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Ch. -1: Moment of Inertia 
 

Some basic terms and their meanings. 

Rigid Body: A rigid body is the system of particles such that the mutual distance of every pair of 

specified particles in it is invariable and the body does not expand or contract or change its shape 

in any way. i.e. the rigid body has invariable size and shape and the distance between any two 

particles remains always same. 

Moment of inertia of a particle: Consider a particle of mass m and a line a line AB, then the 

moment of inertia of the particle of mass m about the line AB is defined as I = mr2, where r is the 

perpendicular distance of the particle from the line. 

 

Moment of inertia of a system of particles:  

 Let there be a number of particles m1, m2, m3, …..mp, and let r1, r2, r3 …….rp be the perp. 

distances of these masses from the given line AB, then the moment of inertia of the system is 

defined  as  

 
2 2 2 2

1 1 2 2 3 3 p pI m r m r m r .......m r     

 
n

2
p p

p 1

m r


  

 

Moment of inertia of a continuous distribution of mass: Consider a rigid body and let dm be mass 

of the elementary portion of the body which is at a perpendicular distance r from the given line 

AB, then the moment of inertia of the whole body is defined as 
2I r dm,   

 where the integration is taken over the whole body. 
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Radius of Gyration: The moment of inertia of a system of particles about the line AB is  

 
n

2
p p

p 1

m r


  

 Let the total mass of the system of particles be M, then  

 
n

p

p 1

M m


 and further define a quantity K such that 

 

n
2

p p

p 12 2

n

p

p 1

m r
I

I MK K
M

m





 
    

 





 

 Then K is called the radius of gyration of the system about AB. In the case of continuous mass 

distribution, we similarly have 

 

2

2
r dmI

K
M dm

 
     

  
 




 

 Where the integration is taken for the whole body. 

Product of inertia:  If (x1, y1), (x2, y2), (x3, y3), ………(xp, yp), be the respective coordinates of the 

particles of masses m1, m2, m3, …….mp , referred to two mutually perpendicular lines OX and 

OY, then the product of inertia of the system of particles with respect to the lines OX and OY, is 

defined as, 

 
n

1 1 1 2 2 2 3 3 3 p p p p p p

p 1

P m x y m x y m x y ..... m x y m x y


      

 If mutually perpendicular axes OX, OY, OZ be taken in space and  

   1 1 1 2 2 2x ,y ,z , x ,y ,z ,.............   p p px , y ,z be the respective co-ordinates of the particles of 

masses m1, m2, …….mp, then we have, product of inertia of the system with respect to the axes 

OX and OY 
n

p p p

p 1

m x y


  

 Product of inertia of the system with respect to the axes OY and OZ 
n

p p p

p 1

m y z


  
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 Product of inertia of the system with respect to the axes OZ and OX = 
n

p p p

p 1

m x z


  

Moment of inertia in some simple cases. 

(a) (i) Moment of inertia of a rod of length 2a and mass M about a line through one of its extremities 

perp. To its length. 

  Consider an element RS of breadth x of the rod AB at distance x from the line AN, where 

AN is  perp. To AB, M.I. of the element RS about AN 2M M
x x where x mass

2a 2a

 
    

 
of 

the element. 

    M.I. of the whole rod 

  =  

2a2a 3 2
2

0 0

M M x 4a
x dx M

2a 2a 3 3

 
   

  
   

 

 (ii) Moment of inertia of a rod of length 2a and of mass M about a line through its centre 

perpendicular  to its length. 

  Consider an element RS of breadth x at distance x from the centre C. 

   M.I. of the element RS about NCM is=  2M
x x

2a
    

   M.I. of the whole rod about 

aa 3 2
2

a a

M M x a
MN x dx M

2a 2a 3 3
 

 
    

  
  

 

(b) Rectangular Lamina. 

 (i) Moment of inertia of a rectangular lamina about a line through its centre and parallel to one 

of its  edges. 

  Consider the strip RSPQ of breadth x of the rectangular lamina ABCD 

 such that AB = 2a and AD = 2b.  
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Let M be the mass of the rectangular lamina. Then mass per unit area = 
M

(say).
4ab

   

 Mass of the strip RSPQ =  
M

2b x 2b x
4ab

     

  Now using [A case (ii)], we get M.I. of the strip about 

  
2 2M b M b

OX 2b x x
4ab 3 2a 3

 
      

 

 

   M.I. of the rectangular lamina about OX
a 2

2

a

M b 1
dx Mb

2a 3 3


    

    

  Similarly M.I. of the rectangular lamina – about OY is 21
Ma

3
 

 (ii) Moment of inertial of a rectangular lamina about a line through its centre and perp. To its 

plane. 

  Consider an elementary area xy of the lamina at a distance 
2 2x y from O. Mass of the 

 elementary area 
M

x y
4ab

   . 

  M.I. of this elementary area about the line ON through  O and perpendicular to the plane of 

the  rectangular lamina  2 2M
x y x y

4ab
     

   M.I. of the rectangular lamina about ON is  

 

      
a b a b

2 2 2 2

x a y b x 0 y 0

M M
x y dx dy 4 x y dx dy

4ab 4ab
   

        

   
a

3 3 2 2

0

M 1 1 M
bx b x a b

ab 3 3 3

 
    

 
 

 (iii) Rectangular Parallelopiped: Let O be the centre and 2a, 2b, 2c the lengths of the edges of 

the  parallelopiped and further let OX, OY, OZ, be the axes of reference, parallel to the edges of 
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lengths  2a, 2b and 2c respectively. Divide the parallelopiped into thin rectangular slices perp. 

to OX, ABCD  being one such slice at a distance x. Let the width of the slice be x. 

    

  .M.I. of the rectangular slice about OX  

  = mass 
2 2 2 2 2 2b c b c b c

2b 2c x 4bc x
3 3 3

  
         

    [mass of the slice ABCD = 2b 2c x]  

   M.I. of the parallelopiped about OX  

  
a2 2 2 2

a

b c b c
4bc dx 8abc

3 3


 
     

  
2 2b c

M
3


  [ mass of the parallelopiped = 2a 2b.2c = 8abc ] 

  Similarly, M.I. of the parallelopiped about OY 
2 2c a

M
3


  and M.I. of the parallelopiped 

about  

  OZ 
2 2a b

M
3


  

  Note: M.I. of the cube of side 2a about any of its axis is 22
Ma .

3
 

(c)  Moment of inertia of a uniform triangular lamina about one side. Let us divide the lamina ABC 

by strips parallel to BC. Let PQ be one of such strips of breadth x at distance x from A and let p 

be the length of perpendicular AN. 
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 Now 
PQ x

i.e.
a p


PQ xa

.
a p

  If M is the mass of the triangular lamina, then mass per unit 

 Area =
M

(say)
1

a p
2

 
 
   
  

    

. 

  Mass of the strip = 
2

2

M 2M
PQ x x x

1 pap
2

    

  M.I. of the strip about BC =  
2

2

2M
x x p x

p
   

  M.I. of the triangle about BC  
p

2 2

2
0

2M 1
p x x dx Mp

6p
    

(D) Elliptic disc: Moment of inertia of an elliptic disc about its major axis. 

 Let PRSQ be an elementary strip of breadth x  at a distance x from O, where O is the centre of 

the disc. M.I. of the strip about. 

 OX =
2y

2y x ,
3

     where  is the mass per unit area.  

  M.I. of the elliptic lamina about OX 

 

 = 

a a2
3

a a

y 2
2y dx y dx

3 3
 


    

 = 

3
a 2 2

3

2
a

2 x
b 1 dx

3 a

 
  

 
  

 = 

1
2 2 2 2

2 2 2

x y x
1 y b 1

a b a

 
   

      
   

 

 

 Put x = a sin, so that dx = a cos d.  

  M.I. of the elliptic lamina about OX 
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 = 
/ 2 / 23 3

3 4

/ 2 0

2 b 4 b a
cos a cos d cos d

3 3

 



 
        

 = 
3 34 b a 3 ab

3 16 4

   
   

 Again mass of the elliptic lamina 

 

1
a a 2 2

2
a a

x
M 2ydx 2 b 1 dx

a 

  
     

  
   

 = 
/ 2

/ 2

M
2 b cos a cos d ab

ab





       
  

 Hence from (1), M.I. of the elliptic lamina about OX i.e. about major 

 axes = 
3

2ab M 1
Mb

4 ab 4


 


 

 Similarly M.I. of the elliptic lamina about OY i.e. about minor axes 21
Ma

4
  

 

(e) Hoop or Circumference of a circle. 

 (i) Moment of inertia of a hoop about a diameter. 

  Consider an element PQ of the hoop and let it subtend an angle   at its centre O i.e. 

POQ where POX
 

     

  By the figure it is obvious that arc PQ= a , where a is the radius of the hoop.  

Now M.I. of the element PQ about OX = (a ,) 
2 2a sin ,    

  where  is the mass per unit length of the hoop. 

  M.I. of the hoop about OX=  
2

2 2

0

a d a sin





    

   
22

2

0

Ma 1
1 cos2 d Ma

4 2



    
   

 (ii)  Moment of inertia of a hoop about a line through its centre and perp. to its plane. M.I. of the 

hoop  about a line through O and perp. to its plane 

  =    2 2M
a OP a OP a, M 2 a

2
        


 

   M.I. of the hoop about a line through O and perp. to its plane 
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   
22 2

2 2

0
0

Ma Ma
d Ma

2 2




    
   

(f)  Circular Disc. 

 (i)  Moment of inertia of a circular disc of radius a about its diameter.  

Consider an element rr of  the disc at P such that OP makes an angle   with the axis OX.  

The perp. distance of P from OX is  r sin. 

  Let  be the mass per unit area of the disc. M.I. of this element about OX = 

 
2

r r rsin   . 

     

  M.I. of this element about the diameter OX 

  =  
a 2 a 2

3 2 3 2 2

2
r 0 0 r 0 0

M
r sin d dr r sin d dr M a

a

 

   

        


     

  = 

2a 2
3

2
00

M 1 Ma
r sin 2 dr

2 42 a


 
   
 

  

 (ii)  Moment of inertia of a circular disc of radius a about a line through its centre perp to its 

plane. 

  M.I. of the element r r about a line through O and perp. To the plane of  the disc.  

  =    
3

2 2

2

Mr
r r OP d dr a M

a
       


 

  M.I. of the circular disc about a line through O and perp. To the plane of the disc.  

  = 

2 a 3 2

2
0 r 0

Mr Ma
d dr

2a



 

 


   

(g) Solid Sphere. 

 If a semi-circular area is revolved about its bounding diameter then the solid so generated is called 

sphere. Now consider an element of area r r at P such that OP = r and makes an angle   with 

the diameter. 

 When this area is revolved about the diameter A 'A, it will generate a ring of cross-section r r  

and radius r sin. 
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  Mass of this elementary ring= 2πr sin.r r.  

 M.I. of the elementary ring about A 'A 

 = (2πr sin.r r.) (r sin)2  [see (e), (ii)] 

 = 2π r4(sin3)  r. 

 M.I. of the solid sphere about the diameter A 'A  

 = 

a a / 2 a
4 3 4 3

0 0 0 0

2 r sin d dr 4 r sin d dr



           

 = 

a
5 5 5

0

r 2 a 2 8 a
4 4 I

5 3 5 3 15

   
       

  

 Say 

 But mass of the sphere,  3

3

4 3M
M a ... 1

3 4 a
   


 

 = I =  5 2

3

8 3M 2
a Ma

15 34 a
  


 

(h) Hollow sphere. 

 If semicircular arc is revolved about its diameter, then the surface so formed is known as hollow 

sphere. Consider an elementary arc a.  

This arc a will generate a circular ring of radius asin when revolved about the diameter AB.  

Now mass of the elementary ring = 2a sin...  

 M.I. of the elementary ring about AB= (2a sin...).a2 sin2 

 

 = 
4 32 a sin        [see (e)…(iii)] 

  M.I. of the hollow sphere about the diameter AB 

 =  4 3 4 3 2

2
0 0

M
2 a sin d 2 a sin d M 4 a

4 a

 

           


   
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 = 

/2 /22
3 2 3 2

0 0

Ma 2
2 sin d Ma sin d Ma

2 3

 

          

(i)  Ellipsoid. Consider an elementary volume x y z in the positive octant of the ellipsoid 

2 2 2

2 2 2

x y z
1

a b c

     
            

     

. Let  be mass per unit volume then mass of the elementary volume  

 =  x y z     

 

 Distance of this element from OX =   2 2y z  

   M.I. of the ellipsoid about OX 

 =  2 28 dxdydz y z ,  the integration being taken over the positive octant of the ellipsoid and 

2 2 2

2 2 2

x y z
1

a b c

     
            

     

. Putting 
2 2 2

2 2 2

x y z
u, v, w

a b c

     
            

     

 we get,  

  

 

1 1 1 1

2 2 2 2
1 1

x au , dx au du; y bv , dy bv dv;
2 2




     

 

1 1

2 2
1

z cw ,dz cw dw
2


   

 Now, M.I. of the ellipsoid about OX 

 =  
1 1 1

2 2 2 2 28 abc b v c w u v w du dvdw
8

  
 where u + v + w  1 

 = 

1 1 1 1 1 1

2 22 2 2 2 2 2abc b u v w c u v w du dvdw
      

  
 
 

  

 = 

1 3 1 1 1 3
1 1 1 1 1 1

2 22 2 2 2 2 2abc b u v w c u v w du dvdw
      

  
 
 

  

 = 
2 2

1 1 3 1 1 3

2 2 2 2 2 2
abc b c

7 7

2 2

            
                 
              

       

  (using Dirichlet’s theorem) 
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 =  
2 2

2 2 4abc b c
abc b c

5 3 3 5

2 2

  
   

  
  
  

   

 = 
2 2b c 4

M whereM abc
5 3

  
    

 
  

(j)  Right circular cylinder. 

 Let there be a right circular cylinder of radius a and height h. 

 Consider a circular disc of thickness x at a distance x from O the centre of base.  

Mass of the disc = a2 x. , where  is mass per unit volume. 

  M.I. of the disc about the axes perp. to the plane of the disc 

 = 2 21
a x a

2
     [see f (ii)] 

 

 M.I. of the cylinder = 
h4 4

0

a a h
dx

2 2

   
 =  2 21

Ma a h
2

  
 

  

 Easy to Remember for Exam: The following table shows the moments of inertia of various rigid 

bodies considered above. In all cases it is assumed that the body has uniform density.   

Sr.No. Rigid Body Moments of inertia 

1. Uniform rod of length 2a and mass M. 21
Ma

3
 

24
Ma

3
 

(i) About an axis perp. to the rod through the centre of mass. 

(ii) About a line perp. to the rod through an end. 

2. Rectangular plate of sides 2a, 2b and mass M 
 2 2M
a b

3
  

21
Mb

3
 

(i) About an axis perp. to the plate through the centre of 

mass. 

(ii) About a line through centre parallel to the side 2a. 

