field at t = 2.

Sol. We have —0y /oy =u=—X

and Oy /ox=v=y+t

Integrating (1) and (2), we get w=xy+ f,(xt)
and w =Xy +tx+ f,(xt)

Note that f, must be a function of t alone, otherwise (4) will not be satisfied, f; = tx +f.. Thus
w=xy+tx+ f,(t)
The function f, cannot be obtained from the given data. However since we deal only differences in
values at a given t or with the derivatives oy /ox and dw /dy , the determine of f, is not necessary. At t
=2, (5) becomes
w=xy+2x+ f,(2)
The stream lines (y = constant) are given by x(y +2) = constant,
Which are rectangular hyperbolas.
Ex. 13. A two—dimensional flow field is given by y = xy (a) Show that the flow is irritation (b) Find the

velocity potential. (c) Verify that y and ¢ satisfy le Laplace equation . (d) find streamlines and
potential lines.

u=-0 ==X,
Sol. (a) The velocity components are given by wioy so that
V=—0y/[0y=-Y,
g=ui+yvj or g=-ix+yj
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]
o 0
x o
Xy

Hence the flow is irrotational.

I
o

and

o |y =

(b) We have 9% _oy 9 _ov

ox oy oy X
¢=I(ayx/5‘y)dx+ f.(y)=x"12+1/(y)

and ¢=—.|.(8z///8y)dx+ f,(y)=y*/2+f,(x)
(1) and (2) show that
f,(y)=-y?/c+constant and f,(x)=x/2+ constant,
so that ¢ =(x* —y*/2)+constant
(¢)Viy =0y /ox* +0°y [oy* =0+0=0 and  (c)V’g=0%¢/ox* +d%¢/oy* =1-1=0
Hence y and ¢ satisfy the Laplace equation.

(d) The streamlines (y =constant) and the potential lines ( ¢ = constant) are given by

xy = Cy and x2 — y? = C,, respectively, where C; and C; are constants.

Ex.14. Show that u = 2cxy, v = ¢ (&% + x* — y?) are the velocity component of a possible fluid motion.
Determine the stream function.

" For possible fluid motion; eq of continuity holds

V.G =0

a_u+@ =0

ox oy
= 2cy — 2cy = 0; holds,

.. Yes, given components constitute a possible fluid motion.

)
o~

v =

)

ce(@® + x2 —y?) , —2Xcy =

y=ca’c+ c% —cyx +f(y) w=-—xcy?+f(x)
On choosing appropriately,

3
f(y) = 0, f(x) = ca® + % then
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3
v — ca’ + & cyx
3
Ex.15. Show that the velocity potential ¢ = % log{(x + a)* + y*} — % log{(x — a)® + y°} gives a possible
motion.

Determine the streamline & show also that curves of equal speed are given as ovals of cassin rr” =
constant.
Solutions: For possible fluid motion; Eg. of continuity holds

e, V-g=0
6_u+a_u _0
ox oy
b= 00 0
X oy

aZ(I) aZ(I)

—2t=7 =0

Now,

oh 1 1

x2(x+a) —

— = - : X 2(x—a)
ox 2{(x+a) +y2} 2{(x—a) +y2}
0% {(x+a)2+y2}x1—(x+a)x2(x+a) ) {(x+a)2+y2}x1—(x—a)x2(x—a)

ox {(x+a)2+y2}2 {(x—a)2+y2}2

2 yz—(x+a)22_ yz—(x—a)z2
OX {(x+a)2+y2} {(x—a)2+y2}

.(A)

a_zqz): (x+a)2—y22_ (X_a)z_y22 .(B)
oy {(x+a)2+y2} {(x—a)z+y2}

- from (A) & (B)
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2 2
%Jra—(f =0 holds eqg. of continuity
Now, determining v : -
T
X2 oy oy ox
L oy _ (x+a) (x+a)

oy (x+a)2—y2 _(x+a)2+y2

On integrating w.r.t. y.

vy = tan™ [Lj — tan* (—j +f (x) ; f () is an integrate constant
X+a X—a

% = y /()

(x—a)2+y2 - (x—a) +y
—0

But comparing above expression with v we get
y
fx)=0
= f (x) = constant (say c)
.". stream function

vy = tan™ (Lj — tan™ (Lj +¢; Cis some constant

X+a X—a

x+a_x a
Haaes)
X+a/\ X—a

_ —2ay
=tant| ———— |
v [xz—a2+y2J

streamlines are given by,

v y
Sy =tan™ -

v (X, y) = constant

—2a . .
= tan‘l(#yzj = constant; gives streamlines
X“—a‘+y

Extra Observation:-
Now, if constant = 0 : then streamlines are given by

_A:O

Xz_a2+y2
= 2ay=0

= y=0; streamline
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Now,

wW=¢ iy
W= % |09{(X+a)z+y2}— % |09{(x—a)2+y2}+ i{tanl%a—tanl(ryaj}
=log [(x +a) +iy] -log [(x—a) +iy] [ _
= log [(x + iy) + a} - log [(x + iy) - a] " log (x+ 1)
w=log(z+a)—log(z—a <
g(z+a)-log (z—a) =1|Og(xz+yz)+itanl(gJ
_ [z+aj 2 X
w=log | —
Z—a -
) _ |dw 1 1] _ 2a _2a
.ospeed = |—| = - = = —
dz Z+a z-a| |z+a|-]z—a] rr’

For constant speed
2a

— = constant

rr

= rr’ = constant

Exam point:-
|z — zo| = r: represents eq. of a circle with centre at z = zg & radius r

Sources and Sinks

Source :- A “source of mass m or strength m” is ; a flow across the circular boundary as 2xm

P(r, 0)

p We want to study the motion of fluid.
0
tm
Source
tm
Sink:-
A sink is of strength —m
Flow =— 21m Flow :- — 2mm
Sink of strength - m
Exampoint:- f
-1 oy ~04 We have already study
ar = T 0 Qr= o < above velocity

component g in polar
form in terms of shi and
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Exampoint:- For a source of strength +m

2nrgr = 2nm
=2nr (_—1@) =2am
r oo
oy
= ——=-m...(1 = y=-mo
S D v

For circular & radius ‘r’ flow in termes of qr is 27trqr

Similarly

2nr(_—a¢j =271tm
2r

%
= rar m...2)

> [p==mogr

.. The complex potential due to a source of strength m is

W= ¢+ iy Z=x+iy
W =—mlogr + i (-m@ .
gr+i( _‘) z=r.e"
W =—m[log" + loge™]
2= X2+ 2

W = —m log (re’®)

Similarly, for a sink of strength —m.

Exampoints: -

1. W =-mlog (z): For source of strength m.

2. W =mlog (2): for sink of strength —m.

3. Let source is at the point z = zo; then

*W=-mlog (z - 20)

*W=mlog (z - z0) {for sink}

4. Let there are n sources at points zi, zy, ...,zn Of strength m.

W =-mlog (z - z1) — mlog(z — z) -mlog(z — z3) + ...*+(-m log (z — z,) {for source}
W=mlog(z—-2z)+mlog(z—2z)+...+mlog(z-z,) {forsink}
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Doublet
Source & sink of same strength at a small distance ds

Now, ¢ =mlog (r + dr) + mlog r

- mlog (r+drj dr‘,.""‘ .
r
dr e
¢ =-m log (1+7j +m < ds
dr (dr)’ XX
—m—-—"——+..; [Applylog(l+x)=x— — + —
{r o2 [ Apply log (1 +x) > 3 ]

=— mg ; neglecting higher order terms
r

_ —mdscosO

¢ =
r
- K ) : _
¢ = — cos 0; Taking mds = p
¢

"y is the complex conjugate of ¢ (*-° W = ¢ + iy is analytic)

i

Soy=—sinb
-
W:¢+I\V
=_—Hcose+ﬁisin9=_—u(cosefisin6)=_—ue’ie=_—i
r r r r re
Exampoint
—u
W=—| & [u=mds
:

Article 3:- To determine the complex potential due to sources,
sinks doublets in the presence of rigid boundaries:-

(i) Image of a source with respect to a line:- A

The image of a source of strength m with respect to a line in 2-D; is
an equal source equidistant from the line to the opposite of source.

Image of doublet with respect to a line
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O (+m) Y

+m

p o om Pm

Boundary
The image of doublet (PQ) w.r.t. a line is the doublet (P’ Q")

Note :- Image system w.r.t. a circular boundary:- D)

Let’s determine the image of doublet AA'

(with its axis, making an angle o) ACm
in the presence of circular boundary:
is a doublet (again) BB' B%Eiﬁrry

B'isi int of A'

is inverse point 0 OAOB = OA" OB' = g2
B is inverse point of A
Explanation:-

* Image of source +m at A" ; consist of a source +m at B' and a sink at O;

"' source +m & sink —m cancel each other at O.

Exampoint
Image of a source of strength ‘m’ consisting of two things a .@

K at th d £ 2 from th ot *
sink at the origin & source at a distance of — from the

f @ .
origin. o
a’ < f >

W =-mlog(z—- f)-mlog Z_T +mlogz :

Some important results regarding conformal transformations
(i) In a conformal transformation:

— source is transformed into equal source
— asink is transformed into equal sink

— a doublet is transformed into equal a doublet
(if) The complex potential W = ¢ + iy is invariant under the conformal transformation

!

To solve questions; to study the motion; we’ll try to transform given system into a simpler system
(through conformal transformation)
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(iii) Let & = f(z) be the conformal transformation then
the total kinetic energy of fluid in z-plane (per unit depth)
= total K.E. of fluid (per unit depth) in &-plane

(iv) Under a conformal transformation, a streamline in z-plane is transformed into a streamline in &-
plane

(v) Important Point (for question solving)

While using conformal transformation & = z";
** n is found by; dividing g by the half the angle between two rigid boundaries

Example 1: What are arrangements of sources & sinks which will give rise to the function

2
W=Iog(z—a—].
z

Also, find streamlines.

2
“" W =log {z—a—j
z
2 2
W = log {Z 8 ]
z

W = log (22— a% — log z

W=log (z+a)+log (z—a) - log z
W =1log (z- (-a)) + 1.log (z—a) + (-1). log(z — 0) ...(1)
W=mylog (z—-21) + mzlog (z—-22) —mslog (z — z3)

' ’ v

Sink of strength  Sink of strength Sink of strength
mz ma ms
atz =1z, atz=12 atz=1z3

.. (1) is combination of

* a source of unit strength at origin

» Two sinks of unit strength at z = a, z = —a.

Finding streamlines : ¢ = constants

“"W=log(z+a)+log(z—a)-logz @ (0, 0) @

W =log (x +iy +a) + log (x + iy —a) — log (x + iy) (—a, 0) @ (@, 0)

O+ iy = ((%IOQ(X'Fa)Z +y2j+itan-1(LD +

X+a

o {21 2]
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y . ¥
= tanld_X+a x-a _tan—l[lj
1-_Y y X
x+a)(x—a)
y ¥y ¥
v tan* (x+a) x-a x

el ()

.. Required streamlines are given by,

Yy = constant = C

Yoy oy

X+ a X—a X
oy
1+[1 (xz _az)} <

Example 2: There is a source of strength m at (0, 0) and equal sinks at (1, 0) & (-1, 0). Discuss about
2-D motion,

=fanc

OEEORSD

(-1,0) (0, 0) ?l, 0)

Sow=mlog(z-(-1)) +mlog (z—1)—mlog (z-0)
W =m[log (x +iy + 1) + log (x + iy — 1) — log (X + iy)]

. 1 2 ) af Y 1 2 2 N 1 2, .2
d+iy=m {Elog((x+1) +y )+tan (X—Hj+—((x—1) +y ) + itan el Elog(x +y ) _

2
itan™ X}
X
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2yx y
y=m tan™ X2_y2_1 X
2xy?
1+
X(x* - y* -1)

for streamlines

Y = constant

2y, 2 2
. tanl{Zx y-x'y+y +y}zc

X2 — Xy® — X + 2xyz

2 3
L XYYy
x> — X+ xy?

Ex.3. Find the stream fn. of 2-D motion due to two equal sources & an equal sink situated midway
between them.

W =-mlog(z + a) — m log (z — a) + mlogz

v, G |G Cmw

1 ) .
W=-m [—Iog x+a) +y*) +itan™ . .
2 (( ) ) X+a (—a, 0) 0.0)  (a.0)

%Iog((x—a)2 +y2) +itant X - %Iog(x2 +y°)-

X—a
itan‘l(lﬂ
X
FW=¢ iy

So,y= —-m {tanl[ijﬂanl[ y J—tanl[lﬂ
X—a X +a X

Ex.4. Two source each of strength m are placed at the point (-a, 0) & (a, 0) & a sink of strength 2m
at th origin. Show that streamlines are the curves.

(@ +y%)? = a? (x* — y* + Axy), where A is a parameter

2

Show also that the fluid speed at any point is ; where ry, Iy, r3 are the distance of the point from

1060

the sources & sinks ?
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Complex potential due to sources & sinks at an arbitrary points P;

i P(z)
W =—-mlog (z+a)-mlog (z—a) +2mlogz ...(A) T

A A
——mtan?t| Y| - mtan| 2 | +2m tan| Y '
X+a X—a X A
* 4

for streamlines (—a-', 0) (0, 0) Ea, 0)

tan™t (Lj + tan? (Lj —2tan™ (lj =c
X+a X—a X

tan‘l( y j — tan™* (l] +tan? + tan™' (Lj — tan™* (lj =e
X+a X X—a X
Yy y _ ¥
tan | X+ X | gni)x=a x|_g
1+ 1+ Y
x(x+a) x? — ax
tan™ —y + tan &y =c
X2 +y? +ax X? +y? —ax
ay  ay
7 2 2 2
-t XY - az))(/2+y +ax | _
1+
(x2+y2—ax)(x2+y2+ax)
oay{X ey rax—x* - y? +ax]
tan™ =c
(x*+y* +ax)(x* +y* +ax)+a’y’

2a’x
y =tanc

2
(x2+y2) —a2x2+a2y2

(Xz +y2)2 +a2(y2 —X2)

= 2cot c = A (say)

a’xy
(¢ + Yy +aXy’ - x°) = 2@ +xy
(x* +y?)? = a*{x* — y* + My} pd
For speed,
dw| _ [ -m m 2m

dz z+a z—-a 12

2a’m
|z||z—a||z + 4]
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2ma’
LT, -1,

d_W
dz

Ex.5. Between the fixed boundaries 6 = = & 0 = %t , there is a 2-D motion due to a source at the point
c

(r =c, 8= 0) and a sink at the origin absolving water at the same rate as source produces. Find the

stream function and show that one of streamlines is a part of curve r® sin 3o = ¢* sin 30
Step (1) : configuration through figure

Step (ii):-

T
E_,:ZS ...n=;=3

T

6

R-€% =(r-e" )3

= Re'® — 3

z-plane
= R=r3&62=301
T
Vgt
3
c,m—3u
Now, boundaries of 0.: 5),, ) @ (c3, 3a)
Pr
-3 x E to3 x E @
6 6
1e., 02: __2n to g
.. Image of source P' is P” ; image of sink at origin is sink at
origin itself. 9= ’T”
(E-plane)

Step (iii): ultimately, complex potential (in & plane)
W =-mlog(¢—z1) —mlog (¢ — z2) + 2m log (& — z3)
W =-mlog (¢ —c®e®) —mlog (¢ - r.e®"~9) + 2 m log (&)

S W =-mlog (& —c%®9) —m log (& + re %) + 2mlog(&)
" e®" = cos3x + i sin 37

=—mlog [(23 —c%™)- (2 +c% ™ )] +2mlog z°

2% —c® —2ic®*Z®sin3a
z

W = -mlog { -

W = -mlog {1 — ¢® z°° - 2ic*z 3 sin 30}
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o + iy =W =-mlog(1 - c®r®e®® —2ic® r3.e% sin 3a)
On comparing imaginary part.

c®r°sin60 — 2¢®r 2 sin 30.cos 30

1—c®r® cos60 — 2¢®r > sin3asin 30

y=-mtan’ { }is the req. streamline

the streamlines are given by v = constant

So, corresponding to ¢ = 0, we get streamlines as

c®r®sin60 —2c*®sin3a cos 30 =0

2¢ sin 30 cos 30 = 2r® sin 3a cos 30

¢®sin30 = r®sin 3a

Ex.6. Between the fixed boundaries 6 = % & 0= _Tn there is a 3-D motion due to a source of strength

m at the point (r = a, 6 = 0) and an equal sink at (r = b, 8 = 0). Show that the stream function is
r*(a* -b*)sin 46

ré —r* (a4 +b* )cos 40 + a‘b*

—m tan*
and show that velocity at (r, 0) is (speed)
4m(a‘ -b*)r®

(r8 —2a‘r*cos40 +a® )1/2 (r8 —2b*r* cos 40 + b8)

1/2

|3

The conformal transformation & = 2"

T
where n = 2 =2 Cma: )

(u‘-(J} (h_'()]

Na

we take & = 72

. : 2
Rele2 _ (rele1 ) z-plane 4

S R=r?&60,=20,
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Now, the boundaries of 6, : 2 X _Tn to 2 x %

ie. “to X 2
2 2

Now, complex potential of &-plane,

W = —mlog(¢ — a% + mlog(¢ — b?) — m log(¢ + a2) + @ @ @

mlog({ + bZ) BH AH 1;? Bl

W=-m |Og (62—a4)+mlog (52_b4) 2 2 2 2
W = —m(z —a%) + mlog@* — b%) ...(A) 65,0) (=, 0) (@,0  (b,0)
W= _m|og (r4 et _ a4) +m |Og (r4 gi40 _ b4)
¢ + iy = -m log (r* cos4d — a* + ir* sin 40) + m log (r* .
cos 40 — b* + ir'sing) =R
-plane

log(x + iy) = % log (X2 +y9) + itan! (Xj Ep

X

Comparing the imaginary part,

P r‘sinde | tan- r*sin4e
r* cos46 —a* r* cos40 —b*

r* sin 40 v r*sin 40
_ g r‘cos46—a* r’cos46-b*
y=-m |tan™ —
r°sin- 46

t (r“ cos49—a4)(r4 cos49—b4)

. { rt (a“ —b*sin 49) H
y=-m | tan

r cos® 40 —r* cos46(a4 + b4)+ a’b* +r®sin? 40

t _1{ r*(a* —b*)sin® }
y=-m tan

ré —rt (a“ n b“)cos 40 + a’b*

From (A)
dw _ o x 47° mx 47’
dz 7' -a’ 7' —b*

dw :J{ng[ 2 —b* -z* +a’ }

(v~ )(z b

dw —4mr® (cos30 +isin30)(a* - b*)

dz (r“ (cos40 +isin40) - a“)(r4 (cos40 +isin 40) — b“)

dw _ —4mr® (a* —b*)(cos30 +isin 30)
dz (r4 cos 40 — a‘isin 49)(r4 cos40 —b* +ir* sin 49)
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dw \/(—4mr3 (a“ —b* )cos 36)2 + (—4mr3 (a“ —b*sin 36)2)

dz \/(r“ cos 40 — a* )2 + (r“ sin 46)2 \/(r“ oS 40 — b“)z + (r4 sin 46)2

dw 4mr? (a4 —b“)

dz (r8 —2a‘r*cos40 +a® )1/2 (r8 —2b*r* cos 40 + bB)

1/2

Level-2 of Preparation (Mentor’s words: Interested students can go for this exercise once they’re done
with above concepts and examples)

Q.1. Use the method of image to prove that if there be a source m at the point z in a fluid bounded by
the lines 6 = 0 and 6 = n/3, the solution is

o + iy =-m log {(23 - zg"j)(z3 - z;f)} where zo = Xo + iyo and z, = Xo — iyo.

Sol. Consider the following transformation from z-plane (xy-plane) to -plane (§n-plane) :

(=2  where z=re" = R=r> and ©=230.
Hence the boundaries 8 = 0 and 0 = n/3 in z-plane transform to ® = 0 and ® = nt S (m) )
7 i.e., real axis in {-plane. The point zo in z-plane transforms to point o in z- (G0 =2)

plane such that {p = zg . Hence the image system with respect to real axis in

¢-plane consists of ®=n ,E
(i) a source m at {o = z¢ (ii) a source m at &j) = z;° 0 ©=0
Hence, ~w=-mlog ({-&)-mlog(C- &)

— 3 3 3 i (CE) - Z(';
or w=-mlog (zz— z;) —mlog (z°— z;°) S’ (m)
or o+iy =—mlog {(Z*— %) 3 - z*)}.

Q.2. If fluid fills the region of space on the positive side of the x-axis, which is a boundary and if
there be a source m at the point (0, a) and an equal sink at (0, b) and if pressure on the negative side
be the same as the pressure at infinity, show that the pressure on the boundary is 7pm? (a — b)2 / 2ab
(a + b), where p is the density of the fluid.

Sol. Here the image system with respect to x-axis in z-plane consists of
(i) a source mat (0, a) i.e.,atz = ai

(i) asink—mat (0, b) i.e.,atz=hi

(iii) a source mat (0, —a) i.e., at z = —ai

(iv) asink—mat (0, -b) i.e.,atz=-b

Clearly this image system does away with boundary y = 0 (i.e., x-axis).
Thus, the complete potential of this entire system is given by

=-mlog (z—ai) + mlog (z— bi) —mlog (z + ai) + log (z + bi)

or w=-mlog (z* + a% + m log(z* + b?)

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

.. velocity = aw) _|__2zm + 2zm |
dz 2+a’ 22 +b7
The velocity g at a point on the boundary (i.e., y = 0) is given by (setting z = x + iy)
_| 2zm 2zm | _ me(az _bz)

- +

x2+a’ 22 +Db? (x*+a”)(x* +b?)
Let po be the pressure at infinity. Then by Bernoulli’s theorem, the pressure p at any point given by
PRI i P-p 1

q x0? + - or
2 p 2 p p 2

2

q

.. The resultant pressure on the boundary
X*(a® —b’ )2

x? +az)2(x2 +b2)

= [(po—p)dx = %p [qtdx =2p m? T( _dx, by (1) and (2)
0 0 0

:2pm2 T —
0

a2+b2( 11 j_ a’ b?
a?-b*( x*+a® x*+b? (

, |a®+b*(n m T W T
=2pM°  ———| ———— |-————, onsimplification
b*-a“\2a 2b) 4a 4b

_ npmzr(a2+b2)—(a+b)2] _ mpm?(a=b)’
2ab (a+b) 2ab(a+b)

Q.3. Parallel line sources (perpendicular to xy-plane) of equal strength m are parallel to the points z =
niawheren=...,-2,-1,0, 1,2, ... . Prove that the complex potential is w=—m log sinh (nz/a).
Hence, show that the complex potential for two dimensional doublets (lines doublets), with their axes
parallel to the x-axis, of strength p at the same points is given by w = p coth(r/a).

Sol. The complex potential due to sources of strength m situated at the points z = 0, ia, —ia, 2ia, —2ia,
... is given by

w=-mlog (z—0)-mlog (z—ia)-mlog (z+ia)—mlog (z-2ia) —mlog (z + 2ia) - ...
=-mlogz-m{(z—ia) (z +ia)} —mlog {z - 2ia) (z + 21)} — ..,

=-mlogz—mlog (z2+a?)-mlog (Z*+ 22a?) — ... f_
=-mlog [z(z?+ a® )(z?+ 2? @® )(z2 + 3% a?)...] +m ¢ 2la
2 2 2 +tm e la
P z z z
=—mlog<—z|1+— || 1+ 1+ I
g{a( azj[ Zzaz( 32a2j } e
o 0
a l +m ¢ —la
—mlog| | — |a*(2%a%)(3%a?)...
o5z
- tmey 2la
=—m sinh (nz/a) + constant. v
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The complex potential w: for the doublets at the same point is

le—mzmcoth[ﬂzj ,ucoth( jwhere u:ﬂ.
0 a a a

Q.4. In the case of the motion of liquid in a part of a plane bounded by a straight line due to a source
in the plane, prove that if m p is the mass of fluid (of density p ) generated at the source per unit of
time the pressure on the length 21 of the boundary immediately opposite to the source is less than that
on an equal length at a great distance by

1mp F tan™ ! !

5 - } where ¢ is the distance of source to the boundary.
p

c c I"+c

Sol. Let y-axis be the bounding line and let the given source of strength (u, say) be situated at S where
OS = c. Now, by the definition of strength p of the source, we have 2rup = mp so that u = m/2z. Now,
the image system consists of

y
A
A
(i) a source of strength m/2x at S(c,0) P(z=iy)
(ii) a source of strength m/2x at S' (—c,0) S S
X'« > X
Here S' is image of S such that OS = OS' = c. (e, 10333012 (c, 0)
The complex potential w is given by
Al
w = — (m/27) log(z — ¢) — (m/2z) log (z + ¢) = — (M/2x) log (22 — ¢?) il
Y
The velocity is given by
aw _ _m|_z |
dz 27zz—|7rz—c2|

Hence velocity g at any point P (where z = iy) is given by

m{ iy | my

= Yy | z(y’+c?)

(D

Bernoulli's equation for steady motion is given by
p/p + ¢%/2 = constant = ¢, say. ..(2)
Let po be the pressure on y-axis at great distance from O so that p = ppand g = 0 when y = oo.

Then (2) reduces to po/p = ¢ and hence (2) becomes

9 PP _-
+ 5 or q

Po
p p 2

Qo
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Writing w = ¢ + iy and equating real parts, we get

¢ = —(m/2) x [log {(rcos 6 — f)* + (r sin 0)?} + log {(r cos 6 — a%/f)* + (r sin 0)* }]
_m log(r?+ f*—2frcos6) + log| r* +a—4—2r—azcose
2 f? f

. 0p_ m 2(r— fcosd) Z{F—(azlf)cose}
Cor 2| ri+f2-2frcosd r2+a4/f2_2r(az/f)cosg

Hence normal velocity at any point Q on the circle

_ _(@) =m[ a— fcoso . (a/ f)(f —acosB) ]:

or a’ + 2 —2facosd (aZ/ fz)(f2+a2—2afcose)

a

| &~ fcoso+ f?/a—fcos® | m
a’+ f? —2facoso

Now, if we place a source of strength — m at O, the normal velocity due to it at Q will be — (m/a) and
hence the normal velocity of the system will reduce to zero.

Hence the image system for a source outside a circle consists of an equal source at the inverse point
and an equal sink at the centre of the circle.

Image of a doublet with regard to a circle.

Let us determine the image of a doublet AA" with its axis making an angle a with OA, outside the
circle, there being a sink —m at A and a source m at A'. Join OA and OA'. Let B and B' be the inverse
points of A and A" with regard to the circle with O as centre.

Then
OA-OB=0A'-0OB'=a?, ..(D)

where a is the radius of the circle. A" (m)

Now the image of source m at A" consists of a source m at B' and
and a sink —m at O. Similarly, the image of sink — m at A consists of
a sink at B and a source m at O. Compounding these, we see that
source m and sink — m at O cancel each other and hence the image
of the given doublet AA' is another doublet BB'.

Let the strength of the given doublet AA' be .

Then p=lim(m-AA). (2

A—>A
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From (1) OA/OA' = OB'/OB, ...(3)
showing that triangles OAA' and OB'B are similar. From these similar triangles, we have

BB’ OB’ _OB' OA' _ a’ @
AA" OA OA OA OA-OA

2

.« w'= strength of doublet B' B = EI;Irrg;(m B'B)=lim -(m- AA), by (4)

A->AQA-OA'
= ua?® /%, using (2) and taking OA = OA' = f

Thus the image of a two-dimensional doublet at A with regard to a circle is another doublet an the
inverse point B, the axes of the doublets making supplementary angles with the radius OBA.

To determine image system for a source outside a circle (or a circular cylinder) of radius a with
help of the circle theorem.

