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BRAIN STORMING: Fluid Dynamics UPSC CSE & IFoS 
 

 

 

 

ˆˆ ˆ( , , ) :   P x y z r xi yj zk  

∴ ˆˆ ˆ  
dr dx dy dz

i i k
dt dt dt dt

  

vel. Vector; ˆˆ ˆ  q ui vj wk  

u; vel. component of q  in x-axis 

v; vel. Component of q  in y-axis 

w; vel. Component of q  in z-axis 
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Basics form calculus required for fluid dynamics  

• Del operator ( ) = ˆˆ ˆ  
   

  
i j k

x y z
 

e.g. Applying    on some scalar function ϕ(x, y, z) means:- 

ˆˆ ˆ   
     

   
i j k

x y z
 

ˆˆ ˆ  
   

  
i j k

x y z
 

• Gradient of a scalar function ϕ(x, y, z);- 

 

Mathematically 

ˆˆ ˆgrad
  

    
  

i j k
x y z

 

• grad ϕ gives the direction; in which the change in ϕ; occurs most rapidly (greatest rate of increase)  

(–grad ϕ) : gives the direction; in which ϕ decreases most rapidly. 

 

Euler’s 

Eqn 
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• grad ϕ in spherical coordinates (r, θ, ϕ)  

ˆˆ ˆ
   rq q i q j q k  

Will be required in fluid  

So, let’s say f = f (r, θ, ϕ);  

then 

 

1 1
grad

sin
 

  
  
   

r

f f f
f e e e

r r r
 

where  

er = sin θ (cos ϕ î  + sin ϕ ĵ ) +cos θ k̂  

eθ = cos θ (cos ϕ î   + sin ϕ ĵ ) – sin θ k̂  

eϕ = –sin ϕ î  + cos ϕ ĵ  

• Gradient in cylindrical coordinates (r, θ, z) 

Let f = f (r, θ, z) 

1


  
  
  

r z

f f f
grad f e e e

r r z
 

Where er = cos θ î  + sin θ ĵ  

 eθ = –sin θ î  + cos θ ĵ  

 ez = k̂  

 

 

 

•Divergence of a vector field function :- 

 ˆˆ ˆ
   rq i q j q k q = ˆˆ ˆ ui vj wk = u(x, y, z) î  + v(x, y, z) ĵ  + w(x, y, z) k̂  

 

Div. : loss in the fluid per unit volume per unit time  

Let F  = F1 (x, y, z) î  + F2(x, y, z) ĵ  + F3(x, y, z) k̂  

 1 2 3
ˆ ˆˆ ˆ ˆ ˆ   

        
   

F i j k F i F j F k
x y z
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     31 2 ˆ ˆˆ ˆ ˆ ˆ  
     
  

FF F
i i j j k k

x y z
 

31 2  
    

  

FF F
F

x y z
 

  F  is known as divergence of F  

Notice ‼ grad is of a scalar function but grad itself is a vector.  

div. is of a vector function but div. itself is scalar  

• In spherical coordinates:-  

     2

2

1 1 1
sin

sin sin
 

  
     

    
rq r q q q

r r r r
 

• In cylindrical coordinates:-  

     
1 1



  
   

  
r zq rq q q

r r r z
 

 

• Curl of a vector field function:- 

As we know that 
1

2
w  curl v ; where v  is linear velocity  

w  is angular velocity  

i.e. curl is associated with the “Rotational” property in motion  

F = F1(x, y, z) î  + F2(x, y, z) ĵ  + F3 (x, y, z) k̂  

1 2 3

ˆˆ ˆi j k

F F
x y z

F F F

  
  

  
 

3 32 1 2 1 ˆˆ ˆcurl
F FF F F F

F F i j k
y z z x x y

        
           

         
 

Note:- We need mainly in cartesian form only (UPCS CSE / IFoS)  

• 

ˆˆ ˆi j k

q
x y z

u v w

  
 

  
 

 

• Spherical coordinates 

2

sin

1

sin

sin

r

r

e re r e

q
r r

q rq r q

 

 



  
 

   


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• Cylindrical coordinates 

1

r z

r z

e re e

q
r r z

q q q





  
 

  
 

• Laplacean operator (∇2);    

Let’s consider a scalar ϕ(x, y, z), then 

 2 ˆ ˆˆ ˆ ˆ ˆi j k i j k
x y z x y z

        
               

        
 

2 2 2

2 2 2x y z

   
    

   
 

• Cartesian form 
2 2 2

2

2 2 2

d

x y z

    
    

  
 

• Spherical co-ordinate system:  

2
2 2

2 2 2 2 2

1 1 1
sin

sin sin

d
r

r r r r r

        
        

         
 

• Cylindrical co-ordinate system 

2 2
2 2

2 2 2

1 1d
r

r r r r z

      
     

    
 

• Some important observations :-  

(i) div (curl F ) = 0 i.e.,   0F     

(ii) curl (grad ϕ) = 0  i.e.,   0    

(iii) A vector field F  is said to be “solenoidal” if divergence of F  is always (during motion) is zero 

 i.e., F   = 0  

i.e., there is no loss in the fluid per unit time per unit volume, 

(iv) A vector field F = 0F   

i.e., there is no rotation in F during the motion  

Interpretation ←  

i

t

function

we will take
or

in fluid dynam

hen there exists a scal

c

ar

s

st

F

F








 


       

 

↓  

If F irrorational; then there must exists a function ϕ such that F  is of the form grad ϕ. 
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If, 
1 2 3

ˆˆ ˆ ;F Fi F j F k   then ˆˆ ˆF i j k
x y z

  
   

  
 

i.e.; 
1 2 3, ,F F F

x y z

  
  
  

 

• Vector Integration  

• Line integral (1D)  

;
c

F dr  where c is the curve over which the line integral F dr  is being calculated   

e.g. 

 

C is a curve: parabola y = x2 form (0, 0) to  (1, 1) 

∴    1 2
ˆ ˆ ˆ ˆ

c c

F dr F i F j dxi dyj       

∵ 1 2
ˆ ˆF Fi F j   

ˆ ˆr xi yj    

ˆ ˆdr dxi dyj   

C: y = x2, from (0, 0) to (1, 1)  

   : dy = 2xdx 

   
1

2 2

1 2

0

, , 2
c x

F dr F x x dx F x x xdx


      

Or 

   
1

1 2

0

1
, ,

2c y

F dr F y y dy F y y dy
y

     

e.g. Line integral in 3D 

Let F  = F1 (x, y, z) î + F2 (x, y, z) ĵ  + F3 (x, y, z) k̂  

& path is x = ϕ(t), y = ψ(t), z = g(t);  

Where t is a parameter running; t = a to b. 

then the line integral  

   1 2 3
ˆ ˆˆ ˆ ˆ ˆ

c c

F dr F i F j F k dxi dyj dzk         

1 2 3( ) ( ) ( ) ( ) ( ) ( )

b

t a

F t t dt F t t dt F t g t dt


        
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Surface Integral:- 

ˆˆ ˆcos cos cosds ds i ds j ds k       

Where ds cos α, ds cos β, ds cos γ  

Are orthogonal projection of ds  on the yz plane, xz plane & xy 

plane respectively:  

So, ds cos   = dy dz, ds cos β = dz dx 

ds cos γ = dx dy  

Projection of above plate on some plane.  

ˆˆ ˆdS dydzi dzdxj dxdyk    

               ↓  

ˆˆ ˆn̂dS dydzi dzdxj dxdyk    

⇒ ˆ ˆ 0 0
ˆˆ

dydz
i nds dydz ds

i h
     


 

ˆ ˆ 0 0
ˆ ˆ

dzdx
j nds dzdx ds

j n
     


 

ˆ ˆ
ˆ ˆ

dxdy
k nds dxdy ds

k n
   


 

 

ˆ
s s

F ds F nds     

 

ˆ ˆor, or,
ˆ ˆ ˆˆ ˆ,ˆx y z x

dx dy dz dx dy dz
F n F n F n

j n i nk n
  


       

 

• Volume integral  

  1 2 3
ˆ ˆ( , , ) ( , , ) , ,

v x y z

FdV F x y z i F x y z j F x y z dxdy dz       

Or If F is a scalar f :  

( , , )
v x y z

Fdv F x y z dxdy dz     

V is the volume enclosed by the surface S 

• some important theorems: defining relation between line, surface, volume 

integrals : -  

(i) Gauss’ Divergence theorem(GDT):- 

Gives relation between volume & surface integral  
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ˆ div ;
s v

F nds F dV    when V is the volume (region) enclosed by a “closed” surface  

 

 

 

 

 

 

(ii) Stoke’s Theorem: 

Gives relation between line integral & surface integral  

ˆcurl ;
c s

F dr F nds    where c is a closed boundary enclosing surface S 

 

 

 

 

 

(iii) Green’s theorem in the plane (xy-plane)  

Let R be the region enclosed by closed curve c; then     

c x y

Q P
Pdx Qdy dxdy

x y

  
   

  
                                                                               
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                                                Fluid Kinematics 
Brainstorming 

ˆˆ ˆ ;q ui vj wk    velocity vector q  

TYPE-(I): PROBLEMS : “STREAMLINES” 

These are imaginary lines which are along the motion (in the direction of velocity)  

Mathematically,  

0q dr   (∵ q  is parallel to dr )  

⇒ 

ˆˆ ˆ

0

i j k

u v w

dx dy dz

  

⇒(vdz – wdy) î  + (wdx – udz) + (udy- vdx) 

 = 0 î  + 0 ĵ  + 0 k̂  

⇒ vdz – wdy = 0 , wdx – udz = 0, udy – vdx = 0  

Exam point 

dx dy dz

u v w
   

Gives equations of streamlines.  

 

Type II: Equation of continuity (conservation of mass) 

Flux:- “Rate of flow of mass” 

(i)    volume density
d d

m
dt dt

  

 
d

A x
dt

    

dx
A

dt
  ; As motion is along one axis i.e. x-axis 

= ρ . A. u , if ρ is constant   

(ii) In general; flux is written as  

q d A  ˆq ndA    

where n̂  is unit outward normal vector to the surface area A 

distance
Speed = 

time
 

for per unit time speed = distance length  

 

Mathematically; for equation of continuity (or conservation of mass)  

We have  
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ˆ
v A

d
dV q ndA

dt
       

⇒  div
v A

d
dV q dV

dt
     ; applying GDT 

⇒  
v V

d
dV q dV

dt
       

⇒   0
V

q dV
t

 
   

 
  

⇒   0q
t


   


 …(1) called eq. of continuity  

Supporting stuff from calculus:-  

   ˆ ˆˆ ˆ ˆ ˆq i j k ui vj wk
x y z

   
            

   
 

     u v w
x y z

  
     
  

 

u v w
u v w

x x y y z z

         
              

         
 

u v w
u v w

x y z x y z

        
         

        
 

 ˆ ˆˆ ˆ ˆ ˆi j k ui vj wk
x y z

     
        

     
 ˆ ˆˆ ˆ ˆ ˆui vj wk i j k

x y z

     
        

     
 

     q q q         …(2) 

Point to be noted:  

f = f (x, y, z, t)  

f f f f
df dx dy dz dt

x y z t

   
   
   

 

⇒
df f dx f dy f dz f

dt x dt y dt z dt t

        
        
        

  

⇒
df f f f f

u v w
dt x y z t

   
   

   
 

d
u v w

dt x y z t

   
   

   
 

 ˆ ˆˆ ˆ ˆ ˆd
ui vj wk i j k

dt x y z t

      
        

      
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**  
d

q
dt t


  


Exam point…(3) 

∵ ρ = ρ (x, y, z, t) 

E.g.    
d

q
dt t


   


 

⇒  
d

q
dt t


   


 

⇒  
d

q
t dt

 
   


 …(4) 

Using (4) & (2) in (1)  

       0
d

q q q
dt

 
          

 
 

  0
d

q
dt


     

 
1

0
d

q
dt


  


 ; Also an expression for equation of continuity 

   log 0
d

q
dt

      

Note:- If fluid is incompressible i.e., ρ = constant ⇒ 0
d

dt


  

Then equation of continuity is ( )q = 0  

Exampoint:- For an incompressible fluid ; (steady flow)  

Motion is possible only when; eq. of continuity holds i.e., q   = 0  

Category 3:- Irrotational motion; finding velocity/scalar potential ϕ 

Curl q  = 0  

0q   

i.e., there exists a scalar function ϕ s.t  

q    here ϕ is called velocity potential  

    ⇓   

ˆ ˆˆ ˆ ˆ ˆui vj wk i j k
x y z

  
     

  
 

On comparing we get  

u
x


 


 …(1), v

y


 


…(2), w

z


 


 …(3)  

(3) is giving differential eq. and by solving these, we get required ϕ  

Exampoints:- 
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1. ( )
d

q
dt t


  


 

2. flux = ˆ
q q

A A

f dA f ndA       

3. type I  

Streamlines are given by: 
dx dv dz

u v w
   

4. type II 

For possible fluid motion (Incompressible fluid/ steady flow) eq. of continuity q   = 0 ; must hold. 

5. type III 

Finding velocity potential :  

q  = 0 ∴ q    

⇒ ˆ ˆˆ ˆ ˆ ˆui vj wk i j k
x y z

  
     

  
 

∴ , ,u v w
x y z

  
     

  
 

 

 

EXAMPLES TO SUBSTANTIATE 

Example 1. Find the eq. of streamlines for the flow 

  q  = î (3y2) – ĵ (6x) at the point (1, 1)  

Solutions: We know that, for streamlines  

  0q dr   

∴ eq- of streamlines are given by,  

  ;
dx dy

u v
  where ˆ ˆq ui vj   

 Given u = –3y2, v = – 6x 

∵ eq. of streamlines are given by  

  
23 6

dx dy

y x


 
 

  6xdx = 3y2 dy 

On integrating  

  3x2 = y3 + c; c is integration constant  

At (1, 1) we have,  

  3 – 1 = c ⇒ c = 2  

∴ Required streamlines are given by  
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  3x2 + y3 = 2  

 

Example 2. The velocity components of a two dimensional flow fluid for an incompressible fluid 

are given by u = ex cosh y & v = – e–x sinhy. Determine the eq. of streamline for flow.  

Solutions: we know, eq. of streamlines is given by  

 
dx dv

u v
  {∵ q  × dr  = 0}; where ˆ ˆq ui vj   

Given, u = ex cos hy, v = –e–x sin hy 

∴ 
cosh sinhx x

dx dy

e y e y



 

2 cosh

sinh

x y
e dx dy

y

    

On integrating,  

2

2

xe


 = – log (sin hy) + log c, where c is integration constant.  

e–2x =  2log(sinhy) – 2logc 

2
2

2

sinh
logx y

e
c

  
  

 
 

Example 3:  Show that 

1

xcy e


 are surfaces which are orthogonal to streamlines for an 

incompressible homogenous fluid at the point (x, y, z) with the velocity distribution given by  

2 2 2

2 2
,

c y c x
u v

r r


  , w = 0 , where  

r denotes the distance of (x, y, z) from z – axis  

Step (1):- Finding streamlines:  

dx dy dx

u v w
   

2 2 2

2 2

0

dx dy dx

c y c x

r r

 


 

⇒  
2

dx dy

y x



 

⇒ 
2dy x

dx y


  …(1) is the diff. eq. of streamline  

Now, replacing 
dy

dx
 by 

1

dy

dx



 
 
 

 in (1)  
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21 x

dy y

dx

 


 
 
 

 

2dx x

dy y
 ; 

2

dx dy

x y
 ⇒

1
log logy c

x


   ⇒ 

1
log ( )yc

x


  

⇒
1

xe cy


  

Revising from ODE; Orthogonal trajectories 

Curves which behaves according to some predefined condition/rule    

Let f1(x, y) = c1 …(1) is  

Some given family of curve; then orthogonal trajectories to (1); is the family of curves which cuts every 

member of (1) at an angle of 90° 

 

Geometrically speaking:- 

• Given family  f1: y = mx ; family of straight lines (∵ m is a parameter/arbitrary constant)  

y = x, y = –x, y = 
3

2
 x, …. 

f2; Family of concentric circles is an orthogonal trajectories of family of straight lines 

At any point of intersection, we can crosscheck;  

1 2

1
f f

dy dy

dx dx

   
     

   
 

⇒ m1 × m2 = –1 

⇒ f1 & f2 cuts orthogonally  

  

• Determining/ finding any oblique trajectories for some given family of 

curves:- 

∵ α + ϕ = ψ ; in the figure external angle is ψ 

α = ψ - ϕ  

tan α = tan (ψ – ϕ)  

tan α = 
tan tan

1 tan tan

  

  
 

e.g. To get orthogonal trajectory α = 90° 

∴ tan 90° = 
tan tan

1 tan tan

  

  
 

1 tan tan

0 1 tan tan

  


  
 

tan ϕ tan ψ  = –1 
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1 2

1
f f

dy dx

dx dy

  
    

   
 

2

1

1

f

f

dy

dydx

dx

 
 
  
 
 

 …(1)  

1. indicates that If we replace 
dy

dx
 by 

1

dy

dx



 
 
 

 in the differential eq. of given family then we get diff. eq. 

for required family.  

 

Example Let y = mx …(1) is given family  

dy
m

dx
  

∴ diff eq. (1) is, y = 
dy

x
dx

 ⇒ 
dy y

dx x
  …(2) is the diff. eq. of given family.  

Now, replace 
dy

dx
 by 

1

dy

dx



 
 
 

 in (2), we get  

1 y

dy x

dx




 
 
 

 

dx y

dy x


  

xdx – y dy  

2 2

2 2

x y
c   ⇒ family of concentric circles 

Example 4 : Determine the streamlines and path lines of the particle when the components of the 

velocity field are given by  

u = 
1

x

t
, v = 

2

y

t
, w = 

3

z

t
 

streamlines are given by 
dx dy dz

u v w
   

 1 (2 ) (3

dx dy dz

x y z

t t t

 

  

 

(1 ) (2 ) (3 )
dx dy dz

t t t
x y z

      …(1)  

Taking first two fractious,  
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(1 + t) 
dx

x
 = (2 + t) 

dy

y
 

1 2 1dy
dx dy t dx

x y y x

   
     

   
 

On integrating  

  1log 2log log log loge e e ex y t y x c      

12
log log log

t

e e

x y
c

y x

   
    

  
 

12

t
x y

c
y x

 
  

 
…(2)  

Path lines are given by:  

dx

dt
= u ⇒  x …(1) 

dy

dt
 = v ⇒ y …(2)  

dz

dt
 = w ⇒ z …(3) 

(1), (2), (3); gives req. path lines  

Taking last two fractious of eq. (1).  

(2 + t) 
dy

y
 = (3 + t) 

dz

z
 

2 3

2

dz dy
dy dz t

y z y

   
     

   
 

On integrating,  

2 loge y – 3 logez = t (logez – logey) + log c2 

2

23
log log log

t

e e

y z
c

z y

   
    

  
 

2

23

t

y z
c

z y

 
  
 

 …(2)  

Eq. (1) & (2) are required streamlines:  

Path lines:- 

dx

dt
 = u ⇒ 

1

dx x

dt t



 

⇒ 
1

dx dt

x t



 

log x = log (1 + t) + log c  

x = (1 + t) c3 …(A)  
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Similarly , y = c4 (2 + t) …(B)  

z = c5 (3 + t) …(C) 

∴  (A), (B), (C) are required path lines.  

Example 5: Show that the velocity potential ϕ = 
2

a
(x2 + y2 – 2z2) satisfies the laplace eq. Also, 

determine streamlines.  

Solutions: 

∵ ϕ = 
2

a
(x2 + y2 – 2z2) 

x




 = ax, 

y




 = ay, 

z




 = –2az 

2

x

 


 = a, 

2

2y

 


 = a, 

2

2z

 


 = – 2a  

∴ 
2 2 2

2 2 2x y z

     
 

  
 = a + a – 2a = 0 

⇒ ϕ satisfies ∇2 ϕ = 0  ⇒ ϕ satisfies Laplace’s eq 

∵ ϕ is given ⇒ velocity potential exists ⇒ q    

⇒ ˆˆ ˆui vj wk   = ˆˆ ˆ a
i j k

x y z

  
 

  
 

⇒ u = –ax, v = –ay, w = 2az 

∴  streamlines are given by,  

2

dx dy dz

ax ay az
 

 
 …(1) 

Taking first two fractions of (1),  

dx dy

x y
  

logx = log y + log e1 ⇒ x = y c1 …(A) 

Taking last two fraction of (1)  

2

dy dz

ay az



 

2

dy dz

y z


  

log y = 
1

2


 log z = log c2 
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log y = log 2c

z
 

y = c2 
1

zz


…(B)  

∴  Eq. (A) & (B) gives the required streamlines.  

 

Example 6 : 
2 2 2

5 5 5

3 3
, ,

x yz kz r
q

r r r

 
  
 

. For an incompressible fluid. Find the value of k for which it 

constitutes a possible fluid motion. Also find the scalar potential ϕ.  

Exampoint:-  

2 2 2 2r x y z    …(1)  

2r
x




= 2x ⇒ 

r x

x r





 

r y

y r





 

r z

z r





 

we know that for an incompressible find, eq. of motion is possible where  

q   = 0 ; i.e., 0
u v w

x y z

  
  

  
…(1) 

∵ given q  = 
2 2

5 5 2

3 3
, ,

xz yz kz r

r r r

 
 
 

 

⇒ u = 
5

3xz

r
, v = 

5

3yz

r
, w = 

2 2

5

kz r

r


 

∴ 
u

x




= 

5
3

x
z

x r

  
 

  
 

= 3z
5

5 1
1

c

r
x

r x r

  
    

 
= 3z 

6 5

5 1x
x

r r r

 
   

 
= 3z 

2

7 5

5 1x

x x

 
 

 
…(A)  

Similarly, 
5

3
v y

y
y y r

   
  

   
 

2

7 5

5 1
3

v y
z

y r r

  
  

  
 …(B)  

w

z




= 

2 2

5

Kz r

z r

  
 

  
=  2 2

6 5

5 1
.2 2

z dr
Kz r K z r

r r r dz

   
        

  
 

= 
 2 2

7 5

5 1
2 2

Kz r z
Kz r

r r r

   
   

 
 

We always have these in 

back of the mind; 

whatever needed we use 

accordingly  
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 
 

2 2

7 5

5 2
1

z Kz rw z
K

z r r

 
  


 

3

7 5 5

5 2 3w z z z
K

z r r r

  
   

  
 …(C) 

Using (A), (B) & (C) in (1), 

2 2 3

7 5 7 5 7 5 5

5 1 5 1 5 2 3
3 3 0

x y z z z
z z K

r r r r r r r

       
           

     
 

5

1

r
{3z + 3z + 2Kz + 3z} = 

7

5z

r
 {3x2 + 3y2 + Kz2} 

9 + 2K =
2

5z

r
{3x2 + 3y2 + Kz2} 

Gives possible choice for K = 3,  

LHS = 9 + 6 = 15 

RHS =  2

2

5
3 15r

r
  

∴ Req. value for K = 3.  

Now, for finding velocity potential ϕ taking  

q    

⇒ ˆˆ ˆui vj wk   = ˆˆ ˆi j k
x y z

  
  
  

 

u = 
x




, v = 

y




, w = 

z




 

⇒
5

3xz

r x





…(A) , 

5

3yz

r y





 …(B), 

2 2

5

3z r

r z

 



 …(C) 

From (A) , (B) & (C), 

dx dy dz
x y z

  
 

  
 = 

 2 2

5

3 3 3xzdx yzdy z r dz

r

    
 
  

 

dϕ = 
  2

5

3z xdx ydy zdz r dz

r

   
 

= 
2

5

3zrdr r dz

r

 
= 

 

3 2

2
3

3r dz z r dr

r


 

dϕ = 
3

z
d

r

 
 
 

 

On integrating ; 
3

z

r
   
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Example 7 : Consider a two dimensional incompressible steady flow field with velocity component in 

spherical coordinates (r, θ, ϕ) are given by 
3

0 0

3

3 1
1 cos

2 2
r r

r r
v e

r r

 
    

 
 

v  = 0 , vϕ = –C1 
3

0 0

3

3 1
1

4 4

r r

r r

 
  

 
 

where r ≥ r0 > 0  and where C1 & r0 are arbitrary constants.  

Is the eq. of continuity satisfied? 

Solution: ∵ fluid is incompressible ∴ 
d

dt


 = 0  

∴ for possible fluid motion, eq. of continuity is q   = 0 , where ˆˆ ˆ
rq v i v j v k     

∵ In spherical coordinates,  

 q    = ρ (Divergence of q ) 

=      2

2
sin

sin sin
rr v v V

r r r r
 

     
  

    
 

3 3
2 0 0 01 1

02 3

33 1 1
cos 1

2 2 sin 4 4

r r rc c
r r r

r r r r r r

     
        

     
+ 0 

= 
3 3

0 0 01 1
02 2 3

33 1 1
2 cos 1

2 2 sin 4 4

r r rc c
r r

r r r r r

    
        

   
 × 2 sin θ cos θ  

= 
3

0 01

3

1

3 1
2 cos

2 2

r rc

r r r

 
   

 
 

3

0 01

3

3 1
2

2 2

r rc

r r r

 
   

 
 cosθ   

⇒ ( ) 0q    

⇒ q   = 0 ; holds eq. of continuity  

Q.1. What is the irrotational velocity field associated with the velocity potential ϕ = 3x2 – 3x + 3y2 + 

16t2 + 12zt. Does the flow field satisfy eq. of continuity?  

Solution  

∵ There exists velocity potential ϕ = 3x2 – 3x + 3y2 + 16t2 + 12zt 

∴ q    ⇒ fluid  q  i.e. q  = ˆ ˆui vj wk   then  

Eq. of continuity q   = 0  

( )   = 0 

2 = 0 

2 2 2

2 2 2
0

x y z

      
    

   
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– (6 + 6 + 0) = 0  

–12 = 0 : Not possible  

i.e., q   = 0 not satisfied.  

∴ Eq. of continuity not satisfied.  

Q.2. In a fluid flow, the velocity vector is given by, ˆˆ ˆ2 3 5 .v xi yj zk    Determine the eq. of 

streamline passing through a point (4, 8, 1)  

∴ 1 1 1
ˆ ˆˆ ˆ ˆ ˆ2 3 5v xi yj zk u i v j w k       

∴ u1 = 2x, v1 = 3y, w1 = –5z 

Now, eq. of streamline are given by,  

1 1 1

dx dy dz

u v w
   

2 3 5

dx dy dz

x y z
 


 …(A) 

On taking 1st two fraction of (A)  

1

2
 logx + 

1

3
 logy + log c1 

11

32
1cx y  …(1)  

On taking last two fractious of (A)  

1

3
 log y = 

1

5


log z + log c2 

1

23
1

5

c
y

z

  …(2) 

∴ passing through (4, 8, 1);  

∴ 
11

32
14 8 c  ⇒ c1 = 1  

Also, 
1

23
1

5

8

1

c
  ⇒ c2 = 2  

∴ Req. eq. of streamline are given by  

11

32x y …(3)  

& 

1

3
1

5

2
y

z

  …(4)  

Q.3. for an incompressible fluid flow, the component of velocity (u, v, w) are given by u = x2 + 2y2 

+ 3z2, v = x2 y – y2z + zx. Determine the third component w so, that they satisfy the eq. of continuity also 

find the z-component of acceleration.  
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Solutions  

∵ for incompressible fluid; eq. of continuity is q   = 0  

i.e., 0
u v w

x y z

  
  

  
 

2x + x2 – 2yz + 
w

z




= 0  

w

z




 = 2yz – x2 – 2x 

On integrating w.r.t z 

w = 2y 
2

2

z
 – x2z – 2xz + f (x,y) {∵ x, y, z are independent variable} 

∴ w = yz2 –x2z – 2xz + f(x, y) 

where f(x, y) is an integrate and  

∵ z-component of velocity = w 

∴ z-component of acc. = 
dw

dt
 

∵   
dw w

q w
dt dt


    

0z

dw w w w
a u v w

dt x y z

   
     

   
 

= u × (–2xz – 2z) + v(z2) + w(2yz –x2 – 2x)  

= (x2 + 2y2 + 3z2) (–2xz – 2z) + (x2y – y2z + zx) (z2) + (yz2 + x2z – 2zx) (2yz – x2 – 2x) 
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Chapter 2: Motion in 2D 

                                                  ˆ ˆq ui vj   

Streamlines:- 
dx

u
=

dy

v
⇒ vdx – udy = 0  

Exampoint 

Along streamline ; ψ (x, y) = constant  

 

Exact differential eq:-  

Let’s consider a differential eq, 
 

 

,

,

f x ydy

dx g x y
  …(1)  

The differential eq. (1) is said to be exact; if there exists a fun./ curve u(x, y) = c; c is arbitrary constant 

s.t  

The total differentiation of (2) gives (1) directly (without any manipulation/substitution)  

e.g.:- The diff eq. ; 

x dx + y dy = 0 is exact 

Because ∃ x2 + y2 = c s.t 

d(x2 + y2) = d(c) 

⇒ 2xdx + 2ydy = 0 …(1)  

• The necessary & sufficient condition for the diff. eq. M(x, y) dx + N(x, y) = 0 to be exact is  

M N

y x

 


 
. 

Discussing Stream function∴ vdx – udy = 0 ...(1)  

Now, if 
y




(v) = 

x




 (–u) 

then the differential eq. (1) is exact differential eq.  

↓ ∴ by def. of exactness,  

∃ ψ (x, y) = c …(2) ; such that  

the total differentiation of (2) gives (1)  

Total diff. of (2) :  dψ = d(c) 

dψ = 0  

0dx dy
x y

 
 

 
 …(3)  

∴ (3) & (1) must be same  

∴  we get v
x





*, u
y


 



* Exam points  
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Hence ψ (x, y) = c; ψ is called the “stream function” 

 

Type I problem 

Finding the stream f n- if ˆ ˆq ui vj   is given  

x




 = v …(1) 

y




 = –u …(2) 

 v & u are given, so use & get ψ  

Observation (Imp for Exam) 

• Let if “irrotational” motion  

↓  

Then exists velocity potential ϕ  

s.t q    

⇒ ˆ ˆ ,ui vj v
x y

 
    

 
  

⇒ u = 
x




, v = 

y




 …(1)  

• for any fluid motion (be it irrotational or not there exists stream function ψ s.t 

u = 
y





, v = 
x




 …(2) 

Exampoints:-  

For an irrotational fluid motion, we have  

• u
x y

 
   

 
 

…(3) 

→ Relation between ϕ & ψ 
• v

y x

 
  

 
 

x y

y x

 


 

 
 

 

 …(4)  

From complex Analysis:- 

A function w = f(z) = u(x, y) + iv(x, y) ; analytic f, then Cauchy–Riemann eq. are satisfied  

(C-R eq.)  

Here z = x + iy 
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u v

x y

 


 
 & 

u v

y x

 
 

 
 

Clearly ϕ & ψ satisfy C-R eq. (see (4)) 

So, we can define a function  

( )w f z i    ; w is an analytic (differentiable) function  

Here w is called the “complex potential” for the given fluid motion. 

 Exam point:- (Summary for Type I problems)  

Let’s say (given) ˆ ˆ ˆ ˆ( , ) ( , )q ui vj u x y i v x y j     

∴ we can find :  

• Eq. for streamlines  
dx dy

u v
  

• stream function ψ (x, y) = c:  

 By using u = 
y




, v = 

x




 

• Now, we can find ϕ (for it irrotational motion)  

By q    i.e., u = 
x




, v = 

y




 

• Magnitude of velocity i.e. speed = 
dw

dz
 = 

22

x y

   
   

    
 = 2 2u v  = q  

 

∴ ˆ ˆdw
i j

dz x y

 
 
 

 

• Stagnation point:- 

Speed = 0  

dw

dz
 = 0  

• Velocity components in terms of ψ in polar coordinates 

1
rq

r





, q

r






 

• Stationary points: where velocity is zero. 

• stream function is also known as current f.  
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Example 1: If ϕ = A(x2 – y2) represents a possible flow phenomenon, determine the stream function.  

Solution 

∵ 
x y

 


 
,     

y x

 
 

 
 

⇒ 2Ax = 
y




,    –2Ay = 

x





 

Integrating w.r.t. y,     Integrating w.r.t. x 

⇒ ψ(x, y) = 2Axy + f(x),   ψ(x, y) = 2Axy + g(y)  

Where f(x) is integration constant where g(y) is integration constant 

Clearly, we can choose f(x) = g(y) = 0 ; then  

Getting ψ (x, y) = 2Axy in both cases. This is the required stream fun. 

Example 2: Determine the stream function ψ (x, y, t) for the given velocity field u = Ut, v = x.  

∵ u = 
y





, v = 
x




 

∴ 
y




 = –Ut   , 

x




= x 

Integrating w.r.t. y  On integrating w.r.t. x,  

ψ = –Uty + f(x, t)  …(1)    ψ = 
2

2

x
 + g(y, t) ...(2) 

f(x, t)  Integration constant   g(y, t) Integration constant  

Now, if we choose integration constants appropriately  

For (1) & (2), to be same, 

f(x,t) = 
2

2

x
, g(y, t) = –Uty 

 ∴ Required stream function is  

2

2

x
Uty    

Example 3: The velocity potential function for a two dimensional flow is ϕ = x(2y – 1). At a point (4, 

5) determine the speed & the value of stream function.  

Solutions: we know, 

x y

 


 
,  

y x

 


 
 

2y – 1 = 
y




,  2x = 

x




 

On integrating w.r.t. y,                             On integrating w.r.t. x, 

y2 – y + f(x) = ψ (x, y)…(1)   –x2 + g(y) = ψ (x, y) …(2) 

Now, if we choose appropriately f(x) = –x2 & g(y) = y2 – y  
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We get,  

ψ (x, y) = y2 – y – x2 

∴ ψ (4, 5) = 25 – 5 – 16 = 4  

∴ Req. sped :-  

dw

dz
= 

22

x y

   
   

    
 

dw

dz
 =    

2 2
2 1 2y x   

At (4, 5)  

dw

dz
 = 2 29 8  = 165  

Ex4. If  2 2A x y    represents a possible flow phenomenon, determine the stream function.  

Sol. Here     2 2–A x y  ….(1) 

    2 ,y x Ax       using (1) 

Integrating it w.r.t. ‘y’,   2 ,Axy f x   …(2) 

Where f(x) is an arbitrary function of x. (2) gives the required 

stream function.  

Ex. 5. The streamlines are represented by (a) 2 2x y  

 and  (b) 2 2x y    Then 

(i) determine the velocity and its direction at (2, 2) 

(ii)  (ii) sketch the streamlines and show the direction of flow in 

each case.  

Part (i) Given that  

Now,   2u y y       and  2 .v x x      

At (2, 2)   u = – 4    and  v = –4. 

The resultant velocity =  
1 2

2 2u v  = (16 + 16)1/2 = 42 units.   

And its direction has a slope = v/u = 1 showing that the velocity vector is 

inclined at 45° to x-axis.  

The required stream line are given by  = c, where c is a constant, i.e. x2 – y2 = c, which represents a 

family of hyperbolas. In figure, we have sketched the steam lines for various values of  . The direction 

of arrowhead shows the direction of flow in each case.  

Part (ii) Given that   2 2x y    

Now,   
2 2x y      2v x x      

At (2, 2)   u = 4  and  v = –4 

 The resultant velocity  
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 =  
1 2

2 2u v  = (16 16)1/2 = 42 units.     

And its direction has a slope = v/u = –1, showing that the velocity vector is inclined at 135° to x-axis.  

The required stream lines are given by  = c, where c is a constant, i.e. x2 + y2 = c, which represents a 

family of circles. In figure, we have sketched the stream lines for various values of  . The direction of 

arrowhead shows the direction of flow in each case.  

Next, m2 = the slope of tangent to  = 
2

,
2

x y y

y x x





  
   
  

by (3)  

  m2 = slope of tangent to stream lines  = c2 at (2, 2) = – (2/2) = –1 

Here m1m2 = –1 showing that the streamlines and the potential lines intersect orthogonal. 

 

Ex.6. Determine the steam function  , ,x y t  for the given velocity field u = Ut, v = x. 

Sol.  We know that   –u y     and  .v x    

    y Ut      …(1) 

    .x x     …(2) 

Integrating (1),      , , , ,x y t Uty f x t      …(3) 

Where f (x, t) is an arbitrary function of x and t.  