3. Rectangular parallelopiped of edges 2a, 2b, 2c. About a 

line parallel to the edge 2a, through the centre  2 2M
b c

3
  

4. Circular plate of radius a and mass M. 21
Ma

4
 

21
Ma

2
 

(i) About its diameter.  

(ii) About a line perp. to the plate through the centre. 
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5. Elliptic disc of axes 2a and 2b and mass M. 21
Mb

4
 

 2 2M
a b

4
  

(i) About the axis 2a. 

(ii) About a line perp. to the disc through its centre. 

6.  Circular ring of radius a and mass M. 21
Ma

2
 

Ma2 

(i) About a diameter.  

(ii) About a line perp. to the plate through the centre. 

7. Solid sphere of radius a and mass M. About a diameter. 22
Ma

5
 

8. Hollow sphere of radius a and mass M. 
About a diameter (thickness negligible) 

22
Ma

3
 

9. Ellipsoid of axes 2a, 2b and 2c. about the axis 2a. 
 2 2M
b c

5
  

 

 Routh's Rule:  

For remembering the moment of inertia of symmetric rigid bodies. M.I. about an axis of symmetry 

 = 
Sumof  the squares of perp. semi axes

Mass
3, 4 or 5

  

 The denominator is 3, 4 or 5 according as the body is rectangular (including rod) elliptical 

(including circular) or ellipsoid (including sphere). (using Dirichlet’s theorem) 

 

Theorem of Parallel Axes 

  The Moment of Inertia and The Products of inertia about axes through the centre of gravity 

are  given, to find the moments and products of inertia about parallel axes. 

  Let OX, OY, OZ be a set of co-ordinate axes through any point O, parallel to a set of co-

ordinate  axes GX', GY', GZ' through G, the centre of gravity. Let (  x, y, z ) be the co-

ordinates of G with  regard to co-ordinate axes OX, OY, OZ. 

 

  Let the co-ordinates of any element of mass m situated at the point P with regard to axes OX, 

OY,  OZ be (x, y, z) and with regard to parallel axes through G be (x’, y’, z’)  

  x x x ', y y y', z z z'        

  M.I. of the body about OX =  2 2m y z  

  =    
2 2

m y y' z z'   
    

  =  2 2 2 2m y z 2y'y 2z' z y' z '     
   

https://mindsetmakers.in/upsc-study-material/


 

Download Books https://mindsetmakers.in/upsc-study-material/  

  =    2 2 2 2m y z m y' z' 2y my' 2z mz'     
      

  Now referred to G as origin, the co-ordinates of the centre of the gravity of the body. 

   

  = 
mx' my' mz'

0, 0, 0
m m m

  
  
  

 

  mx ' 0, my' 0, mz ' 0       

  Hence M.I. of the body about OX =    2 2 2 2m y z m y' z '     

  =  2 2y z m   M.I. about GX’ 

  =  2 2M y z + M.I. about GX’ 

  = M.I. of mass M placed at G about OX + M.I. about GX’. 

  Again product of inertia of the body about OX and OY. 

  =   m xy m x ' x y ' y     

  = m x 'y ' mx 'y mxy' mxy mx 'y ' y mx ' x my' xy m               

  = m x 'y ' Mxy = The product of inertia about (GX’ + GY’) + Product of inertia of mass M 

 placed at G about the axes OX and OY. 

 

Moment of Inertia about a line: To find the moment of inertia about any axis through the meeting 

 point of three perp. Axes, the moments and products of inertia about these three axes being 

known. 

  Proof: Let OX, OY, OZ be a set of three mutually perp. Axes. 

  Let A = M.I. about OX, 

  B = M.I. about OY, C = M.I. about OZ, 

 

  D = Product of inertia w.r.t. axes of y and z. E = Product of inertia w.r.t. axes of z and x and F 

 = Product of the inertia w.r.t. axes of x and y. Now if m’ is the mass of the element at P 

whose co- ordinates are (x, y, z), then we easily have 
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      2 2 2 2 2 2A m' y z ,B m x z ;C m' x y ; D m'yz, E m'zx             

  F m'xy  

  Let OA be a line with direction cosines (l, m, n). From P draw PM  to OA, then PM2 = OP2 

– OM2 

  = (x2 + y2 + z2) – (lx + my + nz) 

      2 2 2OP x y z ,ON lx my nz      
 

 

  =      2 2 2 2 2 2x 1 l y 1 m z 1 n 2mnyz 2ln zx 2lmxy         

  =      2 2 2 2 2 2 2 2 2x m n y l n z l m 2mnyz 2ln zx 2lmxy         

    2 2 2usingl m n 1   
 

 

  =      2 2 2 2 2 2 2 2 2l y z m x z n x y 2mnyz 2ln zx 2lmxy         

   Moment of inertia of the body about OA, 

  =      2 2 2 2 2 2 2 2 2 2m'PM l m' y z m m' x z n m' x y 2mn m'yz            

      2ln m'zx 2lm m'xy       

  I = Al2 + Bm2 + Cn2 – 2Dmn – 2Eln – 2Flm 

 

Moment of Inertia of Heterogeneous Bodies:  

 In the case of a heterogeneous body whose boundary is a surface of uniform density, the method 

of differentiation can be successfully used in finding the moment of inertia of the body, the 

method is as follows: 

 (i)  Suppose the M.I. of a homogeneous solid body of density  is known  

 (ii)  Let this M.I. be expressed as a function of single parameter  (say) i.e.  

   M.I. =  (α). 

 Then the M.I. of a shell which is considered to be made of a layer of a uniform density  

    =   '  dα.       …(1) 

 In case the density is not uniform and the variable density is given to be σ then we have,  

   M.I.=  ' d         …(2) 
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                                             D’alemberts principle  

Motion of a particle. The motion of a single particle under the action of given forces is: 

determined by the Newton’s second law of motion, which sates that the rate of change of momenutm 

in any dirction is proportionate to the applied force in the direction.  

 

From this law it is deduced that P = mf where f is the acceleration of particle m in the direction of the 

force P.  

Here mf is called the effective force and P the applied force.  

                                         If (x, y, z) be the co-ordinates of a moing particle of mass m at any time t 

referred to three rectangular axes fixed in spce anf X, Y, Z, be the components of the forces acting on 

the particle in directions parallel ot the axes of x, y, z respectively, 

 

Exam Point:  the motion is found by solving the following three simultaneous equations: 

                                          , ,mx X my Y mz Z    

 

Motion of a rigid body.  

Explanation: If the rigid body is considered as the collection of material particles. we can write the 

equation of motion of all particles according to the above law but here the external forces include, over 

and above the applied forces, the mutual actions between the particles. As regards mutual actions 

between any two particles we assume that (1).  

 

The mutual action between two particles is along the line which joins them (2). The action and reaction 

beetwen them are equal and opposite. In order to find the motion of a rigid body or bodies, D' Alembert 

gave a method by which all the necessary equations may be obtained of the body. In doing so only the 

following consequence of the laws of motion is kept in view: 

 

The internal actions and reactions of any system of rigid bodies in motion are in equilibrium amongst 

themselves. 

 

Impressed and effective forces. 

Impressed forces. The external forces acting on a rigid body are termed as impressed forces e.g. weight 

of the body.  

If the body is tied to the string, then tension in the string is the impressed force on the body. 

 

Effective forces. When a rigid body is in motion, each particle of it is acted upon by the external 

impressed forces and also by the molecular reactions of the other particles. If we assume that particle is 

separated from the rest of the body, and all these forces are removed, there is some force which would 
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make it to move in the same direction as before. This force is termed as effective force on the particle, 

it is the resultant of the impressed and molecular forces on the particle. 

 

D'Alemberts Principle. The reversed effective forces acting on each particle of the body and the 

external forces of the system are in equilibrium. 

 

Let (x,y,z) be the co-ordinates of a particle of mass m, a rigid body of at any time t.  

Let f be the resultant of its component accelerations , , ,x y z  so that the effective force on m is mf.  

Let F be the resultant of the impressed forces on m and R be the resultant of mutual actions, then mf is 

resultant of F and R. 

In case mf is reversed, the mf (reversed), F and R are in equilibrium. So for all the other particles of the 

body. Thus the reversed-effective forces (mf) acting on each particle of the body, the external forces 

(F) and the internal actions and reactions (R) of the rigid body form a system of forces in equilibrium. 

But R i.e. the internal actions and reactions of the body are itself in equilibrium i.e. R=0 Hence the 

forces F and mf ( reversed are in equilibrium 

i.e.  – (mf) + F = 0 

Hence the reversed effective forces acting at each point of the system and the impressed (external) 

forces on the system are equilibriu.  

 

Note. This principle reduces the dynamical proble to the statical one.  

 

Vector Method:  

                Consider a rigid body in motion.  

Let at any time t, r be the position vector of a particle of mass m  

and F and R be the external and internal forces respetively acting on it. 

                  

                     Now by Newton’s second law m(d2r/dt2) = F + R or F + R –m(d2r/dt2) = 0 

i.e. the three forces, namely F, R and –m(d2r/dt2) are in equlibrium.  

 

Now applying the same argument to every particle of the rigid body,  

the force F, R and 
2

2

d r
m

dt

 
  
 

are in equilibrium, where the summation extends to all particles.  

Since the internal forces acting on the rigid body form pairs of equal and opposite forces, thus their 

vector sum must be zero 

i.e. R = 0 

 The forces F and –m (d2r/dt2) are in equilibrium. This proves the D Alembert’s Principle.  

 

Angular momentum of a system of particles: 

 If r be the position vector of a particle of mass m relative to a point O, then the vector sum  

 

H = r × mv = mr × v; is called angular momentum (or moment of momentum) 

 of the system about O. 

 

General equation of motion:  

To deduce the general equation of motion of rigid body form D Alembert’s Principle,  
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                   Cartesian method. Let (x, y, z) be the coordinate of a particle of mass m at any time r 

referred to a set of rectangular axes fixed in space. Let X, Y, Z represent the components, parallel to the 

axes of the external force acting of it.  

 

By D Alembert’s Principle of the forces  

, ,X mx Y my Z mz    

Together with similar forces acting on each particle of the body will be in equilibrium.  

Hence as in statics the six conditions of equilibrium are 

 ( ) 0, ( ) 0, ( ) 0.X mx Y my Z mz          

 [ ( ) ( )] 0y Z mz z Y my      

 [ ( ) ( )] 0z X mx x Z mz      

and  [ ( ) ( )] 0x Y my y X mx      

Where summations are to be taken over all the particle of the body.  

These equations give 

 , ,mx X my Y mz Z          

 ( ) ( )m yz zy yZ zY      

 ( ) ( )m yx xz zX xZ      

and  ( ) ( )m xy yx xY yX      

These are the six equations of motion of any rigid body: Exam Point 

                                 The first three equations can be written as  

                              , . , .
d d d

mx X my Y mz Z
dt dt dt
       

                                  and the other three equations are written as 

                            ( ) ( )
d

m yz zy yZ zY
dt
     

                          ( ) ( )
d

m yx xz zX xZ
dt
      

                                 ( ) ( )
d

m xy yx xY yX
dt
     

Vector Method: 

At time t let r be the position vector of a particle mass m and F be the external force acting on it, then 

by DAlembert’s Principle 

 

2 2

2 2
0 or 

d r d r
m F m F

dt dt

 
        
 

    …(1) 

Taking cross product by r, we get 
2

2

d
m

dt
    

r
r r F       …(2) 

Equations (1) and (2) are in general, vector equations of motion of a rigid body. 

 

Again    r x i y j z k    …(3) and F Xi Yj Zk     …(4) 

 where X, Y, Z are the components of F. 
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From (3)        2 2 2 2 2 2 2 2/ / / /d r dt d x dt i d y dt j d v dt k      …(5) 

 

Putting for r, F and  2 2/d dtr  from (3), (4) and (5) respectively in (1) and (2), we get 

     2 2 2 2 2 2/ / / ( ) m d x dt i d y dt j d z dt k Xi Yj Zk       
 

 

and      2 2 2 2 2 2( ) / /  /m xi yj zk d x dr i d y dt j d z dr k      
 

 

[( ) ( )]xi yj zk Xi Yj Zk        

Equating the coefficients of i, j, k, we get the six conditions of equilibrium as obtained earlier. 

 

Linear Momentum: 

 The linear momentum in a given direction is equal to the product of the whole mass of the body and 

the resolved part of the velocity of its centre of gravity in that direction. 

Let ( , , )x y z be the co-ordinates of the C.G. of the system and M the whole mass, then 

,M x mx M y my and M z mz    

Differentiating these relations, we get 

M x mx etc. Hence the result. 

 

Motion of the center of inertia: 

 To prove that the centre of ineria (C.G.) of a body moves as if the whole mass of the body were collected 

at it, and as if all the exteral forces were acting at it in directions parallel to those in which they act. 

 

Let ( , , )x y z be the co-ordinates of the C.G. of the body of mass M then 

M x mx , so that . M x mx  

But from the general equation of motion, we have mx X    

Therefore, 

 M x X …(1) 

Similarly we have, M y Y …..(2) and M z Z  …(3) 

 

The equation (1) is the equation of motion of a particle of mass M (placed at the centre of inertia) acted 

on by a force X parallel to the original directions of the forces on different particles. 

 Similarly the equations (2) and (3) can be interpreted. 

 

                         

Motion relative to centre of interia:  

The motion of a body about its center of inertia is the same as it would be if the centre of inertia were 

fired and the same forces acted on the body. 
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Let ( , , )x y z be the co-ordinates of the centre of gravity G of the body with reference to the rectangular 

axes through a fixed point, say O. 

Let  , ,x y z   be the coordinates of a particle of mass m with G (centre of inertia) 

as original axes parallel to the original axes and (x, y, z) be its coordinates with 

reference to original axes.  

Then ,x x x y y y     and z z z   

 

 Now consider the fourth equation of the general equation of motion of rigid body,  

( ) ( ).m yz zy yZ zY   Σ    …(1) 

 

If r is position vector of any particle of mass m of the system relative to a point O, the original of vectors 

then the point with position vector ( / )r mr m   is defined as the centroid of the system.  

 

Again,      ( ) ' ' ' 'yz zy y y z z z z y y        

 ' .)x x x etc   

Therefore, from (1), we get 

( ) ' 'm yz zy my z myz my z my z        ' ' ' 'mz y mz y mz y mz y    …(2) 

As G (the centre of inertia) is the origin of coordinates w. r. t. the new axis. 

'
' ' ' 0 0etc.

mx
mx my mz

m

 
        

 
 

 

Therefore ' 0 ' ',mx my mz    also m M   total mass of the body. Again , ,x y z  and their 

differential coefficients are common to all particles of the body, so we can take them outside the sigma 

sign. 

 Hence equation (2) 

 ( ) ' ' ' 'm yz zy M y z M z y m y z z y       

 Equation (1) becomes  

     ' ' ' ' { ' ' }M y z M z y m y z z y y y Z z z Y        ' ' .y Z y Z zY z Y      

 

we know that , .M z Z M y Y   

Hence ( ' ' ' ') ( ' " ).m y z z y y Z z Y      

 

Similarly, we get other two equations. 