Let OA = f. Suppose there is a source of strength m at A when z = f, outside the circle of radius a
whose centre is at O. When the source is alone in the fluid complex potential at a point P(z) is given

by

f(z) = —mlog (z - f) Then  f (2) =-mlog (z—f)
f (a%z) = —mlog (a%/z — )

When the circle of section |z| = a is introduced, then the complex potential in the region |z| > a is given
by w=1f(z) + f (a%/z) =-mlog (z—f) — m log (a%/z - f)

2
=—mlog (z—f)—m log (a _ij

Z

=-mlog (z —f) — mlog (a? — zf) + m log z
=-mlog (z — f) — m log [(-f)(z — a¥/f]+mlog z

=-mlog (z—f) — m log (z — a%/f) + mlog z — mlog (—f))
=—log (z—f)—mlog (z — a’/f) + m log z + constant, ...(1)

the constant (real or complex, —m log (—f) ) being immaterial from the view point of analysing the
flow. (1) shows that w is the complex potential of

(i)asourcemat" Az=f
(i) a source m at B, z = a*/f

(iii) a sink — m at the origin
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Since OA - OB = a2, A and B are the inverse points with respect to the circle |z| = a and so B is inside
the circle.

Thus the image system for a source outside a circle consists of an equal source at the inverse point and
an equal sink at the centre of the circle.

Q.7.(i) In the region bounded by a fixed quadrantal arc and its radii, deduce the motion

due to a source and an equal sink situated at the ends of one of the bounding radii. Show that the
streamline leaving either end at an angle o with the radius is r? sin (o + 0) = a’ sin(a — 0).

(ii) In a region bounded by a fixed quadrant arc and its radii,
deduce the motion due to a source and an equal sink situated at
the ends of one of the bounding radii. Show that the streamline
leaving either end at an angle 7/6 with radius is r? sin (/6 + 0) =
a? sin (n/6 — ), where a is radius of the quadrant.

e
-
.

Sol. (i). Let AOB be the circular quadrant of radius a with OA ;
and OB as bounding radii. Consider a source of strength m at A 1 ol o

and a sink of strength — m at O. Then the image system consists 4/ () 0, A (m)
of (i) a source m at A(a, 0) (—=m)

(ii) a source m at A' (—a, 0)
(iii) a sink —m at O(0, 0).
Hence the complex potential w for the motion of the fluid at any point P(z + x + iy + re®) is given by

e /L &
w = —mlog(z — a) — mlog(z + a) + mlog z = — mlog — mlog(z — a?z™1)

2 2

z
w=-mlog(z—-a)-mlog(z+a)+mlogz=-mlog =—mlog(z—-a’z?)

or w=-mlog (re® —a’rte™), as z=re®

w =—m log [r(cos 8 + isin 0) —a® r* (cos 6 — i sin 0)]
o “+ iy =—m log [(r — a%r) cos 8 + i(r + a%r)sin 0]
Equating imaginary parts, we obtain

2 -
(r+a®/r)sing 1?4 al
wz—mtanl(z— =-mtan™ { — tan®
r—a’/r)coso

r-—a
The streamline leaving the end A and O at an angle a is given by

r’+a?
r2—a?

Y =-m(t - a) ie, —mtan? { tane} =-m(n—a)
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2 2 H
r+a“)sind
Q =tan (n — a)=—tanaf—w

or ——
(r*—a®)coso cosa

or (r*+ a?)sin 0 cos a = —(r*— a® cos 0 sin o or  rsin(o+0)=a’sin (1 —a)
(ii) Proceed as above by taking o = 7/6.

Q.8. In the case of the two-dimensional fluid motion produced by a source of placed at a point S
outside a rigid circular disc of radius a whose centre is O, show velocity of slip of the fluid in contact
with the disc is greatest at the points where joining S to the ends of the diameter at right angles to OS
meet the circle, prove that its at these points is (2m x 0S)/(0S? — a?)

Sol. Let S' be the inverse point of S with respect to the circular disc, with O as its

Let OS =c. Then OS x OS' = a2 so that OS' = a?/c.

The equivalent image system consists of

(i) a source of strength mat S (c, 0),

(i) a source of strength m at S' (a’/c, 0),
(iii) a sink of strength — m at O(0, 0).

Let OS be taken as x-axis. Then the complex potential for the motion of the fluid point z(=x + iy =
re'®) is given by

w=-mlog (z—c)—mlog (z—a%c) + mlog z

dw m m m

dz  z-c z-a’lc z

Let g (=] dw/ dz |) be the velocity at any point z. Then

(z—a)(z+a) |
z(z-c)(z-a° /c)‘

Hence the velocity at any point z = ae® on the boundary of the circular disc is give

1 1 1
+ —_—

z-c z-a’lc z

B (aeie ae + a | 1)(e'e +1) |
e (ae” —c ~a /c‘ c)(ce' —a)‘
~mc (1-e™)(L+e" | 2mcsing

| (ae ce ~a ‘ a? +c? — 2accosd

For maximum ¢, dg/d6 = 0. Hence (1) gives
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(a® +c* — 2accos0 ) cosd — sin ( 2acsinb)
2me > =0
(a” + ¢ — 2accoso)

or (@®+c* cos @ —2ac=0 or cos 0 = (2ac)/(a* + ¢?)
Since 0 = 0 gives the minimum velocity [ becomes zero at 6 = 0 by (1)], the value given by (2) must

correspond to the maximum value of velocity g. Moreover (2) gives the angles which the diameter
through the point where the line joining S to the end of the

From (2), sin 8 = y1-c0s’0 = (¢? —ad)/(c?* + @) ...(3)

Using (1), (2) and (3), the maximum value of q is given by

2 2

2me-| & @
o= c’+a?)  2mc(c*-a’) o q= 2mc _ 2m-0S
- 2.2 2 Y Y
a2+c2—;’za+cc2 (a®+c?) —4a’c? c’-a® 0OS°-a

Since the boundary of the circular disc is a streamline, the velocity on the boundary is the velocity of
the slip.

Q.9. A source S and a sink T of equal strengths m are situated within the space bounded by a circle
whose centre is O. If Sand T are at equal distances from O on opposite sides of it and on the same
diameter AOB, show that the velocity of the liquid at any point P is

. 0S? +0A? PA-PB
(O8] PS-PS'-PT-PT' "’
where S'and T' are the inverses of S and T with respect to the circle.

Sol. Let OS = OT = c. Then, we have OA = a, OS - 0S' = a? and OT - OT' = a? so that
(0S'=a%c and OT'=a%c  ...(1)

Now the image system of source m at S consists of a source m at S' and a sink —m at O. Again the
image system of sink —m at T consists of a sink —m at T' and a source m at O. Compounding these,
we find that source m and sink — m at O cancel each other. Hence the equivalent image system finally
consists of P(2)

(i) a source of strength m at S(c, 0) m

T o S
(=m) (=m) (m)

= v

(ii) a source of strength m at S' (a?/c, 0) (m)
(iii) a sink of strength —m at T(-c,0)
(iv) a sink of strength —m at T' (—a?/c,0)

Taking OS as the x-axis, the complex potential at any point z(= x + iy) is given by
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2

2
w=-mlog(z—-c)—-m Iog(z—a—} mlog (z + ¢) + mlog[z+a—J
c c

dw m m m m

- + +
dz z—c z-a’lc z+4+c z+a’lc

The velocity q (=] dw/dz |) at any point is given by

B 2c (2a2/c) | ( a2)+(a /c)(zz—a2)|
q_m_zz—cz_zz—(a“/cz)‘ ( —c? ( a4/c2) ‘
= om & -(:a 2 Z:_a: - _2mc2+a2 |z—a||z;:1| .
(z —c )(z _czj |z—c||z+c|z—? 2+
= om 0S? + OA? PA-PB

0S  PS-PS'-PT-PT’

Q.10. In the part of an infinite plane bounded by a circular quadrant AB and the

of the radii OA, OB, there is a two-dimensional motion due to the production of the
and its absorption at B, at the uniform rate m. Find the velocity potential of the motion
that the fluid which issues from A in the direction making an angle p with OA follows

whose polar equation is

1/2
r=asin20 [cotu + \/(cotzu + cosec? 26):|

the positive sign being taken for all square roots.

Sol. The image system of source m/2x at A with respect to the circular boundary

of a source m/2x at A (since A is the inverse point of itself) and a sink —m/2x at O, the

of the circle. Next, the image of system of the above mentioned image system with respect
line OA and OB consists of

(i) a source of strength m/2z + m/2x i.e. m/z at A(a, 0)

(ii) a source of strength m/2z + m/2z i.e. m/zr at A' (-a,0)

(iii) a sink of strength —Zﬂ at 0(0, 0)
T
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Again there is a sink of strength -m/2z at B. The
image system of this sink with

to the circular boundary consists of a sink —m/2x
at B (since B is the inverse point of its [

a source m/2z and O. Again the image of the
system of the above mentioned image system

respect to lines OA and OB as before consists of

(i) a sink of strength —(m/2z) — (m/2x) i.e.—
(m/z) at B(0, a)

(ii) a sink of strength —(m/2z) — (m/2x) i.e. —(m/z) at B' (0, —a)
(iii) a source of strength m/2z at O (0,0)
Compounding these we find that source m/2x and sink —m/2x at O cancel each

Taking OA as the x-axis, the complex potential at any point P(z = x + iy = re® ) is given by

m m m om ;
= ——| -a)——I —I - —I
W= —— og(z-a) . og(z+a)+7Z 0g(z a|)+7[ og(z+ai)

a + A = —glog(zz—a2)+;log(zz+a2)

Equating real parts, (1) gives

m m _ m m N
$= —;Iog‘zz—a2‘+;log‘zz—|za2‘ - —;{|z—a|-|z+a|}+@{|z—|a|z+|a|}
_m , m oy — M BP-B'P
or = —;Iog(AP-AP)+;Iog(BP-BP) = IOg—AP~A’P

Putting s = " in (1) and equating imaginary parts, we get

m. ., r?in20 m. , r?sin20
y=——tan" " —r——+—tan" 5—-——
T rccos20—a° =« r°cos20+a
2a: 2a;
r<sin20 r<sin20
m 20052 27 2 2 m 2a’r%sin20
_ M . -1rcos26—a” r°cos26+a” _ -1
- tan 4. =2 - _tan ﬁ
s 1 r'sin“20 e r-—a

r‘cos?20—a*

The required streamline that leaves A at an inclination p is given by y = <(m/m)y, i.e.,
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o m,__,2a%%in20
——p = ——tan Tt Y ——

or r*—2a’r’in20cotu—a* = 0
n n r‘-a

2= [Zazsin29cotu + \/(4a4sin2 20cot’u + 4a’ )J /2

wherein negative sign has been omitted because r® is non-negative quantity. Thus, we have

1/2
I =a+/sin20 [cotp + \/(cotzu +cosec’ 26)} :

Q.11. Prove that in the two-dimensional liquid motion due to any number of sources at points on a
circle, the circle is a streamline provided that there is no boundary and that the algebraic sum of the
strengths of sources is zero. Show that the same is true if the region of flow is bounded by a circle
which cuts orthogonally the circle in question.

Sol. Let A1, Az, As,... be the positions of the sources of strengths msi, my, ms,... respectively. Let P be
any point on the circle and let the diameter through P be taken as the initial line.

Let £A1 PA =6,2£A2 PA1 = B1, £A3 PA2 = B2 and so on. Then the stream function y of the system is
given by

Y=-Md-—my(B+P)—ms(@+Pr+Po)—...
= 0(mi+ma+mg+...)—[mz P+ ms(Br+P2) +...] =—8(mM1+ my+ m3+ ...)— constant,

since B1, B2, Bs,... do not depend on the position of P. If we take m; + mp + mz +... =0, then y =
constant is a streamline i.e. the circle is a streamline.

Second Part. Let O; be the centre of a circle which cuts the above circle (with centre O )
orthogonally. The image of m; at A is m; at Bs, the inverse point of A and a sink —-m; at O,. If the
barriers are omitted, we see that the system reduces to a source 2 (m; + mz + ... ) on the

of the given circle and a sink —(m; + mz + ...) at Os. Since m; + my + ... = 0, the result

Q.12. A line source is in the presence of an infinite plane on which is placed
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circular cylindrical boss, the direction of the source is parallel to the axis of the boss,
is at a distance ¢ from the plane and the axis of the boss, whose radius is a. Show

radius to the point on the boss at which the velocity is a maximum makes an angle

a’+c?

radius to the source, where 0 = cos™
{2 (a“ +c’ )}

OR If the axis of y and the circle x? + y* = a® are fixed boundaries and there is a
dimensional source at the point (c, 0) where ¢ > a, show that the radius drawn from,

the point on the circle, where the velocity is a maximum, makes with the axis of x an

When ¢ = 2a, show that the required angle is cos * (5/ J3_4)

Sol. Let there be a source of strength m at L(c,0). Let L' be the
inverse point of L with respect to the circular boundary so that OL )
x OL' = a” i.e. OL' = a%c. The image of source m at L in the
circular boundary (cylindrical boundary) is a source mat L' and a
sink —m at O.

15 i \
L ! L > X
X m n -m m m
m

For the above system the equivalent image system with respect to
the y-axis (i.e. the line x = 0) consists of

(i) a source m at L(c, 0) and L" (-c, 0) ¥
(i) a source m at L' (a%/c, 0) and L" (-a%c, 0)
(iii) a sink -m —m i.e. —-2m at O (0,0)

Thus, if P(z = x + iy = re'®) is any point in the fluid, the complex potential at P due above system is
given by

w =-mlog (z — ¢) —mlog (z + ¢) — mlog (z —a%c) — mlog (z + a’/c) + 2mlogz

or w = 2mlog z — mlog (z° — ¢? ) — mlog(z>— a*/c?)
Jdw _2m  2mz  2mz  dw _ 2m(z*-a‘)
Tdz oz zP-c¢? P-atlc? dz 2(2% -c*)(2* -a*/¢?)

The velocity q(=|dw/dz|) at any point P(z = ae)* on the circular boundary is given

2mla‘e" ~1] _ 4mac’sin20

‘aeie (azezie _c? )(a2e2ie _a/c? )‘ a’ +c¢c* —2a°c%cos20
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or (4mac?/q) = (a* + ¢* — 2a® ¢ cos20)/sin20

Let f = 4max®/q. When g is maximum, then f will be minimum. From (1), wet have
f=(a* + ¢* )cosec20 — 2a’ ¢? cot 20

df /d6 = —2(a*+ c* )cosec 20cot 20 + 4a* c® cosec® 20 ...(3)

d? f /d6?= 4(a*+ c*)cosec 20(cosec? 20 + cot? 20) — 8a® c® cosec? 20cot 20

= 4cosec 20[(a’ cosec 20 — ¢ cot 20)2 + a* cot? 20 + c* cosec? 20]

Since 0 < /2, clearly d? f / d6 is positive and hence f will be minimum and consequently will be
maximum. From (3), setting df/d6=0, we get

(a*+ c* )cosec 20cot20 = 4a” ¢ cosec20 or cos 20 = 2a® ¢¥/(a*+ c*)
. 2c08%0 — 1 =2a%c’(a*+ c*), or cos?0 = (a®+ c?)?/ 2(a*+ c*)
(a*+c?)

cos 0 =

{Z(a“ +c4)} |

Q.13. A source of fluid situated in space of two dimensions, is of such strength that 2zpp presents the
mass of fluid of density p emitted pet unit of time. Show that the force necessary to hold a circular
disc at rest in the plane of source is 2mpu? a?/r(r> — a®), where a is the radius of the disc and r the
distance of the source from its centre. In what direction is the disc urged by the pressure?

Sol. Since the mass of fluid emitted is 2zpu per unit of time, by definition P (2)
the strength of the given source is . Let this source be situated at A such
that OA = r and let B be the inverse point of A. Then, OA - OB = & so
that OB = a?r. Here the equivalent image system consists of (taking OA as
X-axis)

(@] B
(i) a source of strength p at A(r, 0)

(ii) a source of strength p at B(a%r,0)

(iii) a sink of strength p at O(0,0)

Hence the complex potential at any point P(z = x + iy) is given by
=—pnlog(z—r)—plog(z—a?r)+plogz

dw___u BB

dz z-r z-a’lr z

If the pressure thrusts on the given circular disc are represented by (X, Y), then by Blasius'

Theorem(*just remember) , we have
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where C is the boundary of the disc. Again, by Cauchy's residue theorem, we have

2
Ic(i—\;vj dz = 2mi x [sum of the residues] ...(3)

wherein the indicated sum of the residues is calculated at poles of (dw/dz)? lying within the circular
boundary. Using (3), (2) reduces to

X —iY = —mpx[sum of the residues] ...(4)

We proceed to find the residues of (dw/dz)2 From (1), we have

[d_""jzzz S S S 2 . 2
dz M —ne (z—a2/r)2 2 z(z-r) z(z-a’/r) (z-r)(z-a’/Ir)

| 1 1 1 2 2 2
+ -t ——

(Z—r)er(z—az/r)2 2 z2(z-r) 1z (a’/r)(z-a’/r)

=p

+ 2 & -
(a*1r)z (r-a’/r)(z-r) (a’/r=r)(z-a’/r)

aw)' _ | 1 1 102 2 2

o T H 2t 7t 2 0 2 + 2 '

dz (2-1)° " (z=a’/r) 2 2(z-r) z(z-a’Ir) (z-r)(z-a’/r)
From (5), we find that the poles inside the circular contour Care z=0and z =

.. The required sum of the residues (from complex analysis)
= the sum of the coefficients of z* and (z — a%r)* in R.H.S. of (5)

_2u2 . ZHZ ~ 2M2 . 2“2 B 2H2a2
roa’/r atir atir-r r(a’-r?)

Using (6) in (4) and then equating real and imaginary parts, we have
X =2mpp?a/r (r* —a?and Y = 0.

Thus the disc is attracted towards the source along OA. Hence the disc will be urgent along OA.

Q.14. Within a circular boundary of radius a there is a two-dimensional liquid
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to source producing liquid at the rate m, at a distance f from the centre, and an equal
centre. Find the velocity potential and show that the resultant pressure on the

pm? f 2 [2a? (a? — 2), where p is the density. Deduce as a limit velocity potential doublet at the centre.
Sol. Since the rate of production of liquid is m, by definition the strength of the given

is m/27. Let this sources be situated at B such that OB = f

inverse point of B. Then OA-OB = a’ so that OA = a?f.

Taking OA as x-axis, the equivalent image system consists of

(i) a source of strength m/2x at B(f,0)

(i) a source of length m/2m at A (a?

(iii) a sink of strength —m/2z at O(0,0)

Hence the complex potential w at any point P(z = x + iy) is

w = —(m/2x)log (z — f) — (M/2x)log(z — a%f) + (m/2z) log z

v m[ 11 a)(dwy_
dz  2n|lz—f z-a2/f z|\ldz)

m| 1 1 1 2 :

4 (Z—f)2+(z_a2/f)2 2 (z-1)(z-atlf) z(z-a/f)

_m?| 1 1 1 2 2
+—+

= — + +
| (2= 1) (z-a?/ 1) 2 (f-a’/f)(z-f) (az_fJ(z_
f

L2 2 2 2
za’/f () f)(z-a’/f) f(z-f) fz|

If the pressure thrusts on the given circular disc are represented by (X, Y), then theorem, we have
the fluid.

Second part. By Bernoulli’s equation. p + (pg?® )/2= constant. So it follow that p is

when g is maximum. Hence as explained in solution of Ex. 6 at a point P(a cos 0,

where 0 is given by cos 0 = (a?+ f 2)/[2(a*+ f*)]"?, the pressure is least.

Q.15. Prove that for liquid circulating irrotationally in part of the fluid between
intersecting circles the curves of constant velocity are Cassini’s Ovals.

Sol. Let O and O' be the centres of the two non-intersecting circles. Let A(a, 0) and B (-a, 0) be the
inverse points with respect to both the circles. Let P be any point on one of the given circles such that
PA=randPB=r"

Since A and B are inverse points of the circle with centre O, so by definition, we have
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OA. OB = OP?
Now, from similar triangle OPA and OPB, we have

PA/PB = OP/OB = constant = r/r’ =
constant.

Hence the equations of the two circles may taken as r/r'
=cy and r/r' = ¢, where ¢; and c; are constants. Since these circles are two streamlines, it follows that
the stream function v is of the form f (r/r") and it being a harmonic, we take v = k log (r/r") because
log r is the only function of r which is plane harmonic. Here k is a constant.
Now, if 0 is the conjugate harmonic of r, ¢ + iy or y — ip must be an analytic function of z, so that

¢ =—k(6-6)

w =y —idp =Kklog(r/r') +ik(6 — 6") = k[log r —log r' +i6 —i0' ]

=k [(log r + i0) — (log r" + 6" )] = k[log (re® ) — log (r' )]

or w=k[log (z—a)—log (z+a)], as re®=z—aand re®=z+a
S Y PR [ S
q= dzl z—a z+all = |z—a+|z+al T’

Hence the curves of equal velocity are given by q = constant or (2ak)/rr' = constant rr' = constant,
which are Cassini's ovals.

PREVIOUS YEARS QUESTIONS
CHAPTER 1. FLUID KINEMATICS

Q1. If the velocity of an incompressible fluid at the point (x,y,z) is given by (—Ay, Ax,0),

then prove that the surfaces intersecting the stream lines orthogonally exist and are the planes
through z-axis, although the velocity potential does not exist. Discuss the nature of the
fluid flow. [6¢ IF0S 2022]

Q2. The velocity components of an incompressible fluid in spherical polar coordinates (r, 0, z//)

are (ZMr’3 cos@,Mr?sin@, 0) , Where M is a constant. Show that the velocity is of the potential
kind. Find the velocity potential and the equations of the streamlines. [5e UPSC CSE 2022]

Q3. Verify whether the motion given by § = (3xiﬂ—2y])xy2 is a possible fluid motion. If so, is

it of the potential kind? Accordingly find out the streamlines and the velocity potential or the
angular velocity if the fluid was replaced by a rigid solid. [6¢ IFoS 2021]

ﬂ(—yf + Xj)

xX2+y?
Determine the streamlines. Is the kind of the motion potential? If yes, then find the velocity
potential.[7c UPSC CSE 2021]

Q4. Show that §= (A =constant) is a possible incompressible fluid motion.
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Q5. A velocity potential in a two-dimensional fluid flow is given by ¢(x,y)=xy+x*—y’.
Find the stream function for this flow. [7c UPSC CSE 2020]

Q6. In a fluid flow, the velocity vector is given by V = 2xi +3yj —5zk . Determine the
equation of the streamline passing through a point A=(4,9,1). [6c 2020 IFoS]

Q7. Consider the flow field given by y =a(x*—y?}, 'a’ being a constant. Show that the flow

is irrigational. Determine the velocity potential for this flow and show that the streamlines and
equivelocity potential curves are orthogonal. [5d 2019 IFoS]

Q8. Consider that the region 0<z<h between the planes z=0 and z=h is filled with
viscous incompressible fluid. The plane z =0 is held at rest and the plane z=h moves with

constant velocity Vj. When conditions are steady, assuming there is no slip between the fluid
and either boundary, and neglecting body forces, show that the velocity profile between the
plates is parabolic. Find the tangential stress at any point P(x, Y, z) of the fluid and determine

the drag per unit area on both the planes. [8a 2019 IFoS]

Q9. For an incompressible fluid flow, two components of velocity (u,v,w) are given by

u=x*+2y*+3z%, v=x°y—y?z + zx. Determine the third component w so that they satisfy the
equation of continuity. Also, find the z-component of acceleration. [(5¢c) UPSC CSE 2018]

Q10. For a two-dimensional potential flow, the velocity potential is given by
1 . - e
¢=Xxy—xy’ +§(X3 - y3).Determlne the velocity components along the directions x and .

Also, determine the stream function w and check whether ¢ represents a possible case of flow
or not.[8b UPSC CSE 2018]

Q11. If the velocity of an incompressible fluid at the point (x, Y, z) is given by

[3xz 3yz 3z°-r?

51 5! 5
r

P =xt+yt+2?
r°or

3

then prove that the liquid motion is possible and that the velocity potential is — . Further,
r

determine the streamlines. [8¢c UPSC CSE 2017]

Q12. A stream is rushing from a boiler through a conical pipe, the diameters of the ends of
which are D and d. If V and v be the corresponding velocities of the stream and if the motion
is assumed to be steady and diverging from the vertex of the cone, then prove that

u_ D? e(utv?)/ZK

v od?
where K is the pressure divided by the density and is constant. [7c UPSC CSE 2017]
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Q13. Find the streamlines and pathlines of the two dimensional velocity field:

u=—",v=y,w=0.[8b 2017 IF0S]
1+t

Q14. In a steady fluid flow, the velocity components are u = 2kx,v =2ky and w=—4kz . Find
the equation of a streamline passing through (1,0,1). [(6c) 2015 IFoS]

Q15. Suppose V = (x—4y)f+(4x— y)i represents a velocity field of an incompressible and
irrotational flow. Find the stream function of the flow. [(8b) 2015 IFo0S]

2 2
X+a) + _ _
%1 , determine the streamline.

Q16. Given the velocity potential ¢ = 1 log
2 7| (x-a) +y

[(7c) UPSC CSE 2014]
Q16. Find the condition that f(x,y,1)=0 should be a possible system of streamlines for
steady irrotational motion in two dimensions, where 2 is a variable parameter.
[5e 2014 1F0S]
Q17. Prove that

2 2
%tanzug—zcotzt =1is a possible form for the bounding surface of a liquid and find the
velocity components.[8c 2014 IFoS]

Q18. Prove that the necessary and sufficient condition that the vortex lines may be at right
angles to the stream lines are

uvvaW:,Ll a_¢’a_¢’a_¢
OX 0oy o1
where 4 and ¢ are functions of x,y,z,t. [5d UPSC CSE 2013]

Q19. Find the values of a and b in the 2-D velocity field v :(3y2 —axz)f+bxyj so that the

flow becomes incompressible and irrational. Find the stream function of the flow. [7a 2013
IFoS]

Q20. Show that ¢ = xf (r) is a possible form for the velocity potential for an incompressible
fluid motion. If the fluid velocity g — 0 as r — oo, find the surfaces of constant speed.

[8b UPSC CSE 2012]
Q21. Show that

UZA(XZ—YZ) v 2 Axy we0

(x2+y2)2 1 (x2+y2)2,
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are components of a possible velocity vector for invisoid incompressible fluid flow. Determine
the pressure associated with this velocity field. [7a 2012 1FoS]

2 r o
Q22.1sG = K )fzxi_yzl ) a possible velocity vector of an incompressible fluid motion? If so, find
the stream function and velocity potential of the motion. [8c 2011 IFoS]

Q23. A two-dimensional flow field is given by y = xy . Show that -

(i) the flow is irrotational;

(i) wand ¢ satisfy Laplace equation

Symbols y and ¢ convey the usual meaning. [5e 2010 IFoS]

Q24. Show that ¢ =(x—t)(y—t) represents the velocity potential of an incompressible two-
dimensional fluid. Further show that the streamlines at time t are the curves

(x—t)2 —(y—t)2 = constant. [7b 2010 1FoS]

CHAPTER 2. MOTION IN 2D- SOURCES & SINK

Q1. Two sources of strength g are placed at the point (ia, 0). Show that at any point on the

circle x* + y* =a’, the velocity is parallel to the y-axis and is inversely proportional to y.

[8c UPSC CSE 2020]

Q2. In a two-dimensional fluid flow, the velocity components are given by u=x-ay and
v=—ax—Y, where a is constant. Show that the velocity potential exists for this flow and

determine the appropriate velocity potential. Also, determine the corresponding stream
function that would represent the flow. [7b 2020 1FoS]

Q3. Two sources, each of strength m, are placed at the point (—a,0), (a,0) and a sink of

2
strength 2m at origin. Show that the stream lines are the curves (x2 + y2) =a’ (x2 -y + Axy)

, Where A is a variable parameter.

Show also that the fluid speed at any point is (Zma2 )/rlr2r3 , Where 1,1, and r, are the distances
of the points from the sources and the sink, respectively. [8c UPSC CSE 2019]

Q4. In the case of two-dimensional motion of a liquid streaming past a fixed circular disc, the
velocity at infinity is u in a fixed direction, where u is a variable. Show that the maximum

value of the velocity at any point of the fluid is 2u . Prove that the force necessary to hold the
disc is 2mu, where m is the mass of the liquid displaced by the disc. [7d 2018 IFoS]
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Q5. Two sources, each of strength m, are placed at the points (—a,0),(a,0) and a sink of
strength  2m at the origin. Show that the streamlines are the curves

(x*+ y2)2 =a’ (X’ —y* +Axy), where 1 is a variable parameter.