From (3),     x f x        (4) 

Then (2) and (4)   .f x x       (5) 

Integrating (5),       2, 2 ,f x t x F t     (6) 

where F(t) is an arbitrary function of t.  

Form (3) and (6),      2, , 2 .x y t Uty x f t      

 

Ex. 7. To show that the curves of constant velocity potential and constant stream functions cut 

orthogonally at their points of intersection. 

OR 

To shows that the family of curves  (x, y) = 1 2 1 2( , ) , ,c and x y c c c  being constants, cut 

orthogonally at their point of intersection.  

Proof.  Let the curves of constant velocity potential and constant stream function be given by  

  1,x y c             and    2,x y c   
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where c1 and c2 are arbitrary constants.  

Let m1 and m2 be gradients of tangents PT1 and PT2 at point of intersection 

P of (1) and (2)  

Then, we have 

1

x
m

y





 

 

 and 
2

x
m

y





 

 

 …(3) 

We know that  and  satisfy the Cauchy-Riemann equations,  

x y       and  .y x       …(4) 

Now, from (3),    
  

  

  

  
1 2 ,

x x y x
m m

y y x y

   

   

       
 

        
by (4)  

Hence m1m2 = –1, showing that the curves (1) and (2) cut each other orthogonally.  

 

Ex.8.  Find the lines of flow in the two dimensional fluid motion given by  

 = xy = –(n/2) × (x + iy)2 e2int 

Prove or verify that the paths of the particles of the fluid may be obtained by eliminating t from the 

equations. 

     0 0 0 0cos sin .r nt x r nt y nt x y        

Sol. Given      
2 2int/ 2 .i n x iy e       

Let   cosx r    and siny r    Then  cos sinx iy r i      

So (1) becomes          2 22int 2/ 2 / 2
i ntii n re e n r e
 


        

Equating the real and imaginary parts on both sides of (2), we get  

   2/ 2 cos2b n r nt      and      2/ 2 sin 2n r nt       

The lines of flow are given by  = constant, 

   2/ 2 sin 2n r nt    = constant    or    2 sin 2r nt  = constant.  

We now proceed to find the path of the particles, we have 

 cos2 cos2 ,
dr

nr nt nr
dt r


 


    


 by (2)  …(3) 

And   
1

sin 2 sin 2 ,
d

r nr nt nr
dt r

 
 




      


by (2) …(4) 

Where    nt     

 Now  (3)   cos2
dr dr d dr d

nr n
dt d dt d dt

 


 

 
    

 
 by (5) 

or     cos2 sin 2
dr

nr n n
d

 


   , using (4) 

or     2 / 2cos2 1 sin2 0r dr d         
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Integrating,   2log log 1 sin 2r lag C     or  2 1 sin 2r C   

or    2 2 2sin cos 2sin cosr C         or  
2

cos sinr C       

or    cos sin ',r C   where  C’(= C) is are arbitrary constant.  …(6) 

Initially, let 0   and 0r r when t = 0. Then (6) gives 

(6) becomes    0 0cos sinr r x y       ..(7) 

or       0 0cos sin ,r nt x r nt y       using (5)    …(8) 

Now, from (5),  d dt n d dt    or sin 2 ,d dt r n    using (4) 

or   
1 sin 2

d
ndt







   or  

 
2

cos sin

d
n dt



 



 

  
 

2
cos sin

d
n dt



 



   or  

2

du
nt D

u
    

        2( 1 tan sec )putting u sothat d du       

or   
1

nt D
u
     or  

1

1 tan
nt D


 


 

or       
 

cos

cos sin
nt D



 
 


 

As before, initially 0 0and t   . Hence (9) gives  

0 0 0 0

0 0 0 0 0 0 0 0

cos cos

cos sin cos sin

r x
D

r r x y

 

   
  

  
, as before  

 

Then, (9) becomes   0

0 0

cos

cos sin

xr
nt

r r x y



 
 

 
 

or  
  0

0 0 0 0

cosr nt x
nt

x y x y

 
 

 
   or    0 0 0cosr nt nt x y x      

or          0 0 0cosr nt x nt x y       …(10) 

 Then, from (8) and (10), we have  

     0 0 0 0cos sinr nt x r nt y nt x y         

Ex. 9. A single source is placed in an infinite perfectly elastic fluid, which is also a perfect conductor 

of heat. Show that if the motion be steady, the velocity v at a distance r from the source satisfies the 

equation 
2k v k

v
v r r

 
  

 
 and hence that    

2 41
.v kr e

v
  

Sol. Since we have an infinite perfectly elastic fluid, there would be hardly any change in temperature, 

and hence Boyle’s law would be obeyed and so    p k    …(1) 

Since the motion is symmetrical about the source, the equation of continuity may be written as  

   
2r v  constant,   …(2) 
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Where v is the velocity at a distance r and  is the density of fluid. The pressure equation takes the 

form  

2

2

dp v


 = constant  or   

2

2

dp v
k


 = constant, by (1)  …(3) 

Differentiating (2) and (3) w. r. t. ‘r’, we have  

2 2 2 0
v

vr r rv
r r




  
     

     …(4) 

and  0
k v

v
r r





 
 

 
  i.e.,   

v v

r k r

  
 

 
  …(5) 

Substituting the value of r  given by (5) in (4), we get 

    2 2 2 0
v v v

vr r rv
k r r




    
      

    
 

 
2

2 2
r v

k v rv
k r


  


  or  

2
,

k v k
v

v r r

 
  

 
 …(6) 

Which proves the first part of the problem.  

Integrating (6), (v2/2) – k log v = 2k log C, C being an arbitrary constant.  

or      21/ 2 log log log 4v r C v k      or  
2 4v kr v Ce  

or     
2 41/ v kr v e  taking C = 1  

 

Ex. 10. Prove that the radius of curvature R at any point of a streamline  = constant given by 

 
     

3 2
2 2

2 22

u v
R

u v x uv u x v v y




       
 where u, v are respectively the velocity components of a fluid 

motion along OX and OY.  

Sol.  From Differential Calculus, we know that the radius of curvature R at a point (x, y) streamline   

(x, y) = constant is given by 

   
 

 

3 2
2

2 2

1 dy dx
R

d y dx

 
 

    …(1) 

 Given streamline is    , 0x y    …(2) 

Also, we have   u y    and  v x    …(3) 

Differentiating (2) w. r. r. x,        0x y y x          

or   0v u dy dx    or  dy dx v u   …(4) 

Differentiating (4) w. r. t. x   
2

2

d y v v dy

dx x u y u dx

    
    
    

 

or    
       2

2 2 2
,

u v x v u x u v y v u yd y v

dx u u u

         
   using (4)  
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or    
       2

2 3

u u v x v u x u u v y v u yd y

dx u

                 
  

or    
     2 22

2 3

2u v x uv u x v u yd y

dx u

       
   …(5) 

       , (3)
v u

by
y y x x y x

         
     

         
 

Putting the values of dy/dx and d2y/dx2  from (4) and (5) in (1), we get  

 
      

3 2
2 2

2 2 3

1

2 /

v u
R

u v x uv u x v u y u




       
= 

 
     

3 2
2 2

2 2 32 /

u v

u v x uv u x v u y u       
 

Ex. 11. Show that u = 2cxy, v = c (a2 + x2 – y2) are the velocity components of a possible fluid motion. 

Determine the stream function.  

 Sol.  Given   u = 2cxy  v = c (a2 + x2 – y2)  …(1) 

Equation of continuity in xy-plane is given by  

      0u x v y         …(2) 

From (1), 2u x cy    and 2 ,v y cy     putting these values in (2) we get 0 = 0 , showing (2) is 

satisfied by u, v given by (1). Hence u and v constitute a possible fluid motion.  

Let  be the required stream function. Then, we have  

   u y     or   2y cxy      …(3) 

and   v x    or    2 2 2x c a x y       …(4) 

or    cos cos sin sinx iy C i i       

or  cos cosh sin sinhx iy C iC       

Equating real and imaginary parts, (2) gives  

cos coshx C    and   sin sinhy C     

so that    cos
cosh

x

C



   and  sin

sinh

y

C



  

Squaring and adding these, we obtain  

    
2 2

2 2 2 2
1

cosh sinh

x y

C C 
   

Which give the streamlines in two-dimensions.  

  Again, given that the streamlines are confocal ellipses 

       2 2 2 2 1x a y b      

  Since (3) and (4) must be identical, we have 

  
2 2 2coshC a      and   

2 2 2sinhC b    

    2 2cosh sinhC a b          or 2 2Ce a b       
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         –cosh 2e e   
 

 and

  –sinh 2e e     

Or     2 2log loga b C        

If ,   are velocity potential and stream function, so also will be A  and A  where a constant. Hence 

(5) may be-written as  

     1 2logA a b B        

From (1),    
1 2

2 2 2sin 1 cos 1
dz

C w C w C z C
dw

         

    =   2 2

1 2C z C z C z r r        

Where r1 and r2 are the focal distances (radii) of any point. P(z) from the foci S (C, 0) S’ (– C, 0) of the 

ellipses.  

Thus      1 21p dw dz r r   

Ex. 12. A velocity field is given by q = – xi + (y + t)j. Find the stream function and the streamlines for 

this field at t = 2.  

Sol. We have   – y u x      

and      – x v y t      

Integrating (1) and (2), we get    1 ,xy f x t    

and         2 ,xy tx f x t     

Note that f2 must be a function of t alone, otherwise (4) will not be satisfied, f1 = tx +f2. Thus 

        2xy tx f t     

The function f2 cannot be obtained from the given data. However since we deal only differences in 

values at a given t or with the derivatives x  and y  , the determine of f2 is not necessary. At t 

= 2, (5) becomes  

        22 2xy x f     

 The stream lines ( = constant) are given by   x(y +2) = constant,  

 Which are rectangular hyperbolas. 

Ex. 13. A two–dimensional flow field is given by xy  (a) Show that the flow is irritation (b) Find the 

velocity potential. (c) Verify that  and   satisfy le Laplace equation . (d) find streamlines and 

potential lines.    

Sol. (a) The velocity components are given by 
,

,

u y x

v y y





    

    
 so that  

q = ui + vj  or  q = –ix + yj 
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and     

0

i j k

x x z

x y

  

  



= 0. 

Hence the flow is irrotational. 

(b) We have    ,
x y y x

      
 

   
 

           2

1 1/ 2y dx f y x f y        

and           2

2 2/ 2y dx f y y f x         

 (1) and (2) show that  

   2

1f y y c   constant    and     2

2 2f x x  constant, 

so that       2 2 2x y    constant 

  2 2 2 2 2 0 0 0c x y            and   2 2 2 2 2 1 1 0c x y            

Hence  and  satisfy the Laplace equation. 

(d) The streamlines (  constant) and the potential lines (  constant) are given by  

xy = C1 and x2 – y2 = C2, respectively, where C1 and C2 are constants. 

 

Ex.14. Show that u = 2cxy, v = c (a2 + x2 – y2) are the velocity component of a possible fluid motion. 

Determine the stream function.  

∵ For possible fluid motion; eq of continuity holds 

q   = 0  

u v

x y

 


 
 = 0  

⇒ 2cy – 2cy = 0 ; holds,  

∴ Yes, given components constitute a possible fluid motion.  

∵ v = 
x




, – u = 

y




 

ce(a2 + x2 – y2) = 
x




,  –2xcy = 

y




 

ψ = ca2 c + c
3

3

x
 – cy2x + f(y)  ψ = –xcy2 + f(x)  

On choosing appropriately, 

f(y) = 0 , f(x) = ca2x + 
3

3

cx
then  
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ψ – ca2x + 
3

3

cx
 – cy2x 

Ex.15. Show that the velocity potential ϕ = 
1

2
 log{(x + a)2 + y2} – 

1

2
log{(x – a)2 + y2} gives a possible 

motion.  

Determine the streamline & show also that curves of equal speed are given as ovals of cassin rr′= 

constant.  

Solutions: For possible fluid motion; Eq. of continuity holds 

i.e., q   = 0  

u u

x y

 


 
 = 0 

∵ u = 
x





, v = 
y





 

∴ 
u

x




 = 

2d

x





, 
2

2

v

y y

  
 

 
 

∴ eq. of continuity holds if 

2 2

2 2x y

   


 
 = 0  

Now,  

2x




 = 

  2 2

1

2 x a y 
 × 2(x + a)  – 

  2 2

1

2 x a y 
× 2(x – a)  

2

x

 


 = 

      

  

2 2

2
2 2

1 2x a y x a x a

x a y

      

 

 – 
      

  

2 2

2
2 2

1 2x a y x a x a

x a y

 
      

 
 

   

 

2

2x

 


= 

 

  

22

2
2 2

y x a

x a y

 

 

 – 
 

  

22

2
2 2

y x a

x a y

 
  

 
  
 

…(A)  

y




 = 

  2 2

2

2

y

x a y 
 – 

  2 2

2

2

y

x a y 
 

2

2y

 


 = 

    

  

2 2

2
2 2

2x a y y y

x a y

  

 

 – 
    

  

2 2

2
2 2

2x a y y y

x a y

  

 

 

2

2y

 


 = 

 

  

2 2

2
2 2

x a y

x a y

 

 

 – 
 

  

2 2

2
2 2

x a y

x a y

 
  

 
  
 

 …(B)  

∴ from (A) & (B)  
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2 2

2 2x y

   


 
 = 0 ; holds eq. of continuity 

Now, determining ψ : - 

2x




+ 

y




, 

y




 = 

x




 

⇒ 
y




 = 

 

 
2 2

x a

x a y



 
 – 

 

 
2 2

x a

x a y



 
 

On integrating w.r.t. y. 

ψ = 1tan
y

x a

  
 

 
 –  1tan

y

x a

  
 

 
 + f (x) ; f (x) is an integrate constant  

∴ 
x




 = 

 
2 2

y

x a y 
 – 

 
2 2

y

x a y 
+ f ′ (x) 

But comparing above expression with 
y




 we get  

f ′ (x) = 0  

⇒ f (x) = constant (say c)  

∴ stream function  

ψ = 1tan
y

x a

  
 

 
 – 1tan

y

x a

  
 

 
+ c;  c is some constant 

∴ ψ = 1tan

1

v y

x a x a
v v

x a x a



 
   

 
      

     

 

ψ = 
1

2 2 2

2
tan ;

ay

x a y

  
 

  
 

streamlines are given by, 

ψ (x, y) = constant  

⇒ 
1

2 2 2

2
tan

ay

x a y

  
 

  
 = constant; gives streamlines 

Extra Observation:-  

Now, if constant = 0 : then streamlines are given by  

2 2 2

2ay

x a y


 
 = 0  

⇒  –2ay = 0  

⇒ y = 0 ; streamline 
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Now,  

w = ϕ  +iψ  

w = 
1

2
 log   2 2x a y  – 

1

2
 log   2 2x a y  + 1 1tan tan

v y
i

x a x a

   
  

   
  

= log [(x + a) + iy] – log [(x – a) + iy]  

= log [(x + iy) + a} – log [(x + iy) – a]  

w = log (z + a) – log (z – a)  

w = log 
z a

z a

 
 

 
 

∴ speed = 
dw

dz
 = 

1 1

z a z a


 
 = 

2a

z a z a  
 = 

2a

rr
 

For constant speed 

2a

rr
 = constant 

⇒ rr′= constant     

Exam point:- 

|z – z0| = r: represents eq. of a circle with centre at z = z0 & radius r 

 

Sources and Sinks  

Source :- A “source of mass m or strength m” is ; a flow across the circular boundary as 2πm 

 

We want to study the motion of fluid.  

 

 

 

 

 

Sink:- 

A sink is of strength – m 

 Flow =– 2πm 

 

 

Exampoint:- 

qr = 
1

r


 



, qr = 

r




 

∵ log (x + iy)  

= 
1

2
log (x2 + y2) + i tan–1 y

x

 
 
 

 

We have already study 

above velocity 

component qr in polar 

form in terms of shi and 

phi 
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Exampoint:- For a source of strength +m 

2πrqr = 2πm 

⇒2πr 
1

r

  
 

 
 = 2πm  

⇒ 





= – m …(1)     ⇒ ψ = –mθ  

 

For circular & radius ‘r’ flow in termes of qr is 2πrqr 

Similarly 

2πr
2r

 
 
 

 = 2πm  

⇒ –r 
r




= m …(2)  

⇒ logm r    

∴ The complex potential due to a source of strength m is  

W = ϕ + iψ  

W = –mlogr + i (–mθ)  

W = – m[logr + logeiθ] 

W = – m log (reiθ)  

logW m z   

Similarly, for a sink of strength –m. 

log( )W m z  

Exampoints: -  

1. W = – m log (z): For source of strength m. 

2. W = m log (z): for sink of strength – m. 

3. Let source is at the point z = z0; then 

• W = –m log (z – z0) 

• W = m log (z – z0)  {for sink} 

4. Let there are n sources at points z1, z2, ...,zn of strength m. 

W = –m log (z – z1) – m log(z – z2) –mlog(z – z3) + …+(–m log (z – zn)  {for source} 

W = m log (z – z1) + mlog (z – z2) + … + m log(z – zn)  {for sink}  

z = x + iy 

z = r.eiθ  

r2 = x2 + y2 
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Doublet 

Source & sink of same strength at a small distance ds 

 

Now, ϕ = m log (r + dr) + m log r  

= –m log 
r dr

r

 
 
 

 

ϕ = –m log 1
dr

r

 
 

 
 

= – m 
 

2

2
...

2

drdr

r r

  
  

  

 [ Apply log (1 + x) = x – 
2

2

x
 + 

2

3

x
]  

= – m
dr

r
 ; neglecting higher order terms 

ϕ = 
cosmds

r

 
 

ϕ = 
r


 cos θ; Taking mds = μ  

∵ ψ is the complex conjugate of ϕ (∵ w = ϕ + iψ is analytic)   

∴ ψ = 
r


 sin θ  

∴ w = ϕ + iψ  

= 
r


cos θ + 

r


 i sin θ = 

r


 (cos θ – i sin θ) = 

r


e–iθ =

ire 


 

Exampoint  

w
z


  & mds   

Article 3:- To determine the complex potential due to sources, 

sinks doublets in the presence of rigid boundaries:-  

(i) Image of a source with respect to a line:- 

 

The image of a source of strength m with respect to a line in 2-D; is 

an equal source equidistant from the line to the opposite of source.  

 

 Image of doublet with respect to a line 
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The image of doublet (PQ) w.r.t. a line is the doublet (P' Q')  

 

Note :- Image system w.r.t. a circular boundary:-  

 

Let’s determine the image of doublet AA'  

(with its axis, making an angle α) 

 in the presence of circular boundary: 

is a doublet (again) BB'  

B' is inverse point of A' 

B is inverse point of A  

Explanation:- 

• Image of source +m at A' ; consist of a source +m at B' and a sink at O; 

∵ source +m & sink –m cancel each other at O. 

Exampoint 

Image of a source of strength ‘m’ consisting of two things 

sink at the origin & source at a distance of 
2a

f
 from the 

origin.  

 
2

log log log
a

W m z f m z m z
f

 
      

 
 

 

Some important results regarding conformal transformations  

(i) In a conformal transformation:  

→ source is transformed into equal source 

→ a sink is transformed into equal sink 

→ a doublet is transformed into equal a doublet  

(ii) The complex potential W = ϕ + iψ is invariant under the conformal transformation  

↓  

To solve questions; to study the motion; we’ll try to transform given system into a simpler system 

(through conformal transformation)  

OA.OB = OA'.OB' = a2 
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(iii) Let ξ = f(z) be the conformal transformation then  

the total kinetic energy of fluid in z-plane (per unit depth)  

= total K.E. of fluid (per unit depth) in ξ-plane  

(iv) Under a conformal transformation, a streamline in z-plane is transformed into a streamline in ξ- 

plane 

(v) Important Point (for question solving)  

While using conformal transformation ξ = zn; 

** n is found by; dividing 
2


 by the half the angle between two rigid boundaries  

Example 1: What are arrangements of sources & sinks which will give rise to the function 

2

log
a

W z
z

 
  

 
. 

Also, find streamlines. 

∵ W = log 
2a

z
z

 
 

 
 

W = log 
2 2z a

z

 
 
 

 

W = log (z2 – a2) – log z  

W = log (z + a) + log (z – a) – log z 

W = 1.log (z – (–a)) + 1.log (z – a) + (–1). log(z – 0) …(1) 

W = m1 log (z – z1) + m2 log (z – z2) – m3 log (z – z3)  

 

 

 

 

∴ (1) is combination of  

• a source of unit strength at origin  

• Two sinks of unit strength at z = a, z = –a. 

 

Finding streamlines : ψ = constants  

∵ W = log (z + a) + log (z – a) – log z  

W = log (x + iy + a) + log (x + iy – a) – log (x + iy)  

ϕ + iψ =  
2 2 11

log tan
2

y
x a y i

x a

    
      

    
 + 

  2 2 11
log tan

2

y
x a y i

x a

  
    

  
 –  2 2 11

log tan
2

y
x y i

x

  
   

  
   

Sink of strength  
m1 

at z = z1 

Sink of strength  
m2 

at z = z2 

Sink of strength  
m3 

at z = z3 
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∴ ψ = 1 1 1tan tan tan
y y y

x a x a x

      
      

      
 

= 

   

1tan

1

y y

x a x a
y y

x a x a



 
 

  
 
 

   

 – 1tan
y

x

  
 
 

 

ψ = 
 

 

1tan

1 1

y y y

x a x a x

y y y

x a x a x



 
  

  
 

              

 

∴ Required streamlines are given by, 

ψ = constant = c 

 

2

2 2
1 1

y y y

x a x a x

y y

xx a

 
 

 
  
 
 

 = tan c 

 

Example 2: There is a source of strength m at (0, 0) and equal sinks at (1, 0) & (–1, 0). Discuss about 

2-D motion,  

 

∴ w = m log (z – (–1)) + m log (z – 1) – m log (z – 0) 

W = m[log (x + iy + 1) + log (x + iy – 1) – log (x + iy)]  

ϕ + iψ = m      2 22 1 21 1
log 1 tan 1

2 1 2

y
x y x y

x

  
      

 
 + 1

1
tan

y
i

x




 –  2 21

log
2

x y  – 

1tan
y

i
x

 



 

∴ ψ = m
1 1 1tan tan tan

1 1

y y y

x x x

    
    

    
 

ψ = m 1 1

2

2

1 1tan tan

1
1

y y

yx x

xy

x

 

  
      

      
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ψ = m 1 1

2 2

2
tan tan

1

yx y

xx y

 
  

  
   

 

ψ = m 

 

2 2
1

2

2 2

2

1
tan

2
1

1

yx y

xx y

xy

x x y



 
 

  
 
 
  
 

 

for streamlines  

ψ = constant  

∴ 
2 2 2

1

3 2

2
tan

2

x y x y y y

x xy x xyz

    
 

   
 = c  

⇒ 
2 3

3 2

x y y y

x x xy

 

 
 = c  

Ex.3. Find the stream fn. of 2-D motion due to two equal sources & an equal sink situated midway 

between them.  

 

W = –m log(z + a) – m log (z – a) + mlogz 

W = –m   2 21
log

2
x a y


 


 + 1tan

y
i

x a




 + 

  2 21
log

2
x a y   + 1tan

x
i

x a




 –  2 21

log
2

x y –

1tan
y

i
x

  
 
 

  

∵ W = ϕ + iψ ;  

So, ψ =  – m 
1 1 1tan tan tan

y y y

x a x a x

        
       

       
 

Ex.4. Two source each of strength m are placed at the point (–a, 0) & (a, 0) & a sink of strength 2m 

at th origin. Show that streamlines are the curves.  

(x2 + y2)2 = a2 (x2 – y2 + λxy), where λ is a parameter  

Show also that the fluid speed at any point is 
2

1 2 3

2ma

r r r 
; where r1, r2, r3 are the distance of the point from 

the sources & sinks ?  
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Complex potential due to sources & sinks at an arbitrary points P; 

W = – mlog (z + a) – m log (z – a) + 2m logz …(A) 

ψ = – m 1tan
y

x a

  
 

 
 – 1tan

y
m

x a

  
 

 
 + 2m 1tan

y

x

  
 
 

 

for streamlines  

∴  1tan
y

x a

  
 

 
 + 1tan

y

x a

  
 

 
 – 2 1tan

y

x

  
 
 

 = c 

  

1tan
y

x a

  
 

 
 – 1tan

y

x

  
 
 

 + tan–1  + 1tan
y

x a

  
 

 
 – 1tan

y

x

  
 
 

 = e 

 

 

1

2
tan

1

y y

x a x

y

x x a



 
 
 
 
 
  

 + 1

2

2

tan

1

y y

x a x

y

x ax



 
  

 
 
  

 = c 

 

1

2 2
tan

ay

x y ax

  
 

  
 + 1

2 2
tan

ay

x y ax

  
 

  
 = c 

   

2 2 2 2
1

2 2

2 2 2 2

tan

1

ay ay

x y ax x y ax

a y

x y ax x y ax



 
 

    
 
 
    
 

 = c 

 

 
   

2 2 2 2

1

2 2 2 2 2 2
tan

ay x y ax x y ax

x y ax x y ax a y


      
 

      

 = c 

 

2

2
2 2 2 2 2 2

2a xy

x y a x a y  
 = tan c 

   
2

2 2 2 2 2

2

x y a y x

a xy

  
= 2cot c = λ (say)  

(x2 + y2)2 + a2(y2 – x2) = λ a2 + xy 

(x2 + y2)2 = a2{x2 – y2 + λxy}  pd 

For speed, 

dw

dz
 = 

2m m m

z a z a z


 

 
 

= 
22a m

z z a z a 
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dw

dz
=

2

1 2 3

2ma

r r r 
 

Ex.5. Between the fixed boundaries θ = 
c


& θ = 

6


, there is a 2-D motion due to a source at the point 

(r = c, θ = α) and a sink at the origin absolving water at the same rate as source produces. Find the 

stream function and show that one of streamlines is a part of curve r3 sin 3α = c3 sin 3θ  

Step (1) : configuration through figure 

 

Step (ii):- 

3z    ∵ n = 2 3

6






 

 2 1
3

i iR e r e     

⇒ 2 133i iRe r e   

 

⇒ R = r3 & θ2 = 3θ1 

 

Now, boundaries of θ2: 

–3 × 
6


 to 3 × 

6


 

i.e., θ2 : 
2


 to 

2


 

∴ Image of source P' is P″; image of sink at origin is sink at 

origin itself.  

 

Step (iii): ultimately, complex potential (in ξ plane)  

W = –m log(ξ – z1) – m log (ξ – z2) + 2m log (ξ – z3)  

W = –m log (ξ – c3 ei3α) – m log (ξ – r.ei3(π – α)) + 2 m log (ξ) 

∴ W = –m log (ξ – c3ei3α) – m log (ξ + re–i3α) + 2mlog(ξ)  

∵ ei3π = cos3π + i sin 3π   

= – mlog    3 3 3 3 3 3 32 logi iz c e z c e m z      
 

 

W = –mlog 
6 6 3 3

6

2 sin 3z c ic z

z

   
 
 

 

W = –mlog {1 – c6 z–6 – 2ic3z–3 sin 3α} 
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ϕ + iψ = W = –mlog(1 – c6 r–6 e–6iθ – 2ic3 r–3.e–3iθ sin 3α) 

On comparing imaginary part. 

ψ = –m tan–1 
6 6 3 3

6 6 3 3

sin 6 2 sin 3 cos3

1 cos 6 2 sin 3 sin 3

c r c r

c r c r

 

 

    
 
     

is the req. streamline 

the streamlines are given by ψ = constant 

So, corresponding to ψ = 0, we get streamlines as  

c6 r–6 sin 6θ – 2c3r–3 sin 3α cos 3θ = 0  

2c3 sin 3θ cos 3θ = 2r3 sin 3α cos 3θ  

c3 sin3θ = r3 sin 3α  

Ex.6. Between the fixed boundaries θ = 
4


 & θ = 

4


 there is a 3-D motion due to a source of strength 

m at the point (r = a, θ = 0) and an equal sink at (r = b, θ = 0). Show that the stream function is 

 –m tan–1
 

 

4 4 4

8 4 4 4 4 4

sin 4

cos 4

r a b

r r a b a b

 

   
 

and show that velocity at (r, θ) is (speed)  

 

   

4 4 3

1/2 1/2
8 4 4 8 8 4 4 8

4

2 cos 4 2 cos 4

m a b r

r a r a r b r b



     
 

 

The conformal transformation ξ = zn 

where n = 2

4




 =2 

we take ξ = z2 

 2 1
2

Rei ire   

∴ R = r2 & θ2 = 2θ1 
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Now, the boundaries of θ2 : 2 × 
4


 to 2 × 

4


  

i.e. 
2


 to 

2


 

 

Now, complex potential of ξ-plane,  

W = –mlog(ξ – a2) + mlog(ξ – b2) – m log(ξ + a2) + 

mlog(ξ + b2)  

W = –m log (ξ2 – a4) + m log (ξ2 – b4)  

W = –m(z4 – a4) + mlog(z4 – b4) …(A) 

W = –mlog (r4 e4iθ – a4) + m log (r4 ei4θ – b4)  

ϕ + iψ = –m log (r4 cos4θ – a4 + ir4 sin 4θ) + m log (r4 

cos 4θ – b4 + ir4sin4)  

log(x + iy) = 
1

2
 log (x2 + y2) + itan–1 

y

x

 
 
 

 

Comparing the imaginary part,  

ψ = –m 
4 4

1 1

4 4 4 4

sin 4 sin 4
tan tan

cos 4 cos 4

r r

r a r b

 
     

    
       

 

ψ = –m 

   

4 4

4 4 4 4
1

8 2

4 4 4 4

sin 4 sin 4

cos 4 cos 4tan
sin 4

1
cos 4 cos 4

r r

r a r b

r

r a r b



  
   

     
  

  
     
  

 

ψ = –m 
 

 

4 4 4

1

8 2 4 4 4 4 4 8 2

sin 4
tan

cos 4 cos 4 sin 4

r a b

r r a b a b r


      
          

 

ψ = –m 
 

 

4 4 4

1

8 4 4 4 4 4

sin
tan

cos 4

r a b

r r a b a b


   
 

     

   

From (A) 

dw

dz
 = – m × 

3

4 4

4z

z a
+ m × 

3

4 4

4z

z b
 

dw

dz
 = –4z3m

   

4 4 4 4

4 4 4 4

z b z a

z a z b

   
 
  
 

 

dw

dz
 = 

   
     

3 4 4

4 4 4 4

4 cos3 sin 3

cos 4 sin 4 cos 4 sin 4

mr i a b

r i a r i b

    

       
 

dw

dz
 = 

   

   

3 4 4

4 4 4 4 4

4 cos 3 sin 3

cos 4 sin 4 cos 4 sin 4

mr a b i

r a i r b ir

    

      
 

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/  

dw

dz
 = 

     
       

2 2
3 4 4 3 4 4

2 2 2 2
4 4 4 4 4 4

4 cos3 4 sin 3

cos 4 sin 4 cos 4 sin 4

mr a b mr a b

r a r r b r

      

       

 

dw

dz
 =

 

   

3 4 4

1/2 1/2
8 4 4 8 8 4 4 8

4

2 cos 4 2 cos 4

mr a b

r a r a r b r b



     
  

 

Level-2 of Preparation (Mentor’s words: Interested students can go for this exercise once they’re done 

with above concepts and examples) 

 

Q.1. Use the method of image to prove that if there be a source m at the point z0 in a fluid bounded by 

the lines θ = 0 and θ = π/3, the solution is  

ϕ + iψ = –m log    3 3 3 3

0 0z z z z   where z0 = x0 + iy0 and 
0z = x0 – iy0. 

Sol. Consider the following transformation from z-plane (xy-plane) to ζ-plane (ξη-plane) : 

ζ = z3 where  z = reiθ   ⇒  R = r3  and  Θ = 3θ. 

 

Hence the boundaries θ = 0 and θ = π/3 in z-plane transform to Θ = 0 and Θ = 

π i.e., real axis in ζ-plane. The point z0 in z-plane transforms to point ζ0 in z-

plane such that ζ0 = 
3

0z . Hence the image system with respect to real axis in 

ζ-plane consists of  

(i) a source m at ζ0 = 
3

0z   (ii) a source m at 
3

0 0z    

Hence,  w = – m log (ζ – ζ0) – m log(ζ – 0
 ) 

or  w = –m log (z3 – 3

0z ) – m log (z3 – 3

0z )  

or  ϕ + iψ  = – m log {(z3 – 3

0z ) (z3 – 3

0z )}.  

 

Q.2. If fluid fills the region of space on the positive side of the x-axis, which is a boundary and if 

there be a source m at the point (0, a) and an equal sink at (0, b) and if pressure on the negative side 

be the same as the pressure at infinity, show that the pressure on the boundary is πρm2 (a – b)2 / 2ab 

(a + b), where ρ is the density of the fluid.  

Sol. Here the image system with respect to x-axis in z-plane consists of  

(i) a source m at (0, a) i.e., at z = ai  

(ii) a sink – m at (0, b) i.e., at z = bi  

(iii) a source m at (0, –a) i.e., at z = –ai  

(iv) a sink –m at (0, –b) i.e., at z = –b 

Clearly this image system does away with boundary y = 0 (i.e., x-axis).  

Thus, the complete potential of this entire system is given by  

∴  w = – m log (z – ai) + m log (z – bi) – m log (z + ai) + log (z + bi)  

or  w = –m log (z2 + a2) + m log(z2 + b2)  
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∴ velocity = 
dw

dz
 = 

2 2 2 2

2 2zm zm

z a z b
 

 
 

The velocity q at a point on the boundary (i.e., y = 0) is given by (setting z = x + iy) 

q = 
2 2 2 2

2 2zm zm

x a z b
 

 
 = 

 
  

2 2

2 2 2 2

2xm a b

x a x b



 
 

Let p0 be the pressure at infinity. Then by Bernoulli’s theorem, the pressure p at any point given by  

21

2

p
q 


 = 

2
21

0
2

p
 


  or 0p p


 = 21

.
2

q  

∴ The resultant pressure on the boundary  

=  0

0

p p dx



  = 
1

2
  

2

0

q dx



  = 2ρ m2 
 

   

2
2 2 2

2 2
2 2 2 2

0

x a b

x a x b

 

 
 dx, by (1) and (2) 

= 2ρm2 

   

2 2 2 2

2 22 2 2 2 2 2
2 2 2 2

0

1 1a b a b
dx

a b x a x b x a x b

  
             

 

  

 

= 2ρm2 
2 2

2 2
,

2 2 4 4

a b

b a a b a b

      
    

   
 on simplification  

= 
   

 

22 22 2

2

a b a bm

ab a b

   
 

 
 

 = 
 

 

22

2

m a b

ab a b

 


. 

Q.3. Parallel line sources (perpendicular to xy-plane) of equal strength m are parallel to the points z = 

nia where n = …, –2, –1, 0, 1, 2, … . Prove that the complex potential is w = – m log sinh (πz/a). 

Hence, show that the complex potential for two dimensional doublets (lines doublets), with their axes 

parallel to the x-axis, of strength μ at the same points is given by w = μ coth(π/a). 

Sol. The complex potential due to sources of strength m situated at the points z = 0, ia, –ia, 2ia, –2ia, 

… is given by 

w = –m log (z – 0) – m log (z – ia ) – m log (z + ia) – m log (z – 2ia) – m log (z + 2ia) - … 

= – m log z – m {(z – ia) (z + ia)} – m log {z – 2ia) (z + 2i)} – ..,  

 

= –m log z – m log (z2 + a2 ) – m log (z2 + 22 a2 ) – … 

= –m log [z(z2 + a2 )(z2 + 22 a2 )(z2 + 32 a2 )…] 

=

2 2 2

2 2 2 2 2
log 1 1 1

2 3

z z z
m z

a a a a

     
       

     


.  

  2 2 2 2 2log 2 3
a

m a a a
  

   
  

 

w = – m sinh (πz/a) + constant. 
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The complex potential w1 for the doublets at the same point is 

w1 = coth coth , 
w m z z

z a a a

    
     
    

  
 where   μ = . 

m

a


 

Q.4. In the case of the motion of liquid in a part of a plane bounded by a straight line due to a source 

in the plane, prove that if m ρ is the mass of fluid (of density ρ ) generated at the source per unit of 

time the pressure on the length 2l of the boundary immediately opposite to the source is less than that 

on an equal length at a great distance by  

2
1

2 2 2

1 1
tan

m l l

c c l c

 
  



 
, where c is the distance of source to the boundary.  