But these equations are the same as would have been obtained had we regarded the C.G. to be a fixed 

point and same forces acted on the body.  

 

 

Note. 1. The two important properties discussed above, are called the principle of conservation of 

motion of translation and rotation and together called the principle of independence of translation and 

rotation. 

 

Note. 2. The motion of the C.G. is the same as if the whole mass collected at the point and is therefore 

independent of rotation.  

y

x

X

Y

Z

O

G

P

(x,y,z)
(x y z )  

z

(x, y, z)
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Note 3. The motion round the C.G. is the same as if that point were fixed and is therefore independent 

of the motion of that point. 

 

 

Impulsive Forces:  

When the forces acting on a body are very large and act for a very short time, 

 then their effects are measured by impulses.  

Let a particle of mass 'm' be acted upon by a force F always in the same direction,  

  the equation of motion is m (dv/dt) = F.    … (1) 

 where v is the velocity of the particle at time t.  

 

If t be the time during which the force F acts and v1,v2 be the velocities before and after the action of 

the force, then on integrating (1), we have 

  2 1

0

m v v F dt



   …….(2) 

 Now if F increases indefinitely while   decreases indefinitely, then the integral on the right hand 

side of (2) may have a definite finite limit.  

     Let this finite limit be I then equation (2) may be written as 

                  m (v2–v1) = I ……..(3) 

 

 The velocity during the time  has increased or decreased from v1 to v2. Supposing that the 

velocity have remained finite, let v be the greatest velocity during the interval. Then the space 

described is less than v  . Since v  → 0 as  → 0, hence we conclude that the particle has not 

moved during the action of the force F. It could not have time to move, but its velocity has been 

changed from v1 to v2. 

 Thus in the case of finite forces which act on a body for indefinitely short time, the change of 

place is zero and the change of velocity is the measure of these forces. A force so measured is 

called an impulse. We can define impulse as the limit of a force which is indefinitely greater but 

acts only for an indefinitely short time e.g. the below of a hammer is a force of this kind. In fact 

an impulsive force is measured by the whole momentum generated by the impulse. 

 

Note- When impulsive force acts, the finite forces acting on the body may be neglected in calculating 

the effect. 

 Let F be the impulsive force and ƒ a finite force acting simultaneously on the body.  

                 Then,   m(v1 –v2) = 
0 0

.F dt f dt P f

 

      

 But since f  → 0 as  → 0, f may be neglected in forming the equations. 

 

Note- Application of D' Alembert's principle to impulsive forces, general equation of motion. 
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Scalar Method.  

let u, v, w be the velocities parallel to co-ordinate axes before the action of impulsive forces  

and u’, v’, w’ be the velocities after the action of these forces. 

 Let X', Y', Z' be the resolved parts of the impulsive forces parallel to the axes.  

Then, from ,m x X


  

on integrating with respect to t, we get 

 '

0 0 0

dx
m X dt Xdt X

dt

  




 
 

  


   

  ' 'm u u X   .  

Similarly,  ' 'm v v Y  and  ' 'm w w Z    

Observation-Thus the change in the momentum parallel to any of the axes of the whole mass M.  

supposed collected at the centre of inertia and moving with it is equal to the impulse of the external 

forces parallel to the corresponding axis. Again we have the moment equation 

 
' '' '

( ) ? ( )m y z z y m yZ zY     

 Integrating this we have 
' '

0 0
0

m y z z y y Zdt z Ydt


                
   

 Since the interval  is so short that the body has not moved during this period, we may take x,y,z 

as constants, thus the above equation becomes 

       m y w w z v v yZ zY          

 Similarly, we have other two equations 

       m x v v y u u xY yX          

 and       m z u u x w w zX xZ          

 Hence the change in the moment of momentum about any of the axes is equal to the moment about 

that axis of the impulses of the external forces. 

 

PREVIOUS YEARS QUESTIONS 

CHAPTER 1. MOMENT OF INERTIA 

Q1. Find the moment of inertia of a right circular solid cone about one of its slant sides 

(generator) in terms of its mass M, height h and the radius of base as a.   

[6C UPSC CSE 2022] 

Q1. Prove that the moment of inertia of a triangular lamina ABC about any axis through A in 

its plane is  2 2

6

M
     
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where M is the mass of the lamina and ,   are respectively the length of perpendiculars 

from B and C on the axis. [5e UPSC CSE 2020] 

Q2. Show that the moment of inertia of an elliptic area of mass M and semi-axis a and b about 

a semi-diameter of length r is 
2 2

2

1

4

a b
M

r
. Further, prove that the moment of inertia about a 

tangent is 
25

4

M
p , where p is the perpendicular distance from the centre of the ellipse to the 

tangent. 

[5e UPSC CSE 2017] 

Q3. A uniform rectangular parallelepiped of mass M has edges of lengths 2 ,2 ,2a b c . Find the 

moment of inertia of this rectangular parallelepiped about the line through its centre parallel to 

the edge of length 2a . [5c 2017 IFoS] 

Q4. Calculate the moment of inertia of the ellipse 
2 2

2 2
1

x y

a b
   

(i) relative to the x-axis 

(ii) relative to the y-axis and  

(iii) relative to the origin. [5e 2016 IFoS] 

Q5. Find the moment of inertia of a right solid cone of mass M, height h and radius of whose 

base is a, about its axis. [8a 2016 IFoS] 

Q6. Calculate the moment of inertia of a solid uniform hemisphere 2 2 2 2 , 0x y z a z     with 

mass m about the OZ-axis. [5e UPSC CSE 2015] 

Q7. Find the moment of inertia of a uniform mass M of a square shape with each side a about 

its one of the diagonals. [7b 2015 IFoS] 

Q8. Show that the moment of inertia of a uniform rectangular mass M and sides 2a and 2b 

about a diagonal is 
 

2 2

2 2

2

3

Ma b

a b
. [6b 2014 IFoS] 

Q9. Four solid spheres A, B, C and D, each of mass m and radius a, are placed with their centres 

on the four corners of a square of side b. Calculate the moment of inertia of the system about a 

diagonal of the square. [5e UPSC CSE 2013] 

Q10. A pendulum consists of a rod of length 2a and mass m; to one end of which a spherical 

bob of radius 3a  and mass 15 m is attached. Find the moment of inertia of the pendulum: 

(i) about an axis through the other end of the rod and at right angles to the rod. 

(ii) about a parallel axis through the centre of mass of the pendulum. 

[Given: The centre of mass of the pendulum is 12a  above the centre of the sphere.] 

[8a UPSC CSE 2012] 
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Q11. Let a be the radius of the base of a right circular cone of height h and mass M. Find the 

moment of inertia of that right circular cone about a line through the vertex perpendicular to 

the axis. 

[5e UPSC CSE 2011] 

Q12. From a uniform sphere of radius a, a spherical sector of vertical angle 2  is removed. 

Find the moment of inertia of the remainder mass M about the axis of symmetry. [8a 2011 

IFoS] 

Q13. A uniform lamina is bounded by a parabolic arc of latus rectum 4a  and a double ordinate 

at a distance b from the vertex.   

If  7 4 7
3

a
b   , show that two of the principal axes at the end of a latus rectum are the 

tangent and normal there. [5e UPSC CSE 2010] 

Q14. Show that the sum of the moments of inertia of an elliptic area about any two tangents at 

right angles is always the same. [5d 2010 IFoS] 
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  Ch. -2: D’alemberts Priniple & Motion 

about a fixed axis 
 

Motion of a particle. The motion of a single particle under the action of given forces is: 

determined by the Newton’s second law of motion, which sates that the rate of change of momenutm 

in any dirction is proportionate to the applied force in the direction.  

 

From this law it is deduced that P = mf where f is the acceleration of particle m in the direction of the 

force P.  

Here mf is called the effective force and P the applied force.  

                                         If (x, y, z) be the co-ordinates of a moing particle of mass m at any time t 

referred to three rectangular axes fixed in spce anf X, Y, Z, be the components of the forces acting on 

the particle in directions parallel ot the axes of x, y, z respectively, 

 

Exam Point:  the motion is found by solving the following three simultaneous equations: 

                                          , ,mx X my Y mz Z    

 

Motion of a rigid body.  

Explanation: If the rigid body is considered as the collection of material particles. we can write the 

equation of motion of all particles according to the above law but here the external forces include, over 

and above the applied forces, the mutual actions between the particles. As regards mutual actions 

between any two particles we assume that (1).  

 

The mutual action between two particles is along the line which joins them (2). The action and reaction 

beetwen them are equal and opposite. In order to find the motion of a rigid body or bodies, D' Alembert 

gave a method by which all the necessary equations may be obtained of the body. In doing so only the 

following consequence of the laws of motion is kept in view: 

 

The internal actions and reactions of any system of rigid bodies in motion are in equilibrium amongst 

themselves. 

 

Impressed and effective forces. 

Impressed forces. The external forces acting on a rigid body are termed as impressed forces e.g. weight 

of the body.  

If the body is tied to the string, then tension in the string is the impressed force on the body. 

 

Effective forces. When a rigid body is in motion, each particle of it is acted upon by the external 

impressed forces and also by the molecular reactions of the other particles. If we assume that particle is 

separated from the rest of the body, and all these forces are removed, there is some force which would 

make it to move in the same direction as before. This force is termed as effective force on the particle, 

it is the resultant of the impressed and molecular forces on the particle. 

 

D'Alemberts Principle. The reversed effective forces acting on each particle of the body and the 

external forces of the system are in equilibrium. 
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Let (x,y,z) be the co-ordinates of a particle of mass m, a rigid body of at any time t.  

Let f be the resultant of its component accelerations , , ,x y z  so that the effective force on m is mf.  

Let F be the resultant of the impressed forces on m and R be the resultant of mutual actions, then mf is 

resultant of F and R. 

In case mf is reversed, the mf (reversed), F and R are in equilibrium. So for all the other particles of the 

body. Thus the reversed-effective forces (mf) acting on each particle of the body, the external forces 

(F) and the internal actions and reactions (R) of the rigid body form a system of forces in equilibrium. 

But R i.e. the internal actions and reactions of the body are itself in equilibrium i.e. R=0 Hence the 

forces F and mf ( reversed are in equilibrium 

i.e.  – (mf) + F = 0 

Hence the reversed effective forces acting at each point of the system and the impressed (external) 

forces on the system are equilibriu.  

 

Note. This principle reduces the dynamical proble to the statical one.  

 

Vector Method:  

                Consider a rigid body in motion.  

Let at any time t, r be the position vector of a particle of mass m  

and F and R be the external and internal forces respetively acting on it. 

                  

                     Now by Newton’s second law m(d2r/dt2) = F + R or F + R –m(d2r/dt2) = 0 

i.e. the three forces, namely F, R and –m(d2r/dt2) are in equlibrium.  

 

Now applying the same argument to every particle of the rigid body,  

the force F, R and 
2

2

d r
m

dt

 
  
 

are in equilibrium, where the summation extends to all particles.  

Since the internal forces acting on the rigid body form pairs of equal and opposite forces, thus their 

vector sum must be zero 

i.e. R = 0 

 The forces F and –m (d
2
r/dt

2
) are in equilibrium. This proves the D Alembert’s Principle.  

 

Angular momentum of a system of particles: 

 If r be the position vector of a particle of mass m relative to a point O, then the vector sum  

 

H = r × mv = mr × v; is called angular momentum (or moment of momentum) 

 of the system about O. 

 

General equation of motion:  

To deduce the general equation of motion of rigid body form D Alembert’s Principle,  

  

                   Cartesian method. Let (x, y, z) be the coordinate of a particle of mass m at any time r 

referred to a set of rectangular axes fixed in space. Let X, Y, Z represent the components, parallel to the 

axes of the external force acting of it.  

 

By D Alembert’s Principle of the forces  
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 , ,X mx Y my Z mz    

Together with similar forces acting on each particle of the body will be in equilibrium.  

Hence as in statics the six conditions of equilibrium are 

 ( ) 0, ( ) 0, ( ) 0.X mx Y my Z mz          

 [ ( ) ( )] 0y Z mz z Y my      

 [ ( ) ( )] 0z X mx x Z mz      

and  [ ( ) ( )] 0x Y my y X mx      

Where summations are to be taken over all the particle of the body.  

These equations give 

 , ,mx X my Y mz Z          

 ( ) ( )m yz zy yZ zY      

 ( ) ( )m yx xz zX xZ      

and  ( ) ( )m xy yx xY yX      

These are the six equations of motion of any rigid body: Exam Point 

                                 The first three equations can be written as  

                              , . , .
d d d

mx X my Y mz Z
dt dt dt
       

                                  and the other three equations are written as 

                            ( ) ( )
d

m yz zy yZ zY
dt
     

                          ( ) ( )
d

m yx xz zX xZ
dt
      

                                 ( ) ( )
d

m xy yx xY yX
dt
     

Vector Method: 

At time t let r be the position vector of a particle mass m and F be the external force acting on it, then 

by DAlembert’s Principle 

 

2 2

2 2
0 or 

d r d r
m F m F

dt dt

 
        
 

    …(1) 

Taking cross product by r, we get 
2

2

d
m

dt
    

r
r r F       …(2) 

Equations (1) and (2) are in general, vector equations of motion of a rigid body. 

 

Again    r x i y j z k    …(3) and F Xi Yj Zk     …(4) 

 where X, Y, Z are the components of F. 

 

From (3)        2 2 2 2 2 2 2 2/ / / /d r dt d x dt i d y dt j d v dt k      …(5) 

 

Putting for r, F and  2 2/d dtr  from (3), (4) and (5) respectively in (1) and (2), we get 

     2 2 2 2 2 2/ / / ( ) m d x dt i d y dt j d z dt k Xi Yj Zk       
 
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and      2 2 2 2 2 2( ) / /  /m xi yj zk d x dr i d y dt j d z dr k      
 

 

[( ) ( )]xi yj zk Xi Yj Zk        

Equating the coefficients of i, j, k, we get the six conditions of equilibrium as obtained earlier. 

 

Linear Momentum: 

 The linear momentum in a given direction is equal to the product of the whole mass of the body and 

the resolved part of the velocity of its centre of gravity in that direction. 

Let ( , , )x y z be the co-ordinates of the C.G. of the system and M the whole mass, then 

,M x mx M y my and M z mz    

Differentiating these relations, we get 

M x mx etc. Hence the result. 

 

Motion of the center of inertia: 

 To prove that the centre of ineria (C.G.) of a body moves as if the whole mass of the body were collected 

at it, and as if all the exteral forces were acting at it in directions parallel to those in which they act. 

 

Let ( , , )x y z be the co-ordinates of the C.G. of the body of mass M then 

M x mx , so that . M x mx  

But from the general equation of motion, we have mx X    

Therefore, 

 M x X …(1) 

Similarly we have, M y Y …..(2) and M z Z  …(3) 

 

The equation (1) is the equation of motion of a particle of mass M (placed at the centre of inertia) acted 

on by a force X parallel to the original directions of the forces on different particles. 

 Similarly the equations (2) and (3) can be interpreted. 