Show also that the fluid speed at any point is (2ma2 ) / nLrr,, where r,r,,r, are the distances of
the point from the sources and the sink. [8d 2018 IFoS]

Q6. A simple source of strength m is fixed at the origin O in a uniform stream of incompressible
fluid moving with velocity Ui .Show that the velocity potential ¢ at any point P of the stream

is ™ _Urcos@ , where OP =r and @is the angle which OP makes with the direction i . Find
r

the differential equation of the streamlines and show that they lie on the surfaces
Ur?sin® —2mcos @ =constant. [6b UPSC CSE 2016]

Q7. Consider a uniform flow U, in the positive x-direction. A cylinder of radius a is located
at the origin. Find the stream function and the velocity potential. Find also the stagnation points.

[5d UPSC CSE 2015]

Q8. If fluid fills the region of space on the positive side of the x-axis, which is a rigid boundary
and if there be a source m at the point (0,a) and an equal sink at (0,b) and if the pressure on

the negative side be the same as the pressure at infinity, show that the resultant pressure on the

2 _ 2
boundary is M where p is the density of the fluid. [8b UPSC CSE 2013]
{2ab(a+b)}

Q9. With usual notations, show that ¢ and y fora uniform flow past a stationary cylinder are

2 2
given by ¢ =U cosé’[r+a—j, w =Usin e[r—a—j. [5e 2011 IFoS]
r r

Note: The beauty of systematic learning is- You’ll find solutions of almost every PYQ in above
examples or questions attached with detailed answers. So to avoid repetition in this book, we have not
put those solutions again as answers to PYQs.
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3. Euler’s Equation of motion: - (For ideal fluids)

* Body force, inertia, gravity, etc.

. _ p — pressure,
**(forces per unit mass) B

<. Total Body forces = J‘B’pdv __________ . 7 : normal (unit) of that point)
g "~Tg}‘ngm‘llal force (shear); absent for

NN mnviscid fluid
(Non-viscous

* Rate of change of momentum (M )

; on ideal)
(M)=[p-dav RN
dM _ d T
e — = . adv . N e
gt ard I -0

““massxvel; m.v; p-dv-q
* Net force:-

Fo = [ —pdAn + [ Bpdv
A \

By Newton’s second law of motion:-

d

<

= Fo

o

t
-4 [ paidv =—[ pdAn + [ Bpdv
dt \% A \%

Using gauss }

dj , . d - Ao B
J.(pdV)E"' Iq 'E(Pdv) - _I(Vp)dv ¥ -V[dev {Divergence theorem

\" %

J.(pdv)z—?+ 0= +j Bpdv — j(?ﬁ)dv

Vv \

.+ pdV =mass & mass is fixed.

—=B-2V- p|called euler’s eq. of motion

Interpretations:-

dj of (. =\=
2o
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. d o /.=
Taat@y)

Now using it in Euler’s eq. of motion, we get

(uf+vj+wl2). {f£+ j%ﬂ-k%j (uf+vj+wl2)

OX
=Bi+B j+BK-1¢
= B+ yJ+ 2 -—=Vp
Exampoint 2
@+ua_u+va_u+wa—u:Bx—l@;Coeﬁ:.OfiA
o4 ox oy o p OX
@_’_u@_’_vg_kW@:By—la—p;COEﬁ:. of j
ot ox oy oz p Oy
a\_N+ua_W+Va_W+W@:BZ—1@;COEﬁ:.Of'2
ot OoX oy oz p oz

Example just to do some mental prep about how to use above exam point!

Given, steady motion i.e., %( )=0

Incompressible inviscuid: possible motion V- =0
Component of velocity: u = fy, v="1, w=0
Q. Derive an expression for pressure p: if given p(0, 0, 0) = po

Recall; Euler’s Eq. of motion,

ou ou ou ou 10op
—+U—+V—+W—=B ———
ot ox oy oz p OX
N oV oV ov 1op

oW oW Ow oW 10p
—+U—+V—+wWw—=B, -~
ot 0 oy oz p oz
Step I1:-
O+fxau+fy@+0=0—la—p (1)
oy p OX
0+fxav+fy@+0: 0—1@ ...(2)
oy p oy
0+fx><0+f4><0+0=—g—£6—p..(3)
p 0z
Step I1:
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“pisaf-ofxy,z
Sodp= @dx+@dy+@dz
OX oy 0z
Now,
Using (1), (2), (3) > dp=_dx+...(4)

Now, on integrating eq. (4) we get expression for P(x, y, z) including integration constant
To find this

!

Use given initial condition
i.e. P(0,0,0) =

Ex.1 A steady inviscid incompressible fluid flow has velocity field u = fx, v = - fy, w = 0, where if is
a constant Derive an expression for the pressure field p (x,y, z) if the pressure p (0, 0, 0) =poand F = -

gz

Sol. Given u=fx, v=-fy, w=0, f being a constant ..
Also, giventhat p=po, when x=0, y=0, z=0 ...(2)
Again, F=-giz=>x=0, y=0 and Z=-0z ...(3)
Equations of motion for steady motion (6/¢ét)=0 of an incompressible fluid flow are given by
u(eu/ox)+v(ou/oy)+w(ou/loz) =X —@A/p)x(op/ox) ... (4)
u(ev/ ox)+v(ev/ ay)+w(ev/ oz) =Y — 1/ p)x(ap/dy) ...(5)
u(os/ox)+v(ow/! oy) +w(ow/ oz) =Z -1/ p)x(6p/ oz) ...(6)
Using (1) and (3), (4), (5) and (6) reduce to
f2x=—(1/p)x(@p/dx), —f2y=—(/p)x(@p/dy), 0=—gz—(1/p)x(p/ez) ...(7)
Now, dp=(0p/ox)dx+(Op/ oy)dy + (op/ 0z)dz
dp = —(f°px)dx + (f *py)dy — (pg z)dz, using (7)
Integrating, p=—(f?px)/2+(f’py*)/2-(pgz®)/2+C, C being a constant... (8)
Putting x =y =z =0and p = po (see condition (2)), in (8) we get C = po
Thus, the required expression for the pressure field is given by
p(x,y,2) = py—p(f*x* — f?y* +gz°)/2

Ex. 2. For a steady motion of inviscid incompressible fluid of uniform density under conservative
forces, show that the vorticity w and velocity q satisfies.
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(q.V)w=(w.V)q.
Sol. Vector equation of motion for inviscid incompressible fluid is

aq/ot+v(q*/2)—qgxcurlg=F -1/ p)Vp ...(1)

Since the motion is steady, og/ot=0 ...(2)
Since p is uniform, @/ p)Vp=V(p/p) ... (3)
Since F s conservative, F=-VQ, where Q s some scalar function. ...(4)

Again, by definition, vorticity vector =w = curl g.
Using (2), (3), (4) and (5) in (1), we obtain
V(g®/2)-qxw=-VQ-V(p/p) or qxw=V(q’/2+Q+p/p)
Taking the curl of both sides of the above equation and using the vector identity
curl gral $=0, we have
curl(gxw)=0 or (Vw)q—(g.V)w+(W.V)g—(V.qQw=0
or —(QV)w+(wV)q=0 or (gV)w=wV)q.
Where we have used the following two results
Vw=VVxq=0 and V.q=0 (continuity equation)
Ex. 3. Show that f the velocity field

u(x,y) = B(X—_yz). V(% y) =

(7 ooy R0

Satisfies the equations of motion for inviscid incompressible flow. Then determine the pressure
associated with this velocity field, B being a constant.

Sol. The equations of motion for steady inviscid incompressible flow are given by

u(ou/ ox) +u(ou/ oy) +w(ou / oz) =—(L/ p)(op ! ox), ..
u(ov/ x) +Vv(ov 1 dy) +w(ov / z) = —(L/ p)(@p dy), (2
and u(ow/ ox) +v(ow/ oy) +w(ow/ oz) = -1/ p)(op / 6z), ...(3)

From the given values of u, v and w, we have

U _ L 2x(X° +y%)? —4x(¢ —y*)(X* +y%) _ 2Bx(38y* —X)

=B -
x*+yH)* (" +y?)’°
U _ g =2y(X°+y*)* —4y(x* - y*)(x*+y°) _ 2By(3x’ - y*) u_
o +y>)* oC+y?)® oz
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N _ g YY) —AXY(C YY) 2By(y" -3¢

ox (¢ +y?)* o +y?)°
v X(X* +y?)? —4xy* (x> +y®)  2Bx(x* -3y?) ov
ZB = 2 273 ] _=01
o (< +y?)* (x“+y°) oz
ow/ox=0, ow/oy=0 and ow/oz=0

Substituting the given values of u, v and w and also using the above relations, (1), (2) and (3) reduce to

B(-y°) 2Bx(3y°-x°)  2Bxy 2By(3x°-y’) _ 1dp
OC+y)" T OC+yD)° (C+yR)T (YY) pax

B(x*—y?) 2By(y*-3x%) 2Bxy  2Bx(x*-3y*) 1dp
. + . =--,
OE+y*)? OC+y?) (CHy) (YY) 0oy

And 0= —(Up) (0pléz)

Simplifying the above equations, we have

ZBZ 2 2 2 2 2 2 1ap
— —x))=-2 _ =—=--T
s e [(X* = y)BY* = x*) = 2y* (3x* — y*)] > X
2B%y 1op
—[( =Yy =3x%) +2x* (x* ~3y*)] =
(¢ +y%)° p oy
And O=oploz
Again simplifying the above equations, we have
2B%x 10p . 2B’xp — op
0 — -2 -== i ——— = (1
r (¢ +y?) (-2 -y = p X hé O +y?)? )
2B%y 10p . 2B’yp  op
— -2 == ie L= (2
Gy TR G Oy oy @
And 0=0p/dz, ..(3)

Relation (3) shows that the pressure p is independent of z, i.e, p = p (X, ¥), Hence, we have
dp = (Sp/ ox)dx+ (Op ! dy)dy
2
dp= 22B ngdx+ 28yp ~dy =B*p(x* + y?) ™ (2xdx + 2ydy)
(x*+y%) (< +y*)’°
dp = B’p(x* + y*)*d(x* + y?).

Integrating, p=C —(1/2)xB’p(x* +y*) > =C —{B°p/ 2(x* + y*)’}
where C is a constant of integration. It gives the required pressure distribution.

Ex.4. The particle velocity for a fluid motion referred to rectangular axes is given by the components
u=Acos (nx/2a)cos(nz/2a). v =0, w = Asin(nx / 2a)sin(nx / 2a) ,
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where A is a constant. Show that this is a passible motion of an incompressible fluid under no body
forces n an infinite fixed rigid tube, —-a<x<a,0<z<2a. Also find the pressure associated with this

velocity field.
Sol. Given u= Acos(nx/2a)cos(nz/2a),v=0, w= Asin(nx/?2a)sin(nz/2a) ..(D)
From (1), ou/ox =—(Ar/ 2a)sin(nx / 2a) cos(nz / 2a), ovlioy=0

And ow/ oz =(An/2a)sin(nx/2a)cos(nz/2a)  oulox+ov/oy+owloz=0,...(2)

Showing that the given velocity components represent a physically possible flow.
The equations of motion for steady inviscid incompressible flow under no body force are
u(ou/ox)+v(eu/ ey)+w(ou/ éz) =—@/ p)(Op ! ox), ...(3)
u(ev/ ax)+v(ov ! oy)+w(ev/ oz) =—(1/ p)(@p/ dy) ...(4)

And u(ow/ ox)+v(ow/ oy)+w(ew/ oz) =—(1/ p)(epldz)  ...(5)

From (1) ou/oy=0; ou/ oz =—(An/ 2a)cos(nx / 2a)sin(nz / 2a)
ovlox=ovloz=0, ow/ ox = (Ar/ 2a)cos(nx / 2a)sin(nz / 2a) ...(6)
And low/ oy =0

Using (1), (2) and (6), the equations of motion (3), (4) and (5) become

nz Ar X . nz Arn nZ 1dp

—Acos—cos— —sm—cos——Asm—sm— —cos—sin =———0=—-(/p)(op/0
2a 2a2a 2a 2a 2a 2a 2a 2a 2a pox A/p)op/ oY)
nz Arn nZ nz At . X mZ 1op
Acos—cos— —cos—sm—+Asm—sm— —sin—cos— =———
2a 2a2a 2a 2a 2a 2a 2a 2a 2a poz

Simplifying the above equations, we have
op/ ox = (npA® / 2a) cos(nx / 2a)sin(nx / 2a). (7)
oplay=0 ..(8)
And dp/ oz =—(npA®/2a)cos(nz/ 2a)sin(nz/ 2a). ...(9)

Equation (8) shows that the pressure p is independent of y so that p = p(x, z). Then
dp = (0p/dx)dx+ (cp/ oz)dz

dp = (mpA? / 2a)[cos(nx / 2a)sin(nx / 2a)dx — cos(nz / 2a)sn(nz / 2a)dz] , Using (7) and (9)
Integrating, p = (npA®/ 2a)[(a/ m)sin’(nx/ 2a) —(a/ m)sin*(nz/ 2a)]+C
p = (pA?/ 2)[sin*(nx / 2a) - sin*(nx / 2a)]+ C , C being a constant of integration...(10)

(10) gives the required pressure associated with the velocity field by (1).
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Ex.5. Prove that if A=(ou/ot)—v(ov/ox—ou loy)+w(ou/ot—ow/ox) and p,v are two similar
expressions, then Adx+pdy+vdz is a perfect differential, if the external forces are conservative and the

density is constant.

Sol. Let (X, Y, Z) be the components of external forces. Since the external forces are conservative, there
exists force potential V (x, y, z) such that

X ==V /ox, Y=-0V/oy and Z=-aV/oz. ..(1)

Euler’s dynamical equations of motion are

Du/Dt=X—(1/p)@p/ox), ..(2)
Dv/Dt=Y —(1/p)(@p/ay), ... 3)
And Dw/Dt=Z-(1/p)(op/c2), ... (4)
Where p(x,y,z) is the pressure at, any point (X, y, ).

Using (1), (2), (3) and (4) can be rewritten as

Du/Dt=-aV /x— 1/ p)@p/ox), ... (5)
Dv/ Dt =8V / 8y —(1/ p)(@p/dy) .. (6)
And Dw/ Dt =8V / 62— (L1 p)(@p/ &2) ...(7)

Multiplying (5), (6) and (7) by dx, dy dy dz and then adding, we have

@dx+ﬂdy+d—wdz:— a—de+a—vdy+a—vdz 4 6—pdx+@dy+a—pdz
Dt Dt OX oz pl ox oy oz

Dt By
PU i+ DYy P — v — L. ...(8)
Dt Dt ° Dt b

Re- writing the given value of A we have

ou ov ou aou ow
A=—-V—+V—+W—-W—
ot ox oy 0z OX

ou ou ou ou ou ov ow
= +W —uU—+v—+w—
OX OX OX

=%—£g(u2+v2+w2)=g—lai --(9)
Dt 20 Dt 2 ox
-.-R:g+u£+vi+wﬁandq2:u2+v2+w2
Dt ot ox oy oz
2 2
Similarly, p=2Y_199 spq y-DW_ 14 ..(10)
Dt 2 oy Dt 2 &
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. Using (9) and (10) we have,

dy+—dz —_—

2 2 2
E Dw —l aidx+aidy+aq dz
Dt Dt 2| ox oy

Du
Adx+pdy+vdz =—dx+
pdy Dt

=—dV —(1/p)dp—(1/2)xdq® =—-d[V +(p/p) +(1/2)xq*]
Which is a perfect differential which is what we wished to prove.

spherical polar coordinates
Ex. 6. For an inviscid, incompressible, steady flow with negligible body forces, velocity components
in spherical polar coordinates are given by

ur=V (1 -R3/r’) cosh, us=—-V(1 + R®/ 2r¥)sine, Up=0
Show that it is a possible solution of momentum equations (i.e. equations of motion). R and V are
constants.
Sol. Here equations of motion in spherical polar coordinates are

u u+u’
6“’ +ur%+ﬁ%+_.¢ %_—9 ¢ :Fr_la_p (1)
ot or r 00 rsinf 0¢ r p or
My r% Uy Ouy u.¢ %+ur+ug_u§cotH:Fg_i5_p Q)
ot or r 068 rsin@ 0¢ r r pr o6
%Hj % u_e%+ U, % usu, u¢u«9C0t‘9= _ 1 8_pm(3)
ot " or r 00 rsinfop r r * prcos o¢

For steady flow (o/6t = 0) with negligible body forces (Fr = Fo= Fy = 0), the above equations reduces

2
touraur+u_gaur_”_a=_la—p...(4)
or rod r  por

y Sl Yo Oy Uty TP o
or r 00 r pr 00
1 0
- P 6
prsing o0¢
Equation (6) shows that p is function of r and 6only.
3 3
Give : urzv(l—R—Jcose, ug=—V(1—R—3Jsin9, ...(7)
r 2r
ou, 3VR’ ou R .
From (7), L= 0s0; L——V|1-— | sin@ ...(8
() r 06 ( r3] ®

Using (7) and (8), (4) reduces to

3 3 3 3 3
1% 1—R—3 cosH.3Vf cosH—K 1+R—3 sin@.| -V 1—R—3 sin@ 1 v? 1+R—3 sin® 0 __1
r r r 2r r r 2r p or

2p3 3 ’R3 3
or SV'R [l—R—]cosze—S)V R (1+R—]sin29=—18—p...(9)
P

r r
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Ouy _

3 o 3
From (7), %:M and _—V[1+R Jcos@...(lO)

2r' 00 2r
Using (7) and (10), (5) reduces to

3 3 3 3
V 1—R—3 cos&.gv}z sin9+1 -V 1+R—3 sin@ || =V 1+R—3 cos @
r 2r r 2r 2r

3 3
+1 %4 1—R—3 cos@ || -V 1+R—3 sin@ :—ia—p ..(11)
r r 2r pr o6
2p3 3 2p3 3
or 3V§ 1—R—3 sin9c059+3vf 1+R—3 sianosez—la—p
2r r 2r 2r p 006

Differentiating (9) with respect to 6, we get

2 2p3 3 2p3 3
_1 o°’p =3V R (1—R—3J.2c050(—sim9)—3‘2 R [1+%} %2 sin@cosO
r r

pador ' r*
2 2p3 2 D6
or _1.&p = v 4R +9V 5 sinBcoso ...(12)
p 06 or r 2r
Next, differentiating (11) with respect to r, we get
2 2p3 3 2p3 3
_la_ﬂzgv R _% 6}3 sinfcoso + V'R —%—i X sinBcoso
p Or 060 2 rr rt 2r
2 2p3 2 pb6
or G (% 4R N 5 sinfcoso -..(13)
p Or 060 r 2r

Since (12) and (13) are identical, the equations of motion (i.e., momentum equations) are satisfied.

2 2

Ex.7. The velocity components u(r,0) = -V Ll—a—chose, Ue(r,0) = u(l—a—zJ sin6 satisfy the
r r

equations of motion for a two-dimensional inviscid incompressible flow. Find the pressure associated
with this velocity field. U and a are constants.
Sol. The equations of motion for inviscid incompressible fluid in cylindrical polar coordinates are given

2
ou, , Ou uou ou u . 10p (1)

+u + +
o0 "or rod ‘oz r " por

by

My yy Qo Yo Olly ) Dy Uty o T 0P

—Ltu, ! ) 2)
ot or r 06 0z r pr o0

Ouy Oy Uy O O, 13p

+ =
ot "or rod ‘oz ° poz
For steady (o/ot = 0) and two dimensional flow (6/6z = 0, u, = 0) with negligible body forces (F, =
Fe= F, = 0), the above equations (1) to (3) reduces to

..03)

y Qe Yo O Uy _10p )
or r o0 r por
Oty | Uy Oy Uty _ T OP

u, ...(5)
or r 08 r prof
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10p

And 0=———,
p 0z
Which implies that p is function of r and 6only.
a’ a’
Given Ur= —U(l——ZJ cos 0, Ug = U[1+—2jsin6 ...(6)
r r

Using (6), (4) reduces to

a’ 2a°U 1 a‘ a‘
U 1-% |cosa|| - 0+-U| 1+% |sin| ~U| 1= |x(=sino
{ [ rzjcos }( e Jcos +r ( +r2Jsm{ [ rzjx( sin )}

2 2
—1.U2{1+G—J sinzﬁz—l@
r

r : p or
2q° 2 2 4 2\2
or 2U3a [1—0—2}0520+U—Sin20ﬂ1—a—4j—[1+a_2j ]z_lﬁ_p
r r r r r D or
292 2 2,2 2
or 2 3a (1—a—2jcosze—zu 3a £1+a—2j sing—_10 ©)
r r r r por

Again using (6), (5) reduces to

2 2 2 2 2
-U [1—a—zjcosexu [—Zis]Sine-‘r!(l-f- a—zj sin@xU [1+ a—zjcose—lu (1—a—zjcosexu
r r r r r r r

2
1+a_2 sine:—i@
r rp 00

2112 2 2,2 2
ZaiJ 1—a—2 sinecose+2U3a 1+a—2 sinecose:—i@
r r r r rp oo

2112 2 2112 3
2al2J [1—"’l—z)sinecose+ZazU (1+a—2j sinecose:—la—p
r r r r p 0

242
4U2a sinecosez—l% ... (8)
r p

Differentiating (7) with respect to 0, we have

2 2,2 2 2,2 2
—lﬂ——m—a(l—a—zjsinecose—d'u a (l+a—zjsinecose
r r

podor ré
2 2,2
Or laaeapr :SUTasin 6coso ...(9)
p

Differencing (8) with respect to r, we have
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2 242
10p _8J 3a sin0coso ....... (10)
p Or oo r

Since (9) and (10) are identical, it follows that the given velocity components satisfy the equations
of motion.
Since p is function of r and 6, we have
dp=(op/or)dr+(cp/o0)de
Substituting the value of ép/or and op/ o6 given by (7) and (8) respectively in the above equation,

we obtain

2 2 2,2
" dp:2pU2az{%+a—5jsin26—(%—61—5}00326} dr—4erJZa sin@cos06 do ... (11)
r°or r*or

Let dp=Mdr +Nd 6 . Then, by comparison, we have

M =2pU%a{(1/r*+a’ /1?)sin®0—(1/r° —a”/ r*)cos’ O}

And N =—(4pU%a*/r?)xsinOcosO

oM 0 1 a%). 1 a?
—— =_— | 2pU%%!{| =+= |sin®0—| = —— [cos?O
00 090 { P {rs' rsj (rs rSJ H

= 2pU%a*{(1/r®+a’/r’)}x2sin@cos@+ (1/r°—a’/r’)x2sinOcosO}

= (8/r*)xpUZa’sinOcoso

242 242 a;
And 6_N:g _4pU2a sin0coso :8pU a s;necose
or or r r
Thus, oM /00 =0N /or.

Hence (11) must be exact and so its solution by the usual rule of an exact equation is

p =2pUZ%a’
2 2
[riefored o)
r r r r

2
p =2pU*a’ [COS 29 —%J +C, C being arbitrary constant

2r 4
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To decode type Il problems

Ex.8. A sphere of radius R whose center is at rest. Vibrates radically in an infinite mcompressuble fluids
of density p. If the pressure at infinity is 7. Show that the pressure
at the surface of the sphere at time t is

2 p dtz dt L Seol . .‘-_;.":v Il“ l-“ ':. ",‘ "‘»‘_..' ‘:.
Here the motion will take place in a manner such that : each Y
particle of the fluid moves towards centre of sphere.

". The free surface will be spherical.

** The velocity v' will be radial only

(i.e., v is function of r' (radius) & time ‘t” only) ) )
Eq. of continuity:- ' R =vel. of surface

|I"2V' =F(t)= RZV| ...(1); here V is the velocity at R distance

from the centre or on surface of sphere(in figure, it’s V=vel. on surface)

** Remember: if v' is function of r' & t only there (sphere) eg. of continuity reduces into

A =F(t)
Step 11:- If velocity is function of r & t only, then Euler's eq of motion is
Bv 1 8p
Bl - —— N N 2
2 a (r) o )

Exampoint:- Now, using (1) in (2), we need to proceed
This is interesting & need to remember
from (1), we have,
r'2v’ =F(t) = RV
ov' 1 0

— = —F(t
ot r¢ot ()
I FI
., P
ot r
Now, using in (2), we have,
(), ey 13
r' or' por'
On Integrating w.r.t r’
F {f)+lv'2: jB(rQ.dr'—£+A; ......... A3)
P

where A is integration constant.
Answer (above example):-

Eq” of continuity gives
r’v=FtH=R¥ ... (1)

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

v _F(Y)
ot r”
Euler’s equation of motion,
VW g 10
ot or' por'

= B(r’) =0 : (No body force given)
VL 1o

ot or' por'
F(t) 10, , d
+=—(v?*)=(-1/p)—
- r'2 28r'( ) ( /p)dr’(p]
On integrating w. r. t. r’

~F' 1 o :
J+—v'2 =P a4, where A is integration constant.
r'2 2 P

»-givenwhenr’ — oo, V> =0; p = [1
~.from (3);

Lm+lX0=£+A
00 2 P
= A= I
yo)
- eg. — (3) glues,

F®, 1. _II-p (4)
r' 2 p
For Target

e Butp=Pandv =Vwhenr =R
. We have from (4)

fi(t
p=H+p|:{ (F\z}rR _%V2:|

pﬂ%%p[é{f '}, —vz} ...... (35)

y VZ(:TT’ Now, - from (1), we have

d dige) - d(gedR)_d(Rd .
E(F(t))ZE(R V)_dt(R dtj_dt(Zdt(R )j
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R(d*,_, 1d,_, 1d,_,\dR
e a5

-3 (F) - RIR" | g[RY
F(t)_dt(F(t))_z dt? +R(dtj

Using thisF'(t) & V in (5) we get desired result.

1,.|d?R? (dRY
Lop=I1+=f —
P HJrz {dtz +(dtM
Ex.9. An infinite mass of homogeneous incompressible fluid is at rest subject to a uniform
pressure [T and contains spherical cavity of radius ‘a’ filled with a gas at pressure mIT . Prove
that if inertia of gas be neglected and boyle’s law be supposed to hold through the ensuing

motion, the radius of the sphere will oscillate between a and na, where n is determined by the
eq. 1 +3mlogn-—n®=0

Eqg. of continuity

r2v=Ft)=R¥ ........... (1
ov' F(t)

=_—=—2 .. 2
ot r” @

Euler’s eq. of motion.

@+v'ﬂ = B(r')—lé—p
ot or por'
Using 2

1) 10, 0y o 100 g o
Dl 2 (v)-0-2 2 £ B0}

On instigating w.r.t.r’

L'|(t)+1v'2 - A, whenAto integrator constant.

r 2 p
o at ooV =0&p=T1 - A=l
P
S OB TIVE N L O 3)

r 2 p

-+ Gas inside cavity follows Boyl’s law

.'.(%na3jxmnz(gnR3ij

Now, using P for further,
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e Whenr’'=R,v’=V,p =P =

- from (3), we have

-F(t), 1., _1( amIl
T+EV —p(H J ................... 4)

-+ From (1);
F(t) = 2R—V rRe9V _

. 2 dv
. F()=2RV?+R v(de ................... (5)

Using (5) in (4)

dv
2RV? + RV( j ,
~ drR +1v2=1(n—a m]'[]

R 2 T p R®
3
SRy IV, 3y I, amll
dR 2 p R

e Multiplying by 2R?dR, We get
2ROVAV + 3R2v2dR=(‘2HR2 ! 2a3mHJdR

P PR
_ 2 3
d(R3V2):( 21IR" 22 mHJdR
P PR
_~p3 3
On integrating; RV?= iR L2 mHIogR+B
P p

Where B s integration onstant.

e Initially whenR =3,V =0

3 3
. (6) gives B 218 _2mamll,
3p p
i.e., we have,
RV? = 23H( _Ry1 22 mHIog[ J (7
P p

- Radius of sphere oscillates b/w a & na
ie, wehaveV=0atR=a&R=na
. Putting R =na, V =0in (7) we get

0= m{f —n*a®+3ma’log (Ej}
3p a
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— 1+3mlogn-n®=0 as a=0

Ex.10. A mass of gravitating fluid is at rest under its own attraction only, the free surface
being a sphere of radius b & the inner surface a rigid concentric shell of radius a. show that if
the shell suddenly disappear, the initial pressure at any point of the fluid at a distance r from

the centre so %nréz(b—a)(r —a)(""Ter +1j

ﬁ 13 3
arp(r=—r-)
Attraction at a distance r’; B(r) =

r|2

ov'  F'(t)
o r’v=F{t)==—=
(®) e

J ﬁ+v‘ﬂ= B(r)—lﬂ
ot or' por'

4 13 3
——nrp(r®—r
5np( )

r|2

Negative sign is attached due to the nature of motion.