Sol. Let 𝑦-axis be the bounding line and let the given source of strength (μ, say) be situated at S where 

OS = c. Now, by the definition of strength μ of the source, we have 2πμρ = mρ so that μ = m/2π. Now, 

the image system consists of 

 

(i) a source of strength m/2π at S(c,0) 

(ii) a source of strength m/2π at S' (–c,0) 

Here S'  is image of S such that OS = OS' = c. 

The complex potential w is given by 

w = – (m/2π) log(z – c) – (m/2π) log (z + c) = – (m/2π) log (z2 – c2 ) 

The velocity is given by 

 
2 2 2 2

2
.

2

dw m z m z

dz z c z c
   

  
 

Hence velocity q at any point P (where z = iy) is given by 

 2 2 2 2
.

m iy my
q

y c y c
 

   
 …(1) 

Bernoulli's equation for steady motion is given by 

p/ρ + q2/2 = constant = c, say.   ...(2) 

Let p0 be the pressure on y-axis at great distance from O so that p = p0 and q = 0 when y = ∞.  

Then (2) reduces to p0/ρ = c and hence (2) becomes 

2

0

2

pp q
 

 
  or 

20 1

2

p p
q





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Writing w = ϕ + iψ and equating real parts, we get 

ϕ = –(m/2) × [log {(rcos θ – f)2 + (r sin θ)2} + log {(r cos θ – a2/f)2 + (r sin θ)2 }] 

 
4 2

2 2 2

2

2
log 2 cos log cos

2

m a ra
r f fr r

f f

  
         

  
 

∴ 
    

 

2

2 2 2 4 2 2

2 / cos2 cos

2 2 cos / 2 / cos

r a fr fm

r r f fr r a f r a f

     
     
 



 
 

Hence normal velocity at any point Q on the circle 

= 
r ar 

 
 

 
 =

  

  2 2 2 2 2 2

/ coscos

2 cos / 2 cos

a f f aa f
m

a f fa a f f a af

   
 

       

= 

2

2 2

cos / cos

2 cos

a f f a f m
m

a f fa a

    
  

   
. 

Now, if we place a source of strength – m at O, the normal velocity due to it at Q will be – (m/a) and 

hence the normal velocity of the system will reduce to zero. 

Hence the image system for a source outside a circle consists of an equal source at the inverse point 

and an equal sink at the centre of the circle.  

 

Image of a doublet with regard to a circle. 

Let us determine the image of a doublet AA' with its axis making an angle α with OA, outside the 

circle, there being a sink –m at A and a source m at A'. Join OA and OA'. Let B and B' be the inverse 

points of A and A' with regard to the circle with O as centre. 

Then 

OA ⋅ OB = OA' ⋅ OB' = a2 ,  …(1) 

where a is the radius of the circle. 

 

Now the image of source m at A'  consists of a source m at B' and 

and a sink –m at O. Similarly, the image of sink – m at A consists of 

a sink at B and a source m at O. Compounding these, we see that 

source m and sink – m at O cancel each other and hence the image 

of the given doublet AA' is another doublet BB'. 

Let the strength of the given doublet AA' be μ. 

Then   lim
A A

m AA


   .  …(2) 
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From (1)  OA/OA' = OB'/OB, …(3) 

showing that triangles OAA'  and OB'B are similar. From these similar triangles, we have 

2BB OB OB OA a

AA OA OA OA OA OA
   
 

  

 


 …(4) 

∴ μ'= strength of doublet B' B =    
2

lim lim
B B A A

a
m B B m AA

OA OA  
    


, by (4) 

= μa2 /f2, using (2) and taking OA = OA' = f 

Thus the image of a two-dimensional doublet at A with regard to a circle is another doublet an the 

inverse point B, the axes of the doublets making supplementary angles with the radius OBA. 

To determine image system for a source outside a circle (or a circular cylinder) of radius a with 

help of the circle theorem. 

Let OA = f. Suppose there is a source of strength m at A when z = f, outside the circle of radius a 

whose centre is at O. When the source is alone in the fluid complex potential at a point P(z) is given 

by 

f(z) = –mlog (z – f) Then f (z) = –mlog (z – f) 

∴  f (a2/z) = –mlog (a2/z – f ) 

When the circle of section |z| = a is introduced, then the complex potential in the region |z| ≥ a is given 

by w = f(z) + f (a2/z) = –m log (z – f) – m log (a2/z – f) 

= – m log (z – f) – m log 
2a zf

z

 
 
 

 

= –m log (z – f) – mlog (a2 – zf) + m log z 

= –m log (z – f) – m log [(–f)(z – a2/f]+mlog z 

= –m log (z – f) – m log (z – a2/f) + mlog z – mlog (–f)) 

∴ w = – log (z – f) – m log (z – a2/f) + m log z + constant, …(1) 

the constant (real or complex, –m log (–f) ) being immaterial from the view point of analysing the 

flow. (1) shows that w is the complex potential of 

(i) a source m at " A,z = f 

(ii) a source m at B, z = a2/f 

(iii) a sink – m at the origin 
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Since OA ⋅ OB = a2, A and B are the inverse points with respect to the circle |z| = a and so B is inside 

the circle. 

Thus the image system for a source outside a circle consists of an equal source at the inverse point and 

an equal sink at the centre of the circle.  

Q.7.(i) In the region bounded by a fixed quadrantal arc and its radii, deduce the motion 

due to a source and an equal sink situated at the ends of one of the bounding radii. Show that the 

streamline leaving either end at an angle α with the radius is r2 sin (α + θ) = a2 sin(α – θ). 

(ii) In a region bounded by a fixed quadrant arc and its radii, 

deduce the motion due to a source and an equal sink situated at 

the ends of one of the bounding radii. Show that the streamline 

leaving either end at an angle π/6 with radius is r2 sin (π/6 + θ) = 

a2 sin (π/6 – θ), where a is radius of the quadrant. 

Sol. (i). Let AOB be the circular quadrant of radius a with OA 

and OB as bounding radii. Consider a source of strength m at A 

and a sink of strength – m at O. Then the image system consists 

of (i) a source m at A(a, 0) 

(ii) a source m at A' (–a, 0) 

(iii) a sink –m at O(0, 0). 

Hence the complex potential w for the motion of the fluid at any point P(z + x + iy + reiθ) is given by  

𝑤 = − mlog(𝑧 − 𝑎) − mlog(𝑧 + 𝑎) + mlog 𝑧 = − mlog
𝑧2 − 𝑎2

𝑧
= − mlog(𝑧 − 𝑎2𝑧−1) 

w = –m log (z – a) – m log (z + a) + m log z = – m log 

2 2z a

z


 = – m log (z – a2 z–1 ) 

or w = – m log (reiθ – a2 r–1 e–iθ),   as  z = reiθ  

w = –m log [r(cos θ + isin θ) – a2 r–1 (cos θ – i sin θ)] 

ϕ ˙+ iψ = –m log [(r – a2/r) cos θ + i(r + a2/r)sin θ] 

Equating imaginary parts, we obtain 

ψ = – m tan–1
 
 

2

2

/ sin

/ cos

r a r

r a r

 

 
 = –m tan–1 

2 2

2 2
tan

r a

r a

 
 

 
 

The streamline leaving the end A and O at an angle α is given by 

ψ = –m(π – α)  i.e.,  –m tan–1 
2 2

2 2
tan

r a

r a

 
 

 
 = –m (π – a)  
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or  
 
 

2 2

2 2

sin

cos

r a

r a

 

 
 = tan (π – α) = – tan α=

sin

cos





 

or (r2 + a2)sin θ cos α = –(r2 – a2) cos θ sin α   or      r2 sin (α + θ) = a2 sin (π – α)   

(ii) Proceed as above by taking α = π/6. 

Q.8. In the case of the two-dimensional fluid motion produced by a source of  placed at a point S 

outside a rigid circular disc of radius a whose centre is O, show velocity of slip of the fluid in contact 

with the disc is greatest at the points where joining S to the ends of the diameter at right angles to OS 

meet the circle, prove that its at these points is (2m × OS)/(OS2 – a2) 

Sol. Let S'  be the inverse point of S with respect to the circular disc, with O as its 

 

Let OS = c. Then OS × OS' = a2    so that OS' = a2/c. 

The equivalent image system consists of 

(i) a source of strength m at S (c, 0), 

(ii) a source of strength m at S' (a2/c, 0), 

(iii) a sink of strength – m at O(0, 0).  

Let OS be taken as x-axis. Then the complex potential for the motion of the fluid point z(= x + iy = 

reiθ) is given by  

w = – m log (z – c) – m log (z – a2/c) + m log z  

∴   
2 /

dw m m m

dz z c z a c z
   

 
 

Let q ( = | dw / dz |) be the velocity at any point z. Then 

q = m
2

1 1 1

/z c z a c z
 

 
 = m

  

  2 /

z a z a

z z c z a c

 

 
 

Hence the velocity at any point z = aeiθ on the boundary of the circular disc is give 

q = m
  
  2 /

i i

i i i

ae a ae a

ae ae c ae a c

 

  

 

 
 = m

  
  

1 1i i

i i i

c e e

e ae c ce a

 

 

 

 ò
 

q = mc
  
  

1 1i i

i i

e e

ae c ce a

  

 

 

 
 = 

2 2

2 sin

2 cos

mc

a c ac



  
 

For maximum q, dq/dθ = 0. Hence (1) gives 
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2mc 
   

 

2 2

2
2 2

2 cos cos sin 2 sin

2 cos

a c ac ac

a c ac

     

  
 = 0 

or (a2 + c2) cos θ – 2ac = 0   or  cos θ = (2ac)/(a2 + c2) 

Since θ = 0 gives the minimum velocity [q becomes zero at θ = 0 by (1)], the value given by (2) must 

correspond to the maximum value of velocity q. Moreover (2) gives the angles which the diameter 

through the point where the line joining S to the end of the  

From (2), sin θ = 
21 cos   = (c2 – a2)/(c2 + a2) …(3) 

Using (1), (2) and (3), the maximum value of q is given by 

q =

2 2

2 2

2 2
2 2

2 2

2

4

c a
mc

c a

a c
a c

a c

 
 

 

 


 = 
 

 

2 2

2
2 2 2 2

2
   

4

mc c a

a c a c



 
or   q = 

2 2

2mc

c a
 = 

2 2

2m OS

OS a




 

Since the boundary of the circular disc is a streamline, the velocity on the boundary is the velocity of 

the slip. 

Q.9. A source S and a sink T of equal strengths m are situated within the space bounded by a circle 

whose centre is O. If S and T are at equal distances from O on opposite sides of it and on the same 

diameter AOB, show that the velocity of the liquid at any point P is 

2m

2 2

 
OS OA PA PB

OS PS PS PT PT

 

   
 , 

where S' and T'  are the inverses of S and T with respect to the circle. 

Sol. Let OS = OT = c. Then, we have OA = a, OS ⋅ OS' = a2  and OT ⋅ OT' = a2  so that 

(OS' = a2/c   and  OT' = a2/c …(1)  

Now the image system of source m at S consists of a source m at S' and a sink – m at O. Again the 

image system of sink – m at T consists of a sink – m at T'  and a source m at O. Compounding these, 

we find that source m and sink – m at O cancel each other. Hence the equivalent image system finally 

consists of 

 

(i) a source of strength m at S(c, 0) 

(ii) a source of strength m at S' (a2/c, 0) 

(iii) a sink of strength –m at T(–c,0) 

(iv) a sink of strength –m at T' (–a2/c,0) 

Taking OS as the x-axis, the complex potential at any point z(= x + iy) is given by 
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w = –m log (z – c) – m log
2a

z
c

 
 

 
+ mlog (z + c) + mlog

2a
z

c

 
 

 
 

dw

dz
 = 

2 2/ /

m m m m

z c z a c z c z a c
   

   
 

The velocity q (=| dw/dz |) at any point is given by 

q = m
 
 

2

2 2 2 4 2

2 /2

/

a cc

z c z a c
 

 
 = 2m

    
  

2 2 2 2 2

2 2 2 4 2

/

/

c z a a c z a

z c z a c

  

 
 

= 2m 

 

2 2 2 2

4
2 2 2

2

c a z a

c a
z c z

c

 

 
  

 

= 2m

2 2c a

c


2 2

z a z a

a a
z c z c z z

c c

 

   

 

= 2m 
2 2OS OA PA PB

OS PS PS PT PT

 

   
  

Q.10. In the part of an infinite plane bounded by a circular quadrant AB and the  

of the radii OA, OB, there is a two-dimensional motion due to the production of the  

and its absorption at B, at the uniform rate m. Find the velocity potential of the motion 

that the fluid which issues from A in the direction making an angle μ with OA follows 

whose polar equation is  

r =  
1/2

2 2sin2 cot cot cosec 2a       
  

 

the positive sign being taken for all square roots. 

Sol. The image system of source m/2π at A with respect to the circular boundary  

of a source m/2π at A (since A is the inverse point of itself) and a sink –m/2π at O, the 

of the circle. Next, the image of system of the above mentioned image system with respect 

line OA and OB consists of 

(i) a source of strength m/2π + m/2π i.e. m/π at A(a, 0) 

(ii) a source of strength m/2π + m/2π i.e. m/π at A' (–a,0) 

(iii) a sink of strength 
2

m



at O(0, 0) 
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Again there is a sink of strength –m/2π at B. The 

image system of this sink with  

to the circular boundary consists of a sink –m/2π 

at B (since B is the inverse point of its 

a source m/2π and O. Again the image of the 

system of the above mentioned image system 

respect to lines OA and OB as before consists of 

(i) a sink of strength –(m/2π) – (m/2π) i.e. –

(m/π) at B(0, a) 

(ii) a sink of strength –(m/2π) – (m/2π) i.e. –(m/π) at B' (0, –a) 

(iii) a source of strength m/2π at O (0,0) 

Compounding these we find that source m/2π and sink –m/2π at O cancel each 

Taking OA as the x-axis, the complex potential at any point P(z = x + iy = reiθ ) is given by 

 

w =        log log log log
m m m m

z a z a z ai z ai       
   

 

∴ϕ + iψ =    2 2 2 2log log
m m

z a z a   
 

 

Equating real parts, (1) gives  

ϕ = 2 2 2 2 2log log
m m

z a z i a   
 

 =   { ia|} 
log

m m
z a z a z ia z      


 

or ϕ =    log log
m m

AP A P BP B P


  


 = log
m BP B P

AP A P








 

Putting s = eiθ in (1) and equating imaginary parts, we get 

ψ = 
2 2

1 1

2 2 2 2

sin2 sin2
tan tan

cos2 cos2

m r m r

r a r a

  
 
   

 

= 

2 2

2 2 2 2 2
1

4 2

4 2 4

sin2 sin2

r cos 2 cos2tan
sin 2

1
cos 2

r r

m a r a

r

r a



 


   



 

=
2 2

1

4 4

2 sin2
tan

m a r

r a

 

 

 

The required streamline that leaves A at an inclination μ is given by ψ = –(m/π)μ, i.e., 
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m
 


 = 
2 2

1

4 4

2 sin2
tan   

m a r

r a

 

 

or 4 2 2 4   2 sin2 cotr a r a    = 0  

r2 =  2 4 2 2 42 sin2 cot 4 sin 2 cot 4 / 2a a a      
  

 

wherein negative sign has been omitted because r2  is non-negative quantity. Thus, we have 

r =  
1/2

2 2sin2 cot cot cosec 2 . a       
  

 

Q.11. Prove that in the two-dimensional liquid motion due to any number of sources at points on a 

circle, the circle is a streamline provided that there is no boundary and that the algebraic sum of the 

strengths of sources is zero. Show that the same is true if the region of flow is bounded by a circle 

which cuts orthogonally the circle in question.   

Sol. Let A1, A2, A3,… be the positions of the sources of strengths m1, m2, m3,… respectively. Let P be 

any point on the circle and let the diameter through P be taken as the initial line. 

Let ∠A1 PA = δ,∠A2 PA1 = β1, ∠A3 PA2 = β2  and so on. Then the stream function ψ of the system is 

given by 

ψ = –m1 δ – m2 (δ + β1) – m3 (δ + β1 + β2) – … 

= –δ(m1 + m2 + m3 +…) – [m2 β1 + m3 (β1 + β2) + …] = –δ(m1 + m2 + m3 + …) – constant,  

since β1, β2, β3,… do not depend on the position of P. If we take m1 + m2 + m3 +… = 0, then ψ = 

constant is a streamline i.e. the circle is a streamline. 

 

 

Second Part. Let O1  be the centre of a circle which cuts the above circle (with centre O ) 

orthogonally. The image of m1 at A is m1 at B1, the inverse point of A and a sink –m1 at O1. If the 

barriers are omitted, we see that the system reduces to a source 2 (m1 + m2 + … ) on the  

of the given circle and a sink –(m1 + m2 + …)  at O1. Since m1 + m2 + … = 0, the result  

Q.12. A line source is in the presence of an infinite plane on which is placed 
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circular cylindrical boss, the direction of the source is parallel to the axis of the boss,  

is at a distance c from the plane and the axis of the boss, whose radius is a. Show 

radius to the point on the boss at which the velocity is a maximum makes an angle  

radius to the source, where  θ = cos–1

  

2 2

4 42

a c

a c





 

OR   If the axis of y and the circle x2 + y2 = a2  are fixed boundaries and there is a  

dimensional source at the point (c, 0) where c > a, show that the radius drawn from,  

the point on the circle, where the velocity is a maximum, makes with the axis of x an  

cos–1

  

2 2

4 42

a c

a c





 

When c = 2a, show that the required angle is cos –1  5 / 34 . 

Sol. Let there be a source of strength m at L(c,0). Let L'  be the 

inverse point of L with respect to the circular boundary so that OL 

× OL' = a2  i.e. OL' = a2/c. The image of source m at L in the 

circular boundary (cylindrical boundary) is a source m at L'  and a 

sink –m at O. 

For the above system the equivalent image system with respect to 

the y-axis (i.e. the line x = 0) consists of 

(i) a source m at L(c, 0) and L'' (–c, 0) 

(ii) a source m at L' (a2/c, 0)  and L'' (–a2/c, 0) 

(iii) a sink –m – m i.e. –2m at O (0,0) 

Thus, if P(z = x + iy = reiθ)  is any point in the fluid, the complex potential at P due above system is 

given by 

w = –mlog (z – c) – mlog (z + c) – mlog  (z – a2/c) – mlog (z + a2/c) + 2mlogz 

or w = 2mlog z – mlog (z2 – c2 ) – mlog(z2 – a4/c2) 

∴  
dw

dz
 = 

2 2 2 4 2

2 2 2
 

/

m mz mz

z z c z a c
 

 
or   

dw

dz
 = 

 
  

4 4

2 2 2 4 2

2

/

m z a

z z c z a c




 
 

The velocity q(=|dw/dz|) at any point P(z = ae)iθ  on the circular boundary is given  

q = 
  

4 4

2 2 2 2 2 4 2

2 1
  

/

i

i i i

m a e

ae a e c a e a c



  



 
or  q = 

2

4 4 2 2

4 sin2

2 cos2

mac

a c a c



  
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or (4mac2/q) = (a4 + c4 – 2a2 c2 cos2θ)/sin2θ 

Let f = 4max2i/q. When q is maximum, then f will be minimum. From (1), wet have 

f = (a4 + c4 )cosec2θ – 2a2 c2 cot 2θ 

df /dθ = –2(a4 + c4 )cosec 2θcot 2θ + 4a2 c2 cosec2 2θ …(3) 

d2 f /dθ2 = 4(a4 + c4)cosec 2θ(cosec2 2θ + cot2 2θ) – 8a2 c2 cosec2 2θcot 2θ 

= 4cosec 2θ[(a2 cosec 2θ – c2 cot 2θ)2 + a4 cot2 2θ + c4 cosec2 2θ] 

Since θ ≤ π/2, clearly d2 f / dθ2  is positive and hence f will be minimum and consequently will be 

maximum. From (3), setting df/dθ=0, we get 

(a4 + c4 )cosec 2θcot2θ = 4a2 c2 cosec22θ  or  cos 2θ = 2a2 c2/(a4 + c4 ) 

∴ 2cos2θ – 1 = 2a2 c2/(a4 + c4 ),  or  cos2θ = (a2 + c2)2 / 2(a4 + c4 ) 

cos θ = 
 

  

2 2

4 42

a c

a c





. 

Q.13. A source of fluid situated in space of two dimensions, is of such strength that 2πρμ presents the 

mass of fluid of density ρ emitted pet unit of time. Show that the force necessary to hold a circular 

disc at rest in the plane of source is 2πρμ2 a2/r(r2 – a2), where a is the radius of the disc and r the 

distance of the source from its centre. In what direction is the disc urged by the pressure? 

Sol. Since the mass of fluid emitted is 2πρμ per unit of time, by definition 

the strength of the given source is μ. Let this source be situated at A such 

that OA = r and let B be the inverse point of A. Then, OA ⋅ OB = a2  so 

that OB = a2/r. Here the equivalent image system consists of (taking OA as 

x-axis) 

(i) a source of strength μ at A(r, 0) 

(ii) a source of strength μ at B(a2/r,0) 

(iii) a sink of strength μ at O(0,0) 

Hence the complex potential at any point P(z = x + iy) is given by 

w = – μ log (z – r) – μ log (z – a2/r) + μlog z  

2 /

dw u

dz z r z a r z

 
   

 
 …(1) 

If the pressure thrusts on the given circular disc are represented by (X, Y), then by Blasius' 

Theorem(*just remember) , we have 
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2
1

2 C

dw
X iY i dz

dz

 
    

 
  …(2)  

where C is the boundary of the disc. Again, by Cauchy's residue theorem, we have 

2

C

dw

dz

 
 
 

 dz = 2πi × [sum of the residues]   …(3)  

wherein the indicated sum of the residues is calculated at poles of (dw/dz)2 lying within the circular 

boundary. Using (3), (2) reduces to 

X – iY = –πρ×[sum of the residues]  …(4) 

We proceed to find the residues of (dw/dz)2. From (1), we have 

 

2
dw

dz

 
 
 

 = 

        
2

22 2 2 22

1 1 1 2 2 2

( ) / //z r z z z r z z a r z r z a rz a r

 
      
     
 

 

=

      
2

22 2 2 22

1 1 1 2 2 2

( ) / //z r z z z r rz a r z a rz a r


     
     

 

       2 2 2 2

2 2 2

/ / / /a r z r a r z r a r r z a r


  

    

 

2
dw

dz

 
 
 

 = 

        
2

22 2 2 22

1 1 1 2 2 2

( ) / //z r z z z r z z a r z r z a rz a r

 
      
     
 

.  

From (5), we find that the poles inside the circular contour C are  z = 0 and z =  

∴ The required sum of the residues (from complex analysis) 

= the sum of the coefficients of z–1 and (z – a2/r)–1 in R.H.S. of (5) 

 

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

/ / /

a

r a r a r a r r r a r

    
    

 
 

Using (6) in (4) and then equating real and imaginary parts, we have 

X = 2πρμ2a2/r (r2 – a2) and Y = 0. 

Thus the disc is attracted towards the source along OA. Hence the disc will be urgent along OA.  

 

Q.14. Within a circular boundary of radius a there is a two-dimensional liquid  
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to source producing liquid at the rate m, at a distance f from the centre, and an equal 

centre. Find the velocity potential and show that the resultant pressure on the  

ρm2 f 3 /2a2 (a2 – f 2), where ρ is the density. Deduce as a limit velocity potential doublet at the centre. 

Sol. Since the rate of production of liquid is m, by definition the strength of the given 

is m/2π. Let this sources be situated at B such that OB = f  

inverse point of B. Then   OA⋅OB = a2  so that OA = a2/f. 

Taking OA as x-axis, the equivalent image system consists of 

(i) a source of strength m/2π at B(f,0) 

(ii) a source of length m/2π at A (a2 

(iii) a sink of strength –m/2π at O(0,0) 

Hence the complex potential w at any point P(z = x + iy) is 

w = –(m/2π)log (z – f) – (m/2π)log(z – a2/f) + (m/2π) log z 

dw

dz
 

2

1 1 1

2 /

m

z f z a f z

 
   

   

2
dw

dz

 
 
 

=

      

2

22 2 2 2 22

1 1 1 2 2

4 ( ) / //

m

z f z z f z a f z z a fz a f


    
    


 

= 

    

2

22 2 2 222

1 1 1 2 2

4 ( ) // (

m

z f z af a f z fz a f f z
f



    
        
  

 

 .
    2 2 2

2 2 2 2

/ / /za f f z f fza f z a f


   

 

. 

If the pressure thrusts on the given circular disc are represented by (X, Y), then theorem, we have 

the fluid.  

Second part. By Bernoulli’s equation. p + (pq2 )/2= constant. So it follow that  p is 

when q is maximum. Hence as explained in solution of Ex. 6 at a point P(α cos θ,  

where θ is given by cos θ = (a2 + f 2 )/[2(a4 + f 4 )]1/2, the pressure is least.  

Q.15. Prove that for liquid circulating irrotationally in part of the fluid between  

intersecting circles the curves of constant velocity are Cassini’s Ovals. 

Sol.  Let O and O'  be the centres of the two non-intersecting circles. Let A(a, 0) and B (–a, 0) be the 

inverse points with respect to both the circles. Let P be any point on one of the given circles such that 

PA = r and PB = r ' 

Since A and B are inverse points of the circle with centre O, so by definition, we have  
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OA. OB = OP2 

Now, from similar triangle OPA and OPB, we have 

PA/PB = OP/OB = constant ⇒ r/r′ = 

constant.  

Hence the equations of the two circles may taken as r/r' 

= c1 and r/r' = c2, where c1 and c2 are constants. Since these circles are two streamlines, it follows that 

the stream function ψ is of the form f (r/r') and it being a harmonic, we take ψ = k log (r/r') because 

log r is the only function of r which is plane harmonic. Here k is a constant.  

Now, if θ is the conjugate harmonic of r, ϕ + iψ or ψ – iϕ must be an analytic function of z, so that  

ϕ = –k(θ – θ') 

w = ψ – iϕ = klog(r/r' ) + ik(θ – θ') = k[log r – log r' + iθ – iθ' ] 

= k [(log r + iθ) – (log r' + iθ' )] = k[log (reiθ ) – log (r' eiθ')] 

or w = k[log (z – a) – log (z + a)],   as   reiθ = z – a and  r'eiθ' = z + a 

q = |
𝑑𝑤

𝑑𝑧
| = |𝑘 [

1

𝑧−𝑎
−

1

𝑧+𝑎
]| =

2𝑎𝑘

|𝑧−𝑎+|𝑧+𝑎∣
=

2𝑎𝑘

𝑟𝑟′  

Hence the curves of equal velocity are given by q = constant or (2ak)/rr' =  constant rr' = constant, 

which are Cassini's ovals. 

PREVIOUS YEARS QUESTIONS 

CHAPTER 1. FLUID KINEMATICS 

Q1. If the velocity of an incompressible fluid at the point  , ,x y z  is given by  , ,0Ay Ax , 

then prove that the surfaces intersecting the stream lines orthogonally exist and are the planes 

through        z-axis, although the velocity potential does not exist. Discuss the nature of the 

fluid flow. [6c IFoS 2022] 

Q2. The velocity components of an incompressible fluid in spherical polar coordinates  , ,r    

are  3 22 cos , sin ,0Mr Mr  
, where M is a constant. Show that the velocity is of the potential 

kind. Find the velocity potential and the equations of the streamlines. [5e UPSC CSE 2022] 

Q3. Verify whether the motion given by   2ˆ ˆ3 2q xi yj xy   is a possible fluid motion. If so, is 

it of the potential kind? Accordingly find out the streamlines and the velocity potential or the 

angular velocity if the fluid was replaced by a rigid solid. [6c IFoS 2021] 

Q4. Show that 
 

2 2

ˆ ˆyi xj
q

x y

  



, ( constant) is a possible incompressible fluid motion. 

Determine the streamlines. Is the kind of the motion potential? If yes, then find the velocity 

potential.[7c UPSC CSE 2021] 
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Q5. A velocity potential in a two-dimensional fluid flow is given by   2 2,x y xy x y    . 

Find the stream function for this flow. [7c UPSC CSE 2020] 

Q6. In a fluid flow, the velocity vector is given by 2 3 5V xi yj zk   . Determine the 

equation of the streamline passing through a point  4,9,1A  . [6c 2020 IFoS] 

Q7. Consider the flow field given by  2 2a x y   , 'a' being a constant. Show that the flow 

is irrigational. Determine the velocity potential for this flow and show that the streamlines and 

equivelocity potential curves are orthogonal.  [5d 2019 IFoS] 

Q8. Consider that the region 0 z h   between the planes 0z   and z h  is filled with 

viscous incompressible fluid. The plane 0z   is held at rest and the plane z h  moves with 

constant velocity ˆVj . When conditions are steady, assuming there is no slip between the fluid 

and either boundary, and neglecting body forces, show that the velocity profile between the 

plates is parabolic. Find the tangential stress at any point  , ,P x y z  of the fluid and determine 

the drag per unit area on both the planes. [8a 2019 IFoS] 

Q9. For an incompressible fluid flow, two components of velocity  , ,u v w  are given by 

2 2 2 2 22 3 ,u x y z v x y y z zx      . Determine the third component w so that they satisfy the 

equation of continuity. Also, find the z-component of acceleration. [(5c) UPSC CSE 2018] 

Q10. For a two-dimensional potential flow, the velocity potential is given by 

 2 2 3 31

3
x y xy x y     .Determine the velocity components along the directions x and y. 

Also, determine the stream function   and check whether   represents a possible case of flow 

or not.[8b UPSC CSE 2018] 

Q11. If the velocity of an incompressible fluid at the point  , ,x y z  is given by  

2 2
2 2 2 2

5 5 5

3 3 3
, , ,

xz yz z r
r x y z

r r r

 
   

 
 

then prove that the liquid motion is possible and that the velocity potential is 
3

z

r
.  Further, 

determine the streamlines. [8c UPSC CSE 2017] 

Q12. A stream is rushing from a boiler through a conical pipe, the diameters of the ends of 

which are D and d. If V and v be the corresponding velocities of the stream and if the motion 

is assumed to be steady and diverging from the vertex of the cone, then prove that  

 2 22
2

2

u V Ku D
e

V d


  

where K is the pressure divided by the density and is constant. [7c UPSC CSE 2017] 
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Q13. Find the streamlines and pathlines of the two dimensional velocity field: 

, , 0
1

x
u v y w

t
  


. [8b 2017 IFoS] 

Q14. In a steady fluid flow, the velocity components are 2 , 2u kx v ky   and 4w kz  . Find 

the equation of a streamline passing through  1,0,1 . [(6c) 2015 IFoS] 

Q15. Suppose    ˆ ˆ4 4v x y i x y j     represents a velocity field of an incompressible and 

irrotational flow. Find the stream function of the flow. [(8b) 2015 IFoS] 

Q16. Given the velocity potential 
 

 

2 2

2 2

1
log

2

x a y

x a y


  
  

   

, determine the streamline. 

[(7c) UPSC CSE 2014] 

Q16. Find the condition that  , , 0f x y    should be a possible system of streamlines for 

steady irrotational motion in two dimensions, where  is a variable parameter. 

[5e 2014 IFoS] 

Q17. Prove that      

2 2
2 2

2 2
tan cot 1

x y
t t

a b
  is a possible form for the bounding surface of a liquid and find the 

velocity components.[8c 2014 IFoS] 

Q18. Prove that the necessary and sufficient condition that the vortex lines may be at right 

angles to the stream lines are  

, , , ,u v w
x y z

  

   

  
   

 

where   and   are functions of , , ,x y z t . [5d UPSC CSE 2013] 

Q19. Find the values of a and b in the 2-D velocity field  2 2 ˆ ˆ3v y ax i bxyj    so that the 

flow becomes incompressible and irrational. Find the stream function of the flow. [7a 2013 

IFoS] 

Q20. Show that  xf r   is a possible form for the velocity potential for an incompressible 

fluid motion. If the fluid velocity 0q   as r  , find the surfaces of constant speed. 

[8b UPSC CSE 2012] 

Q21. Show that  

 

   

2 2

2 2
2 2 2 2

2
, , 0

A x y Axy
u v w

x y x y


  

 
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are components of a possible velocity vector for invisoid incompressible fluid flow. Determine 

the pressure associated with this velocity field. [7a 2012 IFoS] 

Q22. Is
 2

2 2

ˆ ˆk xj yi
q

x y





a possible velocity vector of an incompressible fluid motion? If so, find 

the stream function and velocity potential of the motion. [8c 2011 IFoS] 

Q23. A two-dimensional flow field is given by xy  . Show that -  

(i) the flow is irrotational; 

(ii)  and   satisfy Laplace equation 

Symbols  and   convey the usual meaning. [5e 2010 IFoS] 

Q24. Show that   x t y t     represents the velocity potential of an incompressible two-

dimensional fluid. Further show that the streamlines at time t are the curves       

   
2 2

x t y t     constant. [7b 2010 IFoS] 

CHAPTER 2. MOTION IN 2D- SOURCES & SINK 

Q1. Two sources of strength 
2

m
 are placed at the point  ,0a . Show that at any point on the 

circle 2 2 2x y a  , the velocity is parallel to the y-axis and is inversely proportional to y.  

[8c UPSC CSE 2020] 

Q2. In a two-dimensional fluid flow, the velocity components are given by u x ay   and 

v ax y   , where a  is constant. Show that the velocity potential exists for this flow and 

determine the appropriate velocity potential. Also, determine the corresponding stream 

function that would represent the flow. [7b 2020 IFoS] 

Q3. Two sources, each of strength m, are placed at the point  ,0a ,  ,0a  and a sink of 

strength 2m  at origin. Show that the stream lines are the curves    
2

2 2 2 2 2x y a x y xy   

, where   is a variable parameter.  

Show also that the fluid speed at any point is  2

1 2 32ma r r r , where 1 2,r r  and 3r  are the distances 

of the points from the sources and the sink, respectively. [8c UPSC CSE 2019] 

Q4. In the case of two-dimensional motion of a liquid streaming past a fixed circular disc, the 

velocity at infinity is u  in a fixed direction, where u  is a variable. Show that the maximum 

value of the velocity at any point of the fluid is 2 u . Prove that the force necessary to hold the 

disc is 2mu ,  where m is the mass of the liquid displaced by the disc.  [7d 2018 IFoS] 
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Q5. Two sources, each of strength m, are placed at the points    ,0 , ,0a a  and a sink of 

strength 2m  at the origin. Show that the streamlines are the curves 

   
2

2 2 2 2 2x y a x y xy    , where   is a variable parameter.  

Show also that the fluid speed at any point is  2

1 2 32ma r r r , where 1 2 3, ,r r r  are the distances of 

the point from the sources and the sink. [8d 2018 IFoS] 

Q6. A simple source of strength m is fixed at the origin O in a uniform stream of incompressible 

fluid moving with velocity Ui .Show that the velocity potential   at any point P of the stream 

is cos
m

Ur
r

 , where OP r  and  is the angle which OP  makes with the direction i . Find 

the differential equation of the streamlines and show that they lie on the surfaces 
2 2sin 2 cosUr m  constant. [6b UPSC CSE 2016] 

Q7. Consider a uniform flow 0U  in the positive x-direction. A cylinder of radius a  is located 

at the origin. Find the stream function and the velocity potential. Find also the stagnation points. 

[5d UPSC CSE 2015] 

Q8. If fluid fills the region of space on the positive side of the x-axis, which is a rigid boundary 

and if there be a source m at the point  0,a  and an equal sink at  0,b  and if the pressure on 

the negative side be the same as the pressure at infinity, show that the resultant pressure on the 

boundary is 
 

  

22

2

m a b

ab a b

 


 where   is the density of the fluid. [8b UPSC CSE 2013] 

Q9. With usual notations, show that   and   for a uniform flow past a stationary cylinder are 

given by 
2

cos
a

U r
r

 
 

  
 

, 
2

sin
a

U r
r

 
 

  
 

. [5e 2011 IFoS] 

Note: The beauty of systematic learning is- You’ll find solutions of almost every PYQ in above 

examples or questions attached with detailed answers. So to avoid repetition in this book, we have not 

put those solutions again as answers to PYQs. 
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3. Euler’s Equation of motion: - (For ideal fluids)  
  

 

• Body force, inertia, gravity, etc.  