 

                         

Motion relative to centre of interia:  

The motion of a body about its center of inertia is the same as it would be if the centre of inertia were 

fired and the same forces acted on the body. 

 

Let ( , , )x y z be the co-ordinates of the centre of gravity G of the body with reference to the rectangular 

axes through a fixed point, say O. 

Let  , ,x y z   be the coordinates of a particle of mass m with G (centre of inertia) 

as original axes parallel to the original axes and (x, y, z) be its coordinates with 

reference to original axes.  

Then ,x x x y y y     and z z z   

 

 Now consider the fourth equation of the general equation of motion of rigid body,  

( ) ( ).m yz zy yZ zY   Σ    …(1) 

 

y

x

X

Y

Z

O

G

P

(x,y,z)
(x y z )  

z

(x, y, z)
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If r is position vector of any particle of mass m of the system relative to a point O, the original of vectors 

then the point with position vector ( / )r mr m   is defined as the centroid of the system.  

 

Again,      ( ) ' ' ' 'yz zy y y z z z z y y        

 ' .)x x x etc   

Therefore, from (1), we get 

( ) ' 'm yz zy my z myz my z my z        ' ' ' 'mz y mz y mz y mz y    …(2) 

As G (the centre of inertia) is the origin of coordinates w. r. t. the new axis. 

'
' ' ' 0 0etc.

mx
mx my mz

m

 
        

 
 

 

Therefore ' 0 ' ',mx my mz    also m M   total mass of the body. Again , ,x y z  and their 

differential coefficients are common to all particles of the body, so we can take them outside the sigma 

sign. 

 Hence equation (2) 

 ( ) ' ' ' 'm yz zy M y z M z y m y z z y       

 Equation (1) becomes  

     ' ' ' ' { ' ' }M y z M z y m y z z y y y Z z z Y        ' ' .y Z y Z zY z Y      

 

we know that , .M z Z M y Y   

Hence ( ' ' ' ') ( ' " ).m y z z y y Z z Y      

 

Similarly, we get other two equations. 

But these equations are the same as would have been obtained had we regarded the C.G. to be a fixed 

point and same forces acted on the body.  

 

 

Note. 1. The two important properties discussed above, are called the principle of conservation of 

motion of translation and rotation and together called the principle of independence of translation and 

rotation. 

 

Note. 2. The motion of the C.G. is the same as if the whole mass collected at the point and is therefore 

independent of rotation.  

 

Note 3. The motion round the C.G. is the same as if that point were fixed and is therefore independent 

of the motion of that point. 

 

 

Impulsive Forces:  

When the forces acting on a body are very large and act for a very short time, 

 then their effects are measured by impulses.  

Let a particle of mass 'm' be acted upon by a force F always in the same direction,  
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  the equation of motion is m (dv/dt) = F.    … (1) 

 where v is the velocity of the particle at time t.  

 

If t be the time during which the force F acts and v1,v2 be the velocities before and after the action of 

the force, then on integrating (1), we have 

  2 1

0

m v v F dt



   …….(2) 

 Now if F increases indefinitely while   decreases indefinitely, then the integral on the right hand 

side of (2) may have a definite finite limit.  

     Let this finite limit be I then equation (2) may be written as 

                  m (v2–v1) = I ……..(3) 

 

 The velocity during the time  has increased or decreased from v1 to v2. Supposing that the 

velocity have remained finite, let v be the greatest velocity during the interval. Then the space 

described is less than v  . Since v  → 0 as → 0, hence we conclude that the particle has not 

moved during the action of the force F. It could not have time to move, but its velocity has been 

changed from v1 to v2. 

 Thus in the case of finite forces which act on a body for indefinitely short time, the change of 

place is zero and the change of velocity is the measure of these forces. A force so measured is 

called an impulse. We can define impulse as the limit of a force which is indefinitely greater but 

acts only for an indefinitely short time e.g. the below of a hammer is a force of this kind. In fact 

an impulsive force is measured by the whole momentum generated by the impulse. 

 

Note- When impulsive force acts, the finite forces acting on the body may be neglected in calculating 

the effect. 

 Let F be the impulsive force and ƒ a finite force acting simultaneously on the body.  

                 Then,   m(v1 –v2) = 
0 0

.F dt f dt P f

 

      

 But since f  → 0 as  → 0, f may be neglected in forming the equations. 

 

Note- Application of D' Alembert's principle to impulsive forces, general equation of motion. 

Scalar Method.  

let u, v, w be the velocities parallel to co-ordinate axes before the action of impulsive forces  

and u’, v’, w’ be the velocities after the action of these forces. 

 Let X', Y', Z' be the resolved parts of the impulsive forces parallel to the axes.  

Then, from ,m x X


  

on integrating with respect to t, we get 

 '

0 0 0

dx
m X dt Xdt X

dt

  




 
 

  


   
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  ' 'm u u X   .  

Similarly,  ' 'm v v Y  and  ' 'm w w Z    

Observation-Thus the change in the momentum parallel to any of the axes of the whole mass M.  

supposed collected at the centre of inertia and moving with it is equal to the impulse of the external 

forces parallel to the corresponding axis. Again we have the moment equation 

 
' '' '

( ) ? ( )m y z z y m yZ zY     

 Integrating this we have 
' '

0 0
0

m y z z y y Zdt z Ydt


                
   

 Since the interval  is so short that the body has not moved during this period, we may take x,y,z 

as constants, thus the above equation becomes 

       m y w w z v v yZ zY          

 Similarly, we have other two equations 

       m x v v y u u xY yX          

 and       m z u u x w w zX xZ          

 Hence the change in the moment of momentum about any of the axes is equal to the moment about 

that axis of the impulses of the external forces. 
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Motion about a fixed axis 

A rigid body is rotating about a fixed axis. To find the moment of the effective forces  

about the axis of rotation. 

 Let the axis of rotation be OZ, perpendicular to the plane of the paper. Take a plane AOZ through 

OZ and fixed in space, cutting the plane of the paper along OA. Let this plane be taken as the 

plane of reference. Let be the angle, which another plane ZOG through the axis fixed in the body 

makes with the plane AOZ. 

 Take a particle of mass m at Q and let the plane through OZ and Q cut the plane of the paper 

along OP. Let the angle between ZOP and ZOG be  . When body rotates about OZ;  remains 

constant. Let the angle between the plane ZOP and the plane ZOA be  . Now 

     
 

  and 
 

    

 The accelerations of the particle of mass m are 

                          
2

r


  and r


  along QN and perpendicular to QN respectively. 

 Therefore effective forces on the particles are 
2mr


 and mr


  in the above said directions. Again 

22

r r
 

    and r r
 

    

 The moment of the force 
2'

mr about OZ is zero and moment of the force mr
''

  about OZ (& NZ) 

is 
'''''' 2 2.r mr mr mr      

 Exam Point- Hence the moment of the effective forces of the whole body about OZ is 

              
'''' ''2 2 2Σmr θ = θΣmr = k θ,M  where k is the radius of gyration of the body about OZ. 

 

Moment of momentum about the axis of rotation. 

 Velocity of the particle m is 
'

r   perpendicular to QN.  

Therefore the moment of momentum of the particle about OZ is 
'2mr   or 

'2mr  . 

Q

mr ' '
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 Hence the moment of momentum of the whole body about OZ  

is  2
' '

''2 2 2mr mr mr Mk          

Kinetic Energy: The kinetic energy of the particles of mass m is 
2'21

2
mr   

 Hence K.E. of the whole body is 

 
'

'
2

2 2 2' '2 2 2 21 1 1 1
.

2 2 2 2
mr mr mr Mk          

Equation of motion: 

 The impressed forces include besides the external forces, the reactions on the axis of rotation OZ. 

We take moment about OZ, so that this reaction could be avoided i.e. the moment of the effective 

forces about OZ will be equal to the moment of the external forces about OZ.  

                                Thus
''

2Mk L  , 

 where 𝑳 represents the moment of all external forces about OZ.  

Above equation is called the equation of motion of the body. 

In the case of impulsive forces if 1  and 2 be angular velocities of the body just before and just after 

the action of the impulses, 𝑳 the moment of the impulses then we of the impulses then we have 

 2

2 1Mk L   . 

 

 

 

The Compound Pendulum:  

 To determine the motion of a body acted on by the force of gravity 

only and moving about a fixed horizontal axis. 

 

 Let us take plane of the paper as the plane through the centre of gravity 

G of the body and perpendicular to the fixed axis. 

 

 Let the plane meet the axis in C. 

 Let θ be the angle between the vertical and CG i.e. θ is the angle between a plane fixed in space 

and a plane fixed in the body. 

 Let CG = h. The forces on the body are: 

(i) its weight M g acting downward through G. 

(ii) the reaction at C of the fixed axis to eliminate this reaction. 

We take moments about the fixed axis to eliminate this reaction. 

The equation of motion is 
''2Mk M gh sin     

 
2

2 2 2
isi be ng smalln ,

d gh gh

dt k k


        
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Equation (1) shows that motion is S.H.M. Hence the time of complete oscillation of compound 

pendulum is 
2

2
k

gh

 
  

 
. 

Simple Equivalent Pendulum. We know that equation of motion of a particle of any mass 

suspended by a string of length l is  
2

2
sin beingsmall

d g g

dt l l


        

The time of complete oscillation is 
.

2 .
l

g

 
  

 
 

If 
 

2

2 2 ,
g

l

h

k

g

    
     

    
 then 

2

.
k

l
h

 
  
 

 

This length 
2k

h

 
 
 

 in the case of a compound pendulum is called the length of the simple 

equivalent pendulum. 

 

Centre of Suspension:   

Through C, if a line be drawn perpendicular to the axis of rotation cutting it at C, then 𝑪 is called 

the Centre of suspension. 

Centre of Oscillation. If 𝑶 is the point on 𝑪𝑮 produced such that 
2k

CO l
h

   (the length of the 

simple equivalent pendulum) then the point 𝑶 is called the centre of oscillation.  

                         

                                   Showing that the centres of suspension and oscillation are convertible 

   

Let us take 𝑶 and O’ as the centre of suspension and oscillation 'respectively 

2k
OO

h

   Where OG = h, and K is radius of gyration of the body about the 

axis through O. Now if K is the radius of gyration of the body about an axis 

through G parallel to the axis of rotation, then 
2 2 2.Mk MK M OG   

2 2 2 2 2 2Mk MK Mh k K h       

2 2 2 2K h K OG
OO

h OG

  
    

 2 2 2. . .OO OG K OG K OG OO OG OG O G          …(1) 

Let O” be the centre of oscillation when the body rotates about a parallel axis through O’. We 

can show as above that 
2 .K O G O G   

From (1) and (2), we observe that O" is simply the point O. Thus if the body were suspended 

from a parallel axis through O’, O is the centre of oscillation. This proves the theorem. 
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Minimum time of oscillation of a compound pendulum.   

If K is the radius of gyration of the body about an axis through G parallel to the axis of rotation, 

then 2 2 2k K h  . 

Therefore length of the simple equivalent pendulum is 
2 2 2 2

.
k K h K

l h
h h h


     

The time of oscillation of a compound pendulum will be least when the length of the simple  

equivalent pendulum is minimum. For that 

2 2

2 2
0 1 0 .

dl d K K
h h K

dh dh h h

 
        

 
 

The length of simple equivalent pendulum in this case 

2 2 2 2

2 .
K h K K

l K
h K

 
    

In case h = 0 or ∞ i.e. if the axis of suspension either passes through G or be at infinite, the 

corresponding simple equivalent pendulum is of infinite length, thus the time of oscillation is 

infinite. 

 

Reactions of the axis of rotation. 

 A body moves about a fixed axis under the action of forces and both the body and the forces are 

symmetrical with respect to the plane through the C.G. perpendicular to the axis, find the 

reactions of the axis of rotation. 

 

Let O be the point where the plane through G perpendicular to the axis 

of rotation meets this axis. By symmetry the actions on the axis reduce 

to a single force at O, the centre of suspension. 

Let the components of this single force be X and Y along and 

perpendicular to GO respectively.  

Now G describes a circle round O as centre, its acceleration along and 

perpendicular to GO are 
2'

h  and 
''

h . 

 Equations of motion of C.G. are 

2'

cosMh X Mg   ……..(1) 

2''

sinMh Y Mg    … (2) 

By taking moments about 
"2,O Mk Mgh sin   … (3) 

where 𝒌 is the radius of gyration about the axis. 
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Y is obtained by eliminating 
"

  from (2) and (3), By integrating (3) and determining the constant 

from the initial conditions, and then from we can find X. 

Resultant reaction  2 2R X Y  and tan
X

Y

 
   

 
where 𝝓 is the angle which the direction of 

R makes with GO. 

Note: On resolving X and Y horizontally and vertically, 

The horizontal reaction sin cosX Y     Vertical reaction cos sinX Y     

 

Motion about a fixed axis: Impulsive forces. 

Consider a rigid body under the effect of impulsive forces. Let 𝝎 and 𝝎′ be the angular velocities 

about the axis just before and just after the action of impulsive forces. Now change in moment of 

momentum about the axis  2Mk    . Also let L the moment of external impulses about the 

axis of rotation, then we have  2Mk L   (since change in moment of momentum of the 

body about the axis is equal to the moment of the impulsive forces about it). 

 

Centre Of Percussion: 

If a body, rotating about a given axis, is so struck that there is no impulsive pressure on the axis, 

then any point on the line of action of the force is called a centre of percussion. If the line of 

action of the blow is known, the axis about which the body begins to turn is called the axis of 

spontaneous rotation. Obviously this combines with the position of the fixed axis in the first case. 

 

Centre of Percussion of a rod:   

Consider a rod AB of length 2b. Let it be suspended freely from one end A. Let a horizontal blow 

of impulse P be applied to it at the point C where AC = x.  

 

If X is the impulsive action at A and 𝝎 the angular velocity communicated to 

the rod, then the equations of motion are 

2 ( n

xMk P moment eq   … (1)  

( 0)M a P X     … (2) 

where 𝒂𝝎 is the velocity with which G moves. 

 

Now if the blow has been given through the centre of percussion then X = 0 

and equation (2) becomes Ma P  . 

Substituting this value of 𝑷 in (1), we get 

2k
x

a
  length of the equivalent simple pendulum. 

General Case of Centre of Percussion: 
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Let us take the fixed axis as the axis of y. Also let centre of gravity G lie in the y-plane, so that 

coordinates of G are  , ,0 .x y  

If Q is the point where the blow is applied then take a plane 

through Q and perp. to xy-plane as the xz-plane so that 

coordinates of Q may be ( ,0, ).   Now consider any other point 

P of mass m of the body at a distance r from Oy at any angle θ 

with z-axis. The coordinates of P will be 

sin , ., cos .x r y const z r      

If before the blow, angular velocity is 𝝎 and the velocity 

component along the axes are 𝒖, 𝒗, 𝒘 respectively, then we have 

𝒙̇ = 𝒖 = 𝒓𝐜𝐨𝐬 𝜽, 𝜽̇ = 𝒛𝝎, 𝒚̇ = 𝒗 = 𝟎, 𝒛̇ = 𝒘 = −𝒓𝐬𝐢𝐧 𝜽 ⋅ 𝜽̇ = −𝒙𝝎. 