When shell is present. When shall disappears
FO, 0(L1a)__4 oy 1o
r? +ar'(2v )_ 3nrp(r r'z) por'
' 12 3 '
0,1, :_—4nrp(r—+r—J—£+A ........ )
r' 2 3 2. r p

e Initially whent=0,v’'=0,r=a, p’ =p (Let)
. From (2) we get

“Fl)_-4 [(r.a)p
= —3nrp(2+rlj p+A ......... 3)
e But,p=0;whenr’'=a&r’'=5b

. €Q. (3) gives.
~Fo)_—4__(a°

" —31‘cl’p(2+a j+A ............. (4)
“FE_-4 (b &

. —3nrp(2+bj+A ............ ®))

Subtracting (5) from (4) ; we get,

L\(1 1) 4 b’-a’> ,(a
F (O)KB—EJ—ETcrp( 2 +a (E—ljJ

=  F'0) =—§nrpab(a+b)+gnrpa3 .... (6)
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e Multiplying (4) by a, (5) by a there subtracting we get

4 b* a°
O=—mrp| ——— |+A(a-b
3" p(z 2} (a—b)

= Azgnrp(a2 +b*+ab) ...l (7

o Now using F’(0) & A from (6) & (7) in (3), we get

-1(=-2 4 —4 r.|2 a3 p 2
—!Znarpab(a+b)+—nrpa’ s =—nrp| —+— |- £ +Znrp(a®+b? +ab
r'{snp @+b)rgmre } 3”"{2 r-j o T3 )

2

[ 3 3
rcrp{a2 +b? +ab—2(r7+a—j—w+2il P :gnrpz[a2 +b? +ab—r‘2—w}

wlnN

P

p r' r' r r

Ex.11. Liquid contained b/w two parallel planes the free surface is a circular cylinder of radius a

whose axis is perpendicular to planes. All the liquid within a concentric circular cylinder of radius

b is suddenly annihilated; prove that if = is the pressure at the outer surface, the initial pressure at

any point on the liquid at the distance r from center is 729" 1090
loga—loghb

e Eq. of continuity r’v’ =F () =RV’

Explanation.

Here the motion will take place in such a manner: each particle (element) of the liquid moves
towards the axis of cylinder; |z| = b

. The free surface would he cylindrical thus the velocity v’ will he radial and v’ will he
function of r’ (the radial distance from the centre of cylinder |Z| = b which is taken as origin
and time t only.)

Let p’ he the pressure at distance 1’

e .. eq.ofcontinuity: r’ v’ =F(t) ......... (1)
e Euler’s equation of motion

@+v'@:8(r‘ e 2)

ot or' por'

Now, using (1) in (2)

F't) 10 (V,z)zo_l%
p

_+__

r- 2or'
From (1)

_FO
-=

Vv

N _PpWO
ot r'

On integrating w.r.t r’
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F’(t) log r'Jr%v'2 _1 p+ A, Where A is integration constant. ~ ...... (3)
P

e Initially, wheret=0,v'=0,p =P
From (3), we have

F’(O):log r':i-{-A ....... (4)
p

Again, p=n, whenr’'=a&p=owhenr’'=b
. eq. (4) gives,

F'(o)loga=-"+A & F’(0) logb=A
o]

Sowing above eq.s we get
F’(o) & A
T

=0

We have, from (4),

A=-log b , F'(0)=—

T~
plog(a/b)

p T . mwlogh

—=——logr'-—————

p plog(a/b) plog(a/b)
_ _logr'-logh

= """ logalb)

:)P:nw
loga—logb

Q.1. A mass of liquid of density p whose external surface is a long circular cylinder of radius a which
is subject to a constant pressure IT, surrounds a coaxial long circular cylinder of radius b. The internal
cylinder is suddenly destroyed; show that if v is the velocity at the internal surface, when the radius is
r, then

. en(ror)
vV =
pr? Iog{(rz +a’ —bz)/rz}
Sol. So let’s start doing the mental exercise!

When the inner cylinder is suddenly destroyed, the motion of the liquid will take place along the radii
of the normal sections of the cylinder.

Hence the velocity will be function of r' (the radial distance from the centre of the cylinder | z |= a which
is taken as origin) and time t only. Let p be the pressure at a distance r'.

Then the equation of continuity is ~ »v’ = F(t)...(1)

From (1), &/ Aa=F@Wr .(2)
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ov' ,ov' 10p

The equation of motionis —+v'— =————As there is no body force.
ot or'  por'
So erﬁ lv'z :_EQl using (2)
r or'\ 2 por'
Integrating; F’(t) log r’ + %v’z =_Py C, being an arbitrary constant ...(3)
Y2

Let r and R be the radii of the internal and external surfaces of the cylinder and let v and V be the
velocities there at any time t. Hence, we have

When »’ =, vi=vy p=0 ..(4)

and when r’ =R, v =V, p=TII ...(5)
Using (4) and (5), (2) reduces to F’(t) log r + v?/2=C ....(6)
and F'(t)logR+V?/2=-Tl/p+C (7

Subtracting (7) from (6), we have; F’(t)(logr—1logR) + (V' —V?)/2=T1/p ...(8)
From (1), rv=RV = F(t) ...(9)

But v = dr/dt and V = dR/dt. So (9) becomes 2rdr = 2RdR = 2F(t)dt ...(10)

Also RZ—r’=a’-Db*...(11)

d, \dr d

From (9), PO =2 (m)=<(m).L-v s

dr
s =—...(12
. (rv),asv T (12)

Putting the values of F’(t) and V given by (12) and (9) respectively in (8) yields

2.2
v=i(rv).log1+l(v2—r v jzg

P

1 2 1,.1 r _r
Ed—{(rv) } log +Er 1% ( RZJ__p
i( rzvzlogisz, ..(13)
dr\ 2 R Yo

where we have used (10) i.e. RdR = rdr.

2
Integrating (13), lrzvz Iogiz I1r +C’,; C’ being an arbitrary constant ...(14)
2 R 2p
Butv=0 when r=nh. So C’ = -nb%2p.
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. From (14), r’v? log % 1 (r’—b?
P

r’v? log (Lj _21 (r’—b?
R p

ZH(rZ—bZ) ~ ZH(rZ—bZ) ~ ZH(rZ—bZ) _ ZH(bZ—rZ)
__prz Iog(Rz /rZ) pr? Iog(RZ /rz)

2 _

) pr? Iog(rz /RZ) B por? log(RZ /re )71

2H(b2—r2)

hus, 2
Ths Y przlog{(r2+a2—b2)/r2}

, using (11)

Q.2. A centre of force attracting inversely as the square of the distance is at the centre of a spherical
cavity within an infinite mass of incompressible fluid, the pressure on which at an infinite distance is TT
and is such that the work done by this pressure on a unit area through a unit of length is one-half the
work done by the attractive force on a unit volume of the fluid from infinity to the initial boundary of
the cavity; prove that the time filling up the cavity will be ma(p/m)Y2 {2 — (3/2)¥%}, a being the initial
radius of the cavity, and P the density of the fluid.

Sol. At any time t, let v' be the velocity at a distance r' and p be the pressure there. Let r be the radius
of the cavity at that time and v be the velocity there.

Equation of continuity is r’v’ = F(t) = riv ..()
From (1), ov’/ot = FP@)/r2...(2)

v M T

The equation of motion is - = ,
ot or r'c por'

body force is given as inversely
proportional to square of distance r’.

S F(O, 01,z A 1P sng(2)
r? or'\2 re por

_Lf:)_’_lv'z =£'_£+C

Integrating, 2
r r-p

,  C being an arbitrary constant

But v’ =0 and p = ITwhen r’ = 0. So C = I'1/p. Hence the above equation beomes

P 1. _p 1P

.3
r 2 rp )

Also v’ =vand p =0 whenr’=r. So from (3), we get

_w+lv'2 zﬁ_ﬂ

...(4
r 2 r' p @
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Fom(@),  F)= () =arfver Soam e
dt dt dt dt dr dt

=2rv + rzvﬂ, as V= ﬂ
dr dt
Using the above value of F’(t), (4) gives
Y RN SN S 1 or 2rvdv + 3vidr = -2 £ 1 dr
r drj 2 r o p rop
or 2rivdv + 3v?r2 dr = -2r° ( j or d(riv?) = —2[ur+ﬂr2]dr
P

Integrating, rv? = [,urz +§—Hr3j+ C’, C’ being an arbitrary constant ...(5)
P
Initially, when r = a, v=0. So C* = pa’+ (2I1/3p)a’.
. From (5), riv? =@ -r’ + 23—H (@-rd....(6)
)

Since the work done by IT is half the work done by the attractive force, we have

a 2
H><1><1=lj (—ﬁszdr so that u= Ha.
2\ r P
Putting this value of uin (6), we get
2 2
3 = [1a (@ - p?) + [1 @ -r)
p 3p

or 2= i§{3a(a —r )+a3—r3} or V2=

1/2

dr (211 /2 {3a(a2—r2)+a3—r3}
or e [5) 7z ..(7

wherein negative sign is taken as r decreases when t increases.

Let T be the time of filling the cavity. Then we have, r=awhent=0and r =0 when t =T.
Hence (7) gives on integration.

T 12 3/2
.[dtz_(3_pj [/ rdr
1= en)

{3a(a2 —r2)+a3 —r3}1/2
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_(3p Y7 r3*dr
T=| —=— ...(8
(ZHJ I” (r+2a)\/(a—r) ®)

Put r=asin’0 so that dr = 2a sinfcos6. Then (8) reduces to

1/2
T= (3_'Dj

J-iz'/Z a’/? sin® 6.2a sin 6 cos 0d6 —2a(3—pj1/2 Jur/z sin* 6dO
0 a(Z + sin? 9).611/2 cos@ 0 2+sin’ 6

N

211

1/2
:23{3_'0) J'zr/z(sinz (9—2+L2jd0
2]1 0 2+sin” 6
1/2 12 ,
=2a(3—pj T a0 | _pq( 30| 3R g _sec 046
2l 4 © 2+sin” 6 I1 4 0 2sec’ O+tan’ 6
2 1/2
- 2a _3_7r+4J~ /2 sec 49d29 iy 3p _3_”+f dt 2
4 0 2+3tan” 0 I1 4 30(2/3)+t

[Putting tan= t and sec?0d6 = dt ]

1/2 * 1/2 1/2
-2a( 32 m‘%ﬂ[ﬁﬂ -2o(22) {imf(zj .LZ}
211 4 3\2 2 , 211 4 3\2 2
1/2 1/2 1/2 3/2
= an(ﬁj {—Ex[zj +fx£}=7m(£] IZZ—(EJ }
I1 2 \x 3 2 I 2

Q.3. A spherical hollow of radius a initially exists in an infinite fluid, subject to constant pressure at

infinity. Show that the pressure at distance r' from the centre when the radius of the cavity is r is to the
pressure at infinity as 3r’r’* + (a — 4r¥)r3(a®— r¥)r® : 3rar™,

Sol. Let V' be the velocity at a distance r' at any time t and p be the pressure there.
Let v be the velocity of the inner surface of radius r. Then the equation of continuity is
A =F(t) = riv (D)

From (1), ov’/ot=F@)/r2..(2)

v, 1

—+
ot or por’

F'(t)+i[1v,zj=_1 op

—— using (2
r¢ or'\ 2 9()

por'
H _ F’(t) 1 12 _ p H H
Integrating, —'+EV =—=—+C, C being an arbitrary constant ...(3)
r P

Let IT be the pressure at infinity. Thus v’ =0 and p = ITwhen r’ = c. So (3) gives C = I1/p.

The equation of motion is
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F'(t
Then (3) reduces to —#+lv'z _lp ..(4)
r

2 p
F'(t
Butp=0and Vv’ =vwhenr’=r. Then (4) gives —#+%v'z :H ...(5
r P
From (1), F(t)=— (r V) = or 0y 4 24V - o Iy 2 dv dr
dt dt dt dr dt
on? + 1y &Y [v=ﬂ}
dr dt
Using the above value of F’(t), (5) gives
Aoy L 1 or w3, 1 ...(6)
r drj 2 P dr P
Multiplying both sides by (-2r? dr), (6) gives
2rivdv + 3rividr = —Erzdr or d(riv?) = —Erzdr
p p
. w2007 o . . .
Integrating, r'v:.=— 3 + C’, C’ being an arbitrary constant. ..(7
0
But when r = a, v= 0. Hence C’ = (2ITa%)/(3p)
. From (7), riv? = 211 —(@-r}...8)
3p

Putting the value of v from (8) in (5), we get

ue(br-Dp
2 P 3p r Yol

Ha
3p r2
From (1), v =(rWir? L .(10)
Using (9) and (10), (4) reduces to

[M-p 1 II @®-4r 1vr* 11 a’-4r’ 11 r(a3—r3)

or F(t) =

...9)

- 1 += =, +—. , using (8
p r' 3p r’ 2r*t 3p r’r' 3p r* 9()
p O, 01 a4 1 r(e-—r)
p p 3p r'r 3p  r"
p 3r2r4+(a3—4r3) (a —r )r3
I 3rir

which gives the required ratio of two pressures under consideration

Q.4. A solid sphere of radius a is surrounded by a mass of liquid whose volume is (4nc®)/3 and its centre
is a centre of attractive force varying directly as the square of the distance. If the solid sphere be
suddenly annihilated, show that the velocity of the inner surface, when its radius is X, is given by

211 Z,uC j @ -x) (@ -x)¥°,

XSXS[(XS + C3)1/3 X] - [
3p

where p is the density, IT the external pressure, p the absolute force and x = dx/dt.
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Sol. Let v’ be the velocity at a distance r’ at any time t and p be the pressure there. Let r and R be
the radii and v and V the velocities of the inner and outer surfaces at time t.
Then the equation of continuity is r’a’ = F(t) =riv=R?V ...(1)

From (1), ov/ot=F@)/r2..(2)
. ... ov L ov 2 10p )2 .
The equation of motion is — +v'— =—ur'“———, where here ur’< is the attractive force
dt or' p or
F'(t
(), 0(1,0)_ 13
r' or'\ 2 por'
F'(t 3
Integrating, — ( )+lv’2 - APy C, C being an arbitrary constant ...(3)
r 2 3 p
Now, when r=r, V=V and =0
and when r’ =R, v=V and =
F'(t 3
. (3) yields - )+lv2 - ¢ 4)
r 2
F'(t 3
and —Lﬁtlvz =—ﬂ—H+C ..(5)
R 2 3 p

F () (%—%)—é(vz—‘/z)%('ﬁ—Rs)—ﬂ

o)
But (4/3) x nR® — (4/3) x r® = (4/3) x nc® sothat r’—R3=-C’.
3
=0 Ll_lj_l(vz_vz)zﬂ_ﬂ )
r R) 2 3 p
5 d 20N d 2 dr s _ d 2
F ), FPt)= —(rv)= —(rv), — or F@{#)=v—(r<v (7
rom (1), F’(t) dt( ) dr( ) 7 ® dr( ) (7)
Again from (1), we get V= (rv)/R>  ...(8)

Using (7) and (8), (6) gives

4.2 3
vi(rzv). I_ 1) 1f,._r ‘i _#pe +311
dr R 3p

2 3
S (L2 1),
dr R r* R

r 3p
2 3
i(vrz)z. 11 —(vrz)z iz_r_4 =—Mr2 ...(9)
dr r R r° R 3p
From (1), rv=R¥ or rzngzi—f ie, r‘dr=RdR  ..(10)

Integrating (9) and using (10), we have
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2(uc’ p=311 2(uc’ p+ 311
rv? (l_ljz‘—(ﬂ - )Irzdr+C'=——(ﬂ L )r3+C'
r R 3p 9p
2(uc’ p+311
When r=a, v=0 so that C’=Ma3
9p
2(uc’ p+3T1
rv? (1 _lj — M (a3 _ r3)
r R 9p
i.e. Y E S — =(2"C ZH](a r)
r (r3+c3) 9 3p

Now, for the inner surface, r = x, v = x. Hence, the above relation reduces to

O[(¢ + )2 x] = (2/‘;5 éHj @ - x%) (¢ — )8,
P

Q.5. A sphere is at rest in an infinite mass of homogenous liquid of density p, the pressure at infinity
being P. If the radius R of the sphere varies in such a way that R = a + b cos nt, where b > a, show that
pressure at the surface of the sphere at any time is

P+

2
bn4p (b — 4a cos nt — 5b cos 2nt).

Sol. Let v’ be the velocity at a distance r’ at any time t and p’ be the pressure there. Again, let v be the
velocity on the surface of sphere of radius R, where R=a + b cos nt ...(1)

Then the equation of continuity is r'av’ = F(t) = Rv...(2)
From (2), v/t =F®/r?...(3)
The equation of motion is

v 1o o Ft), 0(1,.)__1%"

ot or' por' r or'\2 por'

using (3)

: F'(t) 1., p . .
Integrating, - +Ev =——+C, C being an arbitrary constant

r P
Given: whenr’=ow,v=0,p’=P. So C =P/p. So the above equation gives
F'(t —-p'
F) 1. _Pop (4
r 2 o)
Let p’=pwhenr’=R. Also, v’ =v when r’ = R Then, (4) yields.
F'(t - F'(t
—Lﬁtlvzzu or p=P+p L_lvz ..(5)
R 2 Yol R 2

dt dt dt? dt
Using the above value of F’(t) and noting v = dR/dt, we have

F'(¢) 1,_ (de R AR 1(de2 (de d’R
———vV +R—; = +R—;
R 2 dt dt dt dt dt

2
From (2); F’(t) = %(vRZ)ZZRZ v+R2@-2R(de Lrr IR {.-v:d—R}
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= (3/2) x (- bn sin nt)*> + (a + b cos nt) (— bn? cos nt), using
= (bn?/2) x (3b sin? nt — 2b cos’ nt — 2a cos nt)

= (bn?/4) x [3b (1 - cos 2nt) — 2b (1 + cos 2nt) — 4a cos nt]
= (bn?/4) x (b — 4a cos nt - 5b cos 2nt)

2
bn”p (b — 4a cos nt — 5b cos 2nt).

Hence (5) reducesto p=P+ y

Q.6. A sphere whose radius at time t is b + a cos nt, is surrounded by liquid extending to infinity under
no forces. Prove that the pressure at distance r from the centre is less than the pressure IT at infinity by.

2

J— 3 ain?
pn a(b+acos nt) {a(1_35in2nt)+bcosnt+ a’sin“nt
r

2r?

(b+acos nt)3}

Prove also that least pressure at the surface of the sphere during the motion is TT—n’pa(a+b)

Sol. Let v’ be the velocity of the fluid at a distance »’ from the origin at any time t and p be the pressure
there.

Let »’ = b + a cos nt and let r be the radius of any concentric sphere and v be the velocity there.
Then the equation continuity is ~ r?v=F(t)-r?v....(1)

From (1), oviot=F@)/r* ...(2)
The equation of motion s

1 q J
L2 IR o Et)+§[1v2j=1@, using (2)
ot or por r or\ 2 por

Integrating it with respect to r, we have

':T(t)+%v2 P, C, C being an arbitrary constant ...(3)
p

When r=c,v=0, p=I1, 50 (3) given C = I1/p . Hence (3) reduces to

FO +1V2 _H-=p ...(4)
r 2 p

Now, r'=b+acosnt = v'=dr'/ dt =-ansinnt.
Then, (1) = F(t)=r?'=(b+acosnt)’(-ansinnt)
F(t) =-an(b+acos nt)’sinnt. ...(5)

Differentiating (5) with respect to ‘t’, we have

F'(t) = 2a’n?(b + acosnt)sin® nt —an? (b + acosnt)? cos nt

F'(t) = an’(b+acosnt)[2asin®nt — (b +acosnt)cosnt]  ...(6)
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Now, (4) = [I-p=—(p/r)F'()+1/2)xpv>...(7)
T-p=—(p/1)F'(t)+(p/ 2{F (t)/ r*¥, using (1)
Using (5) and (6) the above equation becomes.
IT-p=—(p/r)xan*(b+acosnt)[2asin’ nt—(b+acos nt)cosnt]+(p/2r*)xa’n’(b+acosnt)*sin’nt
= (pan’ / r)x (b+acosnt){a(l—3sin’ nt) +bcos nt +(a/2r)xsin’ nt(b+acosnt)’}
Second part :
Atsurfacer=r’=b+acosnt, v=v' =dr’/dt=-ansint.
Also, using (6), (4) reduces to

Mm-p_F® 1. 1

———an’(b+acosnt)
p r 2 b+acosnt

[2asin®nt — (b +acosnt) cosnt] + (1/ 2) xa’n’sin® nt
=n’afa(l-3sin*nt) +bcosnt + (1/ 2)xasin’nt]  ...(8)

For the maximum or minimum of p, we must have %(Hj =0
p

i.e.,, n°a[-6ansinntcosnt—bnsinnt+nasinnt cosnt]=0

Giving sinnt=0 or cosnt = - (b/5a) i.e. nt = 0 or nt = cos™ (-b/5a).

d? (TI-P d._, . .
Now, Wl =a[n a{-3ansin2nt—bnsnnt + (1/ 2) xansin 2nt}
p

= n%a[-6an’ cos 2nt —bn’ cosnt + an” cos 2nt] = n“a[-6an* —bn’ + an®],when nt =0

2

B W(HT_PJ is negative when nt = 0 = %TE is positive whennt =0

Putting nt = 0 in (8), the least pressure p is given by (IT-p)/p=n*a(a+h)

and hence, the required least pressure = p =IT—pn°a(a+b)

Similar question as above. A sphere of radius a is alone in an unbounded liquid which is at rest at a
great distance from the sphere and is subject to no external force. The sphere s forced to vibrate radially
keeping its spherical shape, the radius r at any time being given by r = a + b cos nt. Show that if IT is
the pressure in the liquid at a great distance from the sphere, the least pressure (assumed positive) at the

surface of the sphere during the motion is TT-n’pb(a+b).

Q.7. A volume (4/3) xnc® or gravitating liquid of density p s initially in the form a spherical shell of

infinitely great radius. If the liquid shell contract under the influence of it’s own attraction, there being
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no external or internal pressure, show that when the radius of the inner spherical surface s r, its velocity
will be given by.V? = (4r/pR/15r°)(2R* + 2R%r + 2R°r* —3Rr* —-3r").

Where y s the constant of gravitation, and R®=r?+c?.

We now apply Newton's second law for impulsive motion to the fluid enclosed by the parallelopiped,
namely,

Total impulse applied along x-axis = Change of momentum along x-axis
o®
—~S5xdydz F pdx3ydz I, = pdxdydz(u, —u,)
or p(uz—ul)zplx—(am/ axj ...(6)
Similarly p(v,-v,)=pl, —(aw/ 8yj ~(7)

and p(Wz—Wl)zplz—(ﬁoo/ azj. ..(8)

Equations (6), (7) and (8) are the required equations of motion of an incompressible fluid under
impulsive forces.

Q.8. A sphere of radius a is surrounded by infinite liquid of density p, the pressure at infinity being [1.
The sphere is suddenly annihilated. Show that the pressure at a distance r from the centre immediately
fallsto [T (1 —a/r.)
Show further that if the liquid is brought to rest by impinging on a concentric sphere of radius a/2, the
impulsive pressure sustained by the surface of this sphere is (y[1p%/6)">.
Sol. Let v' be the velocity at a distance r' from the centre of the sphere at any time t and p the pressure
there. Then the equation of continuity is r2v' = F(t) ..(1)
From (1), ov'lot = F'(t)/r? ..(2)
The equation of motion is

N gV __Lop

ot or' por'
F(t :
04 2(2v)=-22 g
[ aru 2 p ar'

r
. F'(t . .
Integrating, —# +%Vl2 = —r—pl+ C, C being an arbitrary constant.

When r' = oo, then p =[] and v' = 0 so that C = [/p.

F' -
(), 1,._O-p
r 2 p

(3

When the sphere is suddenly annihilated, we have
t=0, r'=a Vv'=0 and p=0
F'(0
0_n so that F'(O):—E
a p P

Hence immediately after the annihilation of the sphere (with t = 0, t = 0), (3) reduces to

From (3), —
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E'JrO:u or p:l‘[(l—ilj ..(4)
pr [Y) r

Thus at the time of annihilation when r' = r, the pressure is given by
p=TI(1-a/r). ..(5)

Second Part. If @ be the impulsive pressure at distance r', then we have

do=-pvidr ..(6)
Let r be the radius of the inner surface and v the velocity there. Then by the equation of continuity, we
have

F(t) = r'v=r%/so that v' = (rv)/r? (7)
.. (6) gives  do' = pv (r¥/rddr

Integrating with respect to r', we get o = pv(r2 / r')+C' ..(8)

When r'= oo, ow=0 sothat C'=0.

Hence, (8) reducesto  o=pv(r’/r'),...(9)

which gives the impulsive pressure o at a distance r'. Since r = a/2, (9) reduces to

&—l vat-— L
4P

We now determine velocity v at the inner surface of the sphere. Settingr'=r, v'=vand p =0in (3), we
get

..(10)

Fl
ﬂlevz :E ..(11)
r 2 o
From (7), (rzv) 2r—v A o U Y
dt dt dt dr
Thus, F'(t)=2rv2+r2v@, as v=ﬂ
dr dt

. (11) gives —1(2W2+rzvdj Ll I
r dr) 2 p

Multiplying both sides of the above equation by (—2r? dr), we get

2 2
orvdv+ 3rvidr=— 290 g or d(r3v2)=—21_Ir dr
P P

) 1 § [ S )

Integrating,  rv?=— 3 +C", C" being an arbitrary constant
o
3
When r=a  Vv=0sothat C"=—21?:[a .
p

211
riv = a’-r
3 @)
The velocity v on the surface of the sphere of radius a/2 (which would be the inner surface on which
the liquid impinges) is given by (12) by replacing r by a/2
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, 2I1 a’-a’/8 14 11
Vv :—)(3—:—)(—
3p a’ /8 3 p
Putting this value of v in (10), the impulsive pressure at a distance r' is given by
12
@:B{EXEJ a .(13)
ry3 p r

Hence the desired impulsive pressure on the surface of the sphere of radius a/2 is given by setting r' =

al2 in (13).
_pf14 MY a2 (1mpa?)”
N=—| —X— X =
ri3 p (al2) 6

Q.9. A portion of homogeneous fluid is contained between two concentric spheres of radii A and a, and
is attracted towards their centre by a force varying inversely as the square of the distance. The inner
spherical surface is suddenly annihilated and when the radii of the inner and outer surfaces of the fluid
are r and R the fluid impinges on a solid ball concentric with these surfaces, prove that the impulsive
pressure at any point of the ball for different values of R and r varies as

{(@—r*— A*+R? (Ur — 1/R)"?
Sol. Let v' be the velocity at a distance r' from the centre of the sphere at any time t and p the pressure

there. Then the equation of continuity is r'av' = F(t) ..
From (1), ov'lot = F(t)/r? ..(2)
Taking p/r as the force towards the centre of the sphere, the equation of motion is
' I F'(t A
ﬂJrv'ﬂ:—iz—la—p or (2)+i 1y =—%—1@,usmg 2)
ot dr' rs por r or'\ 2 rs por'
. F'(t . .
Integrating, - ( ) +%v'2 =ﬁl—£+c, C being an arbitrary constant ...(3)
r rop

Let r and R be the internal and external radii of the fluid at any time t and v and V be the velocities there.
Thus, we have

When r=R, v'=V, p=0andalsowhenr' =v, vi=v, p=0
. F'(t) 1 u
- (B)yields —24+-Vi=C+Z ..(4
Ay ot . 4

and —F—(t)+lv2=C+E ..(5)
r 2 r

Subtracting (4) from (5), we have

: 1 1] 1,, .,» 11
—-F'(t)|=—=|+=(v" =V?)=p| =—= ..(6
()[r R}FZ( ) u(r Rj ©)
From the equation of continuity (1), we have
r’v = R% = F(t) .(7)
dr drR
From (7), rP—=R’—=F(t
() dt dt (t)

r*dr=R*dR =F(t) dt ...(8)
Using (7), (6) reduces to

oo A
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Multiplying both sides by 2F(t) dt, we get

—F(t) F'(t) (l—%)dH%{F(t)}ZFF H_ ZF(t)}dt = },{%(t)—i(t)}dt

r r R* R
11 1 2| 2dr 2dR .
or 22FQ) F@) | =—= [dt+ = F(t); | —— =u(2rdr—2RdR), using (8
O F (21 S (FOF| 2528 -u ) using (8
Integrating,  —{F (t)}2 F —%} =p(r*—R?)+C' being arbitrary constant...(9)
r
Since velocity is zero when r =a and R = A, if follows that F(t) = 0. Then (9) reduces to
0O=p@-A)+C ie, C'=—p@-A?