**(forces per unit mass) B   

∴ Total Body forces = 
v

B dV  

• Rate of change of momentum  M  

 
v

M qdv    

∴ 
v

dM d
qdv

dt dt
    …(i)  

∵ mass × vel ;  m . v;   dv q    

• Net force:- 

ˆ
net

A V

F pdAn B dV      

By Newton’s second law of motion:- 

net

dM
F

dt
  

⇒ ˆ
V A V

d
qdV pdAn B dV

dt
        

 
dq

dV
dt

 +  
v

d
q dv

dt
   =  

v

p dV  + 
v

B dV  
Using gauss

Divergence theorem

 
 
 

 

 
v

dq
dV

dt
 + 0 = 

v

B dv   –  
v

P dV  

 

mass & mass is fixed.

0

dV

d
dv

dt

 
 
 
 


 

 


 

dq
B p

dt
    

1dq
B p

dt
   


called euler’s eq. of motion  

Interpretations:- 

 
dq q

q q
dt t


  

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∵  
d

q
dt t


  


 

 Now using it in Euler’s eq. of motion, we get 

 
1q

q q B p
t


    

 
 

t




  ˆˆ ˆui vj wk   +  ˆˆ ˆui vj wk  . ˆˆ ˆi j k

x y z

   
  

   
  ˆˆ ˆui vj wk   

 = ˆˆ ˆ
x y zB i B j B k 

1
p 


 

Exampoint 2 

1
;x

pu u u u
u v w B

t x y z x

   
    

     
coeff. of î  

1
y

pv v v v
u v w B

t x y z y

   
    

     
; coeff. of ĵ  

1
z

pw w w w
u v w B

t x y z z

   
    

     
; coeff. of k̂  

Example just to do some mental prep about how to use above exam point! 

Given, steady motion i.e.,   0
t





 

Incompressible inviscuid: possible motion 0q    

Component of velocity: u = fx, v = fy, w = 0  

Q. Derive an expression for pressure p: if given p(0, 0, 0) = p0 

Recall; Euler’s Eq. of motion, 

1
x

pu u u u
u v w B

t x y z x

   
    

     
 

1
y

pv v v v
u v w B

t x y z y

   
    

     
 

1
z

pw w w w
u v w B

t x y z z

   
    

     
 

Step II:- 

0 0x y

u u
f f

x y

 
  

 
= 

1
0

p

x



 

 …(1) 

0 0x y

v v
f f

x y

 
  

 
= 

1
0

p

y



 

 …(2) 

0 + fx × 0 + f4 × 0 + 0 = – g –
1



p

z




 ..(3) 

Step II:  
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∵ p is a f-of x, y, z 

∴ dp = 
p p p

dx dy dz
x y z

  
 

  
  

Now,  

Using (1), (2), (3) → dp = _ dx + …(4)  

Now, on integrating eq. (4) we get expression for P(x, y, z) including integration constant  

To find this  

↓  

Use given initial condition  

i.e. P(0, 0, 0) = _____ 

Ex.1 A steady inviscid incompressible fluid flow has velocity field u = fx, v = - fy, w = 0, where if is 

a constant Derive an expression for the pressure field p (x,y, z) if the pressure p (0, 0, 0) = p0 and F = - 

gz. 

Sol. Given u = fx,  v = – fy,  w = 0,  f being a constant  …(1) 

Also, given that  p = p0, when x = 0,  y = 0,  z= 0 …(2) 

Again,  F = - giz   x = 0,   y = 0 and  z = - gz  …(3) 

 Equations of motion for steady motion ( / ) 0t    of an incompressible fluid flow are given by 

   ( / ) ( / ) ( / )u u x v u y w u z        (1/ ) ( / )X p x      … (4) 

  ( / ) ( / ) ( / )u v x v v y w v z        (1/ ) ( / )Y p y       …(5) 

  ( / ) ( / ) ( / )u s x v w y w w z        (1/ ) ( / )Z p z      …(6) 

 Using (1) and (3), (4), (5) and (6) reduce to 

  2 (1/ ) ( / ),f x p x       2 (1/ ) ( / ),f y p y        0 (1/ ) ( / )gz p z       …(7) 

Now,  ( / ) ( / ) ( / )dp p x dx p y dy p z dz          

   2 2( ) ( ) ( ) ,dp f x dx f y dy g z dz        using (7) 

Integrating, 2 2 2 2( ) / 2 ( ) / 2 ( ) / 2 ,p f x f y g z C         C being a constant... (8) 

Putting x = y = z = 0 and p = p0 (see condition (2)), in (8) we get C = p0 

Thus, the required expression for the pressure field is given by 

2 2 2 2 2

0( , , ) ( ) / 2p x y z p f x f y g z     

Ex. 2. For a steady motion of inviscid incompressible fluid of uniform density under conservative 

forces, show that the vorticity w and velocity q satisfies. 
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        ( . ) ( . ) .q w w q    

Sol. Vector equation of motion for inviscid incompressible fluid is 

     2/ ( / 2) (1/ )q t q q curl q F p          …(1) 

  Since the motion is steady, q/t = 0 …(2) 

 Since   is uniform,   (1/ ) ( / )p p     … (3) 

 Since F s conservative, ,F    where   s some scalar function. …(4) 

 Again, by definition,  vorticity vector = w = curl q. 

 Using (2), (3), (4) and (5) in (1), we obtain 

  2( / 2) ( / )q q w p       or 2( / 2 / )q w q p     

 Taking the curl of both sides of the above equation and using the vector identity  

curl gral 0  , we have 

  curl (q × w) = 0  or  ( . ) ( . ) ( . ) ( . ) 0w q q w w q q w          

or  ( . ) ( . ) 0q w w q      or  ( . ) ( . ) .q w w q    

  Where we have used the following two results 

   . . 0w q    and  . 0q   (continuity equation) 

Ex. 3. Show that f the velocity field 

   
2 2

2 2 2

( )
( , ) ,

( )

B x y
u x y

x y





  

2 2 2

2
( , ) ,

( )

Bxy
v x y

x y



 w(x,y) = 0 

Satisfies the equations of motion for inviscid incompressible flow. Then determine the pressure 

associated with this velocity field, B being a constant. 

Sol. The equations of motion for steady inviscid incompressible flow are given by 

    ( / ) ( / ) ( / ) (1/ )( / ),u u x u u y w u z p x               …(1) 

    ( / ) ( / ) ( / ) (1/ )( / ),u v x v v y w v z p y               …(2) 

and    ( / ) ( / ) ( / ) (1/ )( / ),u w x v w y w w z p z               …(3) 

 From the given values of u, v and w, we have 

   
2 2 2 2 2 2 2 2 2

2 2 4 2 2 3

2 ( ) 4 ( )( ) 2 (3 )
,

( ) ( )

u x x y x x y x y Bx y x
B

x x y x y

     
 

  
 

  
2 2 2 2 2 2 2 2 2

2 2 4 2 2 3

2 ( ) 4 ( )( ) 2 (3 )
,

( ) ( )

u y x y y x y x y By x y
B

y x y x y

      
 

  
  0

u

z





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2 2 2 2 2 2 2 2

2 2 4 2 2 3

( ) 4 ( ) 2 ( 3 )
2 ,

( ) ( )

v y x y x y x y By y x
B

x x y x y

    
 

  
 

  
2 2 2 2 2 2 2 2

2 2 4 2 2 3

( ) 4 ( ) 2 ( 3 )
2 ,

( ) ( )

v x x y xy x y Bx x y
B

y x y x y

    
 

  
   0,

v

z





 

   / 0,w x     / 0w y    and / 0w z    

Substituting the given values of u, v and w and also using the above relations, (1), (2) and (3) reduce to 

   
2 2 2 2

2 2 2 2 2 3 2 2 2

( ) 2 (3 ) 2
. .

( ) ( ) ( )

B x y Bx y x Bxy

x y x y x y

 


  

2 2

2 2 3

2 (3 ) 1
,

( )

By x y p

x y x

 
 

  
 

  
2 2 2 2

2 2 2 2 2 3 2 2 2

( ) 2 ( 3 ) 2
. .

( ) ( ) ( )

B x y By y x Bxy

x y x y x y

 


  

2 2

2 2 3

2 ( 3 ) 1
,

( ) 0

Bx x y p

x y y

 
 

 
 

And    0 = –(1/) (p/z) 

  Simplifying the above equations, we have 

  
2

2 2 2 2 2 2 2

2 2 5

2
[( )(3 ) 2 (3 )]

( )

B x
x y y x y x y

x y
   



1
,

p

x


 

 
 

  
2

2 2 2 2 2 2 2

2 2 5

2
[( )( 3 ) 2 ( 3 )]

( )

B y
x y y x x x y

x y
   



1 p

y


 

 
 

And     0 /p z    

 Again simplifying the above equations, we have 

Or  
2

4 2 2 4

2 2 5

2 1
( 2 )

( )

B x p
x x y y

x y x


    

  
 i.e, 

2

2 2 3

2

( )

B x p

x y x

 


 
  …(1) 

  
2

4 2 2 4

2 2 5

2 1
( 2 )

( )

B y p
x x y y

x y z


    

  
 i.e,  

2

2 2 3

2

( )

B y p

x y y

 


 
  ...(2) 

And     0 / ,p dz      ...(3) 

Relation (3) shows that the pressure p is independent of z, i.e, p = p (x, y), Hence, we have  

 ( / ) ( / )dp p x dx p y dy       

  
2 2

2 2 3 2 2 3

2 2

( ) ( )

B x B y
dp dx dy

x y x y

 
 

 

2 2 2 3( ) (2 2 )B x y xdx ydy      

 2 2 2 3 2 2( ) ( ).dp B x y d x y     

 Integrating, 2 2 2 2 2 2 2 2(1/ 2) ( ) { / 2( ) }p C B x y C B x y          

where C is a constant of integration. It gives the required pressure distribution. 

Ex.4. The particle velocity for a fluid motion referred to rectangular axes is given by the components 

  u = A cos ( / 2 )cos( / 2 ).x a z a   v = 0,  sin( / 2 )sin( / 2 )w A x a x a   ,  
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where A is a constant. Show that this is a passible motion of an incompressible fluid under no body 

forces n an infinite fixed rigid tube, ,0 2 .a x a z a      Also find the pressure associated with this 

velocity field. 

Sol. Given cos( / 2 )cos( / 2 ), 0,u A x a z a v     sin( / 2 )sin( / 2 )w A x a z a    …(1) 

From (1),      / ( / 2 ) ( / 2 )cos( / 2 ),u x A a sin x a z a        / 0v y    

And / ( / 2 )sin( / 2 )cos( / 2 )w z A a x a z a       / / / 0,u x v y w z       ...(2) 

Showing that the given velocity components represent a physically possible flow. 

 The equations of motion for steady inviscid incompressible flow under no body force are 

  …(3) 

 ( / ) ( / ) ( / ) (1/ )( / )u v x v v y w v z p y             …(4) 

And  ( / ) ( / ) ( / ) (1/ )( / )u w x v w y w w z p z              …(5) 

  From (1) / 0;u y      / ( / 2 )cos( / 2 )sin( / 2 )u z A a x a z a          

  / / 0,v x v z         / ( / 2 )cos( / 2 )sin( / 2 )w x A a x a z a        ...(6) 

And        l / 0w y         

Using (1), (2) and (6), the equations of motion (3), (4) and (5) become 

cos cos . sin cos sin sin .
2 2 2 2 2 2 2

x z A x z x z
A A

a a a a a a a

      
 

1
cos sin 0 (1/ )( / )

2 2 2

A x z p
p y

a a a x

   
      

 
 

cos cos . cos sin sin sin .
2 2 2 2 2 2 2

x z A x z x z
A A

a a a a a a a

      


1
sin cos

2 2 2

A x z p

a a a z

   
 

 
 

Simplifying the above equations, we have 

 2/ ( / 2 )cos( / 2 )sin( / 2 ).p x A a x a x a        ...(7) 

     / 0p y        ...(8) 

And 2/ ( / 2 )cos( / 2 )sin( / 2 ).p z A a z a z a        …(9) 

Equation (8) shows that the pressure p is independent of y so that p = p(x, z). Then  

  ( / ) ( / )dp p dx dx p z dz       

 2( / 2 )[cos( / 2 )sin( / 2 )dp A a x a x a dx      cos( / 2 ) ( / 2 ) ]z a sn z a dz  , Using (7) and (9) 

Integrating,  2 2( / 2 )[( / )sin ( / 2 )p A a a x a    2( / ) ( / 2 )]a sin z a C     

2 2 2( / 2)[ ( / 2 ) ( / 2 )]p A sin x a sin x a C      , C being a constant of integration...(10) 

(10) gives the required pressure associated with the velocity field by (1). 

( / ) ( / ) ( / ) (1/ )( / ),u u x v u y w u z p x            
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Ex.5. Prove that if ( / ) ( /u t v v x u        / ) ( / / )y w u t w x       and ,v  are two similar 

expressions, then dx dy vdz    is a perfect differential, if the external forces are conservative and the 

density is constant. 

Sol. Let (X, Y, Z) be the components of external forces. Since the external forces are conservative, there 

exists force potential V (x, y, z) such that  

/X V x   ,  /Y V y     and / .Z V z    ... (1) 

Euler’s dynamical equations of motion are 

      / (1/ )( / ),Du Dt X p x      ...(2) 

     / (1/ )( / ),Dv Dt Y p y     ... (3) 

And    / (1/ )( / ),Dw Dt Z p z     ... (4) 

Where ( , , )p x y z  is the pressure at, any point (x, y, z). 

 Using (1), (2), (3) and (4) can be rewritten as 

   / / (1/ )( / ),Du Dt V x p x        … (5) 

   / / (1/ )( / )Dv Dt V y p y         ... (6) 

And  / / (1/ )( / )Dw Dt V z p z       ...(7) 

Multiplying (5), (6) and (7) by dx, dy dy dz and then adding, we have 

 
Du dv dw V V V

dx dy dz dx dy dz
Dt Dt Dt x y z

   
      

   

1 p p p
dx dy dz

x y z

   
   
    

 

  
1

.
Du Dv Dw

dx dy dz dV dp
Dt Dt Dt

    


  …(8) 

 Re- writing the given value of we have 

   
u v u u w

v v w w
t x y z x

    
     

    
  

   
u u u u u v w

u v w u v w
t x y z x x x

        
         

        
 

     
2

2 2 21 1

2 2

Du Du q
u v w

Dt x Dt x

 
     

 
  …(9) 

          2 2 2 2D
u v w and q u v w

Dt t x y z

    
       
    

 

Similarly, 
21

2

Dv q

Dt y


  


 and  

21

2

Dw q
v

Dt z


 


  ...(10) 
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 Using (9) and (10) we have, 

   
1

2

Du Dv Dw
dx dy vdz dx dy dz

Dt Dt Dt
      

2 2 2q q q
dx dy dz

x y z

   
  

   
 

         2(1/ ) (1/ 2) [ ( / )dV dp dq d V p          2(1/ 2) ]q   

Which is a perfect differential which is what we wished to prove. 

spherical polar coordinates 

Ex. 6. For an inviscid, incompressible, steady flow with negligible body forces, velocity components 

in spherical polar coordinates are given by 

ur = V (1 – R3 /r3) cos, u = –V(1 + R3 / 2r3)sin, u = 0 

Show that it is a possible solution of momentum equations (i.e. equations of motion). R and V are 

constants. 

Sol. Here equations of motion in spherical polar coordinates are  

  

2 2

r r r r
r r

u u uuu u u u 1 p
u F

t r r r sin r r

  

   

    
     

    
 …(1) 

 
2

r
r

uu u u u u u u u cot 1 p
u F

t r r r sin r r r

      




    

     
      

    
 …(2) 

r

r

u u u u u u u u u cotu 1 p
u F

t r r r sin r r r cos

       




     

    
      

    
…(3) 

 

For steady flow (/t = 0) with negligible body forces (Fr = F= F = 0), the above equations reduces 

to 
2

r r
r

u uu u 1 p
u

r r r r
 

 

  
   

  
…(4) 

   r
r

u u u u u 1 p
u

r r r r
   

  

  
   

  
…(5) 

      
1 p

0
r sin  





 …(6) 

Equation (6) shows that p is function of r and only.  

Give : ur = V
3

3

R
1

r

 
 

 
cos,    u = –V

3

3

R
1

2r

 
 

 
sin,   …(7) 

From (7), 
3

r
4

u 3VR

r r





cos;  

3
r

3

u R
V 1

r

 
   

  
 sin   …(8) 

Using (7) and (8), (4) reduces to 

3 3 3 3 3
2 2

3 4 3 3 3

R 3VR V R R 1 R 1 p
V 1 cos . cos 1 sin . V 1 sin V 1 sin

r r rr r 2r r 2r
    



           
                  

          
 

or   
2 3 3 2 3 3

2 2

4 3 r 3

3V R R 3V R R 1
1 cos 1 sin

rr r 2r 2r


 



    
       

   
…(9) 
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 From (7), 
3

4

u 3VR sin

r 2r
 



    and  

3

3

u R
V 1

2r




 
   

  
cos…(10) 

 Using (7) and (10), (5) reduces to 

  
3 3 3 3

3 4 3 3

R 3VR 1 R R
V 1 cos . sin V 1 sin V 1 cos

rr 2r 2r 2r
   

        
             

        
 

   
3 3

3 3

1 R R 1 p
V 1 cos V 1 sin

r rr 2r
 

 

       
           

      
  …(11) 

or  
2 3 3 2 3 3

3 3 3 3

3V R R 3V R R 1 p
1 sin cos 1 sin cos

2r r 2r 2r
   

 

    
      

   
 

 Differentiating (9) with respect to , we get 

   
2 2 3 3 2 3 3

4 3 4 4

1 p 3V R R 3V R R
1 .2cos sin 1

r r r 2r 2r
 

 

   
        

     
×2 sincos 

or  
2 2 3 2 6

4 7

1 p 9V R 9V R

r r 2r 

 
    

   
sincos …(12) 

Next, differentiating (11) with respect to r, we get 

  
2 2 3 3

4 7

1 p 3V R 3 6R

r 2 r r 

 
    

   
sincos + 

2 3 3

4 7

3V R 3 6R

2 r 2r

 
  
 

× sincos 

or  
2 2 3 2 6

4 7

1 p 9V R 9V R

r r 2r 

 
    

   
 sincos …(13) 

 Since (12) and (13) are identical, the equations of motion (i.e., momentum equations) are satisfied. 

Ex.7. The velocity components ur(r,) = –V 
2

2

a
1

r

 
 

 
cos, u(r,) = u

2

2

a
1

r

 
 

 
 sin satisfy the 

equations of motion for a two-dimensional inviscid incompressible flow. Find the pressure associated 

with this velocity field. U and a are constants.  

Sol. The equations of motion for inviscid incompressible fluid in cylindrical polar coordinates are given 

by 
2

r r r r
r z r

uu u u u u 1 p
u u F

t r r z r r


 

    
     

    
    …(1) 

r
r z

u u u u u u u 1 p
u u F

t r r z r r
     


  

     
     

    
    …(2) 

z z z r
r z z

uu u u u 1 p
u u F

t r r z z


 

    
    

    
    …(3) 

 For steady (/t = 0) and two dimensional flow (/z = 0, uz = 0) with negligible body forces (Fr = 

F= Fz = 0), the above equations (1) to (3) reduces to  

  
2

r r
r

u uu u 1 p
u

r r r r
 

 

  
  

  
     …(4) 

  r
r

u u u u u 1 p
u

r r r r
   

  

  
  

  
     …(5) 
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 And    
1 p

0
z


 


, 

 Which implies that p is function of r and only. 

  Given   ur = 

2

2

a
U 1

r

 
  

 
cos ,  u = U

2

2

a
1

r

 
 

 
sin …(6) 

  Using (6), (4) reduces to 

 
2 2 2 2

2 3 2 2

a 2a 1 a a
U 1 cos cos U 1 sin U 1 sin

rr r r r
  

          
                  

          

U
 

         

 

22
2 2

2

1 a 1 p
.U 1 sin

r rr




  
    

 
 

or   

22 2 2 2 4 2
2 2

3 2 4 2

2U a a U a a 1 p
1 cos sin 1 1

r rr r r r
 



       
            

       

 

    

or  
2 2 2 2 2 2

2

3 2 3 2

2 2
1 cos 1

U a a U a a

r r r r

   
     

   

2 1 r
sin

r


  


 ... (7) 

 Again using (6), (5) reduces to 

 
2 2 2

2 3 2

2
1 cos sin 1

a a U a
U U

r r r r

     
          

     

2 2

2 2

1
sin 1 cos 1 cos

a a
U U U

r r r

   
       

   

2

2

1
1 sin

a

r rp

  
    

 
 

  
2 2 2 2 2 2

3 2 3 2

2 2
1 sin cos 1

a U a U a a

r r r r

   
      

   

1
sin cos

p

r


   

 
 

  
2 2 2 2 2 3

2 2 2 2

2 2
1 sin cos 1

a U a a U a

r r r r

   
      

   

1
sin cos

p
   

 
 

  
2 2

2

4 1
sin cos

U a p

r


   

 
  ... (8) 

 Differentiating (7) with respect to  , we have 

  
2 2 2 2 2 2

3 2 3

1 4 4
1 sin cos

p U a a U a

r r r r

 
      
   

2

2
1 sin cos

a

r

 
   

 
 

Or   
2 2 2

3

1 8
sin cos

p U a

r r


  

 
 …(9) 

 Differencing (8) with respect to r, we have 
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2 2 2

3

1 8
sin cos

p U a

r r


  

  
……. (10) 

 Since (9) and (10) are identical, it follows that the given velocity components satisfy the equations 

of motion. 

 Since p is function of r and  , we have  

   / /dp p r dr p d        

 Substituting the value of /p r   and /p   given by (7) and (8) respectively in the above equation, 

we obtain 

 
2 2

2 2 2 2

3 5 3 5

1 1
2 sin cos

a a
dp U a

r r r r

     
         

     

2 2

2

4
sin cos

U a
dr d

r


   …. (11) 

 Let dp=Mdr +Nd  . Then, by comparison, we have 

  2 2 3 2 2 2 3 2 5 22 (1/ / )sin (1/ / )cosM U a r a r r a r       

And 2 2 2(4 / ) sin cosN U a r       

  
M 


 

 
2 2

2 2 2 2

3 5 3 5

1 1
2 sin cos

a a
U a

r r r r

      
         

       

 

  2 2 3 2 52 {(1/ / )} 2sin cosU a r a r      3 2 5(1/ / ) 2sin cos }r a r     

  =  3 2 28 / sin cosr U a    

And  
2 2

2

4
sin cos

N U a

r r r

   
    

   

2 2

3

8 sin cosU a

r

  
  

 Thus,   / / .M N r      

 Hence (11) must be exact and so its solution by the usual rule of an exact equation is 

  2 22p U a   

  
2 2

2 2

2 4 2 4

1 1
sin cos

2 4 2 4

a a
c

r r r r

    
          
    

 

 
2

2 2

2 4

cos2
2 ,

2 4

a
p U a C

r r

 
    

 
 C being  arbitrary constant 
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To decode type II problems  

Ex.8. A sphere of radius R whose center is at rest. Vibrates radically in an infinite incompressible fluids 

of density ρ. If the pressure at infinity is π. Show that the pressure 

at the surface of the sphere at time t is  

22 2

2

1

2

d R dR

dt dt

   
    

   

 

Here the motion will take place in a manner such that : each 

particle of the fluid moves towards centre of sphere. 

∴ The free surface will be spherical. 

** The velocity v' will be radial only  

(i.e., v' is function of r' (radius) & time ‘t’ only)  

Eq. of continuity:-  

2 2( )r v F t R V     …(1); here V is the velocity at R distance 

from the centre or on surface of sphere(in figure, it’s V=vel. on surface) 

** Remember: if v' is function of r' & t only there (sphere) eq. of continuity reduces into  

2 ( )r v F t    

Step II:- If velocity is function of r & t only, then Euler's eq of motion is  



  
  

  

v v 1 p
v B(r )

t r r
 ……(2) 

Exampoint:- Now, using (1) in (2), we need to proceed  

  This is interesting & need to remember 

⸪ from (1), we have, 

 r’2 v’ = F(t) = R2V 

 
v'

t




= 

2

1
F(t )
tr'




 

  
v'

t




= 

2

F'(t )

r'
 

Now, using in (2), we have, 

 


 
  

 2

F'(t ) v' 1 p
v' B(r')

r' r'r'
 

On Integrating w.r.t  r’ 

2

2

F'(t ) 1
v'

2r'
 = 


 
p

B(r').dr' A;     ………(3) 

where A is integration constant.    

 

Answer (above example):- 

Eq” of continuity gives  

r’2 v’ = F(t) = R2v  ………..(1) 
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
v'

t




= 

2

F'(t )

r'
  ………….(2) 

Euler’s equation of motion,  



  
  

  

v' v' 1 p
v' B(r')

t r' r'
 

 

 B(r’) = 0 : (No body force given) 



  
   

  

v' v' 1 p
v' 0

t r' r'
 

    
 

  


2F'(t ) 1
v' ( 1/ ) ( p)

r' 2 2 r' dr'
 

On integrating w. r. t. r’  




  2F'(t ) 1 p

v' A
r' 2 2

;  where A is  integration constant. 

given when r’ → , v’ = o; p =   

from (3); 

 


 
   



F(t ) 1
0 A

2
 

  A = 



 

 eq. – (3) glues, 

 2F'(t) 1 p
v '

r ' 2

 
 


  ………. (4) 

 For Target 

 But p = P and v’ = V when r’ = R 

 We have from (4) 

 
2f '(t) v

p p
R 2

 
    
 

 

 
  2r R
f '(t) 1

p V
R 2


 

   
 

 

   2

r ' R

1 2
p f '(t) V

2 R 

 
    

 
 ……(5) 

 
dR

V
dt

 , Now,  from (1), we have 

    2d d
F(t) R v

dt dt


2d dR
R

dt dt

 
  

 

2d R d
(R )

dt 2 dt

 
  

 
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  
22 2

2

d R d R dR
F'(t) F(t) R

dt 2 dt dt

 
    

 
 

 Using this F'(t)  & V in (5) we get desired result. 

 
22 2

2

1 d R dR
p f

2 dtdt

  
    

   

    

Ex.9. An infinite mass of homogeneous incompressible fluid is at rest subject to a uniform 

pressure   and contains  spherical cavity of radius ‘a’ filled with a gas at pressure m . Prove 

that if inertia of gas be neglected and boyle’s law be supposed to hold through the ensuing 

motion, the radius of the sphere will oscillate between a and na, where n is determined by the 

eq. 1 + 3 mlogn –n3 = 0 

Eq. of continuity 

 r’2 v’ = F(t) = R2v  ………..(1  


v'

t




= 

2

F'(t )

r'
  ………….(2) 

Euler’s eq. of motion. 

 
v ' v ' 1 p '

v ' B(r ')
t r r '

  
  

   
 

Using 2 

  2

2 '

f '(t) 1 1 p '
v ' 0

2 r 'r ' r

 
  

 
 {  B(r’)=0} 

 On instigating w.r.t.r’  

 2f '(t) 1 p '
v ' A

r ' 2

 
  


, when A to integrator constant.   

 at r ' , v ' 0 &p    A


 


 

  2F(t) 1 p '
v '

r ' 2

 
 


  ……………… (3) 

 Gas inside cavity follows Boyl’s law  

3 34 4
a m R P

3 3

   
         
   

 

 
3

3

a m
P

R


  

 Now, using P for further, 

   
2

2 2 2

2

R d 1 d 1 d dR
(R ) R R

2 dt 2 dt 2 dt dt

     
       

    
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 When r’=R, v’ = V, p’ = P = 
3

3

a m

R


 

 from (3), we have 

 
3

2

3

F'(t) 1 1 a m
V

R 2 R

  
   

  
……………….(4) 

 From (1); 

 F’(t) = 2 2 2dR dV dV dR
2R .V R 2RV R .

dt dt dR dt
    

 2 2 dV
F'(t) 2RV R V

dR

 
   

 
  ……………….(5) 

Using (5) in (4) 

2 2

3
2

3

dV
2RV R V

1 1 a mdR
V

R 2 R

  
       

      
   

  

 

3
2

3

dV 3 a m
RV V

dR 2 R

 
    

 
 

 Multiplying by 2R2dR, We get 

2R3VdV + 3R2V2dR=
2 32 R 2a m

dR
R

   
 

  
 

 
2 3

3 2 2 R 2a m
d(R V ) dR

R

   
  

  
 

 On integrating; 
3 3

3 2 2R 2a m
R V logR B

3

 
  

 
 …… (6)  

Where B s integration onstant.  

 Initially when R = a, V = 0 

 (6) gives 
3 32 2

log
3

a a m
B a

  
 

 
 

i.e., we have, 

 
3

3 2 3 32 2
( ) log

3

a m R
R V a R

a

   
    

   
 …..(7) 

 Radius of sphere oscillates b/w a & na 

 i.e, we have V = 0 at R = a & R = na 

 Putting R = na, V = 0 in (7) we get 

 3 3 3 32
0 3 log

3

na
a n a ma

a

   
    

   
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  1 + 3m log n – n3 = 0  as 0a   

Ex.10.  A mass of gravitating fluid is at rest under its own attraction only, the free surface 

being a sphere of radius b & the inner surface a rigid concentric shell of radius a. show that if 

the shell suddenly disappear, the initial pressure at any point of the fluid at a distance r from 

the centre so 22
( )( ) 1

3

 
     

 

a b
r b a r a

r
 

Attraction at a distance r’;  

3 3

2

4
( ' )

3( )
'

r r r

B r
r

  

  

 2

2

' '( )
' ' ( )

'

v F t
r v F t

t r


   


 

 
' ' 1

' ( )
' '

v v p
v B r

t r r

  
  

   
 

 
3 3

2

2 2

4
( ' )

'( ) 1 5'
2 '' '

r r r
F t

v
rr r

   


  


 

Negative sign is attached due to the nature of motion. 

When shell is present.   When shall disappears  

3
2

2 2

'( ) 1 4 1 '
' ( ' )

' 2 3 '' '

F t r p
v r r

r rr r

  
       
   

 

2 3
2'( ) 1 4 ' '
'

' 2 3 2 '

F t r r p
v r A

r r

  
       

 
 …….. (2) 

 Initially  when t = 0, v’ = 0, r = a, p’ =p (Let) 

 From (2) we get 

 
2 3'( ) 4 '

' 3 2 '

F o r a p
r A

r r

  
      

 
 ………(3) 

 But, p = 0; when r’ = a & r’ = b 

 eq. (3) gives. 

2
2'( ) 4

3 2

F o a
r a A

a

  
     

 
  ………….(4) 

2 2'( ) 4

3 2

F o b a
r A

b b

  
     

 
 …………(5) 

Subtracting (5) from (4) ; we get, 

2 2
21 1 4

'( ) 1
3 2

b a a
F o r a

b a b

    
         

    
 

  32 4
'( ) ( )

3 3
F o r ab a b r a         …. (6) 
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 Multiplying (4) by a, (5) by a there subtracting we get 

 
3 34

0 ( )
3 2 2

b a
r A a b
 

      
 

 

  2 22
( )

3
A r a b ab       ………… (7) 

 Now using F’(o) & A from (6) & (7) in (3), we get 

31 2 4
( )

' 3 3
r ab a b r a

r

  
      

 

2 34 '

3 2 '

r a p
r

r

 
     

 

2 22
( )

3
r a b ab      

2 3 3
2 22 ' ( ) 2

2
3 2 ' ' '

p r a ab a b a
r a b ab

r r r

   
          

   

2 2 2 22 ( )
'

3 '

ab a b
P r a b ab r

r

 
       

 
 

 

Ex.11. Liquid contained b/w two parallel planes the free surface is a circular cylinder of radius a 

whose axis is perpendicular to planes. All the liquid within a concentric circular cylinder of radius 

b is suddenly annihilated; prove that if   is the pressure at the outer surface, the initial pressure at 

any point on the liquid at the distance r from center is 
log log

log log






r b

a b
    

 Eq. of continuity r’v’ = F (t) = R’V’  

Explanation.  

 Here the motion will take place in such a manner: each particle (element) of the liquid moves 

towards the axis of cylinder; |z| = b 

 The free surface would he cylindrical  thus the velocity v’ will he radial and v’ will he 

function of r’ (the radial distance from the centre of cylinder |Z| = b which is taken as origin 

and time t only.) 

Let p’ he the pressure at distance r’  

  eq. of continuity: r’ v’ = F(t) ………(1)  

 Euler’s equation of motion 

    
' ' '

' ( ')
' '

v v p
v B r

t r r

   
  

   
  ……… (2) 

Now, using (1) in (2) 

 2'( ) 1 1 '
' 0

' 2 ' '

F t p
v

r r r

 
  

  
 

From (1) 

'( )
'

'


F t
v

r
 

' '( )

'






v p t

t r
 

On integrating w.r.t r’ 
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F’(t) log 21 1
' ' ' ;

2
r v p A   


 Where A is integration constant. ……(3)  

 Initially, where t = 0, v’ = 0, p = P  

From (3), we have 

F’(o) = log '
P

r A


 


      …….(4) 

Again, , p  when r’ = a & p = o when r’ = b  

 eq. (4) gives, 

'( ) logF o a A


  


 & F’(o) log b = A 

Sowing above eq.s we get 

F’(o) & A 

A = - log 
log

b
a

b



 
  

 

, '( )
log( / )

F o
a b


 


 

We have, from (4), 

 

log
log '

log / log( / )

p b
r

a b a b

 
 

  
 

  
log ' log

log( / )


 

r b
P

a b
 

log ' log

log log


  



r b
P

a b
  

Q.1. A mass of liquid of density  whose external surface is a long circular cylinder of radius a which 

is subject to a constant pressure , surrounds a coaxial long circular cylinder of radius b. The internal 

cylinder is suddenly destroyed; show that if v is the velocity at the internal surface, when the radius is 

r, then 

 
  

2 2

2

2 2 2 2 2

2 b r
v

r log r a b / r

 


 
 

Sol.               So let’s start doing the mental exercise!  

When the inner cylinder is suddenly destroyed, the motion of the liquid will take place along the radii 

of the normal sections of the cylinder.  

Hence the velocity will be function of r' (the radial distance from the centre of the cylinder | z |= a which 

is taken as origin) and time t only.                            Let p be the pressure at a distance r'.  

Then the equation of continuity is       r’v’ = F(t)…(1) 

 From (1),     v’ / t = F’(t)/ r’ …(2) 
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 The equation of motion is  
v' v' 1 p

v'
t r' r'

  
  

  
 As there is no body force. 

So     2F'(t ) 1 1 p
v' ,

r r' 2 r'

  
   
  

 using (2) 

 Integrating; F’(t) log r’ + 
1

2
v’2 = –

p


+ C, being an arbitrary constant  …(3) 

 Let r and R be the radii of the internal and external surfaces of the cylinder and let v and V be the 

velocities there at any time t. Hence, we have 

  When  r’ = r,   v’ = v  p = 0   …(4) 

and  when r’ = R,    v’ = V,  p =    …(5)  

 Using (4) and (5), (2) reduces to F’(t) log r + v2 /2 = C ….(6) 

and F’(t) log R + V2 /2 = –/ + C    …(7) 

 Subtracting (7) from (6), we have; F’(t)(log r – log R) + (v2 – V2)/2 = / …(8) 

 From (1),    rv = RV = F(t)  …(9) 

 But v = dr/dt and V = dR/dt. So (9) becomes 2rdr = 2RdR = 2F(t)dt  …(10) 

 Also   R2 – r2 = a2 – b2 …(11) 

 From (9),   F’(t) =      
d d dr d
rv rv . v rv

dt dr dt dr
  , as 

dr
v

dt
 …(12) 

 Putting the values of F’(t) and V given by (12) and (9) respectively in (8) yields 

 
2 2

2

2

d r 1 r v
v rv .log v

dt R 2 R





 
    

 
 

 rv  
2

2

2

d r 1 r r
rv .log rv 1

dr R 2 R 

  
   

 
 

  2 2 2

2

1 d r 1 1 r r
rv .log r v

2 dr R 2 r R 

 
   

 
 

2 2d 1 r r
r v log

dr 2 R 

 
 

 
,  …(13) 

where we have used (10) i.e. RdR = rdr. 