If after the blow, the angular velocity is 𝝎 and velocity component along the axes becomes as  

, ,u v w   , then , 0; .u z v w x           

If X,Y,Z are the components of the blow at the point Q, then equations of motion will be 

     X m u u mz mz              

     0 0z m M z sincez           … (1) 

   0 0 0Y m v v since v and v        … (2) 

     Z m w w mx x m                M x      … (3) 

        Y m y w w z v v mxy F                    … (4) 

0F    0Y   

    X Z m z u u x w w             2 2 2m z x Mk           … (5) 

[M K2 is the M.I. of the body about y-axis] 

 

        Y m x v v y u u mzx D                0D   0Y   … (6) 

 

Thus we get X = 0, Y = 0, which implies that blow has no components parallel to the axes of x 

and y. Hence the blow must be perp. to xy- plane which contains the fixed axis and the 

instantaneous position of the centre of gravity. Also we see that F = 0 and D = 0 which implies 

that the y-axis which is also the axis of the body is a principal axis at the point where the plane 

through the line of action of the blow perp. to the fixed axis cuts it. This is a necessary condition 

for the existence of the centre of percussion. So if the fixed axis is not a principal axis at some 

point, then there is no centre of percussion. 

Using equation (3) and (5), we get 
2k

x
    … (7) 

The obvious conclusion from the relation (7) is that the distance of the centre of percussion from 

the fixed axis is the same as that of the centre of oscillation. 
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Points to remember in finding out the centre of percussion of a body for fixed axis. 

(i) Find the point where the fixed axis is principal axis. 

(ii) Take a distance
2

.
k

x
 

(iii) Draw an axis perp. to the plane containing the fixed axis and C.G. at a distance 
2k

x
 below 

the point where fixed axis is principal axis. 

(iv) Any point on this line is a centre of percussion of the body for the fixed axis. 

 

 

Examples 

Example 1:- Two uniform spheres, each of mass M  and radius a , are filmy fixed to the ends of two 

uniform thin rods. Each of mass m  and length l , and the other ends of the rods are freely hinged to a 

point O . The whole system revolves as in the Govemor  of steam-Engine, about a vertical line through 

O  with the angular velocity  . Show that when motion is steady, the rods are inclined to the vertical 

at an angle   given by the equation 

 

 
2

2 2

1

2cos .
1

3

M l a ml
g

M l a ml




 



 

. 

Solution:- Take an element x  in one of the rods at a distance x from O . Let ,PN CM  be  the 

perpendiculars on the vertical line through O . Here C  is the centre of one of the spheres.  

 

The reversed effective force on the rod at P  is 
2 sin

m
x x

l
    along NP  and the revered effective 

force on the sphere is  2 sinM a l   along MC , On taking moments about O  for the system of 

a rod and a sphere on one side of the vertical OM , we have  

       2 2/ sin cos sin cosx m l x x M a l a l           

        sin / 2 sinMg a l mg l     

 Or   
1

22 2 2

0

sin cos sin cos
m

x dx M a l
l
        

     
1

sin sin
2

Mg a l m g l     
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 Or    
22 21 1

cos
3 2

ml M a l g ml M l a 
   

       
   

 

 Or 

 

 
2

22

1

2cos
1

3

ml M l a
g

ml M l a




 



 

 

 

Example 2:- A cannon of mass M , resting on a rough horizontal plane of coefficient of friction   is 

fired with such a charge that he relative velocity of the ball and cannon at the moment when it leaves 

the cannon is u . Show that  the cannon will recoil a distance 

2
1

2

mu

M m g

 
 

 
 along the plane, m  

being the mass of the ball. 

Solution:- Let I  be the impulse between the cannon and the ball and ,V v be their velocities. Since 

their relative velocity is u , we have V v u        (1) 

And mv I MV  .         (2) 

 From (1) and (2), we have  /MV m V u   or   /V mu m M  . 

Again on the rough plane, for the cannon the equation is M x R Mg   , where x  is 

the distance cannon has moved. 

  x g , Multiplying by 2 x  and integrating, we get  

  
2 2x gx C    

 When 0,x x V  , so that 
2C V , 

2 2 2x V gx  when the cannon comes to rest 0x

, 

   2 / 2x V g  or    
2

/ 1/ 2x mu M m g   

         /V mu M m     

Example 3:- A rod of length 2a , is suspended by a string of length l , attached to one end if the string 

and rod revolve about the vertical with uniform angular velocity, and their inclination to the vertical be 

  and   respectively, show that 
 

 

4 tan 3tan sin3

tan tan sin

l

a

  

  





. 

Solution:- Take a small element x  of the rod AB  at a distance x  from A. Let be the uniform angular 

velocity of the rod. Mass of the element 
2

M
x

a
 . Its reversed effective force 

2

2

M
xNP

a
   , along 

NP . 

   2sin sin
2

M
x l x

a
      along NP . 
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The external forces on the rod are (1) the tension T of the  string and (2) of the weight Mg  of 

the rod. 

Resolving horizontally, vertically, and taking moments about A, we have  

  
2

2 2

0

sin sin sin
2 2

a
M M

T NP x l x dx
a a

          

 2 22 sin 2 sin
2

M
al a

a
     [Horizontally]   (1) 

cosT Mg      [Vertically]    (2) 

and 
2sin . . cos

2

M
M ga NP x x

a
      [Moment equation]  

 
2

2

0

sin sin cos
2

a
M

l x x dx
a
    

3
2 2 8

sin cos 2 sin cos
2 3

M a
l a

a
    

 
  

 
 

Or 
 

2 sin

3 sin 4 sin cos

g

l a




  





    (3) 

Dividing (1) by (2), we have 
 2

sin sinsin

cos

l a

g

 





   (4) 

Putting value of 
2  from (3) in (4), we get 

 
 

 

3sin sin sinsin

cos 3 sin 4 sin cos

l a

l a

  

   





 

Or    sin cos 3 sin 4 sin sin cos sin sinl a l a           

Or  3 sin sin cos sin cosl       

   sin 3sin cos 4sin cosa        

Or 
 

 

sin 3sin cos 4sin cos3

sin sin cos sin cos

l

a

    

    





 

 
 

 

 

 

sin 3tan 4 tan 4 tan 3tan sin

sin tan tan tan tan sin

     

     

 
 

 
 

Example 4:- A plank, of mass m  and length 2a  , is initially at rest along a line of greatest slope of a 

smooth plane inclined at an angle   to the horizon, and a man; of mass M , staring from the upper end 
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walks downs the plank so that it does not move, show that he will reach the other end in time. 

 

1/2

4

sin

Ma

m M g 

 
 

 
 

Solution:- Suppose that the man has come down a distance x  in times t , starting from the end A of 

the plank. Since the plank does not move, its centre is fixed. If x  be the distance of the C.G. of the 

system from A, then  M m x am Mx   . 

 

  The gives  M m x M x         (1) 

Again the motion of the C.G. of the system is given by  M m x   Ext. forces acting 

parallel to the plank   sinX m M g         (2) 

From (1) and (2), we get  

sinM x m M g 
 

  
 

 or 
  sinm M g

x
M


  

Integrating twice and applying the condition that when we have  

  2
sin 1

.
2

m M g
x t

M


  

Putting 2x a , we get the time to reach the other end as 
 

1/2

4

sin

Ma

m M g 

 
 

 
 

Example 5:- A uniform rod OA , of length 2a , free to turn about its end O , resolves with uniform 

angular velocity   about a vertical OZ  through O , and is inclined at a constant angle   to OZ , 

show that  the value of   is either zero or  1 2cos 3 / 4g a
. 

Solution:- Consider a small element PQ x at a distance x  from O . The point P  will move in a 

horizontal circle whose radius is sinPL x  . Here only effective force on the element PQ  is 

2 2. sinx PL x x    , where   is the density of the rod and angular velocity   is constant.  

Reversing the effective force and taking moment about O , we have 

 2. sin cos sinx x x M g a      or  

2

2 2

0

sin cos sin

a

x dx M g a    or 

   2 3/ 2 sin cos 8 / 3 sinM a a M ga     

 2a M  or 

24 cos
sin 0

3

a
g

 

 

  
 

 . it implies either sin 0   i.e. 0   or 

 2cos 3 / 4g a   i.e.  1 2cos 3 / 4x g a  

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/  

 
Example 6:- A thin circular disc of mass M  and radius a , can tum freely about a thin axis OA . Which 

is perp. To its plane and passes through a point O  of its circumference. The axis OA  is compelled to 

move in a horizontal plane with angular velocity   about its end A . Show that  the inclination   to 

the vertical of the radius of the disc through O  is  1 2cos /g a
 unless 

2 /g a   and then   is 

zero. 

Solution:- Consider the circular disc in the vertical plane so that the axis OA  about which it turns is 

horizontal. When the axis OA  moves horizontally round A, the disc will be raised in its vertical plane 

and its radius OC  makes an angle   with the vertical. Consider an element m  at P . Let PL  be 

perpendicular to the vertical through O  and LN be perpendicular from L  to the vertical through A so 

that PN  is perpendicular to AN . Now P  describes a circle of radius PN with a constant angular 

velocity   about N . Thus the reversed effective force along NP  is 
2mNP  . 

 

 Again NP NL LP   

  
2 2 2. . .m NP m NL m LP        i.e. the force 

2m NP   is equivalent to forces 

2m LP  and other 
2m NL  along NL . The external forces on the disc are its weight Mg  

and the reaction at O . 

 By D’ Alemberts Principle, Rev. effective forces along with external forces form the system in 

equilibrium. Hence moment of Rev. effective forces + moment of external forces = 0 i.e. 

moment of effective forces about OA= moment of external forces (1). 

 In order to avoid reaction at O , we take moment about the line OA . Since NL  and OA  lie in 

one plane (they are parallel also) the shortest distance between them is zero. 

  Moment of the forces 
2m NL    about OA  is zero. Further the shortest distance between 

OA  and LP  is OL  and the shortest distance between OAand the vertical through C is a 

sin . Hence moment of the force 
2m LP   about OA is given by 

2m LP OL   . Taking 

moments about OA , we get 
2sinMga m LP OL     or  2sin .aMg mLP OL   

. But  m LPOL   product of inertia of the disc about OL and horizontal line through 
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O  product of inertia about the parallel lines through ' 'C Mx y . Where ', 'x y  are the co-

ordinates of C with respect of the vertical and horizontal through O . 

 
20 sin cosMa     

  
2 2sin sin cos sin 0aMg Ma        or  2cos /g a  , where 

2a g   

 But  2 / cos 1g a    , which is impossible and hence in this case cos 1   i.e. 0 

. 

 

Example 7:- A thin heavy disc can tum freely about an axis in its own plane, and this axis revolves 

horizontally with a uniform angular velocity   about a fixed point on itself. Show that  the inclination 

  of the plane of the disc to the vertical is given by  2 2cos /gh k   where h  is the distance of 

the centre of inertia of the disc from the axis and k  is the radius of the gyration of the disc about the 

axis. If 
2 2gh k   , prove that the plane of the disc is vertical. 

Solution:- Let OM  be the horizontal axis in the plane of the disc which, rotates about O  so that the 

vertical line ON  is the axis of rotation of the system. Consider an element of mass m , at P . Draw 

PN  perpendicular to this vertical axis ON  then effective force for m  is 
2m PN  . Here PN  is 

not in the plane of the disc. From P  draw PM  perpendicular to OM , here PM  is in the plane of the 

disc. Through N  draw NK  perpendicular to OM  and from P  draw PK  perpendicular to NK  so 

that PK  is perpendicular to KM , thus if ,PMK     is the inclination of the  disc to the vertical, 

KM  being vertical. 

      

Again PN PK KN  . Therefore, 
2 2 2m PN m PK m K N       . Thus the 

effective force on m  are 
2m P K   and 

2m K N  . Since KN  is parallel to OM , the  

moment of the force 
2m K N   about OM  will be zero and the moment of 

2m PK   about 

OM  is 
2 .m PK KM  . The OM , we get 

2sinMgh m PK KM    

   2 2 2sin cos sin cosm PM PM mPM            

But 
2m PM   M.I. of the  disc about 

2OM M k  ,where k  is the  radius of gyration  

  
2 2sin sin cosMg h Mk     

 Hence either sin 0   i.e. 0   or 
2 2

cos
gh

k



 . 

If 
2

2

gh

k
  , as in that case cos 1   the only possible value of   is zero and then plane of 

the disc is vertical. 
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Example 8:- A rough uniform board, of mass m  and length 2a , rests on a smooth horizontal plane, 

and a boy, of mass M , walks on it from one end to the other, show that the distance though  which the 

board moves in this time is  2 /Ma m M . 

Solution:- Here the weight of the boy and the board are downwards, the actions and reactions between 

the boy and the board vanish for the system. The reaction of the smooth plane is acting vertically 

upwards. Thus there are no external forces on the system in the horizontal direction. Thus by D’ 

Alembert’s Principle the C.G. of the system does not move. As the boy goes to left, the board comes to 

the right.  

      
Let x  be the distance of the C.G. of the system and x  be the distance through which the board 

moves, when the boy goes from one end to the other. 

Now in the initial position,   2M m x M a ma    

 In the final position,    M m x M x m a x     

Therefore,   . 2M a ma M x m a x     

Or  2 /x M a M m  . 

 

 

Motion about a Fixed Axis 

Example:- A straight uniform rod can turn freely about one end O , hangs from O  vertical. Find the 

least angular velocity with which it must begin to move so that it may perform complete revolution in 

a vertical plane. 

Solution:- Let the rod OA  at any instant t  make an angle   with initial vertical position OX . Let G  

be the centre of gravity and GN  perpendicular to OX . Let OA a  and mass of the rod be m . The 

equation of motion is 

  
2 sin

2

a
mk m g 

 
   

 
 

     

 Moment of effective forces about the axis of rotation 
2mk   and moment of external forces 

about the axis of rotation  / 2 sinm g a    
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  2 3 sina g C           (1) 

 Let    when 0    
2 3a g C      (2) 

 Hence from (1) and (2), we get  2 3 1 cosa a g      we required that 0   when 

   

   20 6 6 /a g g a      

 

Example:- A perfectly rough circular horizontal board is capable of revolving freely round a vertical 

axis through the centre. A man whose weight is equal to that of the board walks on and around it at the 

edge, when he has completed the circuit, what will be his position in space. 

Solution:- Let any time ,t   and   be the angles described by the board and man respectively and let 

F be the action between the feet of the man and the board. Equation of motion for the man is ma F 

         (1) 

     

 Equation of motion for the board is 
2mk Fa       (2) 

 On eliminating F between (1) and (2), we g et 

  
2 2 0 0a k         

2
2

2

a
k

 
 

 
 

Integrating twice the above equation and considering that initially both man and the board were 

at rest, we get 2 0   . 

   Therefore, when 2     (after completing the circuit) 

 We get, 3 2 2 / 3     . 

 This is the angle in space described by the man. 