. (9) becomes —{F(t)}z[% =%} —u(r*—R?—a?+ A?)...(10)

it @ be the impulsive pressure at a distance r', then we have

do=-pv'dr = —p@dr', using (1)

PF (1)

Integrating, ®= +C", C" being an arbitrary constant

But when, r' =R, =0 so that C' = [p F(t)]/R. So the above equation gives
®=pF (t)(1/ r'~1/ R)
Hence the impulsive pressure at any point of the ball where r' = r is given by

®=pF(t)(1/r=1/R) ..(11)

2_r2_ p? 4 R? vz
From (10), F(t):{“(a(llrr—llF:) )} -.(12)

1/2

Using (12), (11) reduces to (bzp\/ﬁ{(az —rZ—A2+R2)(1/ r-1/ R)} ,

1/2
showing that the required impulsive pressure varies as {(a2 —r2- A+ Rz)(ll r—1/ R)}

Exam Point. Many problems solved so far in this chapter may also be solved by using the energy
equation. This principle is used to shorten the solution.

In what follows, we will give two methods to solve many problems.

The energy equation is stared as follows: The rate of increase of energy in the system is equal to the
rate at which work is done on the system.

Note: “the volume integral form of Bernoulli’s equation”.

d

dl
a(T +W)= R_E_! pq.nds+JV‘ pv.qdv

Energy equation for for incompressible fluids.
Since | = 0 for incompressible fluids, so above equation reduces to
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d
—(T+W)=R.

3
Q.10. An infinite mass of fluid is acted on by a force g /r2 per unit mass directed to the origin. If

initially the fluid is at rest and there is a cavity in the form of the sphere r = c in it, show that the cavity
% s
will be filled up after an interval of time | 2 ) CA.
P (Au

Sol. Method | At any time t, let v’ be the velocity at distance r’ from the centre. Again, let r be the
radius of the cavity and v its velocity. Then the equation of continuity yields

rv'=r’v ..()
When the radius of the cavity is r, then

Kinetic energy = J'rw%(47zr‘2 pdr’)v? [+ Kinetic energy = 1/ 2 x mass x (velocity)?]

= 27pr'v? J'wd—rz using (1)
rr

= 2mpr’V?
The initial kinetic energy is zero.
Let V be the work function (or fore potential) due to external forces. Then, we have

N u _2u
=t so that \V =T

.. the work done = j:v dm being the elementary mass

r

_ (¢ 2/1 0 i c , 16
= I (rm ].47” 2dr ,0=87z'lupjr r¥2 gr =€;rpy(c5/2 _rs/z)

We now use energy equation, namely, Increase in kinetic energy = work done

This = 27pr’v? —0=(16/5)x7rpy(C5/2 —r5/2)
12
dr (8" (¢ ")
—— == 7 (2

dt ( 5 j r¥2 @

Wherein negative sign is taken because r decreases as t increases.
1
T=|=pq%dV, W = dv, | =| pEdV, ...(6)
P e e
Where E is the intrinsic energy per unit mass,
Since V.(pq)= pV.q+0.Vp, we have q.Vp=V.(pq)- pVv.4g
. RH.S. of (4) =—jv v.(pq)dv +j pv.qdV = js pq.nd5+j pv.qdV, (7
\Y S

[By Gauss divergence theorem]
When n is unit inward normal and dS is the element of the fluid surface S. We now prove that
dl
vadV =——
[pva "

\
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Now, E is defined as the work done by the unit mass of the fluid against external pressure p (assuming
that there exists a relation between pressure and density) from its actual state to some standard state in
which p,and p, are the values of pressure and density respectively.

Ezj\/v° pdV, whereVp=1 ie, V=lp
) 1) ¢ p r P
or E—jp pd(;j—_.'.p ?dp—fp()?dp (9)
From (9), d—E=% and so d_Ezd_Ed_p:%d_/’
dpo p dt dpdt p? dt

Multiplying both side by o dV and then integrating over a volume V, we have

dE pdp
— pdV =| ——=dV ...(10
ca PV =, o dt (19)
d dE d
But —(EpdV )=—pdV + E—( pdV
gt EPV) = P gt PY)
d dE .
—(EpdV )=—pdV, using (4 ...(11
s (EPIV)=—rp g(4) (11)
Also from the equation of continuity Z—f =—pV(Q ...(12)
Using (11) and (12) , (10) reduces to
d di
a_[v EpdV :—fv pV.qdVv or . fv pvaqdV, by (6)

Which proves (8).
Again the rate of work done by the fluid pressure on an element 5S of SiispJS n. q.
Hence the rate at which work is being done by the fluid pressure is

_[V pg.ndS =R, (say) ..(13)

Using (8) and (13), (7) reduces to
R.H.S. of (4) = R —dl/dt ...(14)

Hence using (6) and (14), (4) reduces to %(T +W+1)=R ...(15)
PREVIOUS YEARS QUESTIONS

CHAPTER 3. EULER'S EQUATION OF MOTION

QL. A sphere of radius R, whose centre is at rest, vibrates radially in an infinite incompressible
fluid of density p, which is at rest at infinity. If the pressure at infinity is IT, so that the pressure
at the surface of the sphere at time t is

2p2 2
H+lp{d R +(d—Rj } [8b UPSC CSE 2019]

2 dt? dt
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Q2. Air, obeying Boyle's law, is in motion in a uniform tube of small section. Prove that if p
be the density and v be the velocity at a distance x from a fixed point at time t, then
’p 0 2

= —y{p(v +k)}. [5d UPSC CSE 2018]

4. IRROTATIONAL MOTION IN 3 D: MOTION OF
SPHERE & CYLINDER

___________ I
CASE — (1)

mass of fluid is moving but sphere is NOT moving along z — axis

Sphere
Case (2):

Fluid is NOT moving but Cylinder is moving along (-z axis), now we’re interested in studying
the motion/ position.
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Case (4); we may have:
—  Two concentric spheres; motion

—  Two concentric cylinders ; motion

Source Basic ideas:
2 2 2
x> oy? oz

2 2 2
. T0,200, 100 o100 1 Fo_

o’ ror 2o’ r? 00 r’sn?o ow’
in spherical coon (r, g, w)

- Rotation is along z — axis i.e., symmetric about z — axis, so we can ignore the last term
containing derivative w.r.t w.

. We have,

2 2
%9 200 1% cot0dh_

_+__ —_

+ =
o> ror rraee®  r? 00

e Now to solve PDE (1); We use variable separable method
"+ ¢ is depending on r & 6 so; we start by assuming ¢ as funtion of r multiplied by some
funtion of 0.

i.e., &(r,0) = f(r).g(0)

ing 2 2 &% ing i _
Now, getting petl s SRR & using in (1), we try to get sol. = ¢(r,0)

Note: For diff. eq. (1) we suppose

as by the variable seperable method.

o= f(r)cos6

%

o
. —<L=1f"(r)cosd,—-= f"(r)cos0O
or ") or? )

0 )
—L =—f(r)sin0,— =—f(r)cosO

Now, using these in (1) we get a diff. eg. which can be easily solved.
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coto
r2

f "(r)cose+% f '(r)0059+?12(—f(")0059) +—(-f(n)sin®)=c

:cose{f"(r)+§ f '(r)—r—z2 f (r)}:O

d’f 2df 2
= +

————f(r)=0
dr> rdr r? )
d?f df
r’——+2r—-2f=0 ............ 2
dr? " dr @

Now solving the diff. eq.

2
r’ ‘;I +2r3—fr—2f =0 3)

- (3) is turned into,
(D(D-1) + 2D - 2) f = 0 where D=d/dz
Auxiliary eq.
M2+m-2=0
M2+2m-m-2=0
mM+2)(m-1)=0
M=1,-2
~ C.F=¢+e”
C.F =c1e'%%" + Cpe2looey

CF=cir+ Z-ars B
r r

. Sol. of (3) is | f(r) = Ar+rE2

Where A & B also arbitrary constants.
Exam pout
i.e., Ultimately; ¢ is given as
¢(r,e):(Ar+r—Ezjcosezwhere A & B are arbitrary constants, Now by using given initial
condition, we try to find A & B; To get finally the in quid velocity potential ¢ .

Article 1:

Motion of a sphere in a infinite mass of fluid which is at rest at infinity.
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Step -1

To study this motion; we need to follow following three constraints:

(i) ¢ satisfies Laplace eq. i.e, V’¢=0

2 2
6_?4_2@4_%6_42)4_&@:0
or° ror r°oo r- oo

(i) _a_ard) =ucos0...(2) atr =a i.e., at surface of sphere

“Normal component of velocity” = vel. At that pointi.e. r=a
S MITINIEL
(|||)5=0 .......... (3)at r=c0 :at infinity

- itisatrest .. v=0; @=0
or
Step -2

-+ For motion of sphere: V?¢=0 & motion is symmetric about z — axis.

where A & B are arbitrary constant

. @ :(A—gjcose =-ucosOatr=a
or r

:(A—i—?jcosez—ucose &
@:(A—z—?jcosezom r=o
or r

= (A-0)cose =0

= A=0

. B :1ua3.
2
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I.e., we have the velocity potential as

3

1(1 , lua
=—|Zua®|cosO==—-coSO| ........... 5
(I) rZ(Z j 2 r2 ( )

Now, we can get lines (streamlines) of flow.

Remember streamlines if ¢ is f” of r, 6. Then streamlines are given by

dr rdo
—odlor  —oh1roo
-+ from (5),

So, we have, lines of flow as,

dr rdo

;—Slua3 cos O _1[212ua3 sin ej
r\2r

dr  rdo
cos® 1sine
2
L [ om0,
r sin®

= logr=2log (sine) +logc

= formula deriving is also important.
Exampoint

: lines of flow/ Streamlines.

Case (ii): studying the motion : when fluid is flowing & sphere is at rest:

Let fluid is flowing with velocity u along —ve Z axis. So here; we manage the potential by
adding one factor. urcoson ¢ (eq. (5))

So, in this case, ¢=2—12ua3 cos0+urcos0
r

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

Now, let’s try to find streamlines (lines of flow)

dr_rdo
o0 o9
or roo
dr B rde
3 - 3
4(1—aslcos 1(%zsine+4rsinej
r r\2r
dr B rdé
a B a
4[1—3}059 —4(1+3jsin9
r 2r
3 3
2cotodo=2r 2 dr
r-a’> r
2
2c0t6d6:( 33r 3—ljdr
rr-a* r

On integrating
~2logsin® =log(r*—a’)-logr -logc

. cr
sin?@ =

8! 3

r

3
r?sin? 9(1—61—3) =c
r

Motion of cylinder in an infinite incompressible fluid :-

(i) V2y=0

(i) —Z—\:]Zucoseir:a ()

Q- e P(r; 0
0
> U
( ) Z-ax1s

(iii _aa_“’:o;r:oo
r

Note: - by y : we can get ¢ easily (conjugate to y)

S y(r,8) :(Ar +$jcose

Now the interpretation will be same as we discussed for sphere.
Note:- For two concentric cylinders:-

y(r, 0) = (Ar+$jcose+ (Cr +%)sin 0
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Ex.1. Show that when a sphere of radius a moves with initial velocity U through a perfect
incompressible infinite fluid, the acceleration of a particle of the fluid at (r,0) is

a® a°
(5
Step-1

Note:- If we superimpose a negative velocity — U to both sphere and liquid; then the sphere
will come at rest.

So fluid will be in flow.

. by case (ii), we have

a3
¢:u[r+?jcose ........ (1)
Now velocity components(from dynamics)
-0 a’
r—a—rd) U(l chose ............. (2)
180 _fy, 2 g

ro= T =U [1+ 2r3jsme ............ 3)

Also,

3 3
F=U (l—a—ajsin 00-U 2 ¢ coso
r r

F=U [1—%}3(1+a—33jsinze+uz3—%3(1—a—§jcosze {Using (2) & (3)}
r’r 2r r r

Step—2

At the point (r,0), the velocity is only along the direction of r; as 6 =0

.. For acceleration,

Req. Acc = Fat0=0

al as
:3“274(1‘?]

3 6
a2f@
—3U(r—4—r—7-

Ex.2. An infinite ocean of an incompressible perfect liquid of density p is streaming past a

fixed spherical obstacle of radius a. The velocity is uniform and equal to U except in so far as
it is distributed by the sphere and the pressure in the liquid at a great distance from the obstacle

is = . Show that the thrust on that half of the sphere on which the liquid impinges is na’ (n—%}
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Mental Exercise:

From the first sentence:- liquid is in motion & sphere is at rest

a3
= ¢:u(r+?jcose ............ (1)
3
Ans ¢:U(r+%jcose ........ (1)
3
% =U (1—%}036

2 (@j :U(l—a—zjcosezo
ar r=a a
(l@j :{![Ha—i)(—sine)}:ﬁu sin®
roo)., |r 2r 2

. qz:{(—_&bj +[—_1@] }:0+9U25in26.
or r oo 4

¢ =%Uzsin2 0 . )

e In steady motion in, the pressure at any point by Bernoulli’s eq. is given by.

p/p+%q2:c ............ 3)
But p=m,q=U at infinity

. n 1,
. C==+>u
2

. From (3)

1

=7+
an

1
pUZ _quz ........... (4)

e Now, using (2) in (4) the pressure (p1) at any arbitrary point on surface of the spherer =as
given by
p, = n+%pU2 —gpqzsin2 0

e Hence, the required thrust on that half of sphere our which the liquid impinges.
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n/2

= [ (p,cos6)2masin6.ad6
0

/2

=2na’ j (n+%pU2 —%pu2 sin® erinecosede
0

nmt 1 ., mm 9 zx/E\/ZI_.
—+-—pU x——=pU°*——
22 2 22 8 23

Article #2: Concentric sphere (Problem of initiate motion.)
Explanation:-

e A sphere of radius ‘a’ is surrounded by a concentric sphere of radius b; the space b/w being
filled with fluid at rest.
e The inner sphere is given a velocity u and outer sphere a velocity v in the same direction.
Now, to determine the initial motion of fluid.

Step (1)

() V2o=0 .o, (1)

(ii) %=ucose atr=a ... )

(iii) %:vcose atr=b ........... 3)
Step (2):
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-+ From (1), we have ¢=(Ar+r—82jcose R )

Now, using (ii) and (iii) we get from (4)

A 4a°-vb® , o (u-v)a’h’
b®-a’ 2(b*—a®)
3 hd \\a3n3
o= B2 Jrooso S-VE 2 G0
b’ -a 2(b°-a’) r

Ex. 3. Prove that for liquid contained between the two instantaneously concentric spheres, when the
outer (radius a) is moving parallel to the x-axis with a velocity u and the inner (radius b) is moving
parallel to the axis of y with velocity v, the velocity potential is

1 b° a’
R~ {a3ux(1+ ?j - b3vy(1+ ?J}

and find the kinetic energy.

Sol. Here boundary conditions are
— Oplor = u cos 0, when r=a ()
and — o¢lor =vsin 6, when r=h. ..(2)
Moreover ¢ must satisfy the Laplace's equation
2 2
& 200 15 cot0dh

=0. ..(3
o2 ror roo®  r? 00 @)
Y ucos 0
00

b

<

The above considerations suggest that ¢ must involve terms containing sin 6 and cos 6.
So we assume that

& = (Ar + B/r?) cos 0 + (Cr + D/ r¥sin 8 ..(4)
—@z[—A+2—3Bjcose+(—C +2—?)sin9 cee(5)
or r r

Using (1) and (2), (5) gives
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(-A + 2B/a®) cos 6 + (—C + 2D/a% sin © = u cos 0

and (-A + 2B/b®) cos 6 + (-C + 2D/b*) sin @ = v sin 6
Comparing the coefficients of cos 6 and sin 6, (6) and (7) give
—A +2B/a® = u, —C+2D/a*=0
—A +2B/b* =0, —-C+2D/b*=v
Solving (8) and (9), we get
ua’ ua’o® ub® ua’o®
M P CTaew Do b))

3 3 3
¢=_3“L re cosevLL3 r+a—2 sin®
a®-p? 2r? a®-b 2r

3 3
=— 31b3 {a3u[1+%]rcose—b3 [1+;—jrsme}
a® - r r
1 b3 a3 as X=rcos

To determine K.E. The kinetic energy of the liquid is given by

=__pjj¢a¢ds ——%p“((l)%)ra ds —%p”(d)%j ds

r=b

Also, —0d/on denotes the outwards normal velocity

3
:%pﬁrﬂa{asux(lﬁtzb?j—b%y[H ﬂ(ucose)ds
11 I cyWaking a® :
—-——p—— a‘ux|1+=|-b 1+—1]|(vsinO)dS
2 7 p’ ”b|: ( 2} Vy[ 2b3ﬂ( )

{Using (10)and[—?j =—ucose,(—?j =vsin6}

r r

N |-

1 u3(2a34—b3) , 3
—zpmﬁaxds‘zpm” wos
3 uva 1 V( 2b3)
[Since, whenr=a,acos 6 =xandasin®=yandwhenr=b,bcos6=xandbsin6=y
:Epu ?(2a’ +b3) oo +1pv (a3+2b3)£n \
4" (a’-b’)a 3" 4" (a’-b’)b 3

[ [ x2dS = M 1. of the hollow sphere of radius a about a diameter

_12Ma* _Ma® 4na’-a® 4ma’
2 3 3 3 3
4rh*

Similarly, |] y*dS =
r=b
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Also, [IxydS =0 and [] xydS =0 (being product of inertia)]
r=a r=b

T= %asn—_pbs[2(u2a6 +v?b°)+a’’ (u® +v° )}
Ex.4(i). A hollow spherical shell of inner radius a contains a concentric solid uniform sphere of radius
b and density o and the space between the two is filled with liquid of density p. If the shell is suddenly
made to move with speed u, prove that a velocity v is imparted to the inner sphere, where

3ua’
V —

2(clp)(a’-b°)+a’2®

(if) A spherical shell of internal radius a contains a concentric sphere of radius Aa and density o, the
intervening space being filled with lived of density p and the whole system is at rest. If a velocity u is
communicated to the shell prove that the initial velocity v communicated to the shell is given by
3u
2(op)(1-2°)+1+20°

Sol. (i) The velocity potential ¢ must satisfy Laplace's equation V> ¢ = 0 and it must satisfy the following
boundary conditions

—0d/or = u cos 6, when r=a (1)
and — Oplor = v cos 6, when r=Db (2
Accordingly, we assume that d=(Ar+B/r’)cos® ..(3)

s — 0¢/or = —(A— 2B/r?) cos 0
Using (1) and (2), (4) gives
(-A + 2B/a® cos 6 = u cos 0 and  (~A + 2B/b®) cos 6 = v cos 6.

3 3 313y _
These give A= b\sl_—a3u and B= =)
a®=b 2(a’-b?)
1 a’’*(v-u
0= {(bsv—asu)w%}cose ..(5)

The impulsive pressure at any point of the solid sphere r = b is given by

3
o=(pd)_, = asp_bbs [b3v —a’u+ a?(v —u )}cose

.. Resultant impulsive pressure on the inner sphere

X 3 3 T
=f63cose-bd6- 2nbsin6=2p—bn{b3v—a3u +%(v—u)}jcoszesin6de
0

a’-b° .
3

=—%[b3v—a3u +1a3(v—u)}.

3(a’-b°) 2

Since the solid sphere of density ¢ and radius b moves with velocity v, the equation of motion gives
3
4 oy =—%[b3v—aau e (v—u)} or
3(a*-b%) 2
3ua®

V=

3(c/p)(a’-b*)+a*20®
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Part (ii). Here b = a.

Ex. 5. Liquid of density p fills the space between a solid sphere of radius a and density ¢ and a fixed
concentric spherical envelope of radius b. Prove that the work done by an impulse which starts the solid
sphere with velocity U is

3
11'ta3U 2c +2a +b3 Pl
3 b®-a

Sol. The total impulse I is given by

I = MU + || ®cos0dS

2a’ +b°
But cocosed8=—1r Ua®———,
J 3P b -a’
and M = mass of inner solid sphere = (4.3) x na’c
2ma’ 2a’+b°
| = 3 26+ 0o p
Hence the work done by impulse I = I x (mean of the initial and final velocities)
312 3 3
=IXO+U =1UI ZnaU 2cH2a3 +t; 0
2 2 3 b®-a

Ex.6. The space between two concentric spherical shells of radii a and b (a > b) is with an
incompressible fluid of density p and the shells suddenly begin to move with velocities U, V, in the
same direction. Prove that the resultant impulsive pressure on the inner shell is

2mphb®

M[Ba% —(a®+ 2b3)V]
Further show that the K.E. of the liquid is
p 33\ _11)2 - %
3(a3—b3)[ab (V-U) +2(bV au)}

Sol. The velocity potential is given by

3 _ 3143 33\ _
¢_—Ua vb rcose+(u v)a'h' coso 31 3{r(b3\/—a3U)+—ab v U)}cose
-a’ a’-b 2

2(b°-a%) r’

The impulsive pressure at a point on the sphere r = b is given by

- coso

o=(pd) , = p_{ (bV —a'u)+ a3b(V —u)} (2)

a’-b’ 2

The resultant impulsive pressure on the inner shell (r = b)

=I c0s0-ho- 2nbsme_%{b3\/ a3U+;a (V-U) }jcoszesmede by (2)

0
B nb3 3 2) 27'CPb3 3 3
b3[ (bV —a%u)+a*(v —U)]-(—gj_m[&'fu—(a +20°)V |
a’®(V -U

From (1), % _ ———| bV - # cos 0

or a —b r
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33\ _
1@2_31 . b% —a’u +—ab (V3 U) (—Sine)
rod a’-b 2r
o = (—0dlor)? + (—09/roe)?
33\ _ 2 33N 2
-1 b% —a*U —M cos?0+4bV —a%u +M sin’o
(a3b3)2 rS 2 2

and

r

66 (\/ _])?
N (b\/—a%)%% (cosze+1+sin29j
(a3_b3) r 4

~2a%’(bV —alU)(V-U)

3

cos’ 0+ -

a’’(bV —a'u)(V -U) e e]

r r

2 31,3 a2 _
=( 3 1b3)2{(b3\/—a~°’u )2+6ﬁb6(4\f+l'])(1+3cosze)+ab (b ;U)(V U)(1—3cosze)}
a —
K-E-=ﬁ(%pqzj&rrsine-rdedr =ﬁz{2(b3\/ —al )2 + aifje (V-U )Z}ﬁdr

on putting value of g% and integrating w.r.t. 6]

p [ 33 2 2

=—— |a’h’(V-U) +2(b¥V -au ]
3(a3 _ b3) ( ) ( )

Ex.7. Incompressible fluid of density p is contained between two rigid concentric spherical the outer

one of mass M; and radius a, the inner one of mas M and radius b. A blow P is given to the outer

surface. Prove that the initial velocities of the two containing (U of the outer and V for the inner) are

given by the equations

2mpa’(2a’ +b® 2oa’h?
{Ml np3(a(3—b3) )}U_ =P

27'cpb3(2a3+b3) _ 2mpa’d’
{M” (@) }_a3—b3u

_ 33
Sol. (I):aBibS |:(Vb3_U&3)r+%:|cosg (1)

The normal blow P in the outer surface imparts velocity U to the outer and V to the inner spherical

surface. Let 1, m.be the impulsive pressures on an element dS of the boundary surfacer =aand r =
b respectively. Then
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MU =P —[fw: cos8dS on r=a ..Q2)

and M,V =—[[®, cos6dS  on r=b ..Q3)

onr=afrom(1), o =(pd), = L = {(Vb3 —Uas)a+%ab3 (V-u )}cose

(2)=>MU=P- .[(bcose ad6-2nasin®

3[Vb3 Ua a+= ab3(V -U) ]fcos 0sinodo
a’-b
na’ 2
~ bs[svbS ~U (28° +b°) |x (‘5)
2npa’(2a’ +bh3
Thus, M, + 2 (3 : My 2npa2V=P.
3(a*-b°) b
De 3
Againonr=b @ =(p9),, =— b{(Vb3—Ua3)b+W}cose
O M,V =-[®,cos0bd0-2nbsin®
0
_ 3 b
= Zf—bp{(vﬁ Ua3)b+w}fcoszesinede
a’-b’ 2 5
3
= 23“b F;{Vbs—Uaﬂlrﬁ(v —U)M—Ej
a’-b 2 3
2npb®(2b® +a° 33
Thus, M, + P (3 _ )V:Z’Zpb";‘u
3(a*-b%) a’-b

PREVIOUS YEARS QUESTIONS
CHAPTER 4. AXISYMMETRIC MOTION

Q1. The space between two concentric spherical shells of radii a,b(a<b) is filled with a
liquid of density p . If the shells are set in motion, the inner one with velocity U in the x-
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direction and the outer one with velocity V in the y-direction, then show that the initial motion
of the liquid is given by velocity potential

{a3U (1+ 1b3r‘3) X—b¥% (1+ 1 a3r‘3j y}
2 2
(b*-a’)

where r? = x*+y*+z°, the coordinates being rectangular. Evaluate the velocity at any point
of the liquid. [7b UPSC CSE 2016]

¢ =

Q2. A sphere is at rest in an infinite mass of homogenous liquid of density o, the pressure at

infinity being P. If the radius R of the sphere varies in such a way that R=a+bcosnt, where
b <a, then find the pressure at the surface of the sphere at any time. [8c 2016 IFoS]

Q3. In an axisymmetric motion, show that stream function exists due to equation of continuity.
Express the velocity components in terms of the stream function. Find the equation satisfied
by the stream function if the flow is irrotational. [8c UPSC CSE 2015]

Q4. A rigid sphere of radius a is placed in a stream of fluid whose velocity in the undisturbed
state is V. Determine the velocity of the fluid at any point of the disturbed stream.

[5¢ UPSC CSE 2012]

Note: The beauty of systematic learning is- You’ll find solutions of almost every PYQ in above
examples or questions attached with detailed answers. So to avoid repetition in this book, we have not
put those solutions again as answers to PYQs.
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THEME: VORTEX MOTION

g =uf +Vj +wk

Mental Exercise

» Now let’s start today’s story:

. . Vortex
 Rotational Motion Motion
Vorticity Q = curl Rotation + Movement

As we have idea from calculus and dynamics that curl of a vector is associated with rotation
property.