 Integrating (13), 
2

2 21 r r
r v log C',

2 R 2


  ; C’ being an arbitrary constant  …(14) 

 But v = 0   when  r = b.  So C’ = –b2/2. 
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  From (14),   r2v2 log
r

R 


 (r2 – b2) 

       r2v2 log

2
r 2

R 

 
 

 
(r2 – b2) 

  
 
 

 

 

 
 

 
 

2 2 2 2 2 2 2 2

2

12 2 2 2 2 2 2 2 22 2 2

2 r b 2 r b 2 r b 2 b r
v

r log r / R r log R / r r log R / rr log R / r  


       
      

 Thus,    
 

  

2 2

2

2 2 2 2 2

2 b r
v

r log r a b / r

 


 
, using (11) 

Q.2. A centre of force attracting inversely as the square of the distance is at the centre of a spherical 

cavity within an infinite mass of incompressible fluid, the pressure on which at an infinite distance is  

and is such that the work done by this pressure on a unit area through a unit of length is one-half the 

work done by the attractive force on a unit volume of the fluid from infinity to the initial boundary of 

the cavity; prove that the time filling up the cavity will be а(ρ/)1/2 {2 – (3/2)3/2}, a being the initial 

radius of the cavity, and P the density of the fluid. 

Sol. At any time t, let v' be the velocity at a distance r' and p be the pressure there. Let r be the radius 

of the cavity at that time and v be the velocity there.  

Equation of continuity is r’2v’ = F(t) = r2v …(1) 

 From (1),  v’/t = F’(t)/r’2…(2) 

 The equation of motion is   
2

v' v' 1 p
v'

t r r'r'





  
  

  
; body force is given as inversely 

proportional to square of distance r’. 

So   2

2 2

F'(t ) 1 1 p
v'

r' 2 r'r' r'





  
    
  

, using (2) 

 Integrating,  
2F'(t ) 1 P

v' C
r' 2 r'




     , C being an arbitrary constant 

 But v’ = 0 and p =  when r’ = . So C = /. Hence the above equation beomes 

      
2F'(t ) 1 P

v'
r' 2 r'






     …(3) 

 Also v’ = v and p = 0 when r’ = r. So from (3), we get 

  
2F'(t ) 1

v'
r' 2 r'






     …(4) 

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/  

 From (1),   F’(t) =  2 2 2d dr dv dr dv dr
r v 2r .v r 2rv r

dt dt dt dt dr dt
     

     = 2rv2 + r2v
dv

dr
,  as v = 

dr

dt
 

 Using the above value of F’(t), (4) gives 

  

 2 2 21 dv 1
2rv r v v

r dr 2 r





 
     

 
 or  2rvdv + 3v2dr = –2

r





 
 

 
dr 

or 2r3vdv + 3v2r2 dr = –2r2 
r





 
 

 
dr  or d(r3v2) = –2 2r r



 
 

 
dr 

Integrating, r3v2 = – 2 32
r r

3




 
  

 
C’, C’ being an arbitrary constant …(5) 

Initially, when r = a, v = 0. So C’ = a2 + (2/3)a3. 

  From (5),   r3v2 = (a2 – r2) + 
2

3


(a3 – r3).…(6) 

 Since the work done by  is half the work done by the attractive force, we have  

    × 1 × 1 = 
1

2

a

2r




 
 
 

 dr  so that   = 
2 a




. 

 Putting this value of in (6), we get 

r3v3 = 
2 a




(a2 – 2) + 

2

3


(a3 – r3)  

or  r3v2 =   2 2 3 32
3a a r a r

3


     or  v2 = 

  2 2 3 3

3

3a a r a r2

3 r

  
 

or 
  

1/ 2
2 2 3 31/ 2

3/ 2

3a a r a rdr 2

dt 3 r

   
 

 
 …(7) 

wherein negative sign is taken as r decreases when t increases. 

 Let T be the time of filling the cavity. Then we have, r = a when t = 0 and r = 0 when t =T. 

Hence (7) gives on integration.  

     

1/ 2T

0

3
dt

2

 
  

 


  

3/ 2
0

1/ 2a 2 2 3 3

r dr

3a a r a r  
  
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   T = 

1/ 2
3

2

 
 

     

3/ 2
a

0

r dr

r 2a a r 
 …(8) 

Put r = a sin2 so that dr = 2a sincos. Then (8) reduces to 

 T = 

1/ 2
3

2

 
 

   

1/ 23/ 2 3 4
/ 2 / 2

22 1/ 20 0

a sin .2asin cos d 3 sin d
2a

2 2 sina 2 sin .a cos

       

 

 
  

   
   

 = 2a

1/ 2
/ 2

2

20

3 4
sin 2 d

2 2 sin


 



   
    

    
  

 = 2a

1/ 2
3

2

 
 

 

1/ 2 2
/ 2 / 2

2 2 20 0

d 3 3 sec d
4 2a 4

4 42 sin 2sec tan

      


  

    
              

   

 = 2a
 

1/ 22
/ 2

2 20 0

3 sec d 3 3 4 dt
4 2a

4 4 32 3tan 2 / 3 t

    



    
        

       
   

[Putting tan= t and sec2d = dt ] 

 = 2a

1/ 2 1/ 2 1/ 2

1

0

3 3 4 3 3 3 3 4 3 1
. tan t 2a .

2 4 3 2 2 2 4 3 2 2

  






           
                              

 

 = a

1/ 2 1/ 2 1/ 2 3/ 2
3 3 4 3 3

a 2 .
2 x 3 2 2

 


           
              

             

 

Q.3. A spherical hollow of radius a initially exists in an infinite fluid, subject to constant pressure at 

infinity. Show that the pressure at distance r' from the centre when the radius of the cavity is r is to the 

pressure at infinity as 3r2r’4 + (a3 – 4r3)r’3(a3 – r3)r3 : 3r2r’4. 

Sol. Let v' be the velocity at a distance r' at any time t and p be the pressure there.  

Let v be the velocity of the inner surface of radius r. Then the equation of continuity is 

r’2v’ = F(t) = r2v   …(1) 

 From (1), v’/t = F’(t)/r’2…(2) 

 The equation of motion is  
v' v' 1 p

v'
t r r'

  
  

  
 

     
  2

2

F' t 1 1 p
v'

r' 2 r'r' 

  
   
  

 using (2) 

 Integrating,  
  2

F' t 1 p
v' C ,

r' 2 
     C being an arbitrary constant …(3) 

 Let  be the pressure at infinity. Thus v’ = 0 and p =  when r’ = . So (3) gives C = /. 
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 Then (3) reduces to 
  2

F' t 1 p
v'

r' 2 


    …(4) 

 But p = 0 and v’ = v when r’ = r. Then (4) gives 
  2

F' t 1
v'

r' 2 


    …(5) 

 From (1),  F’(t) = 
d

dt
(r2v) = 2r

dr

dt
v + r2 dv

dt
= 2rv

dr

dt
+ r2 dv dr

dr dt
 

      2rv2 + r2v
dv

dr
  

dr
v

dt

 
 

 
 

 Using the above value of F’(t), (5) gives 

   2 2 21 dv 1
2rv r v v

r dr 2 

 
    

 
    or 

2dv 3
rv v
dr 2 


     …(6) 

 Multiplying both sides by (–2r2 dr), (6) gives 

  2r3vdv + 3r2v2dr = –
22
r dr




   or  d(r3v2) = –

22
r dr




 

 Integrating,   r3v2 = –
32 r

3


+ C’, C’ being an arbitrary constant. …(7) 

 But when r = a, v = 0. Hence C’ = (2a3)/(3) 

  From (7), r3v2 = 
2

3


(a3 – r3)…(8) 

 Putting the value of v from (8) in (5), we get 

F’(t) = r
3 3

2

3

1 a r
v r

2 3 r  

     
    

   
 

or    F’(t) = 
3 3

2

a 4r

3 r

 
 …(9) 

From (1),    v’ = (r2v)/r’2 …(10) 

Using (9) and (10), (4) reduces to  

 
 3 33 3 2 4 3 3

2 4 3 4

r a rp 1 a 4r 1 v r a 4r
. . . .

r' 3 2 3 3r r' r r' r'   

     
    , using (8) 

    
 3 33 3

2 4

r a rp a 4r
. .

3 3r r' r'   

   
    

   
   2 ' 4 3 3 3 3 3 3

2 4

3r r a 4r r' a r rp

3r r'

   



 

which gives the required ratio of two pressures under consideration  

Q.4. A solid sphere of radius a is surrounded by a mass of liquid whose volume is (4c3)/3 and its centre 

is a centre of attractive force varying directly as the square of the distance. If the solid sphere be 

suddenly annihilated, show that the velocity of the inner surface, when its radius is x, is given by 

x3x3[(x3 + c3)1/3 x] = 
32 2 c

3 9





 
 

 
(a3 – x3) (a3 – x3) 1/3, 

where  is the density,  the external pressure,  the absolute force and x = dx/dt.  
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Sol. Let v’ be the velocity at a distance r’ at any time t and p be the pressure there. Let r and R be 

the radii and v and V the velocities of the inner and outer surfaces at time t.  

Then the equation of continuity is  r’2v’ = F(t) = r2v = R2V …(1) 

 From (1), v’/t = F’(t)/r’2…(2) 

 The equation of motion is 
2v' v' 1 p

v' r'
dt r' r




  
   

 
, where here r’2 is the attractive force 

   
  2 2

2

F' t 1 1 p
v' r'

r' 2 r'r'




  
    
  

 

 Integrating, 
  3

2
F' t 1 r' p

v'
r' 2 3




     + C, C being an arbitrary constant …(3) 

 Now, when   r’ = r,   v’ = v  and  p = 0 

and  when  r’ = R,  v’ = V  and  p =  

  (3) yields  
  3

2
F' t 1 r

v C
r 2 3


      …(4) 

and   
  3

2
F' t 1 R

V C
R 2 3






       …(5) 

 Subtracting (4) from (5), we have 

   F’(t)    2 2 3 31 1 1
v V r R

r R 2 3





 
      

 
 

 But  (4/3) × R3 – (4/3) × r3 = (4/3) × c3  so that  r3 – R3 = –c3. 

   F’(t)  
3

2 21 1 1 c
v V

r R 2 3





 
     

 
 …(6) 

 From (1), F’(t) = 
d

dt
(r2v) = 

d

dr
(r2v). 

dr

dt
  or  F’(t) = v

d

dr
(r2v) …(7) 

 

 Again from (1), we get V = (r2v)/R2  …(8) 

 Using (7) and (8), (6) gives 

   v
d

dr
(r2v). 

4 2 3
2

4

1 1 1 r v c 3
v

r R 2 3R





    
     

   
 

 Multiplying both sides by r2, we get 

   2r2v  
2 3

2 2 4 2

2 4

d 1 1 1 r c 3
r v . v r r

dr r R 3r R





    
      

   
 

     
2 3

2 2
2 2 2

2 4

d 1 1 1 r c 3
vr . vr r

dr r R 3r R





    
     

   
 …(9) 

 From (1), r2v = R2V or r2 2dr dR
R

dt dt
   i.e, r2dr = R2dR ..(10) 

 Integrating (9) and using (10), we have 
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   r4v2 
 32 c 31 1

r R 3

 



  
   

 

 3

2 3
2 c 3

r dr C' r C'
9

 



 
     

 When r = a,  v = 0  so that   
 32 c 3

C'
9

 



 
 a3 

   r4v2
 32 c 31 1

r R 9

 



  
  

 
(a3 – r3) 

i.e.   r4v2

 

3

1/ 3
3 3

1 1 2 c 2

r 9 3r c





 
     

   
 

(a3 – r3) 

 Now, for the inner surface, r = x, v = x. Hence, the above relation reduces to  

x2x3[(x3 + c3)1/3 – x] = 
32 c 2

9 3





 
 

 
(a3 – x3) (x3 – c3)1/3.  

Q.5. A sphere is at rest in an infinite mass of homogenous liquid of density , the pressure at infinity 

being P. If the radius R of the sphere varies in such a way that R = a + b cos nt, where b > a, show that 

pressure at the surface of the sphere at any time is 

P + 
2bn

4


(b – 4a cos nt – 5b cos 2nt). 

Sol. Let v’ be the velocity at a distance r’ at any time t and p’ be the pressure there. Again, let v be the 

velocity on the surface of sphere of radius R, where R = a + b cos nt …(1) 

 Then the equation of continuity is r’2v’ = F(t) = R2v…(2) 

 From (2),    v’/t = F’(t)/r’2 …(3) 

The equation of motion is  

 
v' v' 1 p'

v'
t r' r'

  
  

  
  or   

  2
F' t 1 1 p'

v'
r' r' 2 r'

  
   
  

, 

 using (3) 

Integrating,   
  2

F' t 1 p'
v' C

r' 2 
    , C being an arbitrary constant 

Given: when r’ = , v = 0, p’ = P.  So C = P/. So the above equation gives 

    
  2

F' t 1 P p'
v'

r 2 


    …(4) 

Let p’ = p when r’ = R. Also, v’ = v when r’ = R Then, (4) yields. 


  2

F' t 1 P p
v

R 2 


     or   p = P + 

  2
F' t 1

v
R 2

 
 

 
  …(5) 

From (2); F’(t) = 
d

dt
(vR2) = 2R

dR

dt
.v + R2 dv

dt
= 2R

2 2
2

2

dR d R
R

dt dt

 
 

 
 

dR
v

dt

 
 

 
 

Using the above value of F’(t) and noting v = dR/dt, we have 

   
  2 2 22 2

2

2 2

F' t 1 dR d R 1 dR 3 dR d R
v 2 R R

R 2 dt 2 dt 2 dtdt dt

     
          

     
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  = (3/2) × (– bn sin nt)2 + (a + b cos nt) (– bn2 cos nt), using 

= (bn2/2) × (3b sin2 nt – 2b cos2 nt – 2a cos nt) 

= (bn2/4) × [3b (1 – cos 2nt) – 2b (1 + cos 2nt) – 4a cos nt]  

= (bn2/4) × (b – 4a cos nt - 5b cos 2nt) 

Hence (5) reduces to  p = P + 
2bn

4


(b – 4a cos nt – 5b cos 2nt). 

Q.6. A sphere whose radius at time t is b + a cos nt, is surrounded by liquid extending to infinity under 

no forces. Prove that the pressure at distance r from the centre is less than the pressure   at infinity by. 

  
2

( cos )
n a

b a nt
r

 
3 2

2 3

3

sin
(1 3sin ) cos ( cos )

2

a nt
a nt b nt b a nt

r

 
    

 
 

Prove also that least pressure at the surface of the sphere during the motion is 2 ( )n a a b     

Sol. Let v’ be the velocity of the fluid at a distance r’ from the origin at any time t and p be the pressure 

there. 

 Let r’ = b + a cos nt and let r be the radius of any concentric sphere and v be the velocity there.  

Then the equation continuity is     2 2' ( ) .r v F t r v  …(1) 

 From (1),       2/ ( ) /v t F t r    …(2) 

The equation of motion s 

     
1v v p

v
t r r

  
  

   
  or 2

2

'( ) 1 1
,

2

F t p
v

r r r

  
  
   

 using (2) 

Integrating it with respect to r, we have 

    2'( ) 1
,

2

F t p
v C

r
   


C being an arbitrary constant ...(3) 

When , 0, ,r v p    so (3) given C = /  . Hence (3) reduces to 

          2'( ) 1

2

F t p
v

r

 
 


…(4) 

Now,   ' cosr b a nt       ' '/ sin .v dr dt an nt      

Then,  (1)     2 2( ) ' ( cos ) ( sin )F t r v b a nt an nt     

   2( ) ( cos ) sin .F t an b a nt nt    ...(5) 

Differentiating (5) with respect to ‘t’, we have 

  2 2 2 2 2'( ) 2 ( cos )sin ( cos ) cosF t a n b a nt nt an b a nt nt     

  2 2'( ) ( cos )[2 sin ( cos )cos ]F t an b a nt a nt b a nt nt     …(6) 
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Now,  (4)    2( / ) '( ) (1/ 2)r F i v      …(7) 

    2 2( / ) '( ) ( / 2){ ( ) / } ,r F t F t r        using (1) 

Using (5) and (6) the above equation becomes. 

 2 2( / ) ( cos )[2 sin ( cosr an b a nt a nt b a        4 2 2 4 2)cos ] ( / 2 ) ( cos )nt nt r a n b a nt sin nt     

 2 2( / ) ( cos ){ (1 3sin ) cosan r b a nt a nt b nt      3 2 2( / 2 ) sin ( cos ) }a r nt b a nt    

Second part : 

 At surface r = r’ = b + a cos nt, v = v’ = dr’ / dt = - an sin t. 

Also, using (6), (4) reduces to  

   2 2'( ) 1 1
' ( cos )

' 2 cos

p F t
v an b a nt

r b a nt


    

 

2 2 2 2[2 sin ( cos )cos ] (1/ 2) sina nt b a nt nt a n nt     

   2 2 2[ (1 3sin ) cos (1/ 2) ]n a a nt b nt a sin nt      …(8) 

For the maximum or minimum of p, we must have 0
d p

dt

  
 

 
 

i.e., 2 [ 6 sin cos sin sinn a an nt nt bn nt na nt   cos ] 0nt   

Giving sin nt = 0 or cos nt = - (b/5a) i.e.  nt = 0 or nt = cos-1 (-b/5a). 

Now,  
2

2

d P

dt

  
 

 
 2[ { 3 sin2 (1/ 2) sin2 }

d
n a an nt bnsnnt an nt

dt
      

   2 2 2 2[ 6 cos2 cos cos2 ]n a an nt bn nt an nt    2 2 2 2[ 6 ], 0n a an bn an when nt      

 
2

2

d P

dt

  
 

 
 is negative when nt = 0     

2

2

d P

dt
 is positive when nt = 0 

Putting nt = 0 in (8), the least pressure p is given by   2/ ( )p n a a b    

and hence, the required least pressure 2 ( )p n a a b      

Similar question as above. A sphere of radius a is alone in an unbounded liquid which is at rest at a 

great distance from the sphere and is subject to no external force. The sphere s forced to vibrate radially 

keeping its spherical shape, the radius r at any time being given by r = a + b cos nt. Show that if   is 

the pressure in the liquid at a great distance from the sphere, the least pressure (assumed positive) at the 

surface of the sphere during the motion is 2 ( )n b a b    . 

Q.7. A volume (4/3) 3c  or gravitating liquid of density   s initially in the form a spherical shell of 

infinitely great radius. If the liquid shell contract under the influence of it’s own attraction, there being 
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no external or internal pressure, show that when the radius of the inner spherical surface s r, its velocity 

will be given by. 2 3 4 3 3 2 3 4(4 / /15 )(2 2 2 3 3 ).V R r R R r R r Rr r        

Where   s the constant of gravitation, and 3 3 3.R r c   

We now apply Newton's second law for impulsive motion to the fluid enclosed by the parallelopiped, 

namely, 

Total impulse applied along x-axis = Change of momentum along x-axis 

   2 1xx y z x y z I x y z u u
x


          


 

or   2 1 xu u I / x
 

       
 

  ...(6) 

Similarly  2 1 yv v I / y
 

       
 

 ...(7) 

and    2 1 zw w I / z .
 

       
 

 ...(8) 

Equations (6), (7) and (8) are the required equations of motion of an incompressible fluid under 

impulsive forces. 

 

Q.8. A sphere of radius a is surrounded by infinite liquid of density , the pressure at infinity being . 

The sphere is suddenly annihilated. Show that the pressure at a distance r from the centre immediately 

falls to  (1 – a/r.) 

Show further that if the liquid is brought to rest by impinging on a concentric sphere of radius a/2, the 

impulsive pressure sustained by the surface of this sphere is (y2/6)1/2. 

Sol. Let ' be the velocity at a distance r' from the centre of the sphere at any time t and p the pressure 

there. Then the equation of continuity is r'2v' = F(t) ...(1) 

From (1),  v'/t = F'(t)/r'2  ...(2) 

The equation of motion is 

   
1v' v' p

v'
t r' r'

  
  

  
  

 
  2

2

1 1

2

F' t p
v' ,

r' r' r'

  
   
   

 using (2) 

Integrating, 
  21

2

F' t p
v' C,

r' r'
     C being an arbitrary constant. 

When r' = , then p =  and v' = 0 so that C = /. 

   
  21

2

F' t p
v'

r'


  


 ...(3) 

When the sphere is suddenly annihilated, we have 

   t = 0, r' = a, v' = 0 and p = 0 

 From (3),  
 0F'

a


 


 so that  0

a
F'


 


 

Hence immediately after the annihilation of the sphere (with t = 0,  = 0), (3) reduces to 
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   0
a p

r'

  
 

 
  or 1

a
p

r'

 
   

 
  ...(4) 

Thus at the time of annihilation when r' = r, the pressure is given by 

   p = (1 – a/r').  ...(5) 

Second Part. If 

  be the impulsive pressure at distance r', then we have 

   d v' dr'

    ...(6) 

Let r be the radius of the inner surface and v the velocity there. Then by the equation of continuity, we 

have 

   F(t) = r2v = r'2v' so that v' = (r2v)/r'2 ...(7) 

 (6) gives d' = v (r2/r'2)dr' 

Integrating with respect to r', we get  2v r / r' C'

   ...(8) 

When r' = , 0

  so that C' = 0. 

Hence, (8) reduces to  2v r / r' ,

  ...(9) 

which gives the impulsive pressure 

  at a distance r'. Since r = a/2, (9) reduces to 

   21 1

4
va

r'


    ...(10) 

We now determine velocity v at the inner surface of the sphere. Setting r' = r, v' = v and p = 0 in (3), we 

get 

   
  21

2

F' t
v

r


 


  ...(11) 

From (7),     2 2 22 2
d dr dv dr dv dr

F' t r v r v r r v r
dt dt dt dt dt dr

      

Thus,    2 22
dv

F' t rv r v ,
dr

   as 
dr

v
dt

  

 (11) gives 2 2 21 1
2

2

dv
rv r v v

r dr

 
    

 
 

Multiplying both sides of the above equation by (–2r2 dr), we get 

   
2

3 2 2 2
2 3

r
r vdv r v dr dr


  


 or  

2
3 2 2 r

d r v dr


 


 

Integrating, 
3

3 2 2

3

r
r v C",


  


 C" being an arbitrary constant 

When  r = a, v = 0 so that 
32

3

a
C" .


 


 

    3 2 3 32

3
r v a r


 


 

The velocity v on the surface of the sphere of radius a/2 (which would be the inner surface on which 

the liquid impinges) is given by (12) by replacing r by a/2 
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   
3 3

2

3

2 8 14

3 8 3

a a /
v

a /

  
   

 
 

Putting this value of v in (10), the impulsive pressure at a distance r' is given by 

   

1 2 214

3

/

a

r r'

   
  

 
  ...(13) 

Hence the desired impulsive pressure on the surface of the sphere of radius a/2 is given by setting r' = 

a/2 in (13). 

   
 

1 21 2 2 214 7

3 2 6

//

a a

r a /

     
      

   
 

Q.9. A portion of homogeneous fluid is contained between two concentric spheres of radii A and a, and 

is attracted towards their centre by a force varying inversely as the square of the distance. The inner 

spherical surface is suddenly annihilated and when the radii of the inner and outer surfaces of the fluid 

are r and R the fluid impinges on a solid ball concentric with these surfaces, prove that the impulsive 

pressure at any point of the ball for different values of R and r varies as 

   {(a2 – r2 – A2 + R2) (1/r – 1/R)1/2 

Sol. Let v' be the velocity at a distance r' from the centre of the sphere at any time t and p the pressure 

there. Then the equation of continuity is  r'2v' = F(t) ...(1) 

From (1),  v'/t = F'(t)/r'2  ...(2) 

Taking /r'2 as the force towards the centre of the sphere, the equation of motion is 

   
2

1v' v' p
v'

t dr' r' r'

   
   

  
 or 

  2

2 2

1 1

2

F' t p
v' ,

r' r' r' r'

   
    
   

using (2) 

Integrating, 
  21

2

F' t p
v' C,

r' r'


    


C being an arbitrary constant ...(3) 

Let r and R be the internal and external radii of the fluid at any time t and v and V be the velocities there. 

Thus, we have 

When  r' = R, v' = V, p = 0 and also when r' = v, v' = v, p = 0 

 (3) yields  
  21

2

F' t
V C

R R


     ...(4) 

and   
  21

2

F' t
v C

r r


     ...(5) 

Subtracting (4) from (5), we have 

      2 21 1 1 1 1

2
F' t v V

r R r R

   
       

   
  ...(6) 

From the equation of continuity (1), we have 

   r2v = R2V = F(t)  ...(7) 

From (7),   2 2dr dR
r R F t

dt dt
   

r2 dr = R2 dR = F(t) dt ...(8) 

Using (7), (6) reduces to 

       
2

4 4

1 1 1 1 1 1 1

2
F t F t

r R r R r R

     
          

     
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Multiplying both sides by 2F(t) dt, we get 

   –F(t) F'(t)   
       2

4 4

2 2 2 21 1 1

2

F t F t F t F t
dt F t dt dt

r R r R r R

    
         

     
 

or   –2F (t) F'(t)     
2

2 2

1 1 1 2 2
2 2

2

dr dR
dt F t rdr RdR ,

r R r R

   
       

   
using (8) 

Integrating,     
2 2 21 1

F t r R C',
r R

 
      

 
being arbitrary constant...(9) 

Since velocity is zero when r = a and R = A, if follows that F(t) = 0. Then (9) reduces to  

   0 =  (a2 – A2) + C' i.e., C' = –(a2 – A2) 

 (9) becomes      
2 2 2 2 21 1

F t r R a A
r R

 
       

 
...(10) 

it 

 be the impulsive pressure at a distance r', then we have 

   
 

2

F t
d v' dr' dr',

r'


    using (1) 

Integrating, 
 
2

F t
C",

r'

 
   C" being an arbitrary constant 

But when, r' = R, 0

  so that C' = [ F(t)]/R. So the above equation gives 

     1 1F t / r' / R

   

Hence the impulsive pressure at any point of the ball where r' = r is given by  

     1 1F t / r / R

   ...(11) 

From (10),  
 
 

1 2
2 2 2 2

1 1

/

a r A R
F t

/ r / R

     
  

  

 ...(12) 

Using (12), (11) reduces to    
1 2

2 2 2 2 1 1
/

a r A R / r / R ,

       

showing that the required impulsive pressure varies as    
1 2

2 2 2 2 1 1
/

a r A R / r / R     

 

Exam Point. Many problems solved so far in this chapter may also be solved by using the energy 

equation. This principle is used to shorten the solution.  

In what follows, we will give two methods to solve many problems.  

The energy equation is stared as follows: The rate of increase of energy in the system is equal to the 

rate at which work is done on the system.  

 

Note: “the volume integral form of Bernoulli’s equation”.  

    – . .
s v

d dI
T W R pq nds p qdv

dt dt
       

Energy equation for for incompressible fluids.  

Since I = 0 for incompressible fluids, so above equation reduces to   
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  .
d

T W R
dt

   

Q.10. An infinite mass of fluid is acted on by a force 
3

2/ r  per unit mass directed to the origin. If 

initially the fluid is at rest and there is a cavity in the form of the sphere r = c in it, show that the cavity 

will be filled up after an interval of time  
1

52
42 .

5
c


 

Sol. Method I At any time t, let v’ be the velocity at distance r’ from the centre. Again, let r be the 

radius of the cavity and v its velocity. Then the equation of continuity yields 

       2 2' 'r v r v    …(1) 

When the radius of the cavity is r, then  

Kinetic energy =  2 21
4 ' ' . '

2r
r dr v 



   [⸪ Kinetic energy = 1/ 2 × mass × (velocity)2] 

   = 4 2

2

'
2

'r

dr
r v

r




 using (1) 

   = 3 22 r v  

The initial kinetic energy is zero.  

Let V be the work function (or fore potential) due to external forces. Then, we have  

 
3 2

–
' '

V

r r





  so that    

1 2

2

'
V

r


  

 the work done = 
c

r
V dm being the elementary mass 

   =  2 3 2 5 2 5 2

1 2

2 16
.4 ' ' 8 ' ' –

' 5

c c

r r
r dr r dr c r

r


   

 
  

 
   

We now use energy equation, namely, Increase in kinetic energy = work done 

This         3 3 5 2 5 22 – 0 16 5 –r v c r    

  
 

1 2
5 2 5 21 2

3 2

–8
–

5

c rdr
v

dt r

 
   

 
  …(2) 

Wherein negative sign is taken because r decreases as t increases. 

21
, , ,

2
V V V

T q dV W dV I E dV          …(6) 

Where E is the intrinsic energy per unit mass,  

Since  . . . ,pq p q q p     we have     . . – .q p pq p q    

 R.H.S. of (4)  . . . . ,
V S

V S

pq dV p qdV pq ndS p qdV             …(7) 

       [By Gauss divergence theorem] 

When n is unit inward normal and dS is the element of the fluid surface S. We now prove that 

    .

V

dI
p qdV

dt
    
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Now, E is defined as the work done by the unit mass of the fluid against external pressure p (assuming 

that there exists a relation between pressure and density) from its actual state to some standard state in 

which 0p and 0 are the values of pressure and density respectively.    


0

,
V

V
E pdV  where 1V    i.e., 1V   

or     
0 0

0
2 2

1 p p
E pd d dp

  

  


  

 
    

 
    …(9) 

From (9),   
2

dE p

d 
  and so    

2

dE dE d p d

dt d dt dt

 

 
   

Multiplying both side by dV and then integrating over a volume V, we have  

    
V V

dE p d
dV dV

dt dt





    …(10) 

But         
d dE d

E dV dV E dV
dt dt dt

     

       ,
d dE

E dV dV
dt dt

  using (4)  …(11) 

Also from the equation of continuity   .d
q

dt


     …(12) 

Using (11) and (12) , (10) reduces to  

.
V V

d
E dV p qdV

dt
       or  ,

V

dI
p qdV

dt
    by (6)  

Which proves (8).  

Again the rate of work done by the fluid pressure on an element S of S is p S n. q. 

Hence the rate at which work is being done by the fluid pressure is  

. ,
V

pq ndS R (say)  …(13) 

Using (8) and (13), (7) reduces to  

R.H.S. of (4) = R – dI/dt   …(14) 

Hence using (6) and (14), (4) reduces to    
d

T W I R
dt

    …(15) 

PREVIOUS YEARS QUESTIONS  

CHAPTER 3. EULER'S EQUATION OF MOTION 

Q1. A sphere of radius R, whose centre is at rest, vibrates radially in an infinite incompressible 

fluid of density , which is at rest at infinity. If the pressure at infinity is  , so that the pressure 

at the surface of the sphere at time t is   

22 2

2

1

2

d R dR

dt dt

   

    
   

. [8b UPSC CSE 2019] 
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Q2. Air, obeying Boyle's law, is in motion in a uniform tube of small section. Prove that if   

be the density and v  be the velocity at a distance x  from a fixed point at time t, then 

  
2 2

2

2 2
v k

t x




 
 

 
. [5d UPSC CSE 2018] 

4. IRROTATIONAL MOTION IN 3 D: MOTION OF 

SPHERE & CYLINDER 

 

 

CASE – (1) 

 mass of fluid is moving but sphere is NOT moving along z – axis  

 

Case (2): 

Fluid is NOT moving but Cylinder is moving along (-z axis), now we’re interested in studying 

the motion/ position. 

 

Case (3)  
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Case (4); we may have: 

  Two concentric spheres; motion 

  Two concentric cylinders ; motion  

 

Source Basic ideas: 

 
2 2 2

2 2 2
0

     
  

  x y z
 

 
2 2 2

2 2 2 2 2 2 2

2 1 cot 1
0

        
    

     r r r r r r sn w
 

in spherical coon (r, q, w) 

 Rotation is along z – axis i.e., symmetric about z – axis, so we can ignore the last term 

containing derivative w.r.t w.  

 We have, 

 
2 2

2 2 2 2

2 1 cot
0

      
   

   r r r r r
 ………(1) 

 Now to solve PDE (1); We use variable separable method 

    is depending on r &   so; we start by assuming   as funtion of r multiplied by some 

funtion of  . 

i.e., ( , ) ( ). ( )r f r g     

Now, getting 
2

2
, ,

r r

   

  
, ………… & using in (1), we try to get sol. = ( , )r   

Note: For diff. eq. (1) we suppose  

( )cos  f r  as by the variable seperable method. 

( )cos  f r  

 
2

2
'( )cos , "( )cosf r f r

r r

  
   

 
 

 
2

2
( )sin , ( )cosf r f r

  
     

 
 

Now, using these in (1) we get a diff. eq. which can be easily solved. 
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2 2

2 1 cot
"( )cos '( )cos ( ( )cos ) ( ( )sin )


       f r f r f r f r c

r r r
 

2

2 2
cos "( ) '( ) ( ) 0

 
     

 
f r f r f r

r r
 

2

2 2

2 2
( ) 0   

d f df
f r

dr r dr r
 

 
2

2

2
2 2 0  

d f df
r r f

dr dr
 ………… (2) 

Now solving the diff. eq. 

2
2

2
2 2 0  

d f df
r r f

dr dr
   ………… (3) 

 (3) is turned into, 

(D(D-1) + 2D - 2) f = 0 where D=d/dz 

Auxiliary eq.  

M2 + m – 2 = 0 

M2 + 2m – m – 2 = 0 

(m + 2) (m - 1) = 0 

 M = 1, -2 

 C. F = 2z ze e
 

 C.F = c1 e
loger + C2e

-2loger 

 C.F = c1 r + 2

2 2

c B
Ar

r r
   

 Sol. of (3) is 
2

( )  
B

f r Ar
r

 

 Where A & B also arbitrary constants.   

Exam pout  

i.e., Ultimately;  is given as 

2
( , ) cos :

 
     

 

B
r Ar

r
where A & B are arbitrary constants, Now by using given initial 

condition, we try to find A & B; To get finally the in quid velocity potential  . 

 Article 1: 

Motion of a sphere in a infinite mass of fluid which is at rest at infinity.  
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Step -1 

To study this motion; we need to follow following three constraints: 

 

 
(i)  satisfies Laplace eq. i.e, 2 0    

2 2

2 2 2 2

2 1 cot
0

      
   

   r r r r r
 …………(1) 

(ii) cos ....(2)u
r


 


 at r = a i.e., at surface of sphere 

“Normal component of velocity” = vel. At that point i.e. r = a 

(iii) 0



r

  ………. (3) at  r  : at infinity 

 it is at rest  v = 0;  0



r

  

Step -2 

 For motion of sphere: 2 0    & motion is symmetric about z – axis. 

 We have by (1) as 
2

( , ) cos
 

     
 

B
r Ar

r
; …………. (4)  

where  A & B are arbitrary constant 

 
3

2
cos cos

B
A u at r a

r r

  
       

  
 

3

2
cos cos

B
A u

a

 
      

 
 &  

3

2
cos 0

  
      

  

B
A at r

r r
 

  (A-0) cos  = 0 

  A = 0 

 31
.

2
B ua  
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i.e., we have the velocity potential as 

3
3

2 2

1 1 1
cos cos

2 2

ua
ua

r r

 
     

 
 ……….. (5) 

Now, we can get lines (streamlines) of flow. 

Remember streamlines if   is f’ of r,  . Then streamlines are given by 

/ /

dr rd

r r




   
 

 from (5), 

 
3

3

3 2

1 1
cos , sin

2

ua
ua

r r r

   
   

 
 

So, we have, lines of flow as, 

 
3 3

3 2

1 1 1
cos sin

2

dr rd

ua ua
r r r




   
  

 

 

  
1cos

sin
2







dr rd
 

  
cos

2
sin


 



dr
d

r
 

  log r =2log (sin  ) + log c 

  2sin r c  formula deriving is also important. 

Exampoint 

 2sin r c : lines of flow/ Streamlines.  