 

Example:- A uniform rod AB  is freely movable on a rough inclined plane whose inclination to the 

horizon is i  and whose coefficient of friction is  , about a smooth pint fixed through the end A : the 

bar is held in the horizontal position in the plane and allowed to fall from this position, if   be the angle 

through which it falls from rest show that  sin / cot i   . 

Solution:- Let any instant t , the position of the rod be AB , making an angle   with the initial 

horizontal position. The external forces acting on the rod, perpendicular to the plane, are the normal 

reaction R and resolved part of its weight i.e. cosm g i . External forces acting on the rod in the plane 

are, (i) the resolved part of its weight, sinm g i  acting down the line of greatest slope through G (centre 

of gravity). (ii) the friction cosR m g i   acting perpendicular to AB  through G; (iii) the reaction 

at A. We take moments about A to avoid reaction, so   
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2 sin . cos cosmk m g i a m g i a     

   2 sin cos cosk ga i i    , where 2a  is length of the rod. 

 Multiplying the above equation by 2  and integrating, we get  

 
2 2 2 sin sin 2 cosk a g i ag i D       

 When 0, 0 0D     . Hence 
2 2 sin sin 2 cosk ag i a g i      

 Rod will come to rest when 0   

   0 2 sin sin 2 cos sin / cotag i ag i i         

 

Example:- A uniform vertical circular plate of radius a , is capable of revolving about a smooth 

horizontal axis through its centre; a rough perfectly flexible chain, whose mass is equal to that of the 

plate and whose length is equal to its circumference hangs over its rim in equilibrium , if one end be 

slightly displaced show that the velocity of the chain when the other end reaches the plate is 

1/2

6

ag 
 
 

 

Solution:- Let x  be the distance described in time t . Let v be the velocity of the string and   be the 

angular velocity of the plane, then v x a  . Let m  be the mass of the plate and that of  string, then 

. .K E  of the string 
21
.

2
m v . .K E  of the plate 

2
2 2 2

2

1 1

2 2

v
mk mk

a
   

  

2 2
2

2

1 1
.

2 2 4

a v
m mv

a
   

  

2
2

2

a
k

 
 

 
 

 

 Hence, the total . .K E  generated 
2 2 21 1 3

2 4 4
mv mv mv    
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At time t , length of the string hanging to the right is 
2

a
x

 
 

 
 and hanging to the left is 

2

a
x

 
 

 
, the weights of these two portion are respectively, 

2 2

m g a
x





 
 

 
 and 

2 2

m g a
x





 
 

 
. 

 The depths of the C.G.’s of these portions below AB are 
1

2 2

a
x

 
 

 
 and 

1

2 2

a
x

 
 

 
 

 Hence when x  is the displacement, work function on the right is  

1

1
.

2 2 2 2

m g a a
W x x

a

 



   
     

   
 

  Work function of the left is 
2

1
.

2 2 2 2

m g a a
W x x

a

 



   
     

   
 

  Total work function 

2 2

1 2
4 2 4 2

m g a m g a
W W W x x

a a

 

 

   
        

   
  

 (1) 

 In the initial position i.e. when 0x   

 

2 2

0

1
2

4 4 8

m g a
W m g a

a





        [From (1)] 

 Hence total work done 

2 2 2
2 2

0

1

4 2 2 2 2

m g a a m g x
W W x x a

a a

 


 

    
           

     

 

 Therefore energy equation gives 

2 2
2 23 2

4 2 3

m g x g x
mv v

a a 
   . 

 When 
2

a
x


  (i.e. when other end reaches the plate) 

  

1/2

2 1 1

6 6
v a g v ag 

 
    

 
 

 

Example:- One end of a light string is fixed to a point of the rim of a uniform circular disc of radius a 

and mass m  and the string is wounded several times round the rim. The free end is attached to a fixed 

point and the disc is held so that the part of the string not in contact with it, is vertical. If the disc be let 

go, find the acceleration and the tension of the string. 

Solution:- Let the free end be attached to the fixed point P . Let A  be the initial position of the centre 

of gravity G. Let T be the tension of the string. There being no horizontal force the C.G. will move 

vertically downward. Let x be the distance moved by G in time t  and during this period,  be the angle 

turned through some radius. 

   m g T m x          (1) 

  And  

2
2

2

a
Ta m k m          (2) 
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 Again x a , x a    

 On eliminating T and   from (1), (2) and (3), we get 
2

2 3

a g
m ga m a x m x x     

 Substituting this value in (1), we get 
1

3
T m g  

 

Example:- Two unequal masses 
1m  and  2 1 2m m m  are suspended by a light string over a circular 

pulley of mass M  and radius a . There is no slipping and the friction of axis may b e neglected. If f

be the acceleration: show that this is constant, and if 
2k  be the radius of gyration of the pulley about 

the axle, show that    
2

2

1 2

a
k g f m g f m

M f
       

Solution:- Let in time t , 
1m  move a distance x  downwards and 

2m  move a distance x  upwards. Let 

 be the angle through which the pulley has rotated in time t . Since ,x a , x a  . 

 Equations of motion of 
1m  and 

2m  are 1 1 1m x m g T       (1) 

and 2 2 2m x T m g  .        (2) 

      

 Equation of motion of the pulley is 
2

1 2M k T a T a    

 (Moment is taken about the axle) 

   

2

1 22

k
M x T T

a
    

x

a


 
 
 
 

    (3) 

 Adding (1), (2) and (3), we get 

2

1 2 1 22

k
x m m M m g m g

a

 
    

 
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  
 1 2

2

1 2 2

m m g
x f

k
m m M

a


 

 

, which is constant. 

 From above we get    
2

1 2 1 22

M k
f m m f m m g

a
     

         
2 2

2

1 2 1 2 1 2

a a
k m m g m m f g f m g f m

M f M f
           

 

 Pressure on the pulley 
1 2T T  . 

 Again on subtracting (1) from (2), we get    2 1 2 1 1 2m m x T T m m g      

         2 1 2 1 1 2 2 1 1 2T T m m x m m g m m f m m g         . 

 

Example:- Fine string has two masses M  and 'M  tied to its ends and passes over a rough pulley, of 

mass m , whose centre is fixed. If the string does not slip over the pulley, show that M  will descend 

with acceleration 
 2 2

'

' /

M M
g

M M m k a



 
 where a is the radius and k the radius of gyration of the 

pulley. If pulley be not sufficient rough to prevent sliding, and M  be the descending mass, show that 

its acceleration is 
'

'

M M e
g

M M e








 and that pulley will now spin with an angular acceleration equal to 

 
 2

2 ' 1

'

M M ga e

m k M M e








. 

Solution:- First part, when the pulley is rough enough to prevent sliding proceeding like Ex.6 the 

equations of motion of masses and pulley are  

  M x M g T          (1) 

 And ' ' 'M x T M g           (2) 

 And moment of effective forces about the axis of rotation  2 'mk T T a     (3) 

      

 Again ,x a x a    

  
2

2
'

x
mk T T

a
           (4) 

 Adding (1), (2) and (4), we    2 2' / 'x M M m k a M M g    
   
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  Acceleration 
 

 2 2

'

' /

M M g
x

M M mk a




 
. 

Second Part:-  When the pulley is not sufficiently rough to prevent sliding, then we can not take 

x a . In this case, statics, we have 'T T e       

  (5) 

 Solving (1), (2) and(5), we have 
2 ' 2 '

'
' '

MM g e MM g
T T

M M e M M e



 
 

 
 and 

'

'

M M e
x g

M M e









. 

 Further putting above values of T  and 'T  in (3), we get 
 

2

2 1 '
.

'

ga e M M

mk M M e










 

 

Example:- Two unequal masses, M  and 'M  rest on two rough planes inclined at an angles   and 

  to the horizon: they are connected by a fine string passing over a small pulley, of mass m  and radius 

a, which is placed at the common vertex of the two planes; show that the acceleration of either  mass i s 

   

 2 2

sin cos ' sin 'cos

' /

g m M

M M mk a

         

 
 where   and ' are the coefficients of friction k  

is the radius of gyration of the pulley about its axis and M  is the mass which moves downwards.  

Solution:- Suppose in time t , the mass M  moves a distance x  downwards, and also M  moves a 

distance x  upwards. Let the pulley turn through an angle  . In the same time t . 

 

  ,x a x a   . The equations of motion of the masses M  and 'M  are  

sin cosM x M g M g T            (1) 

' ' ' sin ' cosM x T M g M g           (2) 

Equation of motion of pulley is  2 'mk T T a    

  

2

'
mk x

T T      
x

a


 
 
 
 

    (3) 

 Adding (1), (2) and (3), we get  

   
2

2
' sin cos ' sin 'cos

mk
M M x g M M

a
     

 
         

 
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  
   

2

2

sin cos ' sin 'cos

'

g M M
x

mk
M M

a

         

 

 

 

Example:- A uniform circular disc is free to turn about a horizontal axis through its centre perpendicular 

to its planes. A particle of masses attached to a point in the edge of the dis. If the motion starts from the 

position in which radius to the particle makes an angle   with the upward vertical, find the angular 

velocity when m  is in its lowest position. Take the mass of the disc as M . 

Solution:- The circular disc is turning about the fixed horizontal axis OX , through its centre O . Let 

  be the angular velocity when m  is in its lowest position. Say L  then energy principle gives.  

Change in K.E. = work done by forces. 

        

  

2
2 2 21 1

0
2 2 2

a
ma M 

 
  

 
 

  cosm g a a    or    2 2 4 1 cosa m M g     or 

 
 

2
2 / cos

22
g a

m M


 


 

Remark: The weight of the disc does not work as its C.G. is fixed. 

Example:- A solid homogeneous cone of height h  and vertical angle 2  oscillates about a horizontal 

axis through its vertex. Show that the length of the simple equivalent pendulum is  21
4 tan

5
h   

Solution:- Let OX  be the horizontal axis through the vertex O . Let us take a circular disc PQ  of 

thickness x  at distance x  from O . Moment of Inertia of disc about OX  

 2 2 2 2 21
tan tan

4
x x x x   

 
  

 
. 

      
 Therefore, . .M I  of whole cone about OX  
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2 2 2 4

0

1
tan 1 tan

4

h

M k x dx  
 

  
 

  

 
2 2 51 1

tan 1 tan
4 5

h  
 

  
 

 

  2 2 51
tan tan 4

20
h     

  2 23
tan 4

20
M h    

3 21
tan

3
M h  

 
 

 
 

   2 2 23
tan 4

20
k h  . Again 

3

4
OG h . 

 Therefore the length of the simple equivalent pendulum i.e.  
2

21
tan 4

5

k
l h

OG
    

 

Example:- A solid homogeneous cone of height h  and semi-vertical angle   oscillates about a 

diameter of its base. Show that the length of the simple equivalent pendulum is  21
2 3tan

5
h   

Solution:- Referring to the fig. of the example 10. We observe that M.I. of the cone about AB   

=  
2 2

22 2

0

tan
tan

4

h
x

x dx h k


 
 

  
 

  

      
2

24 2 2

0

tan
tan 4

4

h

x x h x dx
 

   
   

   
2

4 2 4 2 2 2

0

tan
tan 4 8 4

4

h

x x hx h x dx
 

     

  

5 5 4 3
2 2 21

tan tan 4 8 4
4 5 5 4 3

h h h h
h h  

 
    

 
 

  
2 5 2 4 2 21 1 2 1

tan tan tan 3tan 2
4 5 15 60

h h     
 

      
 

 

   2 21
3tan 2

20
M h   , since 

3 21
tan .

3
M h    

     2 2 2 2 2 21 1
3tan 2 3tan 2

20 20
M k M h k h      , where k is the radius of 

gyration of cone about AB. Hence length of the simple equivalent pendulum 

 
 

2 2
21

3tan 2
/ 4 5

k k
h

distanceof G from AB h
     

 

Example:- An elliptical lamina is such that when it swings about one latus rectum as a horizontal axis, 

the other latus rectum possess through the centre of oscillation, prove that the eccentricity is 
1

2
. 

Solution:- When one of the focii  say H , is the centre of suspension then the other focus 'H is the 

centre of oscillation. 'LHL  is the latus rectum (horizontal axis) about which the elliptic lamina 

oscillates. 
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 The length of simple equivalent pendulum ' 2t HH ae      (1) 

 Also  HG ae and 
2M k Moment of Inertia of the body about the axis of the rotation. 

   
2

2 2 2 2 21
' 1 4

4 4

a
LHL M a e k a e

 
     

 
    (2) 

  
 2 22 1 41

4

a ek
l

HG a e


   

 Form (1) and (2), we get 
 2 21 41

2
4

a e
ae

ae


  

  
2 2 2 1

8 1 4 4 1
2

e e e e      . 

Example:- A uniform elliptic board swings about a horizontal axis at right angles to the plane of the 

board and passing through one focus. If the centre of oscillation be the other focus prove that its 

eccentricity is  2 / 5  

Solution:- Refer fig. before example here  2 2 2 2 21

4
M k M a b a e

 
   

 
 

  Length of simple equivalent pendulum  
2 2

2 2 2 21
4

4

k k
l a b a e

HG ae ae
       (1) 

 Also  2 2 2 21
2 2 4

4
l ae ae a b a e

ae
       

   2 2 2 2 2 2 2 2 2 2 28 4 1 4a e a b a e a e a a e        

   2 2 25 2 2 / 5a e a e   . 

 

Example:- A flat circular disc of radius a has a  hole in it of radius b  whose centre is at a distance c  

from the centre of the disc  c a b  . The disc is free to oscillates in a vertical plane about a smooth 

horizontal circular rod of radius b  passing through the hole. Show that the length of the equivalent 

pendulum is 

4 4

2

1

2

a b
c

a c


  

Solution:- Let 'O  be the centre of the hole in the disc whose centre is O . 'OO c  (given). The disc 

is oscillated in a vertical plane about a smooth horizontal circular rod of radius b  passing through 'O

. 

 If h  be the depth of C.G. of the body from 'O , then 

2 2 2

2 2 2 2

. 0a c b a c
h

b b a b

 

 


 

 
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 Let k be the radius of gyration about the axis of rotation, then we have  

 
2

2 2 2 2 2 .
2 2

a b
a b a c b   

 
    

 
 

  
 

2 2 2
2

2 2

2

2

a a c b
k

a b

 



 

  
   

2 2 2 2 4 2

2 2 2 2

2
/

2

k a a c b a c
l

h a b a b

    
    

       

 

 

4 2 2 4 4 4

2 2

2 1

2 2

a a c b a b
c

a c a c

  
   . 

 

Example:- A bent lever, whose am s are of length a  and b , the angle between them being  , makes 

small oscillations in its own plane about the fulcrum, show that the length of the corresponding simple 

pendulum is 

 

3 3

4 2 2 4

2

3 2 cos

a b

a a b b



 
 

Solution:- Let 
1G  and 

2G be the centre of gravity of the arms OA  and OB of the lever. Let OA a

and OB b . Also let OA  be the axis of x and a perpendicular line OY  the axis of y . Then the co-

ordinates of 
1G  and 2G  will be 

1
,0

2
a

 
 
 

 and 
1 1

cos , sin
2 2

b b 
 
 
 

 respectively. 