Till now we have studied:

Irrotational | motion of fluid

curlg=0

3 some¢ function ¢ = ¢
(vel. Potential)

stq=-—grad ¢ Complex potential
\’ = w=0¢+dy
Motion 1in 2D

¥

Stream function

Fluid Kinematics + Motion in 2D

— Sources & sinks
— Doublet

— Image system

Now we’re going to study about Rotational & Irrotational Motion of fluids

e Let §=ui+Vvj+wk

I T4

,‘,cur|*:2£2_@_@f+ @_a_wj\+ @_a_uk‘
ox oy oz oy oz 0z OX ox oy
u v w
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Q=W N M W o_ N U

Ty ) e ox oy

NZ
Here Qx, Qy, Q; are called “vorticity components”.
Vortex lines: x_dy_dz
Q Q5 Q
* Motion in 2D:- R
,115
If vorticity is along z-axies = Qx =0, Qy=0, Q; = v X
oX oy

Keywords:- \;oi?l{‘m\a\
« Inside vortex oto?
* Outside vortex z . aal
113 EE) ¢ .\YY Orat“.O“a

Vortex has strength | oot

. | ; M ey Y

Here, Vortex is along z-axis & Motion is in cotation s -ﬂot‘d“c’“a
xy plane Q! A jon F————>

yp only ¥ mott Y

2o Qx=0and Qy = 0, only Q, will be in v &b /

. both " x
picture LAl

"~ we’ll have ¢ & v in this motion T T T

Vortex tube / filament another another
or vortex vortex
Let’s study complex potential. simply called
a vortex

w=¢ +iy

(i) Inside vortex:- For above motion
.. oV 0
< we have Q= 0,0, =0, Q, = &-@”...(1)

We know that : (Motion in 2D);

o _av
u Vv

= vdx—udy=0...(2)

. ov  —adu
For perfect (exact) diff. eq.; —=—
p (exact) q FYR
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i.e.,, 3 y(X,y)=c...(3) s.t that the
total differentiation of (3) gives (2),
i.e., dy = 0 gives (2),

@dx+@dy =vdx—udy
OX dy

. O’y _ov oy _—du
Xt ox oyt oy
Using (4) in (1),

(4

2 2
Exampoint |Q, = 2)(—\5 + gy—‘f

Remember :-
82\|/ o’y
Q,=— +— inside vortex
ox® oy
=0 ; Outside vortex
(ii) QOutside the vortex:-

".* Motion is irrotational,

l

There exists velocity potential ¢
So, now we can try to establish some result including ¢ & .
* Let P(r, 0) be an aubituary point.

- ov__1%

or ror

2 2
Also, " Outside the vortex V2y = 8_\2;/ +a—\f =0
ox® oy

2
Y2y = \|/ 1oy 162
or? rar r< 0o

Note:- There is symmetry about origin, y must be independent of 6
We have

2
0 W.}.l@_FO =0= lg(r@jzo

or? ror rorl r

oy

On integrating ; rd— = C; C is integration constant ...(6)
r

y=clogr...(7)
w_c_ 1o _c
or r roo r
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On integrating; ..(8)

Now, summarizing above discussion; we have
The complex potential w=¢ +iy =-cO+iclogr...(9)

Let K be the ‘circulation’ in the circuit embracing the vortex (strength of vortex)

Remember
2n 21

K = j[‘_l@jrde =c[do=2mc=c=X . (10
oo\ I 00 om0 2n

Using (1) in (9), we have

K K
S 0= —0,y=—Ilogr
¢ 271 v 27 g

T

Note:-

w =i2£|ogz As;z=re”; logz = log(re®) =logr +i 0. ilog z = i(log r + i0)

i. If vortex is not at origin but a some point z = zo; then w='2£Iog(z =

T

ii. If there are several rectilinear vortices, then

L e ———NL | N IR oa( 2
W= - log(z—2z)+ » log(z-2,)+..+ o log(z-2z,)

Boundary: - (i) Plane boundary:

bounda ’I_\I:COHSLQH i 1(—
e —comn] Wzﬁlog(z—a)+wlog(z+a)
27 27
A A -
B 0iz=0 A WZKI (Z_a)
:f a Zita‘ ZTC (Z+a)
zEXxX+iy
Z=r(cos O +isin 0)
As z = re®

Image of vertex at A (strength K) is vortex B (strength — K)
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(i) for circular boundary:-

Ex.1. When a pair of equal and opposite rectilinear vertices are situated in a long circular
cylinder at equal distance from its axis, show that the path of each vortex is given by the eq.
(r? sin? 8 — b?) (r? — a?)? = 4abr’sin®0, 0 being measured through the centre perpendicular to
the joint of the vertices. .

Note:- At origin, vortex K & —K

.. cancelled

axis of cylinder

* Let K be the strength of the vortex at P(r, 6) & —K be for
vortex at Q(r. — 0)

* Let P'& Q' be the inverse points of P & Q respectively o

with regard to the circle of radius a & centroid at origin O
e, |zl=a
2
or' =2 =0Q

* Then the image of vortex K at P is a vortex —K at P' and image of -K at Q is a vortex at Q'

.". the complex potential for the whole system is
- K log(z—r-€”)-log z—a—zeie ~log(z—r-e™)+log z—a—ze’ie
2 r r

T

Attention! motion in any vortex will be due to presence of other (remaining) vertices
The complex potential or to read the motion of the vortex P i.e., we will take

. 2 2
w= 5{—Iog(z—a—e“’j—log(z —re™)+ Iog[z —a—e“’ﬂ
2n r r
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. 2 2
W= ﬂ{Iog(reie —a—e‘9j+ log(re” —re™)- Iog{reie —a—e“’ﬂ
2n r r

. 2 2 2
= ﬁ{log[r —a—J+ie+ log(2irsin6)—log {[r —a—jcoseﬂ(r2 +a—Jsin GH
2n r r 2

plo _ g0 e
,C0S0 =

e +e
. sinB=

Also using log(x +iy) =%Iog(x2 + y2)+itan‘1(%j

Comparing imaginary parts on both sides, we get

-K a’ ) 1 a2\ a?)
= —/|log| r—— |+log(2rsin®)—=1Io r—-— | cos’0+| r+—1| sin’0

4

_ 2
\|/=—K log o +Iog(2rsin9)—llog r2+a—2—2a2c0526
2n r 2 r

a’ ’ 2
(r _rj x(2rsin®)

V= —Klog
4
AL r? +?—2— 2a°c0s260

so, the required streamline are given by v = constant
(r’ —az)2 xr2sin?
r* +a* —2a’r?cos20
b? (r* + a* — 2a%r? cos 20) = (r> —a?)? r?sin® 0

b2{(r* —a?? + 2a? r> (1 — cos20)} = r? (r* —a??sin’ 0
2a? b? r? (1 — cos? 0) = (r?> — a®)?{r%in’0 — b?}

4 a2 b r?sin® 0 = (r>— a?)? {r? sin? 6 — b?}.

i.e., =b? (Let’s say constant = b?)

Ex.2. Two point vortices each of strength K are situated at (xa,0) and a point vortex of
strength % is situated at the origin. Show that the fluid motion is stationary and find eq. of

streamlines. Show that the streamline which passes through the stagnation points meets the x-
axis at (+b, 0) where, 343 (b?—a?)? = 16a°b.

Step-1 Complex potential of fluid motion is

i(_K
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W= i;[Iog(z2 —az)—%logz} (D)

K —K/2 K
- B 0 A
Step-2 ° o °
Now, the complex potential for the vortex z=-a z=0 z=a
A:

W =w-— i£Iog (z-a)
2n
LK 1
w' = z—n{log(ua) 2Iogz} ...(2)

"." The velocity (ua, va) of the vortex K at A is solely produced by the other vortices

. Ua— IV :(iW'j :_i£ 1 _i
AT TR dz ). 2n| (z+a) 2z

- —i_K{i_i}zo

2n | 2a 2a
= Ua—iva=0=>ua=0,va=0("" velocity is zero)

= A is a stationary point.

Now, the complex potential for the vortex O:

(-2)

T

Wo = izﬁn[log(z+a)+log(z—a)} ...(3)

Wo = W — logz

"." The velocity (uo, vo) of the vortex % at 0 is solely produced by the other vertices.

, . _(—dwoj _—iK[ 11 } _
o Up—1Ivo = = + =0
dz ),, 2nlz+a z-a],,

.. O is a stationary point,

Similarly, we can show B is also stationary points.
Therefore, The fluid water is stationary.

» finding streamlines :-

W=¢+iy= %{Iog(z2 —az)—%logz}

= ;ﬁn[log{(wr iy)2 —az} —%Iog(x—iy)}
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iK[1 i e 1
- Z—R[Elog{(xz_yZ_aZ) +(2XY)2+(2xy)2} + itan 1[%) _Z|Og(xz+yz)_

X2y —a?
Ly= Z—KnEIog{(xz—y2—a2)2+4x2y2}—%log(x2+y2)}
K (Xz_yz_a2)2+4xzy2
V= 4_n|09 (x2+y2)1/2

Now, streamlines are given as,

= constant = 4£ logc. (say)
T

K (Xz_yz_a2)2+4xzy2 K

. —Ilog T = —Ilogc
At (X2 + yz) 47

(X2 . y2 o a2)2 + 4X2 y2 = C(X2 + y2)1/2

(X2 . y2)2 + a4 o 2a2(x2 _ y2) + 4X2y2 = C(X2 + y2)1/2

(X% +y2)? + a* — 2a2(x2 — y?) = c(x? + Y22 ...(A); ¢ is aub constant

For stagnation point:-

w_
dz
iK 27 1
= — —— =0 {from(1
27'E|:22—az 22} { (L}
472 -7 +a’=0
322 +a2=0
2= 28
3
tia . ia
Z= —=1e,x=0,y=+—
N SN

. . a -a
.. stagnation pointsare ;- | 0,— | & | 0,—
Snationp ( @j ( @j

As the above point passes through (A); this gives

a’) a’ ca
— | +a'+2°x— = =
3 3

3
4 4 4
S es ﬁ a’ +9a* +6a
a 9
C_16J§a3
9
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.. eq. (A) becomes,

3
02 +y?)2 + a* — 282 (x2 —y?) = 16\{353 % +y2)1/2 ...(B)

As, the streamline also passes through (b, 0);

. from (B),

b* + a* — 2a%b? = @ x b
16a°b

b2 — a2)2 =

( ) 33

343 (b? —a?)? = 16a°b.

Ex.3. Prove that the necessary and sufficient condition that the vortex lines may been right angles to
the stream lines are

u,v,w,=u(a¢/ax,a¢/ay,a¢/az), where u,¢ are functions of x, y, z, t.

Find the necessary and sufficient condition that vortex lines may be at right angles streamlines.

Sol. Streamlines are given by dx/u=dy/v=dz/w

and vortex lines are given by dx/Q =dy/Q =dz/Q,

(1) and (2) will be right angles, if uQ +vey, +we, =0

But Q, +0ow/dy—ov/ oz, Q, +0ou/oz—ow/ ox Q, +0v/ox—aou/ oy

Using (4), (3) may be re-written as
X(ow/ oy —ov/oz)+v(ou+oz—ow/ox)+w(ov/ox—ou/oy)=0
Which is the necessary and sufficient condition in order that udx +vdy +wdy may be a differential. So

we may write

o od 00
udx +vdy +wdy =uddp =p| —dx +—dy + —dz
y yu¢u[ax ayyaz]

u=p(op/ox), v=p(op/oy) and  w=p(o¢/oz)
Ex. 4.1t udx+vdy+wdz=d6+ kdx , Where 0,2,y are functions of x, y, z, t, prove that vortex lines at
any time are the lines of inter — section of the surface A = constant and y = constant

Sol. Given udx +vdy + wdz =do+Ady

" udx+vdy+wdz:@dx+@dy+@dz+@dt+k a—de+a—xdy+a—xdz+a—xdt
OX oy 0z ot OX oy /4 ot

u=@+xa—7‘, v=@+xa—x
dx  ox dy oy 0
W:@H»a—x, and O:@H»a—X
dz oz dt ot
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Hence the components of spin €,,€,Q, are given by

oW oV 6(89 a_x)a 00
0z

_ow _ov_0ofa B L]
2QX_8y o oy 8z+kaz aerkayJ,usmg(l)

_ 0% onoy , 0% 0%, 0% ohox_ohdy Ohoy

Ty oyor oyor ey ety ady oyor ey

ornloy olloz
or 20, =
oyloy oyloz
o oNloz oM oOX onlox Olloy
Similarly, ZQy = and 2Q, =
oy loz oyl ox oylox oyloy

OLlox Onloy oOnloz
O\ O\ O\
2 QX6_+Qy_+QZG_ =|ON/ox Onloy oOiloz|=0
X z
& oxlox oyloy oylox

O, (001 0%) +Q (8.1 dy) + 0, (011 62) = 0. enl2)
Similarly, we have O (0r 1 ox)+y (ax 1 oy)+, (8x/02)=0.....3)

Equation (2) and (3) show that the vortex lines at any time are the lines of intersection of the surface A
= constant and = constant.

Image of vortex in a quadrant.
The image system of vortex of strength k, at the point A(X, y) in xy-plane with respect to quadrant XOY
consists of (i) a vortex of strength —k at B(—x,y)

(ii) a vortex of strength —k at C(x,—y)

(iii) a vortex of strength k at D(—x,—y)

The velocity at A is only on accounts of its images and hence its components are as indicated in the
figure. Thus the radial and transverse components of velocity at A are given by

20 in2
dr _kcos® ksin® _ kcos®  ksin® _k(cos 0—sin 9)_ k cos26

— = = = = (1
d  4ny 4nx  Anrsin®  4mrcoso 2mrsin 20 2mrsin 20 M
r@_L_ksine_kcose_ k  ksin® _ kcos® k- @)
dt 4ar 4ny  4nx  4nr 4mrcos®  4mrcos®  4nr
On dividing (1) by (2), ~9F = 0520 or Lor=_£0529 49
rde sin26 r sin 20
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Integrating it, logr =—logsin20+logc ie., rsin20=c,

Which is Cote’s spiral. Transforming into cartesian, it becomes (using X =rcos6, y=rsin0)
2rsin@cos0 =c o 4rtcos?0sin?0=c?r? or  4(rcos6)’(rsin6)” =c?r

i.e,. 4x2y2=02(x2+y2) or 1/x% +1/y? =4/c?

Vortex inside an infinite circular cylinder

Let the vortex of strength k be situated at A(OA = f) inside the circular cylinder of radius a with axis
parallel to the axis of the cylinder.

Let a vortex of strength —k be placed at B, where B is the inverse point of A with respect to the circular
section of the cylinder so that

)—k

OBOA=a> or OB.f =a?

= OB=a’/f

The circle is one of the co-axial system having A and B as limiting points and so it is a streamline.
k |l k 1. k 3 kf

2n.AB  2n(OB-OA) 27[(32 7oL f) N 2n(a2 3 f2)

The velocity of A=

Which is perpendicular to OA. B also has the above mentioned velocity so that OAB will not remain a
straight line at the next instant. But if A describes a circle about O with the above velocity, then at every
instant the circle will be a streamline, the positions of B, of course, changing from instant to instant.

Vortex outside a circular cylinder.

Let he vortex of strength k be situated at A (OA =f) outside the circular cylinder of radius a with axis
parallel to the axis of the cylinder. Let a vortex of strength —k be placed B, where B is the inverse point
of A with respect to the circular section of the cylinder so that

OBOA=a’=O0B.f —a? =0B=a?/f.
Then the circle will be an instantaneous streamline due to this vortex pair and A will describe a circle
with velocity
ok k 3 k B
2nAB 2m(OB-OA) 2n(f ey f) B 2n(f2 _aZ)
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But the introduction of a vortex of strength -k at B gives a circulation on -k about the cylinder and let
the circulation about the cylinder be k’. The circulation —k about the cylinder due to the vortex B can be
annulled by putting a vortex k at O and therefore to get the final circulation £’ about the cylinder, we
must put an additional vortex k£’ at O.

Thus we have a vortex k at A, —k at B, k + £ at O. Hence the velocity of A due to the above system.

_ k+k' k  k+k' k _k+k' k _k+k' kf

" 27OA 2nAB  2nf 2m(AB—OB) 2nf zn(f ey f) T oonf Qn(fz _aZ)

and A describes a circle with this velocity

Image of a vortex outside a circular cylinder.

To show that the image system of a vortex k outside the circular cylinder consists of a vortex of strength
—k at the inverse point and vortex of strength k at the centre.
AY

Let us determine the image of a vortex filament of strength k placed at A(z = ¢ > a) with respect to a
circular cylinder |z| = a with O as centre. Let B be the inverse point of A with respect to |z| = a so that

OAxOB=a” andso OB=a®/c
In absence of |z| = a, the complex potential at any point due to vortex at A is given by
(ik /2m)xlog(z —c).
When the circular cylinder |z| = a is inserted in the fluid, the modified complex potential by Milne-

Thomson’s circle theorem is given by

ik ik [a? ik ik c[ a?
w=—Ilog(z—-c)-—Ilog| ——-c |=—Ilog(z—Cc)——log| ——| z——

T Z I z C

=(ik/2n)[log(z —C)—lOg(Z ~a® /c)+logz —log(—C)J

On adding the constant term (ik / 2rt)log(—c) to the above value, the complex potential takes the form

ik ik a®) ik
w=—1Iog(z—c)——Ilog| z—— |+ —1logz. (1
271 og( ) 27 og[ c j 27 o8 )
Putting w=¢ + iy, z=ae'" for any point on |z| = a and equating imaginary parts, (1) gives y = 0.

Thus there would be no flow across the boundary |z| = a. Hence motion would remain unchanged if the
cylindrical boundary |z| = a where made a rigid barrier. From (1) the required image system follows.

Note 1. Complex potential w’ induced at A, by a vortex —k at B and a vortex k at O is
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W'=W—(ik/2n‘)log(2 —C) =—(ik/2n)log(z —a? /C)+(ik/21‘c)10gz

_aw_ k1 ik E_K{ c l}
dz 2 7-a%/c 2n z 21| cz—a? z
‘ dw’ k| ¢ 1 ik a’
_— = — _— = —X
dz z=C 2n|cz 78.2 Z],_¢ 27C C2 7a2

Which given velocity of the vortex A with which it moves round the cylinder.
Note 2.  Since the term ik log z denotes the circulation round the cylinder, the result of the above
image system may be restated as under.
The image system of a vortex k outside the circular cylinder consists of a vortex of strength —k a the
inverse point and a circulation of strength k round the cylinder.
Note 3. Proceeding as above we can also show that the image system of a vortex —k outside the circular
cylinder consists of a vortex of strength k at the inverse point and a vortex of strength —k at the centre.

Image of a vortex inside a circular cylinder.
To show that the image of a vortex inside a circular cylinder would be an equal and opposite vortex at
the inverse point.

Let there be a vortex pair consisting of two vortices of strength k at A(z=2;) and —k at B (z=z,). Then

the complex potential at any point is given by

or

Where n|z—z, N|z—12,].
Hence the streamlines are given by y = const. i.e., r, /1, =c, which represents a family of co-axial

circles with A and B as limiting points.

Moreover the motion is unsteady and hence streamlines go on changing and following the vortices
which move through the liquid. However, if a particular circle of the family of coaxial circle be replaced
by a similar rigid boundary and held fixed, then it follows that the image of a vortex inside a circular
cylinder would be an equal and opposite vortex at the inverse point
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Note. Let O be the centre of the cylinder. Let OA = c. Then, if B is the inverse point of A,OB = a’lc
, Where a is the radius of the circular cylinder. The vortex at A will move round the circular cylinder
with velocity q given by

k k k ke

" 2nAB  2n(OB-c) 2Tc(a2 /c—c) ) 2n(a2 —c2)

q

Let o be the angular velocity of vortex at A. Then

_ 9 _9q_ k

Q.1. A vortex pair is situated within a cylinder Show that it will remain at rest if the distance of either

L 12 . . .
from the centre is given by (\/g— 2) a, where a is the radius of the cylinder.

—k

k
N

B'/ \]i%r(:)r/:xi

Sol. Let vortices of strengths k and —k situated at A and B respectively within the circular cylinder form
the given vortex pair. Let OA=r = OB and let 4°, B’ be the inverse points of A and B respectively with
regard to the cylinder so that 04’ = a%/r = OB".

The image system consists of a vortex of strength —k and 4’ and vortex of strength k at B’. The vortex
will remain at rest if its velocity due to other three vortices is zero, that is

k{ 1 1 1 } 1 1 1
— = or -+ — =0
271

(az/r)—r 2r (a2 /r)+r

L
AA' BA' B'A
or r{l/(az—r2)+1/(a2+r2)}—(1/2r)=0 or 4r2a2—(a4—r4)=0

o r*+4a’r?-a*=0 or (rz/a2)2+4(r2/a2)—1=0

or rz/azz{—4+(16+4)ﬂz}/2\/§—2 or r:(\/g—z)llza

Q.2. When a pair of equal and opposite rectilinear vortices are situation a long circular cylinder at equal
distance from its axis, show that the path of each vortex is given by the equation

2
(rzsinze—bz)(rz—az) =4a%b%r?sin®0,0 being measured from the line through the centre

perpendicular to the joint of the vortices.
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-k
+k
P 0
o) > X
Q 0

+k
QY
Sol. Let k be the strength of the vortex at P(r,0) and—k at Q(r,0). Let P and Q" be the inverse points

of P and Q respectively with regard to the circular cylinder |z|=a so that OP'=a® /r =0Q". Then the

image of vortex k at P is a vortex —k at P’ and the image of vortex -k at Q isa vortex k at Q0.
Hence the complex potential of the system of four vortices is given by
2

i : . . 2
Wzﬁ{log(z - re'e)log(z a—e'eJlog(z - re'e)+log[z a—e'eﬂ
27 r r
or w:(ik/zn)log(z—rei9)+w',
Since the motion of vortex P is solely due to other vortices, the complex potential of the vortex at P is

given by value of w’ at z = re'.

' ik a® o _io afies
[W]Z:rem —z[—log(z—Te —log(z—re )+log Z_Te )
=re

@ ) 2 ) ) ) 2
b+iy = LS log| re® — & ¢ | log(re'e - re"e)— log| ref® — & g0
2n r r Jrel®

. ik | a®) . : a’ ( a?
or ¢+I\|/=72—n log r—— +i0+log(2irsin6)—log r—— cosO+i r+— sin©

2 2
2 2 2
" \|/=—2L log[r—a—J+log(2rsin9)—%log (r—a—] cos29+(r+a—J sin®0
r r r

T

[Using the formula: log(x+iy)=(1/2)x Iog(x2 + y2)+itan’1 (y/x)]

k a’ . 1 , a a’
=——1/log| r—— |+log(2rsin@)——1 r°+——2r.—cos20
Zn{ og( ; J og(2rsin6) 5 og{ = - cos

2
K (r—az/r) ><(2rsin9)2
Thus, vy =——>Iog 15 5
dn T rc+a*/r°—2a“cos20
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2
(r2 —a2) rsin 0

So, the required streamlines are given by y = const., i.e., YR 5 =b?, say
r+a" —2a°rccos20
2
ie., bz(r4+a4—2a2r2cos29)=r2(r2—a2) sin®0
2 2
ie., b2 {(r2 - az) +2a%r?(1- cosze)} =r? (r2 - a2) sin® 0
rsin20=4/C =constant = A, say w...(5)

Again, tan 0 =yg,/Xy, as Xy =rcoso, Yo =rsin®
Differentiating both sides of tan0 =y, /X, w.r.t. ‘t’, we get

sec” 00 =(XYo — Yo%)/ X6 or

X(Z) SeCZ 99 = Xoyo — yOXO
or r?0 =¥ — Yo¥%o = XV — YU, by (3) [+ Xo =rcos0]

2 2
Thus, 126=_ K 2y0 - K 2X0 5 using (2)
ATXo+Yo AT X + Yo
2
rZ@:_L or A; ﬁz—L, using (5)
dt 47 sin© 20 dt 4r

or dt = —(41‘cA2 / k)cos ec220d0

Integrating, 1= (211;A2 / k)cot 20, sothatt is proportional to cot26

Vortex rows.

When a body moves slowly through a liquid rows of vortices are often generated in its wake. When
these vortices are stable, then they can be photographed. In the next two articles we wish to consider
infinite system of parallel rectilinear vortices in two dimensional flow.

Infinite number of parallel vortices of the same strength in one row.

To show that the motion due to a set of line vortices of strength k at point z=+na(n=0,1,2,3,....) is

given by the relation w=(ik / 2rt)logsin(nz/ a)

Proof.  Let there be (2n + 1) vortices of strength k each situated at the points (0, 0)
(+a,0),(+2a,0),(+3a,0),....(£+na,0) . The complex potential of these (2n + 1) vortices at any point z is

given by

Woney = (ik/2r)[ logz +log(z—a)+log(z +a)+log(z —2a) +log(z+2a)+.....+log(z—na)+log(z+na) |

=(ik/27c)log[z(22 —az)(z2 —az)(z2 —Zzaz)(z2 —32a2)....(22 —n%a? )J

ik Tz 22 22 22 ik nad 2,22 2 2:|
=—1log| —|1-— ||l -5 |....| | ——— |+ =—log| (-1) —.a".2%a"...... n‘a® (|....(1
2n g{a[ aZJ( ZzazJ [ nzazj 2m g[( ) .
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The second terms on R.H.S. of (I) being constant, it may be neglected for the purpose of complex
potential. Hence the complex potential given by (I) may be also written as

v = Ko 2121 2 2
2||+1_2Tc g a az 22a2 """ n2a2

Making n—oo in (2), then complex potential w of the entire system of vortices at point
t=+na(n=0,12,3,....,) is given by

ik iz 72 7° 7°
w=—7Ilog| —|1-—— || 1— 1- .....(3
2n Og[ a [ a’ J( 22a2J( 32a2] } ®

But sin9=9(1—92/nz)(l—Gz/22n2)(1—62/32n2)..... ()

Putting 6 =nz/a ie., z/a=0/mr in(4), we get
sin(nz/a)z(nz/a)(l—zz/az)(l—zz/zzaz) ..... HH0)

Using (5), (3) becomes w=(ik / 2r)logsin(nz/a) ....(6)

Let u and v be the velocity components at any point of the fluid not occupied by any vortex filament.
Then, we have

, - , COSE(X-‘riy)Sil’lE(X*iy)
=7£C n(x+|y):7|k a a

2a a 5

. T . . T .
smg(x+|y)smg(x—|y)

ik sin(2nx/a)—sin(2niy/a) ik sin(2nx/a)—isinh(2ny/a)

2a cos(2niy/a)—cos(2nx/a)  2a2acosh(2my/a)-cos(2nx/a)

Equating real and imaginary parts, we have
K sinh(2ny / a)
2a cosh(2my/a)—cos(2nx/ a)

()

k. sinh(2nx/ a)
~ 2a cosh(2my /a)—cos(2nx/ a)

Since the motion of the vortex at the origin in due to other vortices only, the velocity qo of vertex at the
origin is given by

d {ik . mz ik } ik I:n iz 1}
Qo =—9—| =—logsin———1logz =——| —-cot———
dz| 2n a 2mn 120 2n| a a Z],9
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:—Klim M_l Form: [o0— o]
2n2-0| asin(nz/a) 2

_ ko anos(nZ/.a)—asin(nZ/a) Form: {9}
2ma 20 zsin(nz/a) 0

[On evaluating the above indeterminate form with help of L” Hospital’s rule]
Hence the vortex at origin is at rest. Similarly, it can be shown that the remaining vortices are so at rest,
Thus we find that the vortex row induces no  velocity on itself.

. ik .= .
d+iy =2—nlogsm{g(x+|y)}

d—iy =;—ilogsin{§(x iy)}

Subtracting (10) from (9), 2iy = ;—k{log sin {g(x + iy)} + logsin {g(x — iy)H
T

k . m . . . k 1 2miy 27X

or =—1I —(X+I —(x—i =—1Ilog| = —Ccos——
Y i og{sm{a( y)}sm{a( y)H i og{z(cos 3 cos 3 H
or \V =Llog(cosh@ cos%j ,
4t a a

on omitting the irrelevant constant. The required streamlines are given by Wy = const.
ie., cosh(2ny /a)—cos(2nx/a)= const.

When y is very large, the second therm on L.H.S. of (12) may be omitted. Then the streamlines are
given by
cosh(2ny/a) = const, so that y = const.,

Showing that at a great distance from the row of vortices the streamlines are parallel to the

Two infinite rows of parallel rectilinear vortices.