Case (ii): studying the motion : when fluid is flowing & sphere is at rest: 

 

Let fluid is flowing with velocity u along –ve Z axis. So here; we manage the potential by 

adding one factor. cosur n   (eq. (5))  

So, in this case, 3

2

1
cos cos

2
ua ur

r
     
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Now, let’s try to find streamlines (lines of flow) 

 



 

 

dr rd

r r

 

 
3 3

3 2

1 4
4 1 cos sin 4 sin

2




   
     

   

dr rd

a a
r

r r r

 

 
3 3

3 3
4 1 cos 4 1

2




   
       

   

dr rd

a a
sin

r r

 

 
3 3

3 3

2
2cot


  



r a dr
d

r a r
 

 
2

3 3

3 1
2cot

 
    

 

r
d dr

r a r
 

On integrating 

  3 32logsin log log log     r a r c  

 2

3 3
sin  



cr

r a
 

3
2 2

3
sin 1

 
   
 

a
r c

r
 

Motion of cylinder in an infinite incompressible fluid :-  

 

(i) ∇2ψ = 0  

(ii) 
r





= u cos θ : r = a  

(iii) 
r





 = 0 ; r = ∞  

Note: - by ψ : we can get ϕ easily (conjugate to ψ)  

∴  , cos
B

r Ar
r

 
     

 
 

Now the interpretation will be same as we discussed for sphere.  

Note:- For two concentric cylinders:- 

ψ(r, θ) = cos
B

Ar
r

 
  

 
+ 

D
Cr

r

 
 

 
sin θ  
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Ex.1. Show that when a sphere of radius a moves with initial velocity U through a perfect 

incompressible infinite fluid, the acceleration of a particle of the fluid at (r,0) is 

 
3 6

2

4 7
3

 
 

 

a a
U

r r
 

Step-1 

Note:- If we superimpose a negative velocity – U to both sphere and liquid; then the sphere 

will come at rest. 

So fluid will be in flow. 

 by case (ii), we have 

3

2
cos

2

 
    

 

a
u r

r
    …….. (1) 

Now velocity components(from dynamics) 

 
3

3
1 cos
 

     
  

a
r U

r r
 …………. (2) 

 
3

3

1
1 sin

2

  
     

  

a
r U

r r
 ………… (3) 

Also, 

 
3 3

3 4

3
1 sin . cos
 

    
 

a a
r U U r

r r
 

3 3 3 3
2 2 2

3 3 4 3

3
1 1 sin 1 cos

2

     
          

     

a u a a a
r U U

r r r r r
 {Using (2) & (3)} 

Step – 2 

At the point (r,0), the velocity is only along the direction of r; as  =0 

 For acceleration, 

Req. Acc = 0r at    

   
3 3

2

4 3
3 1

 
  

 

a a
U

r r
 

   
3 6

2

4 7
3

 
  

 

a a
U

r r
. 

Ex.2. An infinite ocean of an incompressible perfect liquid of density   is streaming past a 

fixed spherical obstacle of radius a. The velocity is uniform and equal to U except in so far as 

it is distributed by the sphere and the pressure in the liquid at a great distance from the obstacle 

is  . Show that the thrust on that half of the sphere on which the liquid impinges is 
2

2

16

v
a
 

  
 
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Mental Exercise: 

From the first sentence:- liquid is in motion & sphere is at rest  

  
3

2
cos

2

a
u r

r

 
    

 
  ………… (1)    

Ans.  
3

2
cos

2

 
    

 

a
U r

r
 …….. (1) 

 
3

3
1 cos
 

   
  

a
U

r r
 

 
3

3
1 cos 0



  
     

   r a

a
U

r a
 

  
3

2

1 3
sin

2 2

    
        

    r a

U a
r sin U

r r r
 

 
2 2

2 2 21 9
. 0 sin .

4

       
        

      

q U
r r

 

 2 2 29
sin .

4
 q U    ……… (2) 

 In steady motion in, the pressure at any point by Bernoulli’s eq. is given by.   

 21
/

2
p q c    ………… (3) 

 But ,  p q U  at infinity 

 21

2
c u


 


 

 From (3) 

 2 21 1

2 2
p U q       ……….. (4) 

 Now, using (2) in (4) the pressure (p1) at any arbitrary point on surface of the sphere r = a s 

given by  

2 2 2

1

1 9
sin

2 8
p U q       

 Hence, the required thrust on that half of sphere our which the liquid impinges.  
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  

 
/2

1

0

( cos )2 sin .



     p a ad  

 
/ 2

2 2 2 2

0

1 9
2 sin sin cos

2 8
a U U d


 

          
 
  

 2 2 21 9 2 1
2

2 82 2 2 2 2 3
a U U
  

        
 

 

 2 2 21 9

2 16
a U U
 

      
 

 

 
2

2

16

U
a
 

   
 

 

 
2

2

16

U
a
 

   
 

 

Article #2: Concentric sphere (Problem of initiate motion.) 

Explanation:- 

 A sphere of radius ‘a’ is surrounded by a concentric sphere of radius b; the space b/w being 

filled with fluid at rest. 

 The inner sphere is given a velocity u and outer sphere a velocity v in the same direction. 

 Now, to determine the initial motion of fluid. 

Step (1) 

(i) 2 0    ……… (1) 

(ii) cos


 


u
r

 at r = a ……….. (2) 

(iii) cos


 


v
r

 at r = b ………… (3) 

Step (2): 
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 From (1), we have 
2

cos
 

    
 

B
Ar

r
 ….. (4) 

Now, using (ii) and (iii) we get from (4) 

 
3 3 3 3

3 3 3 3

4 ( )
&

2( )

 
 

 

a vb u v a b
A B

b a b a
 

 
3 3 3 3

3 3 3 3 2

( ) cos
cos

2( )

   
   

  

ua vb u v a b
r

b a b a r
 

Ex. 3. Prove that for liquid contained between the two instantaneously concentric spheres, when the 

outer (radius a) is moving parallel to the x-axis with a velocity u and the inner (radius b) is moving 

parallel to the axis of y with velocity v, the velocity potential is  

   
3 3

3 3

3 3 3 3

1
1 1

2 2

b a
a ux b vy

a b r r

     
       

      
 

and find the kinetic energy. 

Sol. Here boundary conditions are 

   – /r = u cos ,  when r = a  ...(1) 

and   – /r = v sin ,   when r = b.  ...(2) 

Moreover  must satisfy the Laplace's equation 

   
2 2

2 2 2

2 1
0

cot
.

r r r r r

     
   

   
 ...(3) 

 

The above considerations suggest that  must involve terms containing sin  and cos . 

 So we assume that 

    = (Ar + B/r2) cos  + (Cr + D/ r2)sin   ...(4) 

   
3 3

2 2B D
A cos C sin

r r r

    
          
    

…..(5) 

Using (1) and (2), (5) gives 
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   (–A + 2B/a3) cos  + (–C + 2D/a3) sin  = u cos  

and   (–A + 2B/b3) cos  + (–C + 2D/b3) sin  = v sin  

Comparing the coefficients of cos  and sin , (6) and (7) give 

   –A + 2B/a3 = u,  –C + 2D/a3 = 0 

   –A + 2B/b3 = 0,  –C + 2D/b3 = v 

Solving (8) and (9), we get 

   
3

3 3

ua
A ,

a b
 


 

 

3 3

3 32

ua b
B ,

a b
 


 

3

3 3

ub
C ,

a b



 

 

3 3

3 32

ua b
D .

a b



 

   
3 3 3 3

3 3 2 3 3 22 2

ua b vb a
r cos r sin

a b r a b r

   
         

    
 

   
3 3

3 3

3 3 3 3

1
1 1

2 2

b a
a u r cos b v r sin

a b r r

    
          

     
 

   
3 3

3 3

3 3 3 3

1
1 1

2 2

as x r cos

and y r sin

b a
a u x b v y ,

a b r r

 

 

    
        

     
 

To determine K.E. The kinetic energy of the liquid is given by 

   
1 1 1

2 2 2r a r b

T dS dS dS
n r r 

     
                   

     
 

Also, –/n denotes the outwards normal velocity 

    
3

3 3

3 3 3

1 1 1
1 1

2 22r a

b
a ux b vy u cos dS

a b a

    
           

    
 

    
3

3 3

3 3 3

1 1 1
1 1

2 2 2r b

a
a ux b vy v sin dS

a b b

   
         

     
 

    10
r a r b

Using and u cos , v sin
r r 

     
          
     

 

   
 

   

3 3 3 3
2

3 3 3 3

21 3

4 4r a r a

u a b uvb
x dS xy dS

b a a a b 


     

 
 

   
 

 
 

2 3 33
2

3 3 3 3

23 1

4 4r b r b

v a buva
xy dS y dS

b a b a b b 


       

 
 

[Since, when r = a, a cos  = x and a sin  = y and when r = b, b cos  = x and b sin  = y 

   
 

 
 
 

2 3 3 2 3 3

4 4

3 3 3 3

2 21 4 1 4
0

4 3 4 3

u a b v a b
a b

a b a a b b

 
        

 
 

   
2

r a

x dS M .I .


  


of the hollow sphere of radius a about a diameter 

   
2 2 2 2 41 2 4 4

2 3 3 3 3

Ma Ma a a a
.

  
        

Similarly, 
4

2 4

3r b

b
y dS




    

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/  

Also,  0
r a

xy dS


    and 0
r b

xy dS


   (being product of inertia)  

      2 6 2 6 3 3 2 2

3 3

1
2

3
T u a v b a b u v

a b


    
 

 

Ex.4(i). A hollow spherical shell of inner radius a contains a concentric solid uniform sphere of radius 

b and density  and the space between the two is filled with liquid of density . If the shell is suddenly 

made to move with speed u, prove that a velocity v is imparted to the inner sphere, where 

   
  

3

3 3 3 3

3

2 2

ua
v

/ a b a b


   
. 

(ii) A spherical shell of internal radius a contains a concentric sphere of radius a and density , the 

intervening space being filled with lived of density  and the whole system is at rest. If a velocity u is 

communicated to the shell prove that the initial velocity v communicated to the shell is given by 

   
  3 3

3

2 1 1 2

u
v 

    
 

Sol. (i) The velocity potential  must satisfy Laplace's equation 2  = 0 and it must satisfy the following 

boundary conditions 

   –/r = u cos ,  when r = a  ...(1) 

and   – /r = v cos ,   when r = b  ...(2) 

Accordingly, we assume that   = (Ar + B/r2) cos  ...(3) 

   – /r = –(A – 2B/r3) cos  

Using (1) and (2), (4) gives 

   (–A + 2B/a3) cos  = u cos  and (–A + 2B/b3) cos  = v cos . 

These give  
3 3

3 3

b v a u
A

a b





  and  

 

 

3 3

3 32

a b v u
B

a b





 

    
 3 3

3 3

3 3 2

1

2

a b v u
b v a u r cos

a b r

 
     

  
 ...(5) 

The impulsive pressure at any point of the solid sphere r = b is given by 

      
3

3 3

3 3 2r b

b a
b v a u v u cos

a b





 
       

  
 

 Resultant impulsive pressure on the inner sphere 

    
3 3

3 3 2

3 3

0 0

2
2

2

x
b a

cos bd bsin b v a u v u cos sin d
a b


   

             
  

   

   
 

 
3

3 3 3

3 3

4 1

23

b
b v a u a v u .

a b

   
       

 

Since the solid sphere of density  and radius b moves with velocity v, the equation of motion gives 

   
 

 
3

3 3 3 3

3 3

4 4 1

3 23

b
b v b v a u a v u

a b

   
         

 or

 
  

3

3 3 3 3

3

3 2

ua
v

/ a b a b


   
. 
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Part (ii). Here b = a.  

Ex. 5. Liquid of density  fills the space between a solid sphere of radius a and density  and a fixed 

concentric spherical envelope of radius b. Prove that the work done by an impulse which starts the solid 

sphere with velocity U is 

   
3 3

3 2

3 3

1 2
2

3

a b
a U .

b a

 
   

 
 

Sol. The total impulse I is given by 

   I = MU + cos dS


    

But   
3 3

3

3 3

2 2

3

a b
cos dS Ua ,

b a

 
   


 

and   M = mass of inner solid sphere = (4.3) × πa3 

   
3 3 3

3 3

2 2
2

3

a a b
I

b a

  
   

 
 

Hence the work done by impulse I = I × (mean of the initial and final velocities) 

   
3 2 3 3

3 3

0 1 2
2

2 2 3

U a U a b
I UI

b a

   
      

 
 

Ex.6. The space between two concentric spherical shells of radii a and b (a > b) is with an 

incompressible fluid of density  and the shells suddenly begin to move with velocities U, V, in the 

same direction. Prove that the resultant impulsive pressure on the inner shell is 

   
 

 
3

3 3 3

3 3

2
3 2

3

b
a U a b V

a b


  
 

 

Further show that the K.E. of the liquid is 

   
 

   
223 3 3 3

3 3
2

3
a b V U b V a U

a b

    
  

 

Sol. The velocity potential is given by 

   
 

 
 

 3 3 3 33 3
3 3

3 3 2 3 3 23 3

1

22

U V a b a b V UUa Vb cos
r cos r b V a U cos

b a r a b rb a

   
       

   
 

The impulsive pressure at a point on the sphere r = b is given by 

        3 3 3

3 3

1

2r b

cos
b b V a U a b V U

a b





   
        

 ...(2) 

The resultant impulsive pressure on the inner shell (r = b) 

    
3

3 3 3 2

3 3

0 0

2 1
2

2

x
b

cos b b sin b V a U a V U cos sin d ,
a b


   

               
  by (2) 

      
 

 
3 3

3 3 3 3 3 3

3 3 3 3

2 2
2 3 2

3 3

b b
b V a U a V U a U a b V

a b a b

                   
 

From (1),  
 3 3

3 3

3 3 3

1 a b V U
b V a U cos

r a b r

 
    

   
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and   
 

 
3 3

3 3

3 3 3

1 1

2

a b V U
b V a U sin

r a b r

 
     

   
 

   q2 = (–/r)2 + (–/r)2 

   

 
   

2 2
3 3 3 3

3 3 2 3 3 2

2 3 23 3

1

2

a b V U a b V U
b V a U cos b V a U sin

r ra b

        
          
        

 

   

 
 

 
26 6

2
3 3 2 2

2 63 3

1 1

4

a b V U
b V a U cos sin

ra b

   
       

    

 

      

 
     3 3 3 3 3 3 3 3

2 2

3 3

2a b b V a U V U a b b V a U V U
cos sin

r r

   
  


          

  

 

 
 

 
 

  
 

2 3 3 3 26 6
2

3 3 2 2

2 6 33 3

1
1 3 1 3

4

a b b V a U V Ua b V U
b V a U cos cos

r ra b

  
        
   

 

   

 
   

6 6
2 22 3 3 3

2 63 3
0

1
2 2

2

x a a

b b

a b
K.E. q r sin rd dr b V a U V U r dr

ra b

  
           

   
    

 on putting value of q2 and integrating w.r.t. ] 

   
 

   
223 3 3 3

3 3
2

3
a b V U b V a U .

a b

     
  

 

Ex.7. Incompressible fluid of density  is contained between two rigid concentric spherical the outer 

one of mass M1 and radius a, the inner one of mas M2 and radius b. A blow P is given to the outer 

surface. Prove that the initial velocities of the two containing (U of the outer and V for the inner) are 

given by the equations 

   
 

 

3 3 3 3 3

1 3 33 3

2 2 2

3

a a b a b
M U V P,

a ba b

    
   

  

 

   
 

 

3 3 3 3 3

2 3 33 3

2 2 2

3

b a b a b
M V U.

a ba b

    
  

  

 

Sol.     
  3 3

3 3

3 3 2

1

2

V U a b
Vb Ua r cos

a b r

 
     

  
 ...(1) 

The normal blow P in the outer surface imparts velocity U to the outer and V to the inner spherical 

surface. Let 1 ,

  2


 be the impulsive pressures on an element dS of the boundary surface r = a and r = 

b respectively. Then 
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   11M U P cos dS


     on r = a ...(2) 

and   22M V cos dS


     on r = b ...(3) 

On r = a, from (1),      3 3 3
1

3 3

1 1

2r a
Vb Ua a ab V U cos

a b





 
          

 

   (2)  M1U = 
0

2P cos ad a sin




       

      
2

3 3 3 2

3 3

0

2 1

2

a
P Vb Ua a ab V U cos sin d

a b


  

          
  

    
3

3 3 3

3 3

2
3 2

3

a
P Vb U a b

a b

            
 

Thus,  
 
 

3 3 3 3

1 3 33 3

2 2 3 2

3

a a bh a b
M U V P.

a ba b

    
   

  

 

Again on r = b      
  3

3 3
2

3 3

1

2r b

V U a b
Vb Ua b cos

a b





 
       

  
 

 (3)   2 2

0

2M V cos bd b sin




        

    
  32

3 3 2

3 3

0

2

2

V U a bb
Vb Ua b cos sin d

a b

  
       

  
  

    
3

3 3 3

3 3

2 1 2

2 3

b
Vb Ua a V U

a b

     
            

 

Thus,  
 

 

3 3 3 3 3

2 3 33 3

2 2 2

3

b b a b a
M V U.

a ba b

    
  

  

 

 

PREVIOUS YEARS QUESTIONS 

CHAPTER 4. AXISYMMETRIC MOTION 

Q1.  The space between two concentric spherical shells of radii  ,a b a b  is filled with a 

liquid of density  . If the shells are set in motion, the inner one with velocity U in the x-
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direction and the outer one with velocity V in the y-direction, then show that the initial motion 

of the liquid is given by velocity potential  

 

3 3 3 3 3 3

3 3

1 1
1 1

2 2
a U b r x b V a r y

b a


     
      

    


 

where 2 2 2 2r x y z   , the coordinates being rectangular. Evaluate the velocity at any point 

of the liquid. [7b UPSC CSE 2016] 

Q2. A sphere is at rest in an infinite mass of homogenous liquid of density  , the pressure at 

infinity being P. If the radius R of the sphere varies in such a way that cosR a b nt  , where 

b a , then find the pressure at the surface of the sphere at any time. [8c 2016 IFoS] 

Q3. In an axisymmetric motion, show that stream function exists due to equation of continuity. 

Express the velocity components in terms of the stream function. Find the equation satisfied 

by the stream function if the flow is irrotational. [8c UPSC CSE 2015] 

Q4. A rigid sphere of radius a is placed in a stream of fluid whose velocity in the undisturbed 

state is V. Determine the velocity of the fluid at any point of the disturbed stream. 

[5e UPSC CSE 2012] 

Note: The beauty of systematic learning is- You’ll find solutions of almost every PYQ in above 

examples or questions attached with detailed answers. So to avoid repetition in this book, we have not 

put those solutions again as answers to PYQs. 
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                 THEME: VORTEX MOTION  

 

ˆˆ ˆq ui vj wk    

Mental Exercise  

• Now let’s start today’s story:  

• Rotational Motion  

 

Vorticity Ω = curl q  

As we have idea from calculus and dynamics that curl of a vector is associated with rotation 

property. 

 

Till now we have studied: 

 

 

Fluid Kinematics + Motion in 2D 

→ Sources & sinks  

→ Doublet  

→ Image system  

Now we’re going to study about Rotational & Irrotational Motion of fluids 

• Let ˆˆ ˆq ui vj wk    

∴ curl q  = 

ˆˆ ˆi j k

x y z

u v w

  

  
 –  ˆw v

i
y z

  
 

  
 + ˆv w

j
z x

  
 

  
 + ˆv u

k
x y

  
 

  
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ˆˆ ˆ
x y zi i k    = ˆw v

i
y z

  
 

  
 + ˆu w

j
z x

  
 

  
 + ˆv u

k
x y

  
 

  
 

On comparing, we get 

Ωx = ,
w v

y z

 


 
 Ωy = ,

u w

z x

 


 
  Ωz = 

v u

x y

 


 
 

Here Ωx, Ωy, Ωz are called “vorticity components”. 

Vortex lines: 
x y z

dx dy dz
 

  
 

• Motion in 2D:-  

 

If vorticity is along z-axies → Ωx = 0, Ωy = 0, Ωz = 
v v

x y

 


 
 

 

Keywords:-  

• Inside vortex  

• Outside vortex 

“Vortex has strength”  

Here, Vortex is along z-axis & Motion is in 

xy plane  

∴ Ωx = 0 and Ωy = 0, only Ωz will be in 

picture  

∵ we’ll have ϕ & ψ in this motion  

 

Let’s study complex potential.  

w = ϕ + iψ  

 

(i) Inside vortex:- For above motion  

∵ we have Ωx = 0, Ωy = 0 , Ωz = 
v u

x y

 


 
…(1)  

We know that : (Motion in 2D); 

dx dv

u v
  

⇒ vdx – udy = 0 …(2) 

For perfect (exact) diff. eq.; 
v u

y x

 


 
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i.e., ∃ ψ(x, y) = c …(3) s.t that the  

total differentiation of (3) gives (2),  

i.e., dψ = 0 gives (2),  

dx dy
x dy

 



 = v dx – u dy 

∴ 
2 2

2 2
,

v u

x x y y

     
 

   
 …(4)  

Using (4) in (1),  

Exampoint 
2 2

2 2z
x y

   
  

 
 

Remember :-   

2 2

2 2z
x y

   
  

 
: inside vortex 

Ωz = 0 ; Outside vortex  

(ii) Outside the vortex:- 

∵ Motion is irrotational, 

↓  

There exists velocity potential ϕ 

So, now we can try to establish some result including ϕ & ψ.  

• Let P(r, θ) be an aubituary point.  

→ 
1

r r r

 
 

 
 

Also, ∵ Outside the vortex ∇2ψ = 
2 2

2 2
0

x y

   
 

 
 

∵ ∇2ψ = 
2 2

2 2 2

1 1
0

r r r r

    
  

  
 

Note:- There is symmetry about origin, ψ must be independent of θ 

We have  

2

2

1
0

r r r

  
 

 
 = 0⇒ 

1
0r

r r r

  
 

  
 

On integrating ; r
dr


 = c; c is integration constant …(6) 

ψ = c log r …(7) 

c

r r






1

r

c

r

 
 


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On integrating; c    …(8) 

Now, summarizing above discussion; we have  

The complex potential w = ϕ + i ψ  = –cθ + ic log r …(9) 

Let K be the ‘circulation’ in the circuit embracing the vortex (strength of vortex) 

Remember  

2

0

1
K rd

r





  
  

 
  = 

2

0

c d





  = 2πc ⇒ c = 
2

K


 …(10)  

Using (1) in (9), we have 

∴ ϕ = 
2

K
 


, ψ = log

2

K
r


 

log
2

K
W i z


   As; z = reiθ ; log z = log(reiθ)   =logr + i θ∴ ilog z = i(log r + iθ) 

Note:- 

i. If vortex is not at origin but a some point z = z0; then  0log
2

iK
w z z 


 

ii. If there are several rectilinear vortices, then 

     1 2
1 2log log ... log

2 2 2

n
n

iKiK iK
w z z z z z z      

  
 

 

 

 

 

 

Boundary: - (i) Plane boundary:   

 
 

 log log
2 2

i KiK
W z a z a


   

 
 

 

 
log

2

z aiK
W

z a




 
 

∵ z = x + iy  

z = r (cos θ + isin θ)  

As z = reiθ  

 

Image of vertex at A (strength K) is vortex B (strength – K)  
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(ii) for circular boundary:-  

 

 

∴ 

 
   

 
2

log log log 0
2 2 2

i K i KiK a
w z f z z

f

  
      

   
 

 

 

Ex.1. When a pair of equal and opposite rectilinear vertices are situated in a long circular 

cylinder at equal distance from its axis, show that the path of each vortex is given by the eq. 

(r2 sin2 θ – b2) (r2 – a2)2 = 4a2b2r2sin2θ, θ being measured through the centre perpendicular to 

the joint of the vertices.  

 

Note:- At origin, vortex K & –K  

∴ cancelled  

• Let K be the strength of the vortex at P(r, θ) & –K be for 

vortex at Q(r1 – θ) 

• Let P'& Q' be the inverse points of P & Q respectively 

with regard to the circle of radius a & centroid at origin 

i.e., |z| = a  

∴ OP' =
2a

r
= OQ' 

• Then the image of vortex K at P is a vortex –K at P' and image of –K at Q is a vortex at Q' 

∴ the complex potential for the whole system is  

w =    
2 2

log log log log
2

i i i iiK a a
z r e z e z r e z e

r r

     
    

            
     

 

Attention! motion in any vortex will be due to presence of other (remaining) vertices  

The complex potential or to read the motion of the vortex P i.e., we will take  

w =  
2 2

log log log
2

i i iiK a a
z e z r e z e

r r

    
    
          

     
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w =  
2 2

log log log
2

i i i i i iiK a a
re e re re re e

r r

       
    

        
     

 

=  
2 2 2

2log log 2 sin log cos sin
2 2

iK a a a
r i ir r i r

r r

         
               

          

 

∵ sin ,cos
2 2

i i i ie e e e      
     

Also using    2 2 11
log log tan

2

y
x iy x y i

x

  
     

 
 

Comparing imaginary parts on both sides, we get  

ψ =  
2 2

2 2 2
2 21

log log 2 sin log cos sin
2 2

K a a a
r r r r

r r r

         
               

          

 

ψ =  
2 4

2 2

2

1
log log 2 sin log 2 cos2

2 2

K a a
r r r a

r r

    
         

     
 

ψ = 

 
2

2
2

4
2 2

2

2 sin

log
4

2 cos2

a
r r

rK

a
r a

r

  
    

   
 

   
  

 

so, the required streamline are given by   ψ = constant 

i.e., 
 

2
2 2 2 2

4 4 2 2

sin

2 cos2

r a r

r a a r

  

  
 = b2  (Let’s say constant = b2) 

b2 (r4 + a4 – 2a2r2 cos 2θ) = (r2 – a2)2 r2 sin2 θ  

b2{(r2 – a2)2 + 2a2 r2 (1 – cos2θ)} = r2 (r2 – a2)2 sin2 θ  

2a2 b2 r2 (1 – cos2 θ) = (r2 – a2)2{r2sin2θ – b2} 

4 a2 b2 r2 sin2 θ = (r2 – a2)2 {r2 sin2 θ – b2}. 

 

Ex.2. Two point vortices each of strength K are situated at (±a,0) and a point vortex of 

strength 
2

K
 is situated at the origin. Show that the fluid motion is stationary and find eq. of 

streamlines. Show that the streamline which passes through the stagnation points meets the x-

axis at (±b, 0) where, 3 3  (b2 – a2)2 = 16a3 b.  

 

 

Step-1 Complex potential of fluid motion is  

w =    
2

log log log
2 2 2

K
i

iK iK
z a z a z

 
 
 

   
  
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w =  2 2 1
log log

2

iK
z a z

z

 
  

 
 …(1) 

Step-2 

Now, the complex potential for the vortex 

A: 

w' = w – 
2

iK


log (z – a)  

w' =  
1

log log
2 2

iK
z a z

 
    

 …(2)  

∵ The velocity (uA, vA) of the vortex K at A is solely produced by the other vortices  

∴ uA – ivA = 
z a

dw

dz 

 
 
 

 = 
 

1 1

2 2
z a

iK

z a z


 
  

   
 

= 
1 1

0
2 2 2

iK

a a

  
    

 

⇒ uA – ivA = 0 ⇒ uA = 0 , vA = 0 (∵ velocity is zero)   

⇒ A is a stationary point.  

Now, the complex potential for the vortex O:  

w0 = w – 
2

2

K
i
 
 
 


 logz 

w0 =    log log
2

iK
z a z a     

 …(3)  

∵ The velocity (u0, v0) of the vortex 
2

K
 at 0 is solely produced by the other vertices.  

∴ u0 – iv0 = 0

0z

dw

dz 

 
 
 

 = 
0

1 1

2 z

iK

z a z a 

  
    

= 0  

∴ O is a stationary point,  

Similarly, we can show B is also stationary points.  

Therefore, The fluid water is stationary.  

• finding streamlines :-  

w = ϕ + iψ =  2 2 1
log log

2 2

iK
z a z

 
    

 

=     
2 2 1

log log
2 2

iK
x iy a x iy

 
      
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=       
2 2 22 2 21

log 2 2
2 2

iK
x y a xy xy


    

 + 1

2 2 2

2
tan

yx
i

x y a

  
 

  
  2 2 11 1

log tan
4 2

y
x y

x

 
   


 

∴ ψ =     
2

2 2 2 2 2 2 21 1
log 4 log

2 2 4

K
x y a x y x y

 
       

 

ψ =  
 

 

2
2 2 2 2 2

1/2
2 2

4
log

4

x y a x yK

x y

    
 

   

 

Now, streamlines are given as,  

ψ = constant = log .
4

K
c


 (say)  

∴ 
 

 

2
2 2 2 2 2

1/2
2 2

4
log

4

x y a x yK

x y

    
 

   

 = log
4

K
c


 

(x2 – y2 – a2)2 + 4x2 y2 = c(x2 + y2)1/2  

(x2 – y2)2 + a4 – 2a2(x2 – y2) + 4x2y2 = c(x2 + y2)1/2 

(x2 + y2)2 + a4 – 2a2(x2 – y2) = c(x2 + y2)1/2 …(A); c is aub constant 

For stagnation point:-  

0
dw

dz
  

⇒ 
2 2

2 1
0

2 2

iK z

z a z

 
    

 {from(1)} 

4z2 – z2 + a2 = 0 

3z2 + a2 = 0 

z2 = 
2

3

a
 

z = 
3

ia
 i.e., x = 0 , y = 

3

ia
  

∴ stagnation points are :- 0,
3

a 
 
 

 & 0,
3

a 
 
 

 

As the above point passes through (A); this gives  

2
2 2

4 22
3 3

a a
a

 
   

 
 = 

3

ca
 

⇒ c = 
4 4 43 9 6

9

a a a

a

  
 
 

 

c = 
316 3

9

a
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∴ eq. (A) becomes,  

(x2 + y2)2 + a4 – 2a2 (x2 – y2) = 
316 3

9

a
(x2 +y2)1/2 …(B) 

As, the streamline also passes through (±b, 0); 

∴ from (B),  

b4 + a4 – 2a2b2 = 
316 3

9

a
 × b  

(b2 – a2)2 = 
316

3 3

a b
 

3 3 (b2 – a2)2 = 16a3b.  

 

Ex.3. Prove that the necessary and sufficient condition that the vortex lines may been right angles to 

the stream lines are 

      , , , / , / , /u v w x y z       , where ,   are functions of x, y, z, t.  

Find the necessary and sufficient condition that vortex lines may be at right angles streamlines.  

 

Sol. Streamlines are given by     / / /dx u dy v dz w   

and vortex lines are given by   / / /x y zdx dy dz      

(1) and (2) will be right angles, if     0x y zu v w       

But / – /x w y v z      ,  / – /y u z w x       / – /z v x u y       

Using (4), (3) may be re-written as  

         / – / – / / – / 0x w y v z v u z w x w v x u y                 

Which is the necessary and sufficient condition in order that udx vdy wdy   may be a differential. So 

we may write 

udx vdy wdy d dx dy dz
x y z

   
         

   
 

   /u x    ,  /v y    and   /w z     

Ex. 4. It udx vdy wdz d d     , where , ,    are functions of x, y, z, t, prove that vortex lines at 

any time are the lines of inter – section of the surface  = constant and  = constant 

Sol. Given       udx vdy wdz d d      

 udx vdy wdz dx dy dz dt dx dy dz dt
x y z t x y z t

        
           

        
 

,

, and 0

u v
dx x dy y

w
dz z dt t

    
         


        

  

  …..(i) 
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Hence the components of spin , ,x y z    are given by  

2 – –x

w v

y z y z z z y y

         
        

          
, using (1) 

2 2 2 2

– – – –
y z y z y z z y z y z y y z z y

               
    
               

 

or      
/ /

2
/ /

x

y z

y z

   
 

   
 

Similarly,   
/ /

2
/ /

y

z x

z x

   
 

   
 and 

/ /
2

/ /
z

x y

x y

   
 

   
 

  

/ / /

2 / / / 0

/ / /

x y z

x y z

x y z
x y z

x y x

     
   
           

   
     

 

         / / / 0x y zx y z          .  …..(2) 

Similarly, we have      / / / 0x y zx y z          …..(3) 

Equation (2) and (3) show that the vortex lines at any time are the lines of intersection of the surface  

= constant and   = constant. 

Image of vortex in a quadrant. 

The image system of vortex of strength k, at the point A(x, y) in xy-plane with respect to quadrant XOY 

consists of (i) a vortex of strength –k at  – ,B x y  

(ii) a vortex of strength –k at  , –C x y  

(iii) a vortex of strength k at  – , –D x y  

 

The velocity at A is only on accounts of its images and hence its components  are as indicated in the 

figure. Thus the radial and transverse components of velocity at A are given by  

 2 2cos – sincos sin cos sin cos2
– –

4 4 4 sin 4 cos 2 sin 2 2 sin 2

kdr k k k k k

dt y x r r r r

     
   

         
 …..(1) 

sin cos sin cos
– – – – –

4 4 4 4 4 cos 4 cos 4

d k k k k k k k
r

dt r y x r r r r

    
   

        
 …..(2) 

On dividing (1) by (2),  
1 cos2

–2
sin 2

dr

r d




 
  or  

1 cos2
–

sin 2
dr d

r


 


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Integrating it,    log – logsin 2 logr c   i.e.,   sin 2r c  , 

Which is Cote’s spiral. Transforming into cartesian, it becomes (using cos , sinx r y r    ) 

2 sin cosr c    or 4 2 2 2 24 cos sinr c r    or    
2 2 2 24 cos sinr r c r    

i.e,.  2 2 2 2 2 2 2 24 1/ 1/ 4 /x y c x y or x y c     

Vortex inside an infinite circular cylinder 

Let the vortex of strength k be situated at A(OA = f) inside the circular cylinder of radius a with axis 

parallel to the axis of the cylinder. 

Let a vortex of strength –k be placed at B, where B is the inverse point of A with respect to the circular 

section of the cylinder so that  

 

2.OBOA a   or 2.OB f a  

     2 /OB a f  

The circle is one of the co-axial system having A and B as limiting points and so it is a streamline.  

The velocity of 
     2 2 22 . 2 – 2 / – 2 –

k k k kf
A

AB OB OA a f f a f
   

   
 

Which is perpendicular to OA. B also has the above mentioned velocity so that OAB will not remain a 

straight line at the next instant. But if A describes a circle about O with the above velocity, then at every 

instant the circle will be a streamline, the positions of B, of course, changing from instant to instant.  

 

Vortex outside a circular cylinder.  

Let he vortex of strength k be situated at A (OA = f) outside the circular cylinder of radius a with axis 

parallel to the axis of the cylinder. Let a vortex of strength –k be placed B, where B is the inverse point 

of A with respect to the circular section of the cylinder so that  

 

      2 2 2. . /OB OA a OB f a OB a f     . 

Then the circle will be an instantaneous streamline due to this vortex pair and A will describe a circle 

with velocity 

     
     2 2 22 . 2 . – 2 – / 2 –

k k k kf

AB OB OA f a f f a
   

   
 

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/  

But the introduction of a vortex of strength -k at B gives a circulation on -k about the cylinder and let 

the circulation about the cylinder be k’. The circulation –k about the cylinder due to the vortex B can be 

annulled by putting a vortex k at O and therefore to get the final circulation k’ about the cylinder, we 

must put an additional vortex k’ at O.  

Thus we have a vortex k at A, –k at B, k + k’ at O. Hence the velocity of A due to the above system. 

     2 2 2

' ' ' '
– – – –

2 . 2 . 2 2 – 2 22 – / 2 –

k k k k k k k k k k k kf

OA AB f AB OB f ff a f f a

   
   

      
 

and A describes a circle with this velocity  

 

Image of a vortex outside a circular cylinder.  

To show that the image system of a vortex k outside the circular cylinder consists of a vortex of strength 

–k at the inverse point and vortex of strength k at the centre.  

 

Let us determine the image of a vortex filament of strength k placed at A(z = c > a) with respect to a 

circular cylinder |z| = a with O as centre. Let B be the inverse point of A with respect to |z| = a so that  

     2OA OB a   and so 2 /OB a c  

In absence of |z| = a, the complex potential at any point due to vortex at A is given by  

           / 2 log –ik z c  . 

When the circular cylinder |z| = a is inserted in the fluid, the modified complex potential by Milne- 

Thomson’s circle theorem is given by  

     
2 2

log – – log – log – – log – –
2 2 2 2

ik ik a ik ik c a
w z c c z c z

z z c

    
                  

 

         2/ 2 log – – log – / log – log –ik z c z a c z c   
 

 

On adding the constant term    / 2 log –ik c  to the above value, the complex potential takes the form  

   
2

log – – log – log
2 2 2

ik ik a ik
w z c z z

c

 
      

. …..(1) 

Putting , iw i z ae       for any point on |z| = a and equating imaginary parts, (1) gives  = 0. 