Now if  ,x y  is the C.G. of the lever, then 
2 2

1 1
. . cos

1 cos2 2

2

a a b b
a b

x
a b a b

  


 




 
 

; 

where   is the weight of unit length of the rod.  

 

2

1
.0 . sin

1 sin2

2

a b b
b

y
a b a b

  


 



 
 

 

Also the distance of C.G.  ,x y  from  0,0O is  

  
 

 2 2 4 2 2 41
2 cos

2
x y a a b b

a b
   


 

Now if k  is the radius of gyration about the axis of rotation through O , then we have 

 
 

2 2 3 3
2 24 1 4 1

. .
3 2 3 2 3

a b
a b k a a b b k

a b
  

   
       

   
. 
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Hence the length of the simple pendulum  

 

2

. . .

k

Dist of C G of thelever fromO
  

 
 

 

3 3

1/2
4 2 2 4

21
.

3 2 cos

a ba b

a b a a b b




  
 

 

 

3 3

1/2
4 2 2 4

2

3 2 cos

a b

a a b b




 
 

 

Example:- A uniform triangular lamina can oscillate in its own plane about the angle A. Prove that the 

length of the simple equivalent pendulum is 
 

  

2 2 2

2 2 2

3

4 2

b c a

b c a

 

 

 

Solution:- Let AH  be perpendicular to the plane of the lamina so that  it oscillates in its own plane 

about AH . Instead of the triangular lamina of mass m , we can have three perpendicular each of mass 

1

3
m  placed at the mid points , ,D E F  of the sides respectively. Distance of D from AH  is. 

 

   
1/21/2 22 2 2A D AL LD AL BD BL         

 

   
2

2 2 2 2 .AL BD BL BD BL       

    
1/2

2 2 2 2 .AL BL BD B D BL    
 

 

    
1/2

2
2

2 1 1
2 . cos

2 2
AB BC BC AB B

    
      

     
 

   

1/2 1/2
2 2 2 2 2

2 2cos .
4 4 2

a a a c b
c ac B c ac

ac

    
        
   

 

   

1/2
2 2 22 2

4

b c a  
  
 

 

  Distance of E  from / 2AH EA b   
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  Distance of F  from / 2AH FA c   

  M.I. of the triangle about AH  

    
2 2 2 2 2

2 2 21 2 2 1
3 3

3 4 4 4 12

b c a b c
m m b c a
  

      
 

 

    

2 2 2
2 2 2 2 2 3 3

3 3
12 12

m b c a
mk b c a k

 
        

  Hence length of the simple equivalent pendulum  

  
2 2 2

2. . .

3

k k k

Dist of C G from AH AG
AD

    

  

   

2 2

1/2 2 2 22 2 2

3

2 1 2 2. 2 2
3 2

k k

b c ab c a

 
 

 

  
 

 

 

  

2 2 2 2 2 2

2 2 2 2 2 2

3 3 3 3

12 2 2 4 2 2

b c a b c a

b c a b c a

   
 

   
 

 

Example:- An ellipse of axis ,a b and a circle of radius b  are cut from the same sheet of thin uniform 

metal and are superposed and fixed together with their centres coincident. The figure is free to move in 

its own vertical plane about one end of the major axis. Show the length of the equivalent simple 

pendulum is 

25 2

4

a ab b

a

 
 

Solution:- Mass of the circle 
2b  . 

 Mass of the ellipse ab  , where   is the mass of the sheet per unit area. 

 Mass of the system 
2b ab     

Now taking k  to be the radius of gyration of the body about a line through A  perpendicular to 

lamina, we have  2 2ab b k    

      

 

2 2 2
2 2 2.

2 4

b a b
b a ab a   

   
      

   
 

       2 2 2 2 2 24 4 2 5b a b k b a b ab a b           

  
   

   

2 2 2 2 3 2 2 3
2

2 4 5 5 4 2

4 4

b b a a a b a a b ab b
k

a b a b

     
 

 
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     

 

2 25 2

4

a a b ab a b b a b

a b

    



 

  
  

 
 

2 2

2 2
5 2 1

5 2
4 4

a b a ab b
a ab b

a b

  
   


 

Hence length of the  equivalent simple pendulum  
2 2 2 25 2

. . . 4

k k a ab b

Dist of C G of the system from A a a

 
    

 

Example:- A uniform rod of mass m  and length 2a  can oscillate about a horizontal axis through one 

end. A circular disc of mass 24m  and radius 
1

3
a  can have its centre clamped to any point of the rod 

and its plane contains the axis of rotation. Show that for oscillations under gravity the length of the 

simple equivalent pendulum lies between  / 2a  and 2a . 

Solution:- Let AB be the rod axis of rotation pass through A . Let the centre C  of the disc, be clamped 

at a distance x  from A .  

 

The distance of C.G. of the system i.e. of the rod and the disc together, 

2 224 . 2 24

24 25

ma m x a x
h

m m

 
 


 

then if  k  is the radius of gyration then  

 
2

2 2 24 1
24 24 .

3 4 3

a
m m k m a m x

  
      

   

 

  

2 2 2 2 2
2 4 2 72 2 24

3 2 25

a a x a x
k

  
 


 

 Hence length of the simple equivalent pendulum 

 

2 2 2 2 22 24 24 2 24
/

25 25 24

k a x a x a x
l l

h a x

    
      

  
   (1) 

 For maximum of minimum of . 0
d l

l
d x

  

  
   

 

2 2

2

48 24 24 2 24
0

24

x a x a xd l

d x a x

  
 


  

   2 2 2 224 2 2 0 24 8 6 2 0x ax a x ax ax a         

        8 3 2 3 0 3 8 2 0x x a a x a x a x a         
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  
4

a
x   or 

3

a
x   . Since 

3

a
x    we have 

4

a
x   

 When ,
4

a
x   we get 

2

a
l  . 

The other extreme value of  . .2l i e a  is given by putting 0x  or 2x a in (1). Hence  the 

length of the simple equivalent pendulum lies between 
2

a
 and 2a . 

 

Example:- A sphere of radius a  is suspended by a fine wire from a fixed point at a distance l  from its 

centre. Show that the time a small oscillation is given by 

1/2
2 2

25 2 1
2 1 sin

5lg 4 2

t a 

    

    
   

 where 

  represents the amplitude of the vibration. 

Solution:- Suppose that the axis of rotation is passing, through O , where OC l . Moment of inertia 

of sphere of mass M  about the axis of rotation is 
2 22

5
M a l

 
  
 

. Equation of motion is 

2 22
sin

5
M a l M gl 
 

   
 

 

  
2 2

5
sin

2 5

gl

a l
  


 

      

 Integrating, we get 
2

2 2

10
cos

2 5

gl

a l
   


     (1) 

 Let when , 0     

 Hence (1) reduces to  2

2 2

10
cos cos

2 5

gl

a l
   


 

   2 2

10
cos cos

5 5

d gl

d t a l


 

 
   

 
 

 (  Sphere is coming in the direction of   decreasing) 

 
2 2

2 2

10
1 2sin 1 2sin

2 5 2 2

gl

a l

    
       

   
 

 
2 2

2 2

10
2. sin sin

2 5 2 2

gl

a l

    
     

   
. 

 It t  is be the time from one extreme to the lowest point, then  
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    

2 2

2 2

1 2 5

10 sin / 2 sin / 22

a l d
t

gl







 

 
   

 
  

  

    

2 2

2 2
0

1 2 5

102 sin / 2 sin / 2

a l d

gl




 

 
  

  
  

 Putting    sin / 2 sin / 2 sin   , i.e. 
1 1

cos sin cos
2 2 2

d d


     ,we get 

  
 

/22 2

0

5

5 cos / 2

a l d
t

gl






  
  

 
  

  

/22 2

2 20

2 5

5
1 sin .sin

2

a l d

gl







 
  

      
  

  

  

/22 2
2 2

0

2 5 1
1 sin sin ....

5 2 2

a l
d

gl




 
   

     
  
  

       
1/2 1

1 1 .....
2

x x
 

    
 

 

  

2 2
22 5 1

sin . ....
5 2 2 2 4

a l

gl

     
     

  
 

       
/2

2

0

sin / 4d



    

 
2 2

22 5 1
/ 2 1 sin

5 4 2

a l

gl




   
    

  
 neglecting higher powers of sin

2


, since   is small. 

  Time for one small oscillation is 

2 2
22 5 1

4 2 1 sin
5 4 2

a l
t

gl




   
    

  
 

 

Example:- There equal particles are attached to a weightless rod at equal distances a apart. The system 

is suspended and is free to tum about a point of the rod distance x  from the middle particle. Find the 

time of a small oscillation and show that particles each of mass 82x a  nearly. 

Solution:- Let the three particles each of mass m , be attached to the rod at the points ,A B and C  such 

that A B BC a  .  

Again let the system rotate about O N  such that O B x . Then M.I. of the three particles 

about O N   

    
2 22m a x mx m a x      

     
2 22 23mk m a x mx m a x      

  

2 2
2 3 2

3

x a
k


 , where k  is the radius of gyration of the system about O N . Now if 

l  is the length of the equivalent pendulum then we have  
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2 2

. . .

k k
l

Dist of C G of the system fromO x
   

      

 

2 2 23 2 2

3 3

x a a
x

x x


    

  

2

2

2
1

3

d l a

d x x
   

For maximum or minimum of l , we have 0
d l

d x
  i.e. 

2

2

2
1 0 6 .816 .82

3 3

a a
x a a

x
       nearly.  

Further 

2 2

2 3

4

3

d l a

dx x
 , which is positive for .82x a  

Hence minimum value of l  is given by .82x a  

 

Example:- Find the time of oscillation of compounded pendulum consisting of a rod of mass m  and 

length a, carrying at one end a sphere of mass 
1m  and diameter 2b , the other end of the rod being 

fixed. 

Solution:- Let O A a  be the rod of mass m , and a sphere of mass 1m be attached to it at A . 

 If h  is the distance of the C.G. of the system from O , then  

 1

1

.
2

a
m m a b

h
m m

 




       (1) 

 Also if k  is the radius of gyration of the system about the axis through O , we have  

   
2

22 2

1 1

2
.

3 5

a
m m k m m b a b

 
     

 
 

  

 
2

22

1
2

1

2

3 5

a
m m b a b

k
m m

 
   

 

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 Hence length of equivalent simple pendulum  

 

   

2
22

2 1

1

1 1

2

3 5
.

2 2

a
m m b a b

m mk

a ah
m m a b m m a b

 
      

   

 

 

 

2
22

1

1

2

3 5

2

a
m m b a b

a
m m a b

 
   

 

 

 and the time of complete oscillation is  

 

 

1/2
2

22
1/2

2 1

1

2

2 3 5
2

8

2

a
m m b a b

k

ag h
m m a b




  
          

    
 
 

 

 

Example:- A simple circular pendulum is formed of a mass M  suspended from a fixed point by a 

weightless wire of length l , if a mass m , very small compared with M , be knotted on to the wire at a 

distance from the point of suspension, show that the time of small vibration of the pendulum is 

approximately diminished by . 1
2

m a a

M l l

 
 

 
 of itself. 

Solution:- Let t be the period of simple pendulum before knotting the mass m , then 2
l

t
g


 

  
 

 

Let k be the radius of gyration when mass m  is attached to the wire at a distance a  from the 

point of suspension O . 

Then   2 2 2m M k M l ma    or 

2 2
2 M l m a

k
M m





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Distance of C.G. of the system from O  is 
M l m a

h
M m





 

If 't  be period for the compound pendulum consisting of masses M  and m , then  

 

1/2
2 2 2

' 2 2 .
k l ml ma M m

t
g h g M m M l ma

 
     

      
     

 

 
 

1/2 1/2 1/2
2 2 2

2
2 2 1 1

M l ma l ma ma

g M l ma g M l M l
 


      

                 

 

 

2

2
2 1 1

2 2

l ma ma

g M l M l


    
       

    
 neglecting higher powers of 

m

M
. 

 2 1 1 1 1
2 2

l ma a m a a
t

g M l l M l l


        
             

        
 

   ' 1
2

ma a
t t t

M l l

 
   

 
. 

 

Example:- A weightless straight rod ABC  of length 2a  is movable about the end A  which is fixed 

and carries two particles of the same mass, one fastened to the middle point B  and the other to the end 

C  of the rod. If the rod be held in a horizontal position and then let go, show that its angular velocity 

when vertical is 

1/2
6

5

g

a

 
 
 

 and that 
5

3

a
 is the length of the simple equivalent pendulum.  

Solution:- Let , 'v v  be the velocities of the masses at B  and C  when in vertical position. Let  be the 

angular velocity of the rod in this position. 

 Then we have energy equation as 
2 21 1

' . .2
2 2

mv mv m g a mg a    

      
 Also v a  and ' 2v a  

   2 2 21
4 2

2
m a a m ga m ga    

  

1/2
6

5

g

a


 
  
 

 

 Again    
2

22 2 2 5
2

2

a
m m k ma m a k      

 Distance of C.G. from A  
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2

2

5
. .2 3 52

32 3

2

a
m a m a a k a

h l
am m h


     


 

 

Example:- A rectangular plate swings in a vertical plane about one of its comers. If its period is one 

second, find the length of the diagonal. 

Solution:- Let k  be the radius of gyration of the plane about the axis, through A and perpendicular to 

its plane; then we have 

2 2
2 2

4.3

a b
m k m m h


  [by parallel axis theorem] 

 

2 2 2
2 24 4

3 3 3

mh mh h
mh k      

 BG GD . Further, distance of C.G. from A 

  2 21

2
AG h a b     

      

  Period 

2 24
2 2 4

3 3

k h h

h g gh g
  

     
       

    
 

 But period 1 4 1
3

h

g


 
   

 
 or 

2

3

16

g
h


  

  Length of the diagonal 
2

3
2

8

g
h


  . 

 

Example:- A pendulum is supported at O , and P  is the centre of oscillation. Show that if an additional 

weight is rigidly attached at P , the period of oscillation is unaltered. 

Solution:- Let m  be the mass of the body forming the compound pendulum and let h  be the depth of 

its C.G. below the point of suspension O . Also let k  be its radius of gyration about the horizontal axis 

through O ; then we easily obtain  2 /OP k h  

  Period of Oscillation 

2 /
2

k h
T

g


 
  

 
, say 
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Let an additional weight M  be knotted at P , then if 'k  is the radius of gyration about the 

horizontal axis through O , we immediately have   2 2 2' ' .M m k mk M OP    

 

2
2 2

2 2

2

k k
mk M k m M

h h

   
      

   
     (1) 

And by well-known C.G. formula 

 
2 2

2
' . . .

k k
M m h mh M OP mh M h m M

h h

 
       

 
  (2) 

(1) And (2) 

2 2

2

'
'

k k
T

h h
    

 

 i.e. 

2 2' / ' /
2 2

k h k h
T

g g
 

   
    

   
 

  Period of oscillation is unaltered. 