Let there be two infinite rows of vortices one above the other at a distance b, the upper one having
vortices each of strength k and lower one each of strength —k, one vertex of the upper row being exactly
above each of the lower row. Taking the upper row as x-axis and y-axis passing through the centre of

one of the vortices of strength k each are at the points (0,0),(+a,0),(+2a,0) ... And those of strength
—k each are at the points (0,-b),(+a,—b),(+2a,-b)
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The complex potential of the entire system is given by

(-2a,0) —a,0)

%
D

A

@ Q

ik nz ik
W:—lo sm———lo sin—=(z+ib
27 & a 2n 8 a( )

Let u and v be the velocity components at any point of the fluid not occupied by any filament. Then
u—iv=—d—W=—£ tn—z+£cot (z+ib)
dz 2a a 2nm a

The velocity of the vortex at the origin is given by

. d| ik nz ik ik
Ug— Vg =—9—| —1o sm———logz——logsm (Z+Ib)
dz| 2rn a 2xn 21 a 120

ik nz 1 =n . ik imb _k  7b
= Uy —iVg=——| —cot=—=-Zcoth = (z+|b) =——cot— coth—
2rla a z a a g2l a 2a a

~lim{(n/a)cot(nz/a)—(1/z)} = 0. Prove yourself as in Art.

z—0
So that Uup =(k/2a)coth(nb/a), and Vo=0
Showing that the vortex system moves parallel to itself with velocity (k /2a) coth (nb/a).

Karman Vortex Street.
Let there be two parallel rows of vortices of equal but opposite strength placed in such a way that each
vortex in row is opposite to the point midway between two vortices of the other row. (i2a,0), ......
and the vortices of strength —k each be situated at the points (+a/2,-b),(+3a/2,-b)

AY

W,

NN NN AN

(-5a/2,-b) (-3a/2,-b) (-al2-b) ~  (al2-b)  (3al2-b) (5a/2,-b)
If u and v be the velocity components at any point of the fluid not occupied by any vortex filament.

Then
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. dw ik nz ik T 1 .
U—iv=——=——cot—+—cot—| z+—=a+ib N )]
dz 2a a 2a a 2

Since the motion of the vortex at the origin is due to other vortices only, the velocity of vortex at the
origin is given by

kin =nz 1 = n( 1 . j ik (n inbj ik inth
=——| —cot———=——cot—| z+—=a+ib =——ocot| —+— |=——tan—
a a z a a 2 .0 2a 2 a 2

[ lim{(n/a)cot(nz/a)—(1/2)}=0.

z—0

Thus, Ug —ivp =(k /2a)tanh(nb/a)
So that U =(k/2a)tanh(nb/a) and Vo =0,

Showing that the entire system would move parallel to itself with a uniform velocity (k/2a) tanh (b/a).
Note. A Karman vortex street is often realized when a flat plate moves broadside through a liquid.

PREVIOUS YEARS QUESTIONS
CHAPTER 5. VORTEX MOTION

z—-ia) . . .
- j is the complex potential of a steady fluid flow about a
zZ+ia

circular cylinder, the plane y =0 being a rigid boundary. Further show that the fluid exerts a

Q1.Verify that w=ik Iog(

2
downward force of magnitude [7['[2) i
a

j per unit length on the cylinder, where p is the fluid
density. [7b 1FoS 2022]
Q2. Two point vortices each of strength k are situated at (J_ra, 0) and a point vortex of strength

5 is situated at the origin. Show that the fluid motion is stationary and also find the equations
of streamlines. If the streamlines, which pass through the stagnation points, meet the x-axis at

(£b,0), then show that 3\/§(b2 ~a’ )2 =16a’b. [7c UPSC CSE 2022]

Q3. Discuss the flow given by the complex potential

2
w = log, (z —a—j .Draw sketches of the streamlines and explain the flow directions along the
z

streamlines. [7b 1FoS 2021]

2
Q4. What arrangements of sources and sinks can have the velocity potential w = log, [z —a—j
z

? Draw the corresponding sketch of the streamlines and prove that two of them subdivide into
the circle r =a and the axis of y. [5e UPSC CSE 2021]

Q5. The velocity vector in the flow field is given by

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

q=(az—by)f+(bx—cz)j+(cy—ax)l2;where a,b,c are non-zero constants. Determine the
equations of vortex lines.[8c 2017 IFo0S]

Q6. Does a fluid with velocity q = [z —%,Zy -3z _ZTy’ X—3y —%} possess vorticity, where

d(u,v,m) is the velocity in the Cartesian frame, =(x,y,z) and r? =x*+y*+2z*? What is
the circulation in the circle x* +y®=9,z2=0? [5b UPSC CSE 2016]

Q7. Prove that the vorticity vector Q of an incompressible viscous fluid moving in the absence
of an external force satisfies the differential equation
DQ (= \. o= . . - _
o (€2-V)g+vv°Qwhere g is the velocity vector with =V xq. [5d 2014 IFoS]
Q8. If n rectilinear vortices of the same strength K are symmetrically arranged as generators of

a circular cylinder of radius a in an infinite liquid, prove that the vortices will move round the
243

8
(n-1)K

cylinder uniformly in time . Find the velocity at any point of the liquid. [8c UPSC

CSE 2013]

Q9. Prove that the vorticity vector Q of an incompressible viscous fluid moving in the absence
of an external force satisfies the differential equation

% =(Q-V)g+vv*Q. [5d 2012 IFoS]

Q10. An infinite row of equidistant rectilinear vortices are at a distance a apart. The vortices
are of the same numerical strength K but they are alternately of opposite signs. Find the
Complex function that determines the velocity potential and the stream function. [8b UPSC
CSE 2011]

Q11. In an incompressible fluid the vorticity at every point is constant in magnitude and
direction; show that the components of velocity u,v,w are solutions of Laplace's equation.

[5f UPSC CSE 2010]

Q12. When a pair of equal and opposite rectilinear vortices are situated in a long circular
cylinder at equal distances from its axis, show that the path of each vortex is given by the
equation (r?sin?@—b?)(r*—a’)=4a’h’r’sin’@, @being measured from the line through
centre perpendicular to the joint of the vortices.[8b UPSC CSE 2010]

Q13. Show that the vorticity vector Q of an incompressible viscous fluid moving under no
external forces satisfies the differential equation

% = (Q-v)q +VvV2Q where v is the kinematic viscosity. [8c 2010 1FoS]
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Note: The beauty of systematic learning is- You’ll find solutions of almost every PYQ in above
examples or questions attached with detailed answers. So to avoid repetition in this book, we have not
put those solutions again as answers to PYQs.
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THEME- VISCOSITY: NAVIER STOKE’S EQUATIONS

INTRODUCTION: So far we have been concerned with perfect (ideal) fluids (frictionless and
incompressible). In the motion of such perfect fluid, two contacting layers of the fluid experience no
tangential forces (shearing stress) but act on each other with normal forces (pressure) only or in other
sense we can define that a perfect fluid exerts no internal resistance to a change in shape.

In this chapter we shall consider the cases of actual (real) fluids. In real fluids the inner layers of the
fluid transmit tangential as well as normal stresses. Viscosity of the fluid is that property of actual fluids
which exerts such resistance.

Because of the absence of tangential forces, a difference in relative tangential velocities exists on the
boundary between a perfect fluid and a solid wall i.e. there is a slip, on the other hand, in actual fluids
the existence of inter-molecular attraction causes the fluid to adhere to a solid wall and it gives rise to
shearing stress.

The difference between a perfect and a real fluid is the existence of shearing stress and the condition of
no slip.

Measurement of Viscosity.

u=U
—

y

Frrrrrrrrrrrrrirfrrrrreirrrrrrrirrrrrrrrrrrey

u=20
Consider the motion of a fluid between two very long parallel plates, at a distance h apart.

Let the lower plate be at rest and the upper plate is moving with a constant velocity U parallel to itself.
The pressure being constant throughout the flued.

We see that the fluid adheres to both the walls, so that its velocity at the lower plate is zero and that at
the upper plate is equal to the velocity U.

Again, the velocity distribution in the fluid between the plates is linear, is

Liner, so that the fluid velocity is proportional to the distance y from the lower plate (there being no
slip on the walls).

Then u=u

=l

Since the tangential force to the upper plate be in equilibrium with the frictional forces in the fluid.

Also the experiments shows that this force is proportional to the velocity U of the upper plate and
inversely proportional to the distance h. Let t denotes the frictional force per unit area
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or ToC—

{In general UF can be replaced by the velocity gradient j_u
y

du
or ToC—
dy
or rzud—u ()
dy

where p is a constant of proportionality depending on the pressure and temperature.

Note: For gases u is independent of the pressure at ordinary temperature. The relation (i) is known as
Newton’s equation of viscosity. B transformation. We have

T

" du/dy

1)

which is known as the coefficient of viscosity or Absolute viscosity or Dynamic viscosity.

A fluid for which the constant of proportionality (i.e. viscosity) does not change with rate of deformation
is said to be a Newtonian fluid..

__shearing stress
velocity gradient

{Shearing stress = Force/unit area and velocity gradient = velocitylength
or u(force per unit area/rate of shear)

In all fluid motions in which frictional and inertial forces interact, we consider the ratio of the
viscosity to the density such as

v=E
p

Which is known as kinemetic Viscosity.
Strain Analysis.

When the various elements of a system undergo relative displacements under the action of impressed
forces, it is said to be strained.

(1) Normal Strain is defined as the ratio of the change in length to the, riginal length of a straight line
element.

(2) Shearing Strain is defined as the change in angle between two linear elements from the unstrained
state to the strained state.
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Since the motion of the fluid is completely determined when the velocity vector q is given as a function
of position and time; g = q(xyzt).

3 kinematic relations between the components of the rate of strain and this function.

Let the velocity of an infinitesimal element at P(x y z) at any time be (u v w).

V4

>V

Let PQ1 and PQ- be two perpendicular lines through P having infinitesimal length 3S; and 8S,
direction cosines are (1 m; n1) and (l. mz ny) respectively.

The coordinates and velocities at Q1 and Q> be at the same time t are.

(X+ 8%y, Y +8Yy,Z +82q;U + 8Uy, v + 8V, W+ 8\/\/1)
and (X+ 08Xy, Y +8Y,, Z +8Zy;U + SUy,V + 8V, W+ W, ) respectively.

From Analytical geometry 3D; Evidently 852 = ZSXZ

Xyz
or X =18S,8y =maS, 6z = ndS ()
Since PQ; and PQ, are perpendicular

Then ) 8%3%, =0 .....(ii)
Xyz

The relative velocity (8u,8v,8w) of Q relative to the point P can be written as

U =) UydX, 8V =D V, 8%, dW =D W, x
xyz xyz xyz

Now assuming the following symbols,
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Exx = 2Uy, €y =2Vy &, =2W,

=W, +V,

€y =€
and o .....(1i1)

€x =€y =U; + Wy

€4y =€yx =Vy +Uy

also E=w, —y, n=u, —W,,E=Vv, —Uy

Form the above assumed relation (iii), we have

1 1 1
Uy zaex)u uy =§(Exy -0, u, zz(exz +1)
1 1 1 .
Ve=Z(ey+C),  vy=Ceyy. v, ==(ey, ~&) (V)
2 2 2
1 1 1
Wy ZE(exz —n)= Wy za(eyz +<t-.~)a Wy ZEezz

Where &,n, are the components of vorticity about the coordinate axes OX, OY, OZ.
Now the velocity of Q in terms of these symbols is
Ug =Up =dU

=up + %(GXXSX + By OY +€,,87 + %(né}z = CSy)J

Vg =Vp + 0V

1 1 (V)
=Vp + E(eyzésx +8,,0y +e,,07 + E(CSX — &52))

and Wg = Wp + 6w

=Wp + %(GXXSX + By OY +€4,87 + %(&ESy - nSx)j

The velocity at Q consists of three parts:
(@) Velocity of translation (up) which is the same as that of P.

(b) Rate of deformation (Rate of component of strain) as

%(exxéx +ey,0y + exzaz),%(eyxésx +ey, 8y + eyZESz)
%(exxéx +ey,0y + eXZSZ)

(c) Velocity produced by rigid body due to rotation of angular velocity (%@én,%gj about straight

lines parallel to the axes of reference through P.
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Velocity of Q relative to the point P is

1
Su =ESS {Iexx +meyy, +Ney, +(nn— mg)}

1 .
dv = ESS{IeyX +mey, +ney, + (1€ - nE,)} ----- (vi)
5W=%53 {lejx +mey, +ne,, +(mE—In)}

Rate of elongation

Consider P',Q;",Q, " be the position of P,Q;,Q, respectively at time t+ At. Evidently, the coordinates
of P’ are

(X +UAL, y + VAL, Z + WAL)

and that of Q') {X+8X+(U+38U)At,y+8y +(V+03V)At,z+82+(W-+w)At}
then (P'Q,")’ = (8 +8UAt)” +(3y + SVAt)’ + (52 + SwAt)?

2 2 2|12
or P'Ql'z{(8x+6uAt) +(8y +BVAL)” +(8z + dwAt) }

12
or P'Qy'~{(85)° +24t(1885u + moS5v + n3Saw)|

Using the relation (i) and (vi), we have

P‘Ql'=[1+%At{I2eXX + mzeyy +n2e,, + 2lme,, +2mne,, + 2n|exx}+0(At)2 ()
Rate of elongation
_PQPQ 1
PQ At
—l[lze +m?e,, +n%,, +2Ime,, +2mne,, +2nle } (ii)
- 2 XX Yy XX Xy eVZ XX

Which gives the relative rate of elongation of PQ;.

Consider PQs, parallel to the X-axis then the direction cosines becomes (1, 0, 0), hence from (ii),

1 . L o .
Eexx represents the relative rate of elongation in the direction of X-axis.

Similarly Eexx represents the relative rate of elongation in the direction of Y-axis.
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1 . Lo N .
And Eexx represents he relative rate of elongation in the direction of Z-axis.

Ex.1. Consider a rectangular parallelopiped with edges PQi, PQ; and PQs, parallel to the axis of
reference of lengths 851, 85, and 653 respectively, then the relative rate of increase of its volume is given
by

58,

oS, b 58

55, 1+ Ze At |55, 1+ Te, At |55, 1+ Le, At - 59,55,08,
- Lt 2 2 2
At—0 681682883At

1 1 1
= Lt 1+—e At || 1+—e, At || 1+—¢,,At |1
AHO{( 2 X J( 2 W J( 2 % j }

= %{exx +eyy +eZZ} {neglecting the term of higher orders of A t.

=U, +V, +W,

y

ou ov ow
= —Si—
ox oy oz

=div. g (where q is the velocity vector)

The relative rate of increase in the volume is called dilation generally is denoted by A.
1
Thus A= E(exx +eyy ey, )

If the rate of increase vanishes then it is known as equation of continuity.
Rate of Shear.

e,y represents the rate of the decreases of the angle between the line which were originally parallel to

the axis of X and Y respectively i.e., e,, = the rate of shear in the XY-plane.

Xy
Similarly we can say that ey, and e, as the rates of shear in YZ-plane and in ZX-plane.
Rate of strain tensor

The rate of strain matrix
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Ex Gy Ex
Cyx Gy By
€x €y €z

A symmetric tensor, i.e.,

€y =€y7:€y; =€, and e, =¢,,

Rate of strain components.

Let (u v w) be the components of the velocity parallel to the coordinates axes at the point (x, y, z) at time
t. The components of the relative velocity at an infinitely near point (x+8x,y +8y,z +8z) are:

Su= %(exxéx + €y, By + exxé‘)z) + %(né‘)z —dy)
8v=%(eyx8x+eyy8y+eVZSZ)+%(C8x—§62)
1 1
and 8W=§(eZX8x+exy6y+e2262)+E(&_,Sy—nSX)
Where eXX:Za—u W_ZQ ezz_28\—N
ox Y oz
oW oV
eyx=ezy 254'5
ou ow
exxzexxza"'&
. _ov ou
exy—eyx—&'i'a
and §= @_@ za_u__ C_@_a_u
oy oz oz ox oy

g, 1, ¢ are the components of the vorticity vector © and &= Curl V
Where V (u, v, w) is the velocity vector.

. . 1
The quantities ex, eyy etc. are called the rate of strain components and Eexx represents the rate of

extension of a line element in the direction of the X-axis. ey is the rate of change of the angle between
two lines along the axis of X and axis of Y.

Stress Analysis.
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Z

Consider a point P(x y z) in the fluid medium and take infinitesimal area AA surrounding the point P.
The fluid on each side of the area exerts of force AF on it.

Then the stress S of the fluid at P on the area A is define as

S= Lt ﬁ; (This is finite and non-zero)
AA—0 AA

In other words the forces per unit area which two neighbouring elements of volume with a common
surface exerts on each other are called stresses.

For a fluid at rest, stress is normal to the surface and is in the nature of a pressure. When fluids are in
motion, 3 also shearing stress in addition to normal stress.

The stress components can be represented by P, where o denotes the direction of the normal to the
area and [ is the direction in which the stress component is taken.

Considering the right handed system of coordinate axes, we define the stress matrix

PZPIJ

Where PB; is the component of stress acting on a are AA perpendicular to the axis xi taken in the
direction parallel to x; axis.

Stress Tensor.

Now we shall prove that P is a symmetric tensor. We know by D’ Alembert’s principle that the reversed
effective forces and the impressed forces acting on a dynamical system at any instant are in equilibrium,
and the fact that the force on an infinitesimal area in any direction can be taken as the product of the
area and the stress acting at its centre in that direction.
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~
cd

p. % P, 4
Pgﬁ " ZL)P :

O Pzw

7 (_(P_;]
32 P_gu

P

X,
P is symmetric, thus stress matrix is diagonally symmetric and contains only six unknowns.

The three sets of stress components are given by

Pxx  Pxy Px
Pyx Pyy Py
Px Py Pz

The diagonal elements p,, pyy P, Of this array are called normal of direct stresses. The remaining six
elements are known shearing stress. For an inviscid fluid

Pxx = Pw =Pz ==P

and Pyy = Px, =(I=0
Pxx pxy Pxz

The matrix | pyx Py Py | is called a stress matrix
Pzx pxy Pz

The quantities p; where |, j = X, y, z, are called the stress tensor which is a second order tensor.
Translation motion of fluid element.

Consider the motion of a small rectangular parallelopiped of viscous fluid, having P(x yz) as centre
and its edges of lengths &x,0dy,8z parallel to the fixed rectangular axes.
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N
|P.
oz
P
/‘Pw (SX

oy
>Y

O 1

X Pz(x+58x,y,z}

Mass of fluid element

= pdXxdy 6z ; (which will remain constant)

Suppose the element move along with the fluid. The components of the forces parallel to the co-ordinate
axes OX, OY, OZ on the surface of area 8y &z through the point P(x,y, z) are

(pXXSySZ, Pyy0Y 8Z, Py, By 82)

At the point P, (x+%8x, Y, zj, the corresponding force components across the parallel plane of area

oy dz are (i is the unit normal measured outwards from the fluid).

1. (0 1.(0p 1.(0
H P +§6X( g;x j}&y&z,{pxy +§8x[a—;y]}6y62,{pxz +§6x( g;z J}ésyé‘)z}

Similarly for the parallel plane through Pl[x - %SX, A zj the corresponding components are,

-

1 ap 1 apxy 1 6p
{{pxx §8x£ a;X J}Sy&,{pxy ESX( x J}SYSZ,{pxz *ESX 6))((2
(Since —i is the unit normal drawn outwards from the fluid element).

The force on the parallel planes through P, and P, are equivalent to a single force at P having
components

apxx apxy apxz
ox | ox | ox

, }8x6y82
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Together with the couple whose moments are

—p,,0x0ydz  about OY.
and +PyyOx8ydz  about OZ.

Similarly the pair of faces perp. To Y axis give a force at P _having components

prx Py Py,

, . }SXSySZ
a oy oy

Together with couples of moments
—Pyy 6x3y 6z about OZ.
+py, 5x8ydz about OX.

And the pair of faces perp. to the Z-axis give a force at P having components

apxx apxy apzz
oz "oz oz

}Sx oy &z

Together with couples of moments.
—Pyy Ox3ydz about OX.
+ P,y OX3y &z about OY.

Thus the surface forces on all six faces of the cuboid reduce to a singles force at P having components.

apxx N apyx N apxx | apxy N apyy N apxy , apxx N apyz + apzz Sx 8y 8z
OX fo/4 0z OX oz 0z OX oy oz

Together with a vector couple having cartesian components

{( pyz o pxy)’( Pxx — pxz)a( pxy - pyx)}SXSySZ

Consider the external body forces are (X Y Z) per unit mass at the point P. Then the total body force on
the element has components.

(XY Z)pdxdydz .

The total force component acting on fluid element P along the i-direction

0
P Pyx | Py |5y Sy 5z + pX Sxdy 8z
OX 8y 0z
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Let g(u v w) be the velocity at the point P at any time t, then the equation of motion along the i direction

0
[5pxx + Pyx + agzx J5x5y62 + pX OX Oy 67
z

OX oy
=(pdxdydz)—
0
or apxx pyx +apZX +pX =pd_
x oy @
Since u=u(xyzt)

du ou ou ou ou
=—4+U—+V—+W—

and —=
dt ot ox oy oz

Exam Point: Above discussion is just to have an idea about how these equations are coming out .
Ultimately we need to remember below final equations for exam.

Thus we have the equations of motion in the direction of i, j and k

0
or Uy 1 P, Pox | Py
dt P M
0 0 0
or Yy L Py Py Py
dt pl ox oy oz
or 7,1 P +8pyz + Pz
dt pl ox oy 0z

Can be represented in tensor form

op 1
— 2+ = X =Ry |
t p

(i1=12,3)
Where x; = the co-ordinate
u; = the velocity components.
X1 = the external body force components.

Newtonian fluids.

The fluids in which the stress components are linear functions of rate of strain components are called
Newtonian fluids.
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Navier — Stokes equations of Motion of a Viscous fluid.

We know that the equation of translation motion of fluid element is

0
Wy ) P Pox oy | (i)
dt pl ox oy oz
We know that
ou oV ou ou ow
=—p+2u—+2AA, =u| —+—|, =y —+—
Pxx p+ Max"‘ Pyz H(ax"'ayJ Pzx H(@Z+8X)

Substituting the above values in (i), we have

du 1_5( au j of (v au) o (8u awj
—=X+—| =] -p+2u—+AA |+ — | —+— |+ —| —+—
dt p| ox X oy | \ox oy az| \az ox

o Wyl ﬁﬁi{zu%+Mj+u£[@+a_“]+u2(5“ﬂvﬂ

dt " p| x ox oylox oy) Talar ox
or d—u=X—la—p+vA2u+ v+& . .a(10)
dt p OX p ) OX

Since A= —%u for compressible fluid and A =0 for an incompressible fluid, then (ii) reduces to

d—u=X —l@+vA2u+lva—A
dt p OX 3 OX

Thus the equations of motion along the co-ordinate axes are given by

as V:E
p
o vilroBL R
P P P
_k 2p
p 3p
==V
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d_u: X —1@+vAzu +1va—A
dt p OX 3 ox
Similarly Ny 1R, a2y 1A ......(iii)
dt p oy 3 oy
and d—W=Z —1@+vAzw+lva—A
dt p oz 3 ox

Known as Navier-Stoke’s equation of motion.
These equations can be written in tensor form as

o 1

1
at = Xl *E plj +Vuij +§VVij

The relation (iii), can also be represented in vectorial form

i—?:FVI%+VV2q+§vV(V.q) .....(iv)

Where q=(xyz) and F=(X,Y,Z)
{Sinoe d—?=@+(q.v)q=%+V(%q2)~qx(qu)

{and Vx(Vxq)=V(V.q)-V%q

Thus the equation (iv) reduces to,

0 1 d 1
£+V(Eq2]qx(v><q)= F VJ.?p—i-V[V(V.q)Vx(qu)]-i-éVV(V.q)
o 1 dp 4
£+V(§q2jqx(v><q): FVJ.?p-i-gVV(V.C])VVX(qu) V)

Which is another form of Navier-Stoke’s equation of motion.

For incompressible flow, the relations (iv) and (v) reduce to

d_q: F —EVp+vV2q
dt o

=F71foVV><(V><q). cen(VI)
p

Boundary Conditions:
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The equation (vi) represents that for an incompressible flow the equation of motion differs from Euler’s
equation of motion in inviscid flow by the form —vV x(V xq). This term arises due to Viscosity which

increases the order of differential equation and therefore and additional boundary condition is needed.
This is satisfied by the condition that there must be no slip between a viscous fluid and its boundary.
So at fixed boundary g = 0. It follows that the normal and tangential velocity components both must

vanish.

Equations for vorticity and circulation.

We know that the Navier-stoke’s equation of motion is

aq 1,5 1 2
—~4+V|= — \V4 =F-=Vp+WwW
ot (ij qx( xq) 5 p q

Let the external forces are conservative and density is a function of pressure only.

Then £=Vxq
or %—qx&:—V{QijdeJr%qz}thzq

Taking curl of both the sides we have

curl%q . curl(q X E) =V CUII(VZQ)

or it—g+(q.v)i(i.v)q=vvzé
as div. ¢
=div. cural q
=0
d¢ /- —5
or E:(C'V)q +VW2

Which is known the equation to vorticity.

Let T be the circulation round a closed circuit,

then I'= j cudx + vdy + wdz

DI D

or — =
Dt Dt

Icudx +vdy + wdz

br =IC(de+Edt+%dzj+Ic(udu +vdv +wdw)
Dt Dt Dt Dt
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{The second vanishes as circuit being closed.

or E:fc 9 E+V dx—i E+V dy—2 B+V dz+v(V2udx+V2vdy+V2Wdz)
Dt oX\ p oy\ p oz\ p

=_fcd(£+Vj+vjcvz(udx+vdy+wdz)
p

=vV2ICudx+vdy+wdz
{as szcudx+vdy+wdz

= VT (other integral vanishes for a closed circuit)
Equations of motion in cylindrical polar coordinates.

We know that the Navier-stoke’s equation is

%+V(%qzjqx(qu)

=F71Vp+VV><(V><q) ()
p

Let (r, 6, ) be the coordinates of a point, then it reduces to

d g’ 8 14p

a T

dt r rod proo 200 r?
d oQ 10p 2
and — =——-——+W
dt(qz) oz poz 4z
where i—ﬁ+q £+q i+q 9
dt ot "or Yroe oz

2 2 2
and vzza—zﬂ-laﬁﬂ-iza—z'f'a—z
orc ror rcoe° oz

(i) Spherical Polar Coordinates.
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2 2 oQ 1lop 2 2qr coto 2 8qe 2 8q¢
+0y2 | =—— -2 4v|V S e, Pt .
¢ ) 0 ( A 2 72750 1 Zsino o

Note: Navier Stoke’s equation can also be written as

ﬁngrad.(lvzjzv ><co:—F—1 grad.p+vV2V
ot 2 p

Now curl V =2(&,n,¢)

zz[%_a_nj
oy oz

_Ofov_ou _ﬁ(a_u_a_wj
“oylox oy) az\oz  ox

6[8u v, ow

—Viu=-va
OX\ OX ay o

Thus the equation reduces to, if F = —grad. V

or g—Zcho——grad p+V+1V2 —2v curl ®
ot p 2
g, coto P
and %_4)—4_%:_1@_1 ap +V V _q—e+£%_ﬂ&
ot r r roo proo r’sin®0 . r2 @ r?sin?0 0¢
0] coto
&+qrqe+qe% _ QQ 1 _6p iy V2q¢— Uy N 2 %Jr 2c0s0 dgy
ot r rsinfop p rsin 0o r2sin20 r2sind éd  r2sin@ 00
where E—g+q 0 +q 0 +q
dt ot "or °roe ' rsinod
20 cotd o 1 9 1 &

andv? ="+ "4 —_—t
o rar 12 o9 r2o0? r2sin?e o’

(iii)  Orthogonal curvilinear coordinates.

We know
= (hydy ) +(hpdi, ) +(hedg )

1 5¢ 1 0
then Vv 1%, L
Y TR WL h3 o
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hlp  homy gy
1 0 0 0

Thihhg|oh Oh, Ry
R hF hhR

VxF

Energy Dissipation due to Viscosity.

Consider a particle of viscous fluid of fixed mass pdv moving at any time t with velocity g.

R . d 1 2 dqg
The kinetic energy is = —< =(pdv =pdvVQg.—
gy dt{z(p )q} POV

Thus the total rate of gain kinetic energy of the entire fluid of volume V is

dq
= | — |dv
jqu(dtj

= pjv q.(%)dv for an incompressible fluid.