Thus there would be no flow across the boundary |z| = a. Hence motion would remain unchanged if the 

cylindrical boundary |z| = a where made a rigid barrier. From (1) the required image system follows.  

Note 1. Complex potential w’ induced at A, by a vortex –k at B and a vortex k at O is  
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            2' – / 2 log – – / 2 log – / / 2 logw w ik z c ik z a c ik z       

  
2 2

' 1 1 1
– – – –

2 2 2– / –

dw ik ik ik c

dz z zz a c cz a

 
          

 

  
2

2 2 2

' 1
– –

2 2– –z c z c

dw k c ik a

dz z ccz a c a 

  
 

  

 Which given velocity of the vortex A with which it moves round the cylinder.  

Note 2.  Since the term ik log z denotes the circulation round the cylinder, the result of the above 

image system may be restated as under.  

The image system of a vortex k outside the circular cylinder consists of a vortex of strength –k a the 

inverse point and a circulation of strength k round the cylinder.  

Note 3. Proceeding as above we can also show that the image system of a vortex –k outside the circular 

cylinder consists of a vortex of strength k at the inverse point and a vortex of strength –k at the centre.  

 

Image of a vortex inside a circular cylinder. 

To show that the image of a vortex inside a circular cylinder would be an equal and opposite vortex at 

the inverse point. 

Let there be a vortex pair consisting of two vortices of strength k at  1A z z  and –k at B (z = z2). Then 

the complex potential at any point is given by  

  

      1 2log – – log –
2 2

ik ik
w z z z z

 
 

or      1 2
1 2log – log

2 2

i iik ik
i r e r e

 
  

 
 

    1

2

log
2

rik

r
 


 

Where   1 1–r z z ,  2 2–r z z . 

Hence the streamlines are given by   = const. i.e., 1 2/r r c , which represents a family of co-axial 

circles with A and B as limiting points.  

Moreover the motion is unsteady and hence streamlines go on changing and following the vortices 

which move through the liquid. However, if a particular circle of the family of coaxial circle be replaced 

by a similar rigid boundary and held fixed, then it follows that the image of a vortex inside a circular 

cylinder would be an equal and opposite vortex at the inverse point 
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Note. Let O be the centre of the cylinder. Let OA = c. Then, if B is the inverse point  of 2, /A OB a c

, where a is the radius of the circular cylinder. The vortex at A will move round the circular cylinder 

with velocity q given by  

    
     2 2 22 2 – 2 / – 2 –

k k k kc
q

AB OB c a c c a c
   

   
 

Let   be the angular velocity of vortex at A. Then  

      

 2 22 –

q q k

OA c a c
  


 

 

Q.1. A vortex pair is situated within a cylinder Show that it will remain at rest if the distance of either 

from the centre is given by  
1/2

5 – 2 ,a  where a is the radius of the cylinder.  

 

Sol.  Let vortices of strengths k and –k situated at A and B respectively within the circular cylinder form 

the given vortex pair. Let OA = r = OB and let A’, B’ be the inverse points of A and B respectively with 

regard to the cylinder so that OA’ = a2/r = OB’.  

The image system consists of a vortex of strength –k and A’ and vortex of strength k at B’. The vortex 

will remain at rest if its velocity due to other three vortices is zero, that is  

 
1 1 1

– 0
2 ' ' '

k

AA BA B A

 
    

  or 

   2 2

1 1 1
– 0

2/ – /ra r r a r r
 


 

or       2 2 2 21/ – 1/ – 1/ 2 0r a r a r r    or  2 2 4 44 – – 0r a a r   

or 4 2 2 44 – 0r a r a     or    
2

2 2 2 2/ 4 / –1 0r a r a   

or   1/22 2/ –4 16 4 / 2 5 – 2r a     or  
1/2

5 – 2r a  

Q.2. When a pair of equal and opposite rectilinear vortices are situation a long circular cylinder at equal 

distance from its axis, show that the path of each vortex is given by the equation 

  
2

2 2 2 2 2 2 2 2 2sin – – 4 sin ,r b r a a b r     being measured from the line through the centre 

perpendicular to the joint of the vortices.  
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Sol. Let k be the strength of the vortex at  ,P r   and –k at  ,Q r  . Let P’ and Q’ be the inverse points 

of P and Q respectively with regard to the circular cylinder z a  so that 2' / 'OP a r OQ  . Then the 

image of vortex k at P is a vortex –k at P’ and the image of vortex -k at Q is a vortex k at Q’.  

Hence the complex potential of the system of four vortices is given by  

     
2 2

– –log – – log – – log – log –
2

i i i iik a a
w z re z e z re z e

r r

   
    

              

 

or          / 2 log – 'iw ik z re w   , 

Since the motion of vortex P is solely due to other vortices, the complex potential of the vortex at P is 

given by value of w’ at iz re  . 

     
2 2

– –' – log – – log – log –
2

i

i

i i i

z re

z re

ik a a
w z e z re z e

r r




  





    
              

 

  
2 2

– –– – log – log – – log –
2 i

i i i i i i

z re

ik a a
i re e re re re e

r r 

     



    
                 

 

or  
2 2 2

– log – log 2 sin – log – cos sin
2

ik a a a
i r i ir r i r

r r r

       
                              

 

    

2 2
2 2 2

2 21
– log – log 2 sin – log – cos sin

2 2

k a a a
r r r r

r r r

                                    

 

     [Using the formula:        2 2 –1log 1/ 2 log tan /x iy x y i y x     ] 

   
2 4 2

2

2

1
– log – log 2 sin – log – 2 . cos

2 2

k a a a
r r r r

r rr

      
                    

 

Thus,      
   

2 22

2 4 2 2

– / 2 sin
– log

4 / – 2 cos2

r a r rk

r a r a

 
 

  
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 So, the required streamlines are given by   = const., i.e., 
 

2
2 2 2 2

2

4 4 2 2

– sin

– 2 cos2

r a r
b

r a a r




 
, say 

i.e.,       
2

2 4 4 2 2 2 2 2 2– 2 cos2 – sinb r a a r r r a     

i.e.,         
2 2

2 2 2 2 2 2 2 2– 2 1– cos2 – sinb r a a r r r a  
    

 
 

  sin 2 4 /r C  =constant = A, say   …..(5) 

Again,   0 0tan , /y x  ,   as 0 cosx r  ,   0 siny r   

Differentiating both sides of 0 0tan /y x   w.r.t. ‘t’, we get 

  2 2
0 0 0 0 0sec – /x y y x x     or  

 2 2
0 0 0 0 0sec –x x y y x   

or     2
0 0 0 0 0 0– – ,r x y y x x v y u    by (3)  0 cosx r   

Thus,     
2 2

2 0 0

2 2 2 2
0 0 0 0

– –
4 4

y xk k
r

x y x y
 

  
 using (2) 

  2 –
4

d k
r

dt





    or  

2

2
–

4sin 2

A d k

dt





, using (5) 

or       2 2– 4 / cos 2dt A k ec d     

 Integrating,   22 / cot 2t A k   ,  so that t is proportional to cot2 

Vortex rows.  

When a body moves slowly through a liquid rows of vortices are often generated in its wake. When 

these vortices are stable, then they can be photographed. In the next two articles we wish to consider 

infinite system of parallel rectilinear vortices in two dimensional flow.  

Infinite number of parallel vortices of the same strength in one row. 

To show that the motion due to a set of line vortices of strength k at point  0,1,2,3,....z na n    is 

given by the relation    / 2 logsin /w ik z a    

Proof.  Let there be (2n + 1) vortices of strength k each situated at the points (0, 0) 

       ,0 , 2 ,0 , 3 ,0 ,.... ,0a a a na    . The complex potential of these (2n + 1) vortices at any point z is 

given by  

             2 1 / 2 log log – log log – 2 log 2 ..... log – lognw ik z z a z a z a z a z na z na                 

        2 2 2 2 2 2 2 2 2 2 2 2 2/ 2 log – – – 2 – 3 .... –ik z z a z a z a z a z n a  
 

 

 
2 2 2

2 2 2 2 2

2 2 2 2 2
log 1– 1– .... 1– log –1 . .2 ......

2 22

nik z z z z ik a
a a n a

a a a n a

       
                     

…..(1) 
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The second terms on R.H.S. of (l) being constant, it may be neglected for the purpose of complex 

potential. Hence the complex potential given by (l) may be also written as  

    
2 2 2

2 1 2 2 2 2 2
log 1– 1– ..... 1–

2 2
ll

ik z z z z
w

a a a n a


     
                 

 

Making n  in (2), then complex potential w of the entire system of vortices at point 

 0,1,2,3,....,t na n    is given by  

      
2 2 2

2 2 2 2 2
log 1– 1– 1– ....

2 2 3

ik z z z z
w

a a a a

    
              

 …..(3) 

But        2 2 2 2 2 2 2 2sin 1– / 1– / 2 1– / 3         …..  ..…(4) 

Putting /z a    i.e.,  / /z a     in (4), we get 

         2 2 2 2 2sin / / 1– / 1– / 2 .....z a z a z a z a      ..…(5) 

Using (5), (3) becomes     / 2 logsin /w ik z a       …..(6) 

Let u and v be the velocity components at any point of the fluid not occupied by any vortex filament. 

Then, we have 

       – – – cos
2

dw ik z
u iv

dz a a


  , using (6) 

 
     

   

cos sin –

– cot –
2 2

sin sin –

x iy x iyx iyik ik a a

a a a
x iy x iy

a a

 
 

 
 



 

 
   

   

   

   

sin 2 / – sin 2 / sin 2 / – sinh 2 /
– –

2 cos 2 / – cos 2 / 2 2 cosh 2 / – cos 2 /

x a iy a x a i y aik ik

a iy a x a a a y a x a

   
 

   
 

Equating real and imaginary parts, we have 

 
 

   

sinh 2 /
–

2 cosh 2 / – cos 2 /

y ak
u

a y a x a




 
  …..(7) 

 
 

   

sinh 2 /
–

2 cosh 2 / – cos 2 /

x ak
v

a y a x a




 
 

Since the motion of the vortex at the origin in due to other vortices only, the velocity q0 of vertex at the 

origin is given by  

   0
00

1
– logsin – log – cot –

2 2 2 zz

d ik z ik ik z
q z

dz a a a z 

      
           
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 

 0

cos / 1
– lim –

2 sin / 2z

z aik

a z a

  
  

   
      Form:  –   

   

 0

cos / – sin /
– lim

2 sin /z

z z a a z aik

a z z a

  


 
    Form: 

0

0

 
 
 

 

 [On evaluating the above indeterminate form with help of L’ Hospital’s rule] 

Hence the vortex at origin is at rest. Similarly, it can be shown that the remaining vortices are so at rest, 

Thus we find that the vortex row induces no velocity on itself.  

 

       logsin
2

ik
i x iy

a

 
    

  
 

       – – logsin –
2

ik
i x iy

a

 
    

  
 

Subtracting (10) from (9),     2 logsin logsin –
2

ik
i x iy x iy

a a

     
       

     
 

or       
1 2 2

log sin sin – log cos – cos
4 4 2

k k iy x
x iy x iy

a a a a

           
           

         
 

or      
2 2

log cosh – cos
4

k y x

a a

  
   

  
, 

on omitting the irrelevant constant. The required streamlines are given by   = const. 

i.e.,         cosh 2 / – cos 2 /y a x a  = const. 

When y is very large, the second therm on L.H.S. of (12) may be omitted. Then the streamlines are 

given by  

 cosh 2 /y a  = const,    so that    y = const., 

Showing that at a great distance from the row of vortices the streamlines are parallel to the  

 

Two infinite rows of parallel rectilinear vortices.  

Let there be two infinite rows of vortices one above the other at a distance b, the upper one having 

vortices each of strength k and lower one each of strength –k, one vertex of the upper row being exactly 

above each of the lower row. Taking the upper row as x-axis and y-axis passing through the centre of 

one of the vortices of strength k each are at the points      0,0 , ,0 , 2 ,0a a  …. And those of strength 

–k each are at the points      0,– , , – , 2 ,–b a b a b    
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The complex potential of the entire system is given by  

       logsin – logsin
2 2

ik z ik
w z ib

a a

 
 

 
 

Let u and v be the velocity components at any point of the fluid not occupied by any filament. Then 

        – – – cot cot
2 2

dw ik z ik
u iv z ib

dz a a a

 
   


 

The velocity of the vortex at the origin is given by  

     0 0

0

– – logsin – log – logsin
2 2 2

z

d ik z ik ik
u iv z z ib

dz a a


   
       

 

  0 0
0

1
– – cot – – coth

2 z

ik z
u iv z ib

a a z a a 

    
    

– cot coth
2 2

ik i b k b

a a a a

 
   

        
0

lim / cot / – 1/
z

a z a z


   = 0. Prove yourself as in Art.  

So that      0 / 2 coth /u k a b a  ,  and  0 0v   

Showing that the vortex system moves parallel to itself with velocity  / 2k a  coth  /b a . 

Karman Vortex Street. 

Let there be two parallel rows of vortices of equal but opposite strength placed in such a way that each 

vortex in row is opposite to the point midway between two vortices of the other row.  2 ,0a , …… 

and the vortices of strength –k each be situated at the points    / 2,– , 3 / 2,–a b a b   

 

If u and v be the velocity components at any point of the fluid not occupied by any vortex filament. 

Then  
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1

– – – cot cot
2 2 2

dw ik z ik
u iv z a ib

dz a a a a

  
     

 
    …..(2) 

Since the motion of the vortex at the origin is due to other vortices only, the velocity of vortex at the 

origin is given by  

   

0

1 1
– cot – – cot – cot – tan

2 2 2 2 2 2
z

ik z ik i b ik i b
z a ib

a a a z a a a a a


          
         

    
 

  [       
0

lim / cot / – 1/ 0
z

a z a z


   .  

Thus,        0 0– / 2 tanh /u iv k a b a   

So that       0 / 2 tanh /u k a b a   and  0 0v  , 

Showing that the entire system would move parallel to itself with a uniform velocity (k/2a) tanh (b/a). 

Note. A Karman vortex street is often realized when a flat plate moves broadside through a liquid.  

 

PREVIOUS YEARS QUESTIONS 

CHAPTER 5. VORTEX MOTION 

Q1.Verify that log
z ia

w i k
z ia

 
  

 
 is the complex potential of a steady fluid flow about a 

circular cylinder, the plane 0y   being a rigid boundary. Further show that the fluid exerts a 

downward force of magnitude 
2

2

k

a

 
 
 

 per unit length on the cylinder, where   is the fluid 

density. [7b IFoS 2022] 

Q2. Two point vortices each of strength k  are situated at  ,0a  and a point vortex of strength 

2

k
  is situated at the origin. Show that the fluid motion is stationary and also find the equations 

of streamlines. If the streamlines, which pass through the stagnation points, meet the x-axis at 

 ,0b , then show that  
2

2 2 33 3 16b a a b  . [7c UPSC CSE 2022] 

Q3. Discuss the flow given by the complex potential  

2

loge

a
w z

z

 
  

 
.Draw sketches of the streamlines and explain the flow directions along the 

streamlines. [7b IFoS 2021] 

Q4. What arrangements of sources and sinks can have the velocity potential 
2

loge

a
w z

z

 
  

 

? Draw the corresponding sketch of the streamlines and prove that two of them subdivide into 

the circle r a  and the axis of y. [5e UPSC CSE 2021] 

Q5. The velocity vector in the flow field is given by  
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      ˆˆ ˆq az by i bx cz j cy ax k      ;where , ,a b c  are non-zero constants. Determine the 

equations of vortex lines.[8c 2017 IFoS] 

Q6. Does a fluid with velocity 
2 2 2

,2 3 , 3
x y z

q z y z x y
r r r

 
      
 

possess vorticity, where 

 , ,q u v m  is the velocity in the Cartesian frame,  , ,r x y z  and 2 2 2 2r x y z   ? What is 

the circulation in the circle 2 2 9, 0x y z   ? [5b UPSC CSE 2016] 

Q7. Prove that the vorticity vector   of an incompressible viscous fluid moving in the absence 

of an external force satisfies the differential equation  

  2D
q v

Dt


    where q  is the velocity vector with q  . [5d 2014 IFoS] 

Q8. If n rectilinear vortices of the same strength K are symmetrically arranged as generators of 

a circular cylinder of radius a in an infinite liquid, prove that the vortices will move round the 

cylinder uniformly in time 
 

2 38

1

a

n K




. Find the velocity at any point of the liquid. [8c UPSC 

CSE 2013] 

Q9. Prove that the vorticity vector   of an incompressible viscous fluid moving in the absence 

of an external force satisfies the differential equation  

  2D
q v

Dt


     . [5d 2012 IFoS] 

Q10. An infinite row of equidistant rectilinear vortices are at a distance a apart. The vortices 

are of the same numerical strength K but they are alternately of opposite signs. Find the 

Complex function that determines the velocity potential and the stream function. [8b UPSC 

CSE 2011] 

Q11. In an incompressible fluid the vorticity at every point is constant in magnitude and 

direction; show that the components of velocity , ,u v w  are solutions of Laplace's equation. 

[5f UPSC CSE 2010] 

Q12. When a pair of equal and opposite rectilinear vortices are situated in a long circular 

cylinder at equal distances from its axis, show that the path of each vortex is given by the 

equation   2 2 2 2 2 2 2 2 2sin 4 sinr b r a a b r    ,  being measured from the line through 

centre perpendicular to the joint of the vortices.[8b UPSC CSE 2010] 

Q13. Show that the vorticity vector   of an incompressible viscous fluid moving under no 

external forces satisfies the differential equation  

  2D
q v

Dt


    where v is the kinematic viscosity. [8c 2010 IFoS]         
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Note: The beauty of systematic learning is- You’ll find solutions of almost every PYQ in above 

examples or questions attached with detailed answers. So to avoid repetition in this book, we have not 

put those solutions again as answers to PYQs. 
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THEME- VISCOSITY: NAVIER STOKE’S EQUATIONS 

INTRODUCTION: So far we have been concerned with perfect (ideal) fluids (frictionless and 

incompressible). In the motion of such perfect fluid, two contacting layers of the fluid experience no 

tangential forces (shearing stress) but act on each other with normal forces (pressure) only or in other 

sense we can define that a perfect fluid exerts no internal resistance to a change in shape.  

In this chapter we shall consider the cases of actual (real) fluids. In real fluids the inner layers of the 

fluid transmit tangential as well as normal stresses. Viscosity of the fluid is that property of actual fluids 

which exerts such resistance. 

Because of the absence of tangential forces, a difference in relative tangential velocities exists on the 

boundary between a perfect fluid and a solid wall i.e. there is a slip, on the other hand, in actual fluids 

the existence of inter-molecular attraction causes the fluid to adhere to a solid wall and it gives rise to 

shearing stress.  

The difference between a perfect and a real fluid is the existence of shearing stress and the condition of 

no slip. 

Measurement of Viscosity. 

 

Consider the motion of a fluid between two very long parallel plates, at a distance h apart. 

 Let the lower plate be at rest and the upper plate is moving with a constant velocity U parallel to itself. 

The pressure being constant throughout the flued.  

We see that the fluid adheres to both the walls, so that its velocity at the lower plate is zero and that at 

the upper plate is equal to the velocity U.  

Again, the velocity distribution in the fluid between the plates is linear, is  

Liner, so that the fluid velocity is proportional to the distance y from the lower plate (there being no 

slip on the walls). 

Then    
y

u U
h

  

Since the tangential force to the upper plate be in equilibrium with the frictional forces in the fluid. 

 Also the experiments shows that this force is proportional to the velocity U of the upper plate and 

inversely proportional to the distance h. Let  denotes the frictional force per unit area 
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or  
U

h
  

{In general 
U

h
 can be replaced by the velocity gradient 

du

dy
. 

or 
du

dy
  

or  
du

dy
     …..(i) 

where  is a constant of proportionality depending on the pressure and temperature.  

Note: For gases  is independent of the pressure at ordinary temperature. The relation (i) is known as 

Newton’s equation of viscosity. B transformation. We have 

/du dy


   

which is known as the coefficient of viscosity or Absolute viscosity or Dynamic viscosity.  

A fluid for which the constant of proportionality (i.e. viscosity) does not change with rate of deformation 

is said to be a Newtonian fluid.. 

shearing stress
μ = 

velocity gradient
 

 {Shearing stress  Force/unit area and velocity gradient = velocitylength 

or  (force per unit area/rate of shear) 

 In all fluid motions in which frictional and inertial forces interact, we consider the ratio of the 

viscosity to the density such as 

v





 

Which is known as kinemetic Viscosity. 

Strain Analysis. 

When the various elements of a system undergo relative displacements under the action of impressed 

forces, it is said to be strained.  

(1) Normal Strain is defined as the ratio of the change in length to the, riginal length of a straight line 

element. 

(2) Shearing Strain is defined as the change in angle between two linear elements from the unstrained 

state to the strained state. 
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Since the motion of the fluid is completely determined when the velocity vector q is given as a function 

of position and time; q = q(xyzt). 

∃ kinematic relations between the components of the rate of strain and this function.  

Let the velocity of an infinitesimal element at P(x y z) at any time be (u v w). 

 

Let PQ1 and PQ2 be two perpendicular lines through P having infinitesimal length S1 and S2, 

direction cosines are (l1 m1 n1) and (l2 m2 n2) respectively.  

The coordinates and velocities at Q1 and Q2 be at the same time t are. 

 1 1 1 1 1 1, , ; , ,x x y y z z u u v v w w             

and  2 2 2 2 2 2, , ; , ,x x y y z z u u v v w w             respectively. 

From Analytical geometry 3D; Evidently 
2 2

xyz

S x    

or  , ,x l S y m S z n S            …..(i) 

Since 1PQ  and 2PQ  are perpendicular 

Then 1 2 0
xyz

x x        …..(ii) 

The relative velocity  , ,u v w    of Q relative to the point P can be written as 

, ,x x x

xyz xyz xyz

u u x v v x w w x             

Now assuming the following symbols, 
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and 

,2 , 2 2xx x yy v zz z

yz zy y z

zx xz z x

xy yx x y

e u e v e w

e e w v

e e u w

e e v u

   


   
  

   

   …..(iii) 

also , – , –y z z x x yw y u w v u        

Form the above assumed relation (iii), we have 

   

   

1 1 1
, ( – ), ( )

2 2 2

1 1 1
, . –

2 2 2

1 1 1
– , ,

2 2 2

x xx y xy z xz

x xy y z yz

x xz y yz x zz

u e u e u e

v e v eyy v e

w e w e w e


      




      



      


  …..(iv) 

Where , ,   are the components of vorticity about the coordinate axes OX, OY, OZ. 

Now the velocity of Q in terms of these symbols is  

 

 

 

1 1
–

2 2

1 1
–

2 2

and

1 1
–

2 2

Q P

xx xy xz

Q P

P yz x yy yz

Q P

P xx xy xz

u u u

up e x e y e z z y

v v v

v e e y e z x z

w w w

w e x e y e z y x

   


              


   


              


   


           
 

  ….(v) 

The velocity at Q consists of three parts: 

(a) Velocity of translation (up) which is the same as that of P. 

(b) Rate of deformation (Rate of component of strain) as 

   
1 1

,
2 2

xx xy xz yx x yy y yze x e y e z e e e z           

 
1

2
xx xy xze x e y e z        

(c) Velocity produced by rigid body due to rotation of angular velocity 
1 1 1

, ,
2 2 2

 
   

 
 about straight 

lines parallel to the axes of reference through P.  
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Velocity of Q relative to the point P is 

  

  

  

1
–

2

1
–

2

1
–

2

xx xy xz

yx yy yz

zx zv zz

u S le me ne n m

v S le me ne l n

w S le me ne m l


        




        



        


    .….(vi) 

Rate of elongation 

Consider 1 2', ', 'P Q Q  be the position of 1 2, ,P Q Q  respectively at time .t t   Evidently, the coordinates 

of P’ are 

 , ,x u t y v t z w t       

and that of       1' , ,Q x x u u t y y v v t z z w w t             

then        
2 2 2 2

1' 'P Q x u t y v t z w t                

or       
1/2

2 2 2
1' 'P Q x u t y v t z w t                

or     
1/2

2
1' ' 2P Q S t l S u m S v n S w             

Using the relation (i) and (vi), we have 

   
22 2 2

1

1
' ' 1 2 2 2 0

2
xx yy xx xy yz xxP Q t l e m e n e lme mne nle t


         


  …..(i) 

Rate of elongation 

1 1

1

' '– 1
.

P Q PQ

PQ t



 

2 2 21
2 2 2

2
xx yy xx xy vz xxl e m e n e lme mne nl e      

 
  …..(ii) 

Which gives the relative rate of elongation of PQ1. 

Consider PQ1, parallel to the X-axis then the direction cosines becomes (1, 0, 0), hence from (ii), 

1

2
xxe  represents the relative rate of elongation in the direction of X-axis. 

Similarly  
1

2
xxe  represents the relative rate of elongation in the direction of Y-axis. 
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And   
1

2
xxe  represents he relative rate of elongation in the direction of Z-axis. 

Ex.1. Consider a rectangular parallelopiped with edges PQ1, PQ2 and PQ3, parallel to the axis of 

reference of lengths S1, S2 and S3 respectively, then the relative rate of increase of its volume is given 

by  

 

1 2 3 1 2 4

0 1 2 3

1 1 1
1 . 1 . 1 –

2 2 2
xx yy xz

t

S e t S e t S e t S S S

Lt
S S S t 

     
                

     


   
 

0

1 1 1
1 1 1 –1

2 2 2
xx yy zz

t
Lt e t e t e t

 

    
          

    
 

 
1

2
xx yy zze e e    {neglecting the term of higher orders of  t. 

y eu v w    

u v w

x y z

  
  
  

 

= div. q (where q is the velocity vector) 

The relative rate of increase in the volume is called dilation generally is denoted by .  

Thus   
1

2
xx yy zze e e     

If the rate of increase vanishes then it is known as equation of continuity. 

Rate of Shear. 

 xye  represents the rate of the decreases of the angle between the line which were originally parallel to 

the axis of X and Y respectively i.e., xye   the rate of shear in the XY-plane. 

Similarly we can say that eyz and ezx as the rates of shear in YZ-plane and in ZX-plane. 

Rate of strain tensor 

 The rate of strain matrix 
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xx xy xz

yx yy yz

zx zy zz

e e e

e e e

e e e

 
 
 
 
  

  

A symmetric tensor, i.e.,  

,xy yz yz zye e e e   and zx xze e  

Rate of strain components. 

Let (u v w) be the components of the velocity parallel to the coordinates axes at the point (x, y, z) at time 

t. The components of the relative velocity at an infinitely near point  , ,x x y y z z       are: 

   

   

   

1 1
–

2 2

1 1
–

2 2

1 1
and –

2 2

xx xy xx

yx yy vz

zx xy zz

u e x e y e z z y

v e x e y e z x z

w e x e y e z y x

         

         

         

 

Where  2 , 2 , 2xx yy zz

u v w
e e e

x y z

  
  

  
 

 
yx zy

xx xx

w v
e e

y z

u w
e e

z x

 
  

 

 
  

 

 

xy yx

v u
e e

x y

 
  

 
 

and  – , – , –
w v u w v u

y z z x x y

     
    

     
 

 , ,    are the components of the vorticity vector   and Curl V  

Where V (u, v, w) is the velocity vector. 

The quantities exx, eyy etc. are called the rate of strain components and 
1

2
xxe  represents the rate of 

extension of a line element in the direction of the X-axis. eyx is the rate of change of the angle between 

two lines along the axis of X and axis of Y.  

Stress Analysis.  
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Consider a point P(x y z) in the fluid medium and take infinitesimal area A surrounding the point P. 

The fluid on each side of the area exerts of force F on it.  

Then the stress S of the fluid at P on the area A is define as  

0
.

A

F
S Lt

A 





; (This is finite and non-zero) 

In other words the forces per unit area which two neighbouring elements of volume with a common 

surface exerts on each other are called stresses.  

For a fluid at rest, stress is normal to the surface and is in the nature of a pressure. When fluids are in 

motion, ∃ also shearing stress in addition to normal stress. 

The stress components can be represented by P, where  denotes the direction of the normal to the 

area and  is the direction in which the stress component is taken. 

Considering the right handed system of coordinate axes, we define the stress matrix  

ijP P  

Where ijP  is the component of stress acting on a are A  perpendicular to the axis x1 taken in the 

direction parallel to x1 axis. 

Stress Tensor. 

Now we shall prove that P is a symmetric tensor. We know by D’ Alembert’s principle that the reversed 

effective forces and the impressed forces acting on a dynamical system at any instant are in equilibrium, 

and the fact that the force on an infinitesimal area in any direction can be taken as the product of the 

area and the stress acting at its centre in that direction. 
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 P is symmetric, thus stress matrix is diagonally symmetric and contains only six unknowns.  

The three sets of stress components are given by  

  

xx xy xz

yx yy yz

zx zy zz

p p p

p p p

p p p

 

The diagonal elements , ,xx yy zzp p p  of this array are called normal of direct stresses. The remaining six 

elements are known shearing stress. For an inviscid fluid  

–

and 0

xx vv zz

xy xz

p p p p

p p

  

  
 

The matrix 

xx xy xz

yx yy yx

zx xy zz

p p p

p p p

p p p

 
 
 
 
  

 is called a stress matrix  

The quantities pij where I, j = x, y, z, are called the stress tensor which is a second order tensor.  

Translation motion of fluid element. 

Consider the motion of a small rectangular parallelopiped of viscous fluid, having  P x y z  as centre 

and its edges of lengths , ,x y z    parallel to the fixed rectangular axes.  
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Mass of fluid element  

x y z    ; (which will remain constant) 

Suppose the element move along with the fluid. The components of the forces parallel to the co-ordinate 

axes OX, OY, OZ on the surface of area y z   through the point  , ,P x y z  are  

 , ,xx xy xzp y z p y z p y z       

 

At the point 2

1
, ,

2
P x x y z
 

  
 

, the corresponding force components across the parallel plane of area 

y z   are (i is the unit normal measured outwards from the fluid). 

1 1 1
, ,

2 2 2

xyxx xz
xx x xy xz

pp p
p y z p x y z p x y z

x x x

           
                     

             

 

Similarly for the parallel plane through 1

1
– , ,

2
P x x y z
 

 
 

 the corresponding components are, 

1 1 1
– – , – – , – –

2 2 2

xyxx xz
xx x xy xz

pp p
p y z p x y z p x y z

x x x

         
                

            

 

(Since –i is the unit normal drawn outwards from the fluid element). 

The force on the parallel planes through 1P  and 2P  are equivalent to a single force at P having 

components  

, ,
xyxx xz

pp p
x y z

x x x

  
   

   
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Together with the couple whose moments are 

  – xzp x y z    about OY. 

and   xyp x y z     about OZ. 

Similarly the pair of faces perp. To Y axis give a force at P  having components  

  , ,
yx yy yzp p p

x y z
y y y

   
   

   
 

Together with couples of moments  

  – yxp x y z    about OZ. 

  yzp x y z     about OX. 

And the pair of faces perp. to the Z-axis give a force at P having components  

  , ,
xyxx zz

pp p
x y z

z z z

  
   

   
 

Together with couples of moments. 

  – xyp x y z    about OX. 

  xxp x y z     about OY. 

Thus the surface forces on all six faces of the cuboid reduce to a singles force at P having components.  

, ,
yx xy yy xy yzxx xx xx zz

p p p p pp p p p
x y z

x z z x z z x y z

             
              

               

 

Together with a vector couple having cartesian components 

      – , – , –yz xy xx xz xy yxp p p p p p x y z    

Consider the external body forces are (X Y Z) per unit mass at the point P. Then the total body force on 

the element has components. 

    X Y Z x y z   . 

The total force component acting on fluid element P along the i-direction  

yxxx zx
pp p

x y z X x y z
x y z

  
          

   
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Let q(u v w) be the velocity at the point P at any time t, then the equation of motion along the i direction 

 
yxxx zx

pp p
x y z X x y z

x y z

  
          

   
 

     
du

x y z
dt

     

or  
yxxx zx

pp p du
X

x y z dy

  
     

   
 

Since   u u x y z t  

and   
du u u u u

u v w
dt t x y z

   
   
   

 

Exam Point: Above discussion is just to have an idea about how these equations are coming out . 

Ultimately we need to remember below final equations for exam.  

Thus we have the equations of motion in the direction of i, j and k 

or  
1 yxxx zx

pp pdu
X

dt x y z

  
    

    
 

or  
1 xy yy zyp p pdv

Y
dt x y z

   
    

    
 

or  
1 yzxz zz

pp pdv
Z

dt x y z

  
    

    
 

Can be represented in tensor form 

 . .

1x
j i j i ij j

p
u u X P

t


 

 
 

     1,2,3ij   

Where  x1  the co-ordinate 

 u1  the velocity components. 

 X1  the external body force components.  

Newtonian fluids.  

The fluids in which the stress components are linear functions of rate of strain components are called 

Newtonian fluids.  
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Navier – Stokes equations of Motion of a Viscous fluid. 

We know that the equation of translation motion of fluid element is  

1 yxxx zx
pp pdu

X
dt x y z

  
    

    
.     …..(i) 

We know that  

– 2xx

u
p p

x


   


, yz

v u
p

x y

  
   

  
,  zx

u w
p

z x

  
   

  
 

Substituting the above values in (i), we have 

1
– 2

du u v u u w
X p

dt x x y x y z z x

                
                   

                  

 

or  
1

– 2
du p u v u u w

X
dt x x x y x y z z x

             
               

              
 

or 
21

–
du p

X v u v
dt x x

   
     

    
   …..(ii) 

Since 
2

–
3

    for compressible fluid and 0   for an incompressible fluid, then (ii) reduces to  

2 1
–

3

du i p
X v u v

dt x x

 
   

  
 

Thus the equations of motion along the co-ordinate axes are given by  

as v





 

or v
  

  
  

 

 
2

–
3

 

 

 

 
1

3
v  
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2

2

2

1 1
–

3

1 1
Similarly –

3

1 1
and –

3

du p
X v u v

dt x x

dv p
Y v v v

dt y y

dw p
Z v w v

dt z x

 
    

  

 

    
   

 
    

   

   …..(iii) 

Known as Navier-Stoke’s equation of motion. 

These equations can be written in tensor form as 

  1
1

1 1
–

3
ij ij ij

du
X p vu v

dt
   


 

The relation (iii), can also be represented in vectorial form  

 2 2
– .

3

dq dp
F v q v q

dt
      


    …..(iv) 

Where  q x y z  and  , ,F X Y Z  

   21
Since . –

2

dq q q
q q q q q

dt t t

   
        
   

 

    2and . –q q q      

Thus the equation (iv) reduces to, 

        21 1
– – . – .

2 3

q dp
q q q F v q q v q

t

  
                  

  

     21 4
– – . –

2 3

q dp
q q q F v q v q

t

  
          

  
   …..(v)  

Which is another form of Navier-Stoke’s equation of motion. 

For incompressible flow, the relations (iv) and (v) reduce to  

21
–

dq
F p v q

dt
   


 

 
1

– –F p v q   


.     …..(vi) 

Boundary Conditions: 
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The equation (vi) represents that for an incompressible flow the equation of motion differs from Euler’s 

equation of motion in inviscid flow by the form  –v q  . This term arises due to Viscosity which 

increases the order of differential equation and therefore and additional boundary condition is needed. 

This is satisfied by the condition that there must be no slip between a viscous fluid and its boundary. 

So at fixed boundary q = 0. It follows that the normal and tangential velocity components both must 

vanish.  

Equations for vorticity and circulation. 

We know that the Navier-stoke’s equation of motion is 

 2 21 1
– –

2

q
q q q F p v q

t

  
       

  
 

Let the external forces are conservative and density is a function of pressure only. 

Then   q   

or   
2 21

– –
2

q dp
q q v q

t

 
       

  
  

Taking curl of both the sides we have 

    2curl – curl curl
q

q v q
t


  


 

or     2. – .q q v
t


      


 

    

as div. ζ

=div. cural q

=0







 

or   2.
d

q v
dt


       

Which is known the equation to vorticity. 