 

Example:- Three uniform rods , ,AB BC CD  each of length a, are freely jointed at B  and C  and 

suspended from the points A  and D  which are in the same horizontal line and a distance a apart. Prove 

that when the rods move in a vertical plane, the length of simple equivalent pendulum is 
5

6

a
. 

Solution:- The system from a compound pendulum horizontal AD . The figure is self-explanatory. Let 

m  be the mass of the each rod.  

Let h be the depth of C.G. of the system from AD  and k  the radius of gyration of the system 

about the horizontal axis AD , then we easily obtain 
23mk   sum of the moments of inertia of 

three rods about AD . 
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 
2 2 2

2 2 25
5 / 9

3 3 3

a a ma
m m ma k a       and  

2 22 2

3 3 3

a a
m m ma

ma a
h

m m

 
  

          (2) 

       2 2 5
/ 5 / 9 / 2 / 3

6

a
k h a a   

  Length of simple equivalent pendulum 
5

6

a
 . 
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Example:- A thin uniform rod has one end attached to a smooth hinge and is allowed to fall a horizontal 

position. Show that the horizontal strain on the hinge is greatest when the rod is inclined at an angle of 

45 to the vertical, and that the vertical strain is then 
11

8
 times the weight of the rod. 

Solution:- Let 2OA a , and the rod make an angle   with the horizontal after time t . Equations of 

motion of G of along and perpendicular to G O  are  

 sin cos sinma Y X m g            (1) 

 cos sin cosma Y X m g             (2) 

 Since 

2
2 2 24

3 3

a
k a a    

     
  moment equation about O  is  

 
24 3

, . cos cos
3 4

g
m a m g a

a
            (3) 

 Integrating (3), we get 
2 3

sin
2

g
C

a
    when 

2 3
0, 0 0, sin

2

g
C

a
          

 Putting this value of 
2 in (1), we get  

 
3

sin sin cos sin
2

m g Y X m g       

  
5

sin cos sin
2

Y X m g          (4) 

 With the help of (3), the equation (2) becomes as  

 
3

cos sin cos cos
4

m g
Y X mg            (5) 

 Multiplying (4) by cos  and (5) by sin  and adding, we get  

5 1 9 9
sin cos sin cos sin 2

2 4 4 8
X mg m g mg   

 
    
 

 

Similarly, we have 
2 25 1

sin cos
2 4

Y mg  
 

  
 

 

We observe that X  is maximum when sin 2 1   i.e. when 2
2


   or 

4


   

 When  / 4  , we have    2 25 1
sin / 4 cos / 4

2 4
Y m g  

 
  

 
 

 
5 1 1 1 11 11

, ,
2 2 4 2 8 8

mg mg
 

    
 

 times the weight of the rod. 
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Example:- A heavy homogenous cube of weight W , can swing about an edge which is horizontal, it 

starts from rest being displaced from its unstable position of equilibrium. When the perpendicular from 

the centre of gravity upon the edge has tumed through an angle  , show that the components of the 

action at the hinge along and at right angles to this perpendicular are  
1

3 5cos
2

W   and 
1

sin
4

W 

. 

Solution:- Let 
0G  be the initial position of C.G. and G be the position of C.G. when the edge has turned 

through an angle  . 

    2 2 2 2

0 0 2OG OG OL LG a a a       

 Where 2a  is the length of the edge. 

 Equation of motion of G  along and perpendicular to GO  are 

  22 cosMa mg X         (1) 

 And 2 sinm a m g Y          (2) 

 Where ,X Y  are the components of the reaction of the axis in this position. 

     

 Moment equation about O  is 
2 2 sinmk mg a   

  
2 22 3 2

2 2 sin . sin
3 8

m a a am g g
a

   
 

    
 

   (3) 

 Integrating, we get 
2 3

2 cos
4

g C
a

     

 Initially  2 3 2
1 cos

4

g

a
          (4) 

       

 From (1) and (4), we have  
3

1 cos cos
2

m g m g X     

     
3 3

cos cos 5cos 3 3 5cos
2 2 2 2

mg mg
X m g    

 
        

 
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  
1

3 5cos
2

W        mg W  

 Where negative sign of X  shows its opposite direction. 

 From (2) and (3), we have 
3

sin sin
4

m g m g Y    

  
3 1

sin sin sin
4 4

Y m g m g m g     . 

 

Example:- A circular area can tum freely about a horizontal axis which passes through a point O  of 

its circumference and is perpendicular to its plane. If motion commences when the diameter through O  

is vertically above, show that when the diameter has tumed through an angle   the components of the 

strain at O  along and perpendicular to this diameter are respectively  
1

7cos 4
3

W    and 
1

sin
3

W   

Solution:- Initially when the diameter through O is vertically above O  

M.I. of the dis about an axis through O perpendicular to the disc

2
2

2

a
M Ma   

       

 

23

2

M a
  

       
 

 If k  is the radius of gyration, then 

2 2
2 23 3

2 2

M a a
M k k    

After time t , let the diameter OA  makes an angle  with the vertical. In this position we will 

have  

2
2

2
sin

d
M k M gh

dt


  where  h distance of C.G. of the disc from O a . 

  

2 2 2 2
2

2 2 2

3 2
sin sin sin

2 3

d a d d a
M k M ga ga

d t d t d t a

  
        . 

 Multiplying by 2  on both sides and integrating it, we get  
2 4

/ cos
3

g
d d t c

a
    . 

 Initially  0, / 0d dt   . 
4

0
3 3

a g
a c

a a


       

 Hence  
2

4
1 cos

3

d a

d t a




 
  

 
      (2) 
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 Now considering the motion of C.G., we have 

2

cos
d

M a M g X
d t




 
  

 
 (3) 

 And 

2

2
sin

d
M a M g Y

d t


         (4) 

 Where ,X Y  are the components of the reaction and perpendicular to G O . 

 Solving equation (3), we get    
4

cos 1 cos 7cos 4
3 3

g Mg
X Mg Ma X

a
         

  
1

7cos 4
3

W           (5) 

 Similarly, solving equations (1) and (4), we get  

2 1
sin sin sin sin

3 3 3

g Mg
Y Mg Ma W

a
           (6) 

 

Example:- A circular disc of weight W can tum freely about a horizontal axis perpendicular to its plane 

which passes through  a point O  on its circumference. If is starts from rest with the diameter vertically 

above O , show that  the resultant pressure on the axis when that diameter is horizontal and vertically 

below O  are respectively  
1

17
3

W  and 
11

3
W . Further prove that the axis must be able to bear at 

least 
11

3
 times the weight of the disc. 

Solution:- This equation is a particular case of the previous example. 

 When the diameter is horizontal 
2

viz


  , we have  

  
4

0 4 ,
3 3 3

W W W
X Y       sin 1

2

 
  
 

 

 Hence resultant pressure in this case  
2

216
17

9 2 3

W W
W

 
   

 
 

 When the diameter is vertically below  

   ,   
11

7 4
3 3

W W
X      , 

1
sin 0

3
Y W    

 Resultant pressure in this case 

1/2
2

11 11
0

3 3

W
W

   
    

   

 in general, we have  

    

1/2
2 2

2 2 7cos 4 sin
3 3

W W
X Y  

    
       

     

 

  
1/2

2
248cos 56cos 17

9

W
 

 
   
 

 

This is maximum when   and its value is 
11

3
W , which implies that the maximum pressure, 

that the axis must be able to bear is at least 
11

3
times the weight of the disc. 

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/  

 

Example:- A right cone of angle 2  can tum freely about an axis passing through the centre of its 

base and perpendicular to the axis, if the cone starts from rest with its axis horizontal, show that when 

the axis is vertical, the thrust on the fixed axis is to the weight of the cone as 
2 21 1

1 cos : 1 cos
2 3

  

. 

Solution:- Let initially the cone be as shown in fig. (i) . After any time t , let the cone take the position 

as shown in fig. (ii). If the height of the cone i.e. OV h then 
1

4
OG h where G denotes the centre 

of gravity of the cone. 

   
Now since the C.G. of the cone i.e. point G is describing a circle of radius / 4h , the equations 

of motion of G are  

1
. sin
4

M h X Mg          (1) 

1
. cos
4

M h Mg Y          (2) 

Where X  and Y  denote the components of reaction at O  along and perpendicular to OX . 

Taking moments about O , we have 
2 1

cos
4

M k M g h 


    (3) 

Also 
2 . .M k M I  of the cone about  2 2 21

. 2 3 tan
20

AB M h h    

   
2

2 22 3tan
20

h
k           (4) 

 Substituting this value of 
2k  in (3), we gt  

 
2

5
cos

2 3tan
h g 





       (5) 

 Multiplying both sides by 
2

2

10
2 sin

2 3tan

g
C 


 


 

 Initially 0  , when 0  , giving there by the constant 0C   

 Therefore, we have 
2

2

10
sin

2 3tan

g
h 





     (6) 

 Using (6) in (1), we get 
2

1 10
. sin sin
4 2 3tan

g
M X Mg 


 


 

  

2

2

9 6 tan
sin

4 6 tan
X Mg






 
  

 
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 Also using (5) in (2), we get 

2

2

3 6 tan
cos

8 12 tan
Y M g






 
  

 
 

 When the axis is vertical i.e. when / 2  , we have 

2

2

9 6 tan
, 0

4 6 tan
X M g Y





 
  

 
 

  Resultant pressure  
2 2 2

2 2

2 2 2

9 6 tan 9cos 6sin

4 6 tan 4cos 6sin
X Y X Mg M g

  

  

    
       

    
 

  

2
2

2
2

1
1 cos

6 3cos 2
16 2cos

1 cos
3

X

Mg




 




 




 

Note:- If 2 / 2   then in that case, we have  

 

 

 

2

2

1 1
1 cos / 4 1

32 4
1 1 2

1 cos / 4 1
3 6

X

Mg





 

  

 

 

 

Example:- A uniform semi-circular arc, of mass m  and radius a, is fixed at its ends to two points in 

the same vertical line and is rotating with constant angular velocity  . Show that the horizontal thrust 

on the upper end is 

2g a
m






 

Solution:- Let the uniform semi-circular arc with centre at O  rotate about AB  with constant angular 

velocity  . If G  is the C.G. of the arc, then  
2a

OG


   As the arc rotate, the point G will describe a 

circle of radius 
2a


 about the point O     

      
Let X  and Y  be the horizontal and vertical components of reactions at the point A  and 'X  

and 'Y  the horizontal and vertical reactions at the lower end B . Now since the arc is rotating 

with constant angular velocity   about AB , the only effective force on it is 
22a

m 


 along 

GO  

Taking moments about the point B , we have 
22 2

. 2
a a

m a mg X a
 

    

[  Moment of the effective forces   moment of external forces] 
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  
 2g a

X w





 . 

 

Example:- A uniform rod OA  of mass M  and length 2a  rests on a smooth table and is free to tum 

about a smooth pivot at its and O ; in contact with it at distance b  from O  is an inelastic particle of 

mass m , a horizontal blow of impulse P , is given to the rod at a distance x  from O  in a direction 

perpendicular the impulsive action at O  and on the particle. 

Solution:- Let OA  be the rod of length 2a  and let a horizontal blow of impulse P be given at a distance 

x  from O . Further let S  be the impulse of the action between the rod and inelastic particle of mass 

m Then the moment equation about A  is 
24

3
M a P x S b  . 

But S mb . (since velocity b  is generated in mass m  by the impulse S) 

 

  
2 24

3
M a P x mb    

  
2 24

3

P x

M a mb

 



 and 
2 24

3

m P b x
S

M a mb





. 

Now since the change in the motion of C.G. of the rod is the same as if all the impulsive forces 

were applied there, so M a P S X     where X  is the impulsive action at O  

      2 24
1 /

3
X P M a mb P mb M a x M a mb

 
          

 
 

 

Example:- A rod, of mass m and length 2a , which is capable of free motion about one end A  falls 

from a vertical position and when it is horizontal strikes a fixed inelastic obstacle at a  distance b from 

the end A . Show that the impulse of the blow is  
2

2 / 3
a

m ga
b

 and that the impulse of the reaction 

at A  is  
4

3 / 2 1
3

a
m ga

b

 
 

 
 vertically upwards. 

Solution:- If   is the angular velocity just before striking the obstacle then we have the energy equation 

as 
2 21 4

. 0
2 3

m a mga    

[Change of K.E. = work done]   3 / 2g a   

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/  

     
Let the rod AB  strike the inelastic obstacle at O  such that  AO b  and the impulse of the 

blow be P  and the impulsive reaction at A  be X . Since the rod reduces to rest after striking 

the obstacle, therefore we get on taking moment about A . 

  24
0

3
m a Pb    

   
24 2

. 2 / 3
3

ma a
P m ga

b b


   

 Also for G, we have    
4

0 3 / 2 1
3

a
m a P X X m ga

b


 
       

 
 

 

Example:- A uniform beam AB can tum about its end A  is the equilibrium; find the point of its length 

where a blow must be applied to it so that the impulses at A may be in each case 
1

th
n

 of that of the 

blow. 

Solution:- Let AB  be the uniform rod of mass m  and length 2a . Let an impulse P  and applied at a 

distance x  from A  so as to produce an impulsive action 
1

P
n

 at A . If the angular velocity produced 

is  , then the equation of motion are  

2 24

3
m k P x m a P x         (1) 

 And  
1 1n

m a P P P
n n




         (2) 

        

 Eliminating P  from these two equations, we get 
4 1

3

n
x a

n

 
  

 
. 

Note:- If the direction of the impulsive action is opposite to that as shown in the fig. then in that case 

we will have 
4 1

3

n
x a

n

 
  

 
. 

 

Example:- A rod of mass 
4 1

3

n
x a

n

 
  

 
s lying in a horizontal table and has one end fixed; a particle 

of mass M is in contact with it. The rod receives a horizontal blow at its free end; find the position of 
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the particle so that it may start moving with the maximum velocity. In this case show that the kinetic 

energies communicated to the rod and mass are equal. 

Solution:- Let AB  be the rod, the end A of which is fixed. Let an impulse P be applied to the rod at 

the and B  so as to give an angular velocity  , if the particle of mass M  is at C  where AC x  then 

the velocity V  acquired by the particle will be V x . Thus we get the moment equation as 

24
. . 2

3
nM a M x x P a    

     

  

 2 2

2

4

3

a P

M a n x

 



.  

 2 2

2

4

3

a P x
V x

M n a x

  



 

 For maximum V , we must have 

2 2 2

2

2 2

4
2

2 30 0
4

3

ma x x
d V a P

dx M
na x

 
  
   
  

  
  

 

   2 24
0 2 / 3

3
na x x a n     

 Also K.E. of the rod 
2 2 2 21 4 4 2

. .
2 3 3 3

n M n M a n M a       (1) 

And K.E. of the particle 

2
2 2 2 2 21 1 4 2

2 2 3 3

a n
M x M M a        (2) 

From (1) and (2), we observe that kinetic energies of the rod and mass are equal. 

 

Example:- The door of a railway carriage stands upon at right angles to the length of the train when the 

latter starts to move with an acceleration f ; then door being supposed to the smoothly hinged