We know that the Navier-stoke’s equations for a viscous fluid is
dq 1 :
—=F—=Vp-VvVx(Vx N (1
= VP (Vxa) (i)

Multiply both the side of (i) scalarly be pgdv and integrating over the volume V of the fluid.
d
J'qu.d—qdv=Iq.dev—J.V.(pq)dV—v.qu.{Vx(Vxq)}dv
t
Thus the rate of energy dissipation (E) due to viscosity is
Ezujvq.{Vx(qu)}dv {asv:E
p
We know that
{V.{q xcurlq) = (curl q)2 — q.{V X (V x q)}}
— 2 _
or E—ujv(qu) dv uIVV.(qxcurlq)dv

E= uIV(Vx q)2 dv—uJ.sn.(qxcurl q)ds

{Changing from volume integral to surface integral

(where S is the total surface enclosing the volume V).
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When the boundary S is at rest, and there is not slips between fluid and boundary.

Then g = 0 on the surface S
thus E= uL(V xq)°dv = pj'v(curl q)°dv = ujqudv

Ex. 1. Prove that

(vv2 - %)vzw = %

Where v is a stream function for a two-dimensional motion of a viscous liquid.

We know that the Navier stoke’s equation for compressible viscous fluid.

oq 1 2
—+(q.V)g=—-VpxwV
= H(@v)a S VPxWid
(since external body forces are absent)
or %—qx(qu):—V{§+%q2]+vV2q ()

Taking curl of the relation (i) both the sides, we have

%fcurl(q xa) =V curl qu
{as C=Vxq
or %Jr(q.v)i(i.v)q:vvzé )

Since there is a two dimensional motion of a viscous fluid then
q=(v,0)
and £=(0,0,¢)

Now (ii) can be written as

2 0z _[,,0 0|z
(vV _5jc_(u6x+V8yJC .....(1i1)

The stream function y exist, then
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or (;:VZ\V

Substituting the value of ¢ in (iii), we have

(vv2 —ﬁjvzw v& %
ot oy - ox

Zw W 9 ya,

or (vv2 = .
ot oy ox

at oy ox

)

-
or (VVZ —QJVZ\V L (VZW)—Q(W)Q(VZW)
)

or (vV2 9
ot

Ex. 2. Prove that, in the slow steady motion of a viscous liquid in two dimensions

VV2\y = % - % where (X, Y) is the impressed force per unit area

We know that the Navier-stoke’s equation of motion is

aq

1 ) .
V)ig=F -=V \AY (|
5 tav)a VP (i)

Here gt—qzo, motion being steady. Also the inertia term (q.V) g is negligible, that of slow motion.

Since the motion of the liquid is in two dimensions, so
F = (X Y) = Impressed force or external body force
= (u, v) = Components of the velocity.

The equation (1) reduces to
1 2 .
F-——Vp+vwq=0 .....(1)
p

Taking curl of the above relation, we have

Curl F + vW2curl g=0

or  CurlF+wW2¢=0 ....(iii)
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Thus i:%—@.

oy

Since 3 astream function v , therefore, we have

v

oy
]
5= Y

From (iii), we have

Curl F=—wWhy

or VV4\V =—Curl F
or Why = X
oy oX

Ex.3. Prove that for a liquid filling up a vessel in the form of surface of revolution which is rotating
about its axis (Z-axis) with angular velocity o, the rate of dissipation of energy has on addition term

2u0[ [(1Du +mDv)ds

Where D =(y%— x%),(l,m,n) are the direction cosines of the inward normal.

Since the liquid rotates about Z-axis with an angular velocity o.
Here uU=-owYy,v=w0X,w=0.

Consider the additional terms is

=4u”.[(%,%u—%u.%}dxdydz ()

:4Hj”{§[v%“j—%[v%j}dxdydz

4“”{|V§mvg—i}d5
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_4u”v[|——m st
_4u“v[I5+ngdS

=4uw_”x(I%u+ m%)ds .....(i)

{as v=wmx
{from the equation of continuity

0] can also be represented, as follows

52) oo
- aff{m )
(2 1
-l 2

{as u=-owy

[y ( _+'_de ... (i)

Taking the mean of (ii) and (iii), we get

= 20| [(1.Du+m.Dv)ds
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Laminar flow between parallel plate.
By laminar flow we mean that the fluid moves in layers parallel to the plates.

Consider the two-dimensional laminar flow of an incompressible fluid of constant viscosity between
parallel straight plates.

In order to maintain such a motion, the pressure difference in the direction of axis of X, i.e., along the
plates must be balanced by the shearing stress.

Y
A
—>su=U
VITVIIVI VIIIIIVIIIIVIIIIIIIIIIIIIIIIIT]
—>1u
0 X
N
dx
ITITTITITTIITI T T I T T T T T T T T T T T T 77777
u=o0

A flow is called parallel if only one velocity component is different from zero i.e., all fluid particles
move in one direction.

Here for parallel flow, we have

u=u(xyt) and  v=ws=0everywhere.
Also, p=pXx V1)
. ... au
The equation of continuity is: x =0 {asv=0=w

— that the velocity component u is independent from x.
or u=uf(y,t

The equation of motion is given by

ou op o .
—=——tu— (1
P~ T Y (M)
Also p=p(xt)
We see that t(ij_p must be a constant or a function of t, Since p is not a function of y and u is not a function
X

of x.

Integrating (i) with regard to y for steady flow, we have
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2
x o oy?
2
or G_szzia_p (i)
oyc uox
or @:lé—py+8
0y poX
2
or u=l.@.y—+8y+A
pnox 2
1 dp 2
or Uu=—.—Yy +By+A
2u de y

where A and B are arbitrary constants to be determined by the boundary conditions.
Case I. Plane Couette flow.

Here we shall determine the solution of equation (ii) between two parallel plates when the upper plate
is moving in its own plane with a velocity U and the lower plate is stationary i.e., at rest.

Here % =0; one wall is at rest and other is in uniform motion.
X

The boundary conditions are: y = —%,u =0and y= +%,u =U

From relation (iii), we have

Oz—%d+B and U=+A—2d+B

Solving these two, we get

A=E and B:E
d 2

Substituting the values of the constants A and B in (iii), we have

Uu u u( 2y)
Uu=—y+— or u=—|1+=-
d 2 2 d

Such a flow is known a plane couette flow or shear flow, when the upper plate is moving with velocity
U. The velocity distribution is linear.

Case. Il. Plane Poiseuille flow.
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. . dp .
In this case the pressure gradient d_p is not equal to zero but both the plates are at rest
X

i.e., g—p = Constant. The boundary conditions are : y = —%,u =0andy= +%,u =0

X
2
From (iii), we have; 0= id_pd_+ A9+ B
2undx 4 2
2
and Ozid—p.d——A9+B
2undx 4 2
whichgivess A=0and B= _Ldp g
u dx
Substituting the values of the constants A and B in (iii),
u= id_p 3 ,i%dz
2u dx 8u dx
2 2
or TR PV o ) u=up, 4y
8 dx d? d?
where Up, __Ldpge
8u dx

is the maximum velocity in the flow occurring at y = 0.

The velocity distribution is parabolic in the interval between the two plates.
TY a2

5

~
e

X um max
velocity d2
FrIrrrrrrrrririrrrrrrrrrrrririririirsy
(Parallel flow with parabolic
velocity distribution)

Case I11. Generalised plane Couette flow.

In this case the pressure gradient d—p is constant and one plate is at rest, the other plate is in motion.
X

The boundary conditions are given by

d d
=——,u=0 and y=+—,u=U
y > y 5

Then from (iii), we have; 0= 2——.—— A—+B
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=— L —+A-+B
2undx 4 2
2
Which gives A:E and BzAg—i@.d—
d 2 2udx 4
2
or gt d-dp
2 8udx

Uzi—y +_y+____ (IV)
U

Total flux across a plane perpendicular to X is
d/ d/ 2
j ? Udyj ? id—on2 Jr!yﬁtg—d—d—IO dy
-d/2 -d/2 | 2u dx d 2 8udx

3 2 2 6/2
_|ldpy Uy U d°dp
2udx’ 3 d 2 2

3 2
_1dpd’ ud d?dp

2udx 12 2 8udx

3
[ ugy =94 d° dp )
—d/2 2 12u dx
Differentiating (iv) with regard to y, we have
du_1gp U
dy pdx d

d
At —t—
Y=

X

=(ud—ujy = i% =[&i%d—pj per unit area.
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Laminar flow between concentric rotation cylinders. Couette flow.

Consider the two-dimensional steady flow of an incompressible fluid between two concentric rotating
cylinders.

Let a and b be the radii of the inner and outer cylinder respectively, and m: and w. be their angular
velocities.

Here the components of velocity in cylindrical coordinates are given by
u=0,v=v(r),w=0and p=p(r) )

Substituting these values in equation of motion, we have

2
S el  AQ@P) MINDSET (ii)
r p or
and OV I v (i)
e
and @zo ...... @iv)
oz

Let any point P the angular velocity be o then v=wr

dv do
or —=0+r—

dr dr

d’y do do _d’0 d’o . dw
and — = + — =7

dr? dr dr  dr? dr? dr

From (iii), we have

r— 242,22, 0 Py
dr? dr dr r r

d?e _do d?w/dr? 3

or r—+3—=00r ———=—

dr? dr dw/dr r
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By integrating, we have; log (i—mj =-3logr+logA
r

or do_A o wsB-2
dr 3 2r?

The boundary conditions are

| r=a,0=0

Il r=bo=0,
A A
or =B-— and 0w, =B-—
L 282 2 2h?

Solving the above equations, we have

2a’p’ (a)1 —a)z) w,b’ —w,d
A= ————andB=————
a’-b b° —a
Substituting the values of the constants A and B in (v), we have
b -—ed b (0,-0) 1
- @ bP-d

If the inner cylinder is at rest, then @, =0

P b2 2__ 2
So — Or co:wzz .rz 612
4u r° b°-a

There will be the tangential stress Pre only in the fluid

i.e Pre = av_v
- a dr r

(o)
Pre= u| o+r—-w
dr

do
Pre = ur—
H dr

Its moment about the axis is given by

do do A a’b’
=2nr(Pre)r =2zr’ pr—=2mur’ — =2mur’. == 4nu,—— (v, — o
(Pre) Plar =™ ar = 'uaZ—bZ(I 2)
212
= 47z,u,ma)2 {@,=0 as the inner cylinder is at rest.
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Hagen-Poiseuille flow in a circular pipe.

Here we shall consider the steady laminar flow through a long straight pipe of circular cross section.
We know that the shearing force on the surface of any cylindrical shape of fluid must be balanced by
the difference of pressure between the ends.

Let Z-axis be chosen along the axis of the pipe.

\§

—>4.

P < j >7
V-
= ] >

Consider g, be the component of velocity parallel to the axis of pipe when is a function of r only.

The velocity component in the tangential and radial directions are zero.
Equation of continuity in cylindrical coordinates

aa& =0 ...(i)=that g is independent of z or a function of r only.
/A

Also the equations of motion in cylindrical coordinates are given by

2
'q,  1dq._dp ...(ii)
dr? r dr dz
and P _p. 1% _, .. (iii)
or r oo
Since the velocity g, is a function of r only and the pressure p is independent of r, therefore the
pressure gradient Z—p must be a constant and let it be equal to P ;p L from relation (ii), we have
VA
d’q, 1dq, _p,—p,
dr’ r dr ul
or 1d( dq,\_ pi-p,
rdr\ dr ul
or rd& Pi7Dzpz g
dr 2ul
Or 44, _Pi=p; reed
dr 2ul r
Or 0 =— Pi7P: o +Alogr+B ..(iv)
4ul

The velocity is finite at r =0, so A must be zero. The boundary condition is

r=a g, =0.
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Then (iv) reduces to

o=_PiTPpz g o il S
4ul 4ul
pl_pz 2 2
Then =—>*(a" -r
©= (a®—r?)

Since the maximum velocity occurs on the axis, then

(4,),,, = p4 i)z a’ (as r = 0 on the axis of the pipe)

The volume Vj of the fluid flowing through the pipe per unit time is

Vo=l(qz) za’ Or Vozl Pi7Pz g2 | pg?
2\ 1 mox 2\ au

or Vg ﬂ-a pl pz
8y |

This relation was obtained experimentally by Hagen and afterwards independently by Poiseuille. With
the help of this relation, the coefficient of viscosity of the fluid can be determined.

Again total flux across any section
= J.anZﬁrdr = ZEMIG(GZ —rz).r dr =P17Pz 4t
0 4ul Yo 8ul
and the drag on the cylinder is

= zﬁalﬂ{pzyfz( Zr)} =ra*(p,-p,)

Steady flow between co-axial circular pipes.

Let the flow take place between two co-axial cylinders of radii a and b (b > a). Consider the inner
boundary have a velocity V while the outer is at rest.

The boundary conditions arer = a, g:=V andr = b, 0:=0

Then as we have from previous discussion, we have

o 7] a’+Aloga+B
4ul
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and 0=P1=P2 12 4 lobb+B
4ul

Substituting the values of the constants A and B in relation (iv) § 9.91.

Iog(rj
V b _pl _pZ

a 4ul
[ s
Qg(bj

0z =

The flux relative to the fixed boundary is given by

Lb q,.2xrdr

_ b —a?)
= 7Z'V —b—az +8i.p1 Ipz b4—a4—%
Iog(j H Iog(}
a a

Steady flow in tubes of cross-section other than circular.

Consider the axis of z along the axis of the tube. Let the component of velocity w is a function of x and
y but not of z, and that u=0=v.

The equation to continuity reduced to

ow
—=0, 4
P (1

—>that w is independent of z i.e., a function of x and y only. There are no external forces and the inertia
terms vanish in steady motion, then the equations of motion reduce to,

a—pzo and 8_p=0 ...(i0)
19).4 oy

o’w o’w) op
and —+ =—
,u( ox? oy’ ] 0z (i)

Since w is independent of z, p is independent of x and y then in steady flow along a tube the pressure
gradient Z_p must be a constant, let it be equal to (—P).
A
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2 2
then ow ow_P (i)
ox: oy u

with a boundary condition w = 0 on the surface of the tube.

Consider w = 1—4& (x* + y?), then A has to satisfy the equation
)7

oA 0°A
ox° oy

. .. P
with the boundary condition A= o (x? + y?) on the surface of the tube.
U
Thus to solve the problem for a particular boundary we consider

w= A - {ozsla—wzl.d—w(x2 +y’) +B ..(V)
yor r dr

where B is an arbitrary constant, A is a suitable solution of the two dimensional Laplace’s equation.
The constant B can be determined by applying the condition w = 0 on the surface of the tube.

(@  Elliptic section.

2 2

Let +=—<1

QN| >
S

Consider w=A (xX*~y?) + B — % (x> +y?) ...>0)

Since on the surface of the elliptic section

XXy ..
a_z+21_2:1 ...(i1)
On the boundary w=0
then [i—ijz +(i+A)y2 =B ...(iii)
4u 4u

This required that, from (ii) and (iii), we have

| L—al=p| L ial=B
4u 4u
AP a’ b’

B P a -V
4u @’ +b*

Or = - =
2u a’ +b’

and

Substituting the values of A and B in (i), we have

W= P az—bz (XZ _y2)+ P Clzbz P (X2+y2)

4y @ b 2ud +b 4u

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

2 32 2 _ 32
or Wzi,u{ulu(xz_yz)
a

212 2 2
2u a’+b a b

Flux of the fluid over the area of the ellipse is given by

:Hw dx dy = Z aaf; .U( _X_Z_ de dy

Tl LU s E

212 2 2
=ig—b2 zab— 1 7rab——i 7Z'Clbb
2ua“+b a’ 4 b 4

_P @y 1, 7P @b
2ua’+b’ 2 47 a’ +b’

(b)  Equilateral triangle.

Consider
w=A(x3+3xy2)+B—i(x2+y2) ...(0)
4u
Since w = 0 at all points of the boundary, then from (i), we have
2 2 P 2 2\ — ..
AX —3xy)+B- — (X" +y)=0 ...(i1)
4u
If X = a be a part of the boundary, then

A(a3—3ay2)+B—i(a2+y2)=0
4u

2
P
or A*+B- L _pand 3aA- ——=0
4u 4u
P 2
Thus A=— and = —Pa
12au 3u

Substituting the values of A and B in (ii), we have

or x*’-3xy*+3ax’ +3ay’ —4a° =0
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Or (x—a)(x+2a—3y)(x+2a+ 3y)=0.

Therefore the boundary consists of

X=a,x+2a—«/3y=0 and X+2a+«/3y=0

or X=ay= —=a and y——ix+ﬁ (iii)
NERc NERRNE]
Which forms an equilateral triangle
So w=- P (x3—3m/+3@ﬁ—4aﬂ
12au
Flux of the fluid over the cross-section is
jjwdxdy
A
Y
av3
30° 24 a -
P 0 g
a3
B
= ﬂ.x —-3xy° +3ax’ + 3ay’ —4a’ ) dxdy
12ay
X+2a
. 5 e J3 2 qa 9a°
*(i) ”x dx dy—J:Zux (J/)_X+Za N —ﬁjﬂ (x+2a)d 555
Nl
xX+2a
. , . 5 J3 2 qa » 2la°
(i) 3”xy dx dy—fx(y )_x+2a ] —mj_hx(x+2a) 5\/_
5

(i) 3a”(x2 +y2)dxdy = 3a (sum of the moments of Inertia)= 3a (é .3a.a+/3)

3a® 3d°
+ 9\/§ a

4
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) P 9a° 27a° 27a° 36a°
(iv) 4d’[[dx dy = 4a® 3a.a3=123d° =- - - + -
I 1zan| 55 55 A3
o
203 u

27

PP 2
Average flow = Flux _ 103 _ 3 Pa

rea 1302005 20 4

Steady motion due to a slowly rotating sphere.
Consider the component of velocity are
u=-wy, v=wxand o =0
where @is the angular velocity and is a function of r (r> = x* + y? + z%) only.

The equations of motion are; (neglecting the squares of velocities)

Or 0=@+/N2u ...()
ox
Or 0= 0=@+;N2v ...(i1)
ox
Or 0:6_p ...(1ii)
0z

Since —=—y—o0or—=-y—

Or =Y —wor_—=-y

and —=—y—

y
or Viu=- do gd_a)+£d_a) ; asla—wzl.d—w
dr r'dr rdr|’ yor r dr

op d’w 4do
or 0--2_ Adw
ox #y(drz 4er

Now the equation (i), (ii) and (iii) reduce to

2
0:a—p; 0=—@+/1x d Z)+fd—w _0:6_p
0z oy dr® rdr

’ 0z
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Viscosity
These are satisfied by p = constant.

the d ?+ 4do =0
dr® rdr
By integrating, we have
re (:jm =A Or C(;—w = A4 Or o= Eg +C...(iv); (where B and C are arbitrary constant).
r rr r

Let the motion is produced by a solid sphere of radius a rotating with angular velocity Q and the
liquid extends to infinity, we have

C=0,B=a’Q
3
So = a—SQ
r
If there is an outer fixed concentric sphere of radius b, then the boundary conditions are
| r=a o=Q
Il r=bo=0
From (iv), we have

Q:E3+C And O:EZ+C
a b

33 3
or sz i -Qor C=+ a Qb
Substituting the values of B and C in (iv), we have
a®b® 1 a® a’Q b*-r’
Sp R e gt e es—
b*—a r° b’- r* b’-a’

EXx. 4. One surface (nearly plane) is fixed and another near surface (plane) rotates with angular
velocity m about an axis perpendicular to its plane and there is a film of viscous fluid between
them. Prove that the pressure p in the film satisfies the equation

2 2 3 3
h[ap 1op 18pJ+m6p+lah P _ g0

4 — w—,
o’ ror o0’ ) earor rraooe %

where (r, 0) are polar coordinates in the plane of the film, the origin being in the axis of rotation,
and h is the thickness of the film.

Consider any point (x, y) on the upper surface
then =— oy, V= oX
The total flux across a plane perpendicular to X-axis is

3
J. udz =—hU _h o {Ref. equation (v) Case Ill

12 ox

1 h® op .
=—=hoy— — (i

2 " Torl ox )

Similarly the total flux across a plane perpendicular to Y-axis,
3

[[ vdz L (i)
0 2 12 oy
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Now from the equation of continuity, we have

3 3
g _lh(oy_h_@ +£ lho\)x_h_@ =0
ox| 2 12n0x| oy |2 120 oy
or h* (o%p  &%p L ah® o oh® op
12, ox 8X 8y oy

zlw(xﬁ_ya_hJ ...(iii)

then gzcosei—wi
OX or r 00
and i=sin ei-i-@i (iv)
oy or r oo
0 o 0 10 1 o7
aISO —2+—2:—2+——+—2—2
ox® oy° or° ror r°oo

Substituting the results of (iv) in (iii), we have

hS(a2 10 162] 1{[ o’ sineah3]
—| —S+-—+5— |p+—1| c0SO— —— —

12uler® ror r? o0 12u o r 00
& 3
cad eap sinf op smeﬂ cos6 oh® sin a_p+cose@
or r o0 or r o0 or r o0
=1w rcose(sm(—)@ coseahj rsme(cose@——sme@j
2 or r o0 or r 00
0 10 1¢6° onh® 6p 1 0h® op ch
or —St-—t 5= —_— —2— — =6un—-
o’ ror r?oo or or 00 00 00
Viscosity

Ex. 5. A liquid occupying the space between two co-axial circular cylinders is acted upon by a
force ¢ per unit mass, where r is the distance from the axis, the lines of force being circles round
r

the axis. Prove that in the steady motion the velocity at any point is given by the

< b2 Iog(b) rIogL
2v|r’b - a

where v is the coefficient of kinematric viscosity.
Consider the axis of the cylinder be the z-axis. Here
g=0=q;
and g is independent of 6 and z i.e. it is a function of r only.
So Jo=ro {g. = 0 considering the cylinders to be sufficiently long.
where o is the angular velocity of the liquid at the point (r, 6, z).
thus the equation of motion for viscous fluid reduces to

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

2
o o -2=
o ror r vr
2
o ot 2=
or: ror r vr
d’0 .do C
or ——+3—=——

2
or 3d—w+Cr =A
dr 2v
do C A
or — =+
dr r r
C A .
or =——Iloglr——+B (i
@ 2v g 2r? 0

where A and B are arbitrary constant.
The boundary conditions are,

I o=0, r=a

Il. w=0, r=h.

Now the relation (i) reduces to with the help of condition I and 11,
C A .

0=——Iloga——+B (Ll

oy 98 i
C A

or 0=——logh——+B. (1
Tt 2b® (i)

By subtracting, we have
C All 1
0=—(logb-loga)-—| 5 -=
2v( g 9a) 2(&12 sz

Ca’b? Ebj )
or A=——log| — |. (v
v(bz—az) 92 W)

Form (i) and (ii), by subtracting, we have

coz—g(logr—loga)—é 1
2v 2\r* a®

r- a
C Ca’h® a’-r? b )
or =——/(logr-loga)- . log| = | {from (iv
® 2v( gr-lega) 2v(b®-a*) ra’ g(aj{ W)
or m—_£|og(£]+£ﬂb_2|og(9j
2v a) 2v b’-a% r? a)
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Thus Qo = rw

__zk)g(ij_i_gﬂﬁk)g(gj
2v a) 2v b?*-a’ r a

C|r’-a*> b’ b r
- -~ log| = |-log| — |\ Proved.
ZV{bz—a2 r g[a) g[aj}
Ex. 6. Incompressible viscous liquid is moving steadily under pressure between planesy =0,y =
h. The plane y = 0 has a constant velocity U in the direction of the axis x, and the planey = h is

fixed. The planes are porous, and the liquid is sucked in uniformly over one and ejected uniformly
over the other. Show that a possible solution is given by

(Ue"* + Ah)—(U + Ah)
eh/a -1

where v is the kinematic coefficient of viscosity. Determine the meaning of the constants A and
a.

U=

+Ay,v=X
a

Since the planes y = 0 and y = h are taken infinitely large, the velocity components (u, v) at any
point (x, y) will be independent from x. Thus the equation of continuity reduces to

N _g (i)
oy
or V = constant = ! .
a

The equations of motion are
Z
Vdu | lop o<u

d_y —E&JFVW- ..(ii)
and 0=_19p, ..(iii)
p oy
The boundary conditions are,
l. y=0,u=U
1. y=h,u=0.

Substituting the given value of u and the value of v= Y inthe equations of motion (ii), we have
a

v{ 1M+A}: 14p

al a e’ -1 p X
1 (U +Ah)e"? _
+V{—¥W ...(lV)

e NV__ 1P e @z—AVp e P__Au

a p OX OX a OX a
p=—&x+B

a
»

which also satisfies the condition (iii), Y =0
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Hence the given velocity components satisfy the equation of motion, and forms the possible
solutions.

Consider the mass of liquid sucked per unit area per unit time at y = 0 be m, then m = pv

Vv
m=p—E {as = pv] ora="1.
aa m

Substituting the value of a in (iv), we have

Ae 130D A BBy

pvVox mpv dx m ox

18p_

Ex. 7. Viscous liquid flowing steadily under pressure through an infinitely long rectangular tube
whose axis is parallel to the axis of z. The sides x = 0 and x = a are smooth and the sides y =0, y
= a do not permit of slipping of liquid in contact with them. The pressure gradient Maintaining

Qa’

the motion is suddenly annulled. Show that the total flux across any section is 10 where Q is
v

the flux per unit time across a section in the initial steady motion, given that

>t
= (2n+1)° 960
Since the rectangular tube is infinitely long and the sides x = 0 and x = a are smooth. The velocity

component w of an element at (x y z) parallel to Z-axis is a function of y only, the other two
components u and v are zero.

AY
y=a
x/=0 / x=a
y=0 o
4
The equations of motion reduce to
o’'w  op .
—=— N (
H Y 0)
and a—p=0=a—p- (i)
OX oy
Integrating (i), we have
ow  op
—=—VY+A
u oy oz y
or uw=l@y2+Ay+B .. (i)
20z
The boundary conditions are
Lw=0,y=0andIll.w=0,y=a
which gives from (iii),
1,

B=0and A=—=a
2 0z
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or (y - y) P, ..(1v)

Thus flux Q = J' (ady)
a op (e e aodpfa® a’ a* op
or = —a d ; = ——— ; [
Q= ZMGZJ(y y) yiQ ZMGZ(B 2 Q 12u oz
o _ 12pQ
Or - = es
1 12 .
So pw = — 2(y ay) “Q Or w= ?y(a y)....(vi)

When the pressure gradient is suddenly annihilated, the equation of motion becomes

2
M_ oW {Hereu=0=v ...(vii)
ot oy
Consider w=f (y)e™" be the solution of (vii), then
2
6 afy(zy) — _k2f (y)

which shows that f (y) is of the from cos ky or sin ky

or w=> Ake

{COS Ky (i)

sinky
_ : Q
Att=0, we have; w=—y(a-y).
a’
Expressing y (a —y) in the form of Fourier Series 0 <y < a,

. sin(2n+1)™
83’ sm(n+)a

we have y(a—y)=—-
T

& (2n+1) -

Consider k =(2n+1)§

6Q 8a’ SN(2n <) M)
Thus w for any time t is given by; W:?-—2 a é
T

— %0
n-1 (2n+1)

Thus the total flux is

vt(Znﬂ

_ o0 a _ 48Q
_L:O.[V:O(ady yw.dt = 2 nz_l: (2n 1) I

] I sm{ 2n+1)ny}dy

a
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w'a vi' o (2n+1) \/(2n+1)2 (2n+1)§
a

48Q 2a’ az 1 1 2

48Q 2a° a5 1 _96Qa22 1 9Qa’> n° Qa’

(2n+1)6 v (2n+1)6 ~ovr® @ B 10v
PREVIOUS YEARS QUESTIONS
CHAPTER 6. NAVIER STOKES EQUATION

a vt

QL. Find Navier-Stokes equation for a steady laminar flow of a viscous incompressible fluid
between two infinite parallel plates. [8c UPSC CSE 2014]

Q2. For a steady Poiseuille flow through a tube of uniform circular cross-section, show that
w(R)= 1[3](& ~R?). [7Ta UPSC CSE 2011]
4\ u

Note: The beauty of systematiC learning is- You’ll find solutions of almost every PYQ in above
examples or questions attached with detailed answers. So to avoid repetition in this book, we have not
put those solutions again as answers to PYQs.
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