Let   be the circulation round a closed circuit, 

then cudx vdy wdz     

or c

D D
udx vdy wdz

Dt Dt


    

  c c

D Du Dv Dw
dx dt dz udu vdv wdw

Dt Dt Dt Dt

  
      

 
   
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 {The second vanishes as circuit being closed.  

or  2 2 2– – –c

D p p p
V dx V dy V dz v udx vdy wdz

Dt x y z

         
             

           
  

  2– c c

p
d V v udx vdy wdz
 

      
 

   

 2
cv udx vdy wdz      

     as cudx vdy wdz     

= 2v   (other integral vanishes for a closed circuit) 

Equations of motion in cylindrical polar coordinates. 

We know that the Navier-stoke’s equation is  

 21
–

2

q
q q q

t

  
   

  
 

    
1

–F p v q    


     …..(i) 

Let (r, , z) be the coordinates of a point, then it reduces to  

  
2 1

– – –r

d qe p
q

dt r r r

 


  
 

   2

2 2

2
– –e

r

p r
v q

r r

  
  

 
 

  2

2 2

1 2
– – –r rq q qqd

q v q
dt r r r r r

 
 

   
     

    
 

and   21
– –z z

d p
q v q

dt z z

 
  

  
 

where  r z

d
q q q

dt t r r z


   
   
   

 

and 
2 2 2

2

2 2 2 2

1 1

r rr r z

   
    

  
 

(iii) Spherical Polar Coordinates.  

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/  

  2 2 2

2 2 2 2

21 1 cot 2 2
– – – – – 2 – –

sin

r r
e r

qqdq qp
q q v q q

dt r r r r r r r


 

   
    

     
 

Note: Navier Stoke’s equation can also be written as 

 2 21 1
. – 2 – – grad.

2

V
grad V V F p v V

t

  
    

  
 

Now curl  2 , ,V      

2 –
y z

  
  

  
 

– – –
v u u w

y x y z z x

       
    
       

 

 
2 2– –

u v w
u u

x x y z

    
      
    

 

Thus the equation reduces to, if F = –grad. V  

or  
21

– 2 –grad. – 2 curl
2

V p
V V V v

t

 
     

  
 

and 
2

2

2 2 2 2 2

cot 1 1 2 2cos
– – – – –

sin sin

r r
q qq q q q qp

v q
t r r r r r r r

   


     
     

       
 

 

2

2 2 2 2 2

cot 1 2 2cos
– – –

sin sin sin sin sin

r r
q q q qq q qqp

v q
t r r r r r r r

    


     
       

        
 

where .
sin

r

d
q q q

dt t r r r
 

   
   
   

 

and
2 2 2

2

2 2 2 2 2 2 2

1cot2 1

sinr rr r r r

    
     

  



 
 

(iii) Orthogonal curvilinear coordinates.  

We know  

      
22 22

1 1 2 2 3 3dS h d h d h d       

then  1 1 1
1 1 2 2 3 3

1 1 1
.l m n

h h h

  
    

  
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1 1 2 1 3 1

1 2 3 1 2 2

1 1 2 2 2 3

1

h l h m h n

F
h h h

h F h F h F

  
 

  
 

Energy Dissipation due to Viscosity. 

Consider a particle of viscous fluid of fixed mass v  moving at any time t with velocity q.  

The kinetic energy is =   21

2

d
v q

dt

 
 

 
= .

dq
vq

dt
  

Thus the total rate of gain kinetic energy of the entire fluid of volume V is  

 .v

dq
q dv

dt

 
   

 
  

 .v

dq
q dv

dt

 
   

 
  for an incompressible fluid. 

We know that the Navier-stoke’s equations for a viscous fluid is  

  
1

– –
dq

F p v q
dt

   


    …..(i) 

Multiply both the side of (i) scalarly be qdv  and integrating over the volume V of the fluid.  

    . . – . – . .v

dq
q dv q F dv q dv v q q dv

dt
               

Thus the rate of energy dissipation (E) due to viscosity is  

   . asvE q q dv v
 

    


  

 We know that 

       2
. curl ) curl – .q q q q q      

or    
2

– . curl
v v

E q dv q q dv        

    
2

– . curl
v s

E q dv n q q ds       

{Changing from volume integral to surface integral  

(where S is the total surface enclosing the volume V). 
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When the boundary S is at rest, and there is not slips between fluid and boundary. 

Then  q = 0 on the surface S 

thus    
2

v
E q dv    

2 2curl
v v

q dv dv      

Ex. 1. Prove that 

  
 
 

2

2 2
,

–
,

v
t x y

    
    

  
 

Where   is a stream function for a two-dimensional motion of a viscous liquid. 

We know that the Navier stoke’s equation for compressible viscous fluid. 

    21
. –

q
q q p v q

t


     

 
 

    (since external body forces are absent) 

or   2 21
– –

2

q p
q q q v q

t

 
       

  
   …..(i) 

Taking curl of the relation (i) both the sides, we have  

   2– curl curlq v q
t


  


 

       {as q   

or     2. – .q q v
t


      


     …..(i)  

Since there is a two dimensional motion of a viscous fluid then  

  q = (u, v, 0) 

and   0,0,    

 Now (ii) can be written as 

2 –v u v
t x y

    
      

     
     …..(iii) 

The stream function   exist, then 
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  –u
y





 and v

x





 

or 2     

Substituting the value of   in (iii), we have 

2 2–v v u
t y x

   
     

   
 

or 
2 2 2 2– . – .v

t x y y x

     
        

     
 

or        2 2 2 2– . –v
t x y y x

     
          

     
 

or 
 
 

2

2 2
,

–v
t x y

    
    

  
  

Ex. 2. Prove that, in the slow steady motion of a viscous liquid in two dimensions 

2 –
X Y

v
x y

 
  

 
where (X, Y) is the impressed force per unit area 

We know that the Navier-stoke’s equation of motion is  

  21
. –

q
q q F p v q

t


     

 
     …..(i) 

Here 0
q

t





, motion being steady. Also the inertia term  .q   q is negligible, that of slow motion. 

Since the motion of the liquid is in two dimensions, so  

F = (X Y)  Impressed force or external body force 

q = (u, v)  Components of the velocity. 

The equation (1) reduces to  

21
– 0F p v q   


     …..(ii) 

Taking curl of the above relation, we have  

 Curl F + 2v curl q = 0 

or Curl F + 
2 0v        …..(iii) 
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Thus –
v u

x y

 
 

 
. 

Since   a stream function  , therefore, we have 

 – ,u v
y x

 
 

 
 

 –
v u

x y

 
 

 
 

 
2 2

2

2 2x y

   
    

 
 

From (iii), we have 

 Curl 4–F v    

or 4 –Curlv F    

or 
4 –

X Y
v

y x

 
  

 
 

Ex.3. Prove that for a liquid filling up a vessel in the form of surface of revolution which is rotating 

about its axis (Z-axis) with angular velocity , the rate of dissipation of energy has on addition term 

 2 lDu mDv dS    

Where  – , , ,D y x l m n
x y

  
  

  
 are the direction cosines of the inward normal. 

Since the liquid rotates about Z-axis with an angular velocity . 

Here  – , , 0u y v x w    . 

Consider the additional terms is  

4 . – .
v u u v

dx dy dz
x y y y

    
   

    
      ….(i) 

4 –
u u

v v dxdy dz
x y y x

       
      

       
    

–4 –
u

lv mv dS
x x

  
   

  
   

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/  

–4 –
u u

v l m dS
y x

  
   

  
   

–4
u v

v l m dS
y y

  
   

  
   

–4
u v

w x l m dS
y y

  
   

  
         …..(ii) 

      {as v x  

   {from the equation of continuity   

(i) can also be represented, as follows 

 4 –
v v

u u dxdy dz
y x x y

       
     

       
    

 –4 –
v v

mu lu dS
x y

  
   

  
   

 –4 –
v v

u m l dS
x y

  
   

  
   

 –4
v u

u m l dS
x y

  
   

  
   

        {as –u y   

 4
v u

y m l dS
x x

  
   

  
      ….(iii) 

Taking the mean of (ii) and (iii), we get  

 2 –
v u u v

y m l x l m dS
x x y y

       
      

       
   

 2 – –l y x u m m x v dS
x y x y

        
      

        
   

  2 . .l Du m Dv dS        
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Laminar flow between parallel plate.  

By laminar flow we mean that the fluid moves in layers parallel to the plates.  

Consider the two-dimensional laminar flow of an incompressible fluid of constant viscosity between 

parallel straight plates. 

 In order to maintain such a motion, the pressure difference in the direction of axis of X, i.e., along the 

plates must be balanced by the shearing stress.  

 

A flow is called parallel if only one velocity component is different from zero i.e., all fluid particles 

move in one direction.  

Here for parallel flow, we have 

 , ,u u x y t    and  v = w = 0 everywhere.  

Also,    p = p (x, y, t) 

The equation of continuity is:  0
u

x





  {as v = 0 = w 

 that the velocity component u is independent from x. 

or u = u (y, t) 

The equation of motion is given by  

  
2

2
–

u p u

t x y

  
   
  

     …..(i) 

Also   ,p p x t  

We see that 
dp

dx
 must be a constant or a function of t, Since p is not a function of y and u is not a function 

of x. 

Integrating (i) with regard to y for steady flow, we have 
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2

2
– 0

p u

x y

 
 

 
 

or  
2

2

1u p

xy

 

 

      …..(ii) 

or  
1u p

y B
y x

 
 

  
 

or  
21

. .
2

p y
u By A

x


  
 

 

or  21
.

2

dp
u y By A

dx
  


 

where A and B are arbitrary constants to be determined by the boundary conditions. 

Case I. Plane Couette flow. 

Here we shall determine the solution of equation (ii) between two parallel plates when the upper plate 

is moving in its own plane with a velocity U and the lower plate is stationary i.e., at rest.  

Here 0
dp

dx
 ; one wall is at rest and other is in uniform motion. 

 The boundary conditions are: – , 0
2

d
y u  and ,

2

d
y u U    

From relation (iii), we have 

0 –
2

Ad
B              and   

2

Ad
U B    

Solving these two, we get 

  and
2

U U
A B

d
   

Substituting the values of the constants A and B in (iii), we have 

  
2

U U
u y

d
      or  

2
1

2

U y
u

d

 
  

 
 

Such a flow is known a plane couette flow or shear flow, when the upper plate is moving with velocity 

U. The velocity distribution is linear.      

Case. II. Plane Poiseuille flow. 
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In this case the pressure gradient 
dp

dx
 is not equal to zero but both the plates are at rest  

i.e., 
dp

dx
= Constant. The boundary conditions are : – , 0

2

d
y u  and , 0

2

d
y u    

From (iii), we have; 
21

0 .
2 4 2

dp d d
A B

dx
  


 

and   
21

0 . –
2 4 2

dp d d
A B

dx
 


 

which gives  A = 0 and 21
– .

8

dp
B d

dx



 

Substituting the values of the constants A and B in (iii),  

  3 21 1
–

2 8

dp dp
u y d

dx dx


 
 

or  
2

2

2

1 4
– 1–

8

dp y
u d

dx d

 
     

      or  
2

2

4
1–m

y
u u

d

 
   

 

 

where   21
–

8
m

dp
u d

dx



 

is the maximum velocity in the flow occurring at y = 0.  

The velocity distribution is parabolic in the interval between the two plates.  

 

Case III. Generalised plane Couette flow.  

In this case the pressure gradient 
dp

dx
 is constant and one plate is at rest, the other plate is in motion. 

The boundary conditions are given by  

– , 0
2

d
y u   and ,

2

d
y u U    

Then from (iii), we have; 
21

0 . –
2 4 2

dp d d
A B

dx
 


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21

.
2 4 2

dp d d
U A B

dx
  


 

Which gives  
U

A
d

   and  
21

– .
2 2 4

d dp d
B A

dx



 

or    
2

–
2 8

U d dp
B

dx



 

Substituting the values of the constants A and B in (iii), we have  

2
21

–
2 2 8

dp U U d dp
u y y

dx d dx
  

 
     …..(iv) 

Total flux across a plane perpendicular to X is 

2
/2 /2 2

– /2 – /2

1
– .

2 2 8

d d

d d

dp U U d dp
Udy y y dy

dx d dx

  
  

   
   

= 

6/2
3 2 2

–6/2

1
. . –

2 3 2 2 8

dp y U y U d dp
y y

dx d dx

 
  

   

 

= 
3 21

. –
2 12 2 8

dp d Ud d dp
d

dx dx


 
 

3
/2

– /2
– .

2 12

d

d

Ud d dp
Udy

dx


      ….(v) 

Differentiating (iv) with regard to y, we have  

1du dp U
y

dy dx d
 


 

 At  
2

d
y    

 
2

du U d dp

dy d dx
 


 

Thus drag on the boundaries  

  
2

du d
y

dy

 
    
  2

U d dp

d dx

 
  
 

 per unit area.  
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Laminar flow between concentric rotation cylinders. Couette flow.  

Consider the two-dimensional steady flow of an incompressible fluid between two concentric rotating 

cylinders. 

 Let a and b be the radii of the inner and outer cylinder respectively, and 1 and 2 be their angular 

velocities.  

Here the components of velocity in cylindrical coordinates are given by  

 0, , 0u v v r w   and  p p r   …..(i) 

Substituting these values in equation of motion, we have  

 

2 1
– –

v p

r r




 
      .….(ii)  

and  
2

2 2

1
– 0

d v v v

r rdr r


 


    …..(iii) 

and  0
p

z





      ……(iv) 

Let any point P the angular velocity be  then v r  

or  
dv d

r
dr dr


  

and  
2 2

2 2

d y d d d
r

dr drdr dr

  
  

2

2
2

d dw
r

drdr


   

From (iii), we have 

  
2

2
2 – 0

d d d
r

dr dr r rdr

    
     

or 
2

2
3 0

d d
r

drdr

 
   or 

2 2/ 3
–

/

d dr

d dr r





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By integrating, we have; log –3log log
d

r A
dr

 
  

 
 

or 
3

d A

dr r


   or 

2
–

2

A
B

r
  …..(v) 

The boundary conditions are  

1

2

I ,

II ,

r a

r b

 

 
 

or  1 2
–

2

A
B

a
    and  2 2

–
2

A
B

b
   

Solving the above equations, we have 

 A = 
 2 2

1 2

2 2

2a b

a b

 


 and B = 

2 2
2 1

2 2

b a

b a

 


 

Substituting the values of the constants A and B in (v), we have  

 
 2 22 2

2 12 1
2 2 2 2 2

a bb a 1
.

b a b a r

  



 

 
 

If the inner cylinder is at rest, then 1 0  . 

So  
P

4
   Or  

2 2 2
2
2 2 2

b r a
.

r b a








 

There will be the tangential stress Pre only in the fluid 

i.e,   Pre = 
dv v

dr r

 

 
 

 

   Pre = 
d
r
dr


  
 

  
 

 

   Pre = 
d
r
dr


  

Its moment about the axis is given by 

   2 r(Pre).r 2 3d d
2 r .pr 2 r

dr dr

 
   3

3

A
2 r .

r
 =  

2 2

1 22 2

a b
4 ,

a b
  


  

                  = 
2 2

22 2

a b
4 ,

b a
 


     1 0  as the inner cylinder is at rest. 
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Hagen-Poiseuille flow in a circular pipe. 

Here we shall consider the steady laminar flow through a long straight pipe of circular cross section. 

We know that the shearing force on the surface of any cylindrical shape of fluid must be balanced by 

the difference of pressure between the ends. 

 Let Z-axis be chosen along the axis of the pipe. 

 

Consider qz be the component of velocity parallel to the axis of pipe when is a function of r only.  

The velocity component in the tangential and radial directions are zero. 

Equation of continuity in cylindrical coordinates 

zq 0
z





 …(i) that qz is independent of z or a function of r only. 

Also the equations of motion in cylindrical coordinates are given by 

      
2

sz

2

dqd q 1 dp

r dr dzdr

 

  
 

   …(ii) 

and     
p 1 p

0; 0
r r 

 
 

 
    …(iii) 

Since the velocity qz is a function of r only and the pressure p is independent of r, therefore the 

pressure gradient 
dp

dz
must be a constant and let it be equal to 2 1p p

l


, from relation (ii), we have  

     
2

z z 2 1
2

d q dq p p1

r dr ldr 


   

Or     z 1 2dq p p1 d
r

r dr dr l

 
  

 
 

Or     
2z 1 2dq p p

r r A
dr 2 l


   

Or     
2z 1 2dq p p A
r

dr 2 l r


   

Or     qz = – 1 2p p

4 l


r2 + A log r + B   …(iv) 

The velocity is finite at r = 0, so A must be zero. The boundary condition is  

     r = a, qz = 0. 
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Then (iv) reduces to  

  0 = – 
21 2p p
a B

4 l


       Or     B = 

21 1p p
a

4 l


  

     

Then     2 21 z
z

p p
q a r

4 l


   

Since the maximum velocity occurs on the axis, then  

  21 2
z max

p p
q a

4 l


 (as r = 0 on the axis of the pipe) 

The volume V0 of the fluid flowing through the pipe per unit time is  

 V0 =   2
z max

1
q . a

2
   Or 2 21 2

0

p p1
V a . a

2 4 l




 
  

 
 

Or     
4

1 z
0

p pa
V .

8 l






  

This relation was obtained experimentally by Hagen and afterwards independently by Poiseuille. With 

the help of this relation, the coefficient of viscosity of the fluid can be determined. 

Again total flux across any section 

    = 
a

z0
q 2 rdr =  

a
2 21 2

0

p p
2 a r .r dr

4 l







41 2p p
. a

8 l





  

and the drag on the cylinder is  

    =  1 2

r a

p p
2 al 2r

4 l
 




 
 

 
=  2

1 2a p p   

 

Steady flow between co-axial circular pipes. 

Let the flow take place between two co-axial cylinders of radii a and b (b > a). Consider the inner 

boundary have a velocity V while the outer is at rest.  

 

The boundary conditions are r = a, qz = V   and r = b, qz = 0 

Then as we have from previous discussion, we have 

     
21 2p p

V a A
4 l


  log a + B 
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and     
21 2p p

0 b A lob b B
4 l


    

Substituting the values of the constants A and B in relation (iv) § 9.91. 

   qz = V 1 2

r
log

p pb

a 4 l
log

b



 
   


 
 
 

 

   

2 2

2

r r
b log a log

a h
r

b
log

a

    
    

    
 

  
    

   

The flux relative to the fixed boundary is given by 

    
b

za
q .2 rdr  

= 
   

22 2 2 2

2 4 41 2

1
b a b ap p2V a . b a

b b8 l
log log

a a






   
      

      
      
            

 

Steady flow in tubes of cross-section other than circular.  

Consider the axis of z along the axis of the tube. Let the component of velocity w is a function of x and 

y but not of z, and that u = 0 = v. 

The equation to continuity reduced to  

      
w

0
z





,     …(i) 

 that w is independent of z i.e., a function of x and y only. There are no external forces and the inertia 

terms vanish in steady motion, then the equations of motion reduce to, 

   
p

0
x





  and   

p
0

y





  …(ii) 

and  
2 2

2 2

w w p

zx y

   

  
  

    …(iii) 

Since w is independent of z, p is independent of x and y then in steady flow along a tube the pressure 

gradient 
p

z




must be a constant, let it be equal to (–P). 
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then    
2 2

2 2

w w P

x y 

 
 

 
    …(iv) 

with a boundary condition w = 0 on the surface of the tube. 

Consider w =  –
P

4
(x2 + y2), then  has to satisfy the equation 

     
2 2

2 2
0

x y

  
 

 
 

with the boundary condition 
P

4



 (x2 + y2) on the surface of the tube. 

Thus to solve the problem for a particular boundary we consider 

w =   – 
1 1 d

as .
y r r dr

  



(x2 + y2) + B    …(v) 

where B is an arbitrary constant,  is a suitable solution of the two dimensional Laplace’s equation. 

The constant B can be determined by applying the condition w = 0 on the surface of the tube. 

(a)  Elliptic section. 

  Let  
2 2

2 2

x y
1

a b
   

  Consider w = A (x2 – y2) + B – 
P

4
(x2 + y2)   …(i) 

 Since on the surface of the elliptic section 

     
2 2

2 2

x y
1

a b
          …(ii) 

On the boundary w = 0 

 then  
2 2P P

A x A y B
4 4 

   
      

   
    …(iii) 

This required that, from (ii) and (iii), we have 

  
2 2P P
a A b A B

4 4 

   
      

   
 

Or    
2 2

2 2

P a b
A .

4 a b





      and   

2 2

2 2

P a b
B .

2 a b





 

Substituting the values of A and B in (i), we have 

     
2 2 2 2

2 2 2 2

2 2 2 2

P a b P a b P
w . x y x y

4 2 4a b a b  


    

 
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Or   
2 2 2 2

2 2

2 2 2 2

P a b 1 a b
w . 1 x y

2 2a b a b

 
  

 
  

             
2 2

2 2

2 2

1 a b
x b

2 a b


  


 

Or  w = 
2 2 2 2

2 2 2 2

P a b x y
. 1

2 a b a b

 
  

  
 

Flux of the fluid over the area of the ellipse is given by 

 w dx dy  = 
2 2 2 2

2 2 2 2

P a b x y
. 1 dx dy

2 a b a b

 
  

  
  

 = 
2 2

2

2 2 2

P a b 1
. dx dy x dx dy

2 a b a




 
 

2

2

1
y dx dy

b


 


  

 
2 2 2 2

2 2 2 2

P a b 1 a 1 b
ab . ab . ab

2 4 4a b a b
  



 
   

  
 

  
2 2

2 2

P a b 1
. ab

2 2a b






= 

3 3

2 2

P a b
.

4 a b



 
 

(b)  Equilateral triangle.  

Consider 

   w = A (x3 + 3xy2) + B – 
P

4
 2 2x y    …(i) 

Since w = 0 at all points of the boundary, then from (i), we have 

   A(x2 – 3xy2) + B – 
P

4
(x2 + y2) = 0   …(ii) 

If   x = a be a part of the boundary, then  

  A (a3 – 3ay2) + B – 
P

4
(a2 + y2) = 0 

Or  Aa3 + B – 
2Pa

0
4

  and  –3aA – 
P

4
= 0 

Thus  A = –
P

12a
 and  B = 

2Pa

3
 

Substituting the values of A and B in (ii), we have 

     
2

3 2 2 2P Pa P
x 3xy x y 0

12a 3 4  
       

Or  
3 2 2 2 2x 3xy 3ax 3ay 4a 0      
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Or  (x – a) (x + 2a – 3 y ) (x + 2a + 3 y ) = 0. 

Therefore the boundary consists of 

 x = a, x + 2a – 3 y  = 0   and  x + 2a + 3 y  = 0 

or  x = a, y = 
1 2
x a

3 3
   and y = 

1 2a
x

3 3
    …(iii) 

Which forms an equilateral triangle  

So  w = –  3 2 3 3P
x 3xy 3ay 4a

12a
    

Flux of the fluid over the cross-section is 

  wdx dy  

 

=  3 2 2 2 3P
x 3xy 3ax 3ay 4a

12a
     * dxdy 

 

*(i) 
a

3 3

2a

x 2a

3
x dx dy x ( y )

x 2a
.dx

3









    

5
a

3

2a

2 9a
x x 2a dx

3 5 3
    

(ii)   2 3

x 2a

3
3 xy dx dy x y

x 2a
.dx

3







    

5
a 3

2a

2 2la
x x 2a dx

3 3 5 3
    

(iii)  2 23a x y dxdy = 3a (sum of the moments of Inertia)= 3a (
1

3
. 3a. a 3 ) 

     
2 2 2 2

2 53a 3a a a
a 9 3 a

4 4 4 4

 
     

 
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(iv) 3 3 54a dx dy 4a .3a.a 3 12 3a 
5 5 5 5P 9a 27a 27a 36a

12a 5 3 5 3 3 3

 
      

 
 

  
427 Pa

.
20 3 

  

Average flow = 
2

27

Flux 3 Pa10 3
1Area 20.3a.2a 3
2


   

Steady motion due to a slowly rotating sphere. 

Consider the component of velocity are  

   u = – y ,  v = x and   = 0 

where  is the angular velocity and is a function of r (r2 = x2 + y2 + z2) only. 

The equations of motion are; (neglecting the squares of velocities) 

Or    2p
0 u

x



  


     …(i) 

Or    0 = 2p
0 v

x



  


    …(ii) 

Or    
p

0
z





       …(iii) 

Since  
u

x




= 

3 2

2 2

u u u
y or y
x x x

  
  

  
 

Or   
2 2

2 2

u u
y or y 2

y y yx y

  


    
    

   
 

and   
2 2

2 2

u
y

z z

 
 

 
 

Thus  
2 2 2
u y ,

y y




 
     

 
 

Or  
2

2

2

d 2 d 2 d
u y .

r dr r drdr

   
    

 
 ;  

1 1 d
as .
y r r dr

  



 

Or  
2

2

p d 4 d
0 y

x 4 drdr

 


 
    

  
 

Now the equation (i), (ii) and (iii) reduce to  

  
p

0
z





; 
2

2

p d 4 d
0 x

y r drdr

 


 
    

  
; 

p
0

z




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Viscosity 

 These are satisfied by p = constant. 

 the 
2

3

4
0

d d

dr r dr

 
   

 By integrating, we have 

6 d
r A

dr


   Or 

4

d A

dr r


   Or 

3

B
C

r
  ...(iv); (where B and C are arbitrary constant). 

 Let the motion is produced by a solid sphere of radius a rotating with angular velocity  and the 

liquid extends to infinity, we have 

  C = 0, B = a3  

 So 
3

3

a

r
   

 If there is an outer fixed concentric sphere of radius b, then the boundary conditions are 

 I r = a,  =  

 II r = b,  = 0 

 From (iv), we have 

 
3

B
C

a
   And 

2
0

B
C

b
   

 or 
3 3

3 3

a b
B

b a
 


 or 

3

3

a
C ,

b a
  


b 

 Substituting the values of B and C in (iv), we have 

 
3 3 3

3 3 3 3 3

1a b a

b a r b a
   

 
 i.e. 

3 3 3

8 3 3

a b r

r b a

 
 


 

 Ex. 4. One surface (nearly plane) is fixed and another near surface (plane) rotates with angular 

velocity  about an axis perpendicular to its plane and there is a film of viscous fluid between 

them. Prove that the pressure p in the film satisfies the equation 

  
2 2 3 3

2 2 2 2

1 1 1
6

p p p h p h p h
h ,

r r r r r r r

         
      

        
 

 where (r, ) are polar coordinates in the plane of the film, the origin being in the axis of rotation, 

and h is the thickness of the film. 

 Consider any point (x, y) on the upper surface 

 then U = – y, V = x 

 The total flux across a plane perpendicular to X-axis is  

  
3

0

1

2 12

h h p
udz hU

x


 

         {Ref. equation (v) Case III 

  
31

2 12

h p
h y

rl x


   


     ...(ii) 

 Similarly the total flux across a plane perpendicular to Y-axis, 

  
3

0

1

2 12

h h p
vdz h x

y


  

      ...(ii) 
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 Now from the equation of continuity, we have 

  
3 31 1

0
2 12 2 12

h p h p
h y h x

x x y y

      
         

        
 

 or 
3 2 2 3 3

2 2

1

12 12

h p p h p h p

x y x x y y

        
       

         
 

  
1

2

h h
x y

y x

  
   

  
     ...(iii) 

 Since (r, ) are the polar coordinates in the plane of the film, 

 

2 2 2 2

2 2 2 2 2

then

and

1 1
also

sin
cos

x r r

cos
sin

y r r

x y r r r r

   
  

   
    

   
   

    
    

     

      (iv) 

 Substituting the results of (iv) in (iii), we have 

  
3 2 2 3 3

2 2 2

1 1 1

12 12

h h sin h
p cos

r r r r r r

        
       

         
 

   
3 3p sin p h cos h p cos p

cos sin sin
r r r r r r

             
           
         

 

  
1

2

h cos h h sin h
r cos sin r sin cos

r r r r

         
            

       
 

 or 
2 2 3 3

3

2 2 2 2

1 1 1
6

h p h p h
h p

r r r r r r r

        
         

        
 

 Viscosity 

 Ex. 5. A liquid occupying the space between two co-axial circular cylinders is acted upon by a 

force 
c

r
 per unit mass, where r is the distance from the axis, the lines of force being circles round 

the axis. Prove that in the steady motion the velocity at any point is given by the 

  
2 2 2

2 22 x

C b r a b r
log r log

v r b a a a

   
  

   
 

 where v is the coefficient of kinematric viscosity. 

 Consider the axis of the cylinder be the z-axis. Here 

  qr = 0 = qz 

 and q is independent of  and z i.e. it is a function of r only. 

 So q = r  {qz = 0 considering the cylinders to be sufficiently long. 

 where  is the angular velocity of the liquid at the point (r, , z). 

 thus the equation of motion for viscous fluid reduces to 
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  2

2
0

q C
v q .

r r




 
    
 

 

 or  
2

2

1 C
r

r r r r vr

   
     

  
 

 or  
2

2

1 C
r

r r r r vr

   
     

  
 

 or 
2

2
3

d d C
r

dr dr vr

 
    

 Multiplying both the sides with r2 and integrating, we have 

  
2

2 2

2
3

d d C
r r r

dr dr v

 
    

 or 
2

3

2

d Cr
r A

dr v


   

 or 
22

d C A

dr vr r


    

 or 
22 2

C A
log lr B

v r
        ...(i) 

 where A and B are arbitrary constant. 

 The boundary conditions are, 

  I.  = 0, r = a 

 II.  = 0, r = b. 

 Now the relation (i) reduces to with the help of condition I and II, 

  
2

0
2 2

C A
log a B

v a
         ...(ii) 

 or 
2

0
2 2

C A
log b B

v b
    .    ...(iii) 

 By subtracting, we have  

    2 2

1 1
0

2 2

C A
log b log a

v a b

 
    

 
 

 or 
 

2 2

2 2

Ca b b
A log

av b a

 
  

  
.     ...(iv) 

 Form (i) and (ii), by subtracting, we have 

    2 2

1 1

2 2

C A
log r log a

v r a

 
     

 
 

 or  
 

2 2 2 2

2 22 22 2

C Ca b a r b
log r log a log

v r a av b a

  
      

  
{from (iv) 

 or 
2 2 2

2 2 22 2

C r C r a b b
log log .

v a v b a r a

   
       

   
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 Thus q = rw 

  
2 2 2

2 22 2

Cr r C r a b b
log log

v a v b a r a

   
       

   
 

  
2 2 2

2 22

C r a b b r
log log

v b a r a a

     
       

     
 Proved. 

 Ex. 6. Incompressible viscous liquid is moving steadily under pressure between planes y = 0, y = 

h. The plane y = 0 has a constant velocity U in the direction of the axis x, and the plane y = h is 

fixed. The planes are porous, and the liquid is sucked in uniformly over one and ejected uniformly 

over the other. Show that a possible solution is given by  

  
   

1

h / a

h / a

Ue Ah U Ah v
u Ay,v

e a

  
  


 

 where v is the kinematic coefficient of viscosity. Determine the meaning of the constants A and 

a. 

 Since the planes y = 0 and y = h are taken infinitely large, the velocity components (u, v) at any 

point (x, y) will be independent from x. Thus the equation of continuity reduces to 

  0
v

y





       ...(i) 

 or v = constant = 
v

a
  

 The equations of motion are 

  
2

2

1du p u
v v

dy x y

 
   

  
     ...(ii) 

 and 
1

0
p

y


  

 
      ...(iii) 

 The boundary conditions are, 

 I. y = 0, u = U 

 II. y = h, u = 0. 

 Substituting the given value of u and the value of 
v

v
a

  in the equations of motion (ii), we have 

  
 1 1

1h/ a

U Ahv p
A

a a e x

   
    

   
 

      
 

2

1

1

v / a

h / a

U Ah e
v

a e

  
  

  
 ...(iv) 

 i.e. 
1Av p

a x


 

 
  i.e. 

p A
v

x a


  


 i.e. 

p A

x a

 
 


 

 
A

p x B
a


    

 which also satisfies the condition (iii), 0
p

y





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 Hence the given velocity components satisfy the equation of motion, and forms the possible 

solutions. 

 Consider the mass of liquid sucked per unit area per unit time at y = 0 be m, then m = v 

  
v

m
a a


   {as  = v]    or a

m


   

 Substituting the value of a in (iv), we have 

 
1 a p

A
v x


  

 
 i.e. 

p
A

mpv x

 
 


i.e. 

1 p
A

m x


  


 

 Ex. 7. Viscous liquid flowing steadily under pressure through an infinitely long rectangular tube 

whose axis is parallel to the axis of z. The sides x = 0 and x = a are smooth and the sides y = 0, y 

= a do not permit of slipping of liquid in contact with them. The pressure gradient Maintaining 

the motion is suddenly annulled. Show that the total flux across any section is 
2

10

Qa

v
where Q is 

the flux per unit time across a section in the initial steady motion, given that 

 

6

6
0

1

9602 1n

 
 


  

 Since the rectangular tube is infinitely long and the sides x = 0 and x = a are smooth. The velocity 
component w of an element at (x y z) parallel to Z-axis is a function of y only, the other two 

components u and v are zero. 

 

 The equations of motion reduce to 

  
2

2

w p

y z

 
 
 

      ...(i) 

 and 0
p p

x y

 
  

 
      ...(ii) 

 Integrating (i), we have 

  
w p

y A
y z

 
  
 

 

 or 21

2

p
w y Ay B

z


   


     ...(iii) 

 The boundary conditions are 

 I. w = 0, y = 0 and II. w = 0, y = a 

 which gives from (iii), 

  B = 0 and 
1

2

p
A a

z


 


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 or  21

2

p
w y ay

z


   


     ...(iv) 

 Thus flux  
0

a

Q w ady   

 or  2

02

aa p
Q y ay dy

z


 

   ; 
3 2

2 3 2

a p a a
Q

z

 
  

   
; 

4

12

a p
Q

z


 

 
 

 or 
4

12p Q

z a

 
 


      ...(v) 

 So  2

4

1 12

2

Q
w y ay

a


      Or  4

6Q
w y a y

a
  ....(vi) 

 When the pressure gradient is suddenly annihilated, the equation of motion becomes 

  
2

2

w w
v

t y

 
  

 
  {Here u = 0 = v   ...(vii) 

 Consider   
2vk tw f y e  be the solution of (vii), then  

  
 

 
2

2

2

f y
k f y

y


 


 

 which shows that f (y) is of the from cos ky or sin ky 

 or 
2vk tw Ak e    

cos ky

sin ky





   ...(viii) 

 At t = 0, we have;  4

6Q
w y a y .

a
   

 Expressing y (a – y) in the form of Fourier Series 0 < y < a, 

 we have  
 

 

2

23
1

2 1
8

2 1

y
sin n

a ay a y
n








 
 
    ...(ix) 

 Consider  2 1k
a


    

 Thus w for any time t is given by; 
 

 

2
2 12

24 2
1

2 1
6 8

2 1

n
vt

a

n

y
sin n

Q a aw e
a n

    
 






  
 
  

 Thus the total flux is 

 
0 0

a

t v
a dy w.dt



 
  

 
 

2
2 1

33 2 0 0
1

48 1
2 1

2 1

dt

n
vt a

a

n

Q y
a e sin n dy

a an

    
 



 
  

  
    
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   

2

3 23 2

48 2 1 1 2

2 1 2 1 2 1

Q a a

a v n n nv
aa

 
 

   
            

      

  

 
 

2

63 2

48 2 1

2 1

Q a a

a v n
  
   


 

2

66

96 1

2 1

Qa

v n


 


2 6

6

96

960

Qa

v


 



2

10

Qa
.

v
  

PREVIOUS YEARS QUESTIONS  

CHAPTER 6. NAVIER STOKES EQUATION 

Q1. Find Navier-Stokes equation for a steady laminar flow of a viscous incompressible fluid 

between two infinite parallel plates. [8c UPSC CSE 2014] 

Q2. For a steady Poiseuille flow through a tube of uniform circular cross-section, show that  

   2 21

4

p
w R a R



 
  

 
. [7a UPSC CSE 2011] 

Note: The beauty of systematic learning is- You’ll find solutions of almost every PYQ in above 

examples or questions attached with detailed answers. So to avoid repetition in this book, we have not 

put those solutions again as answers to PYQs. 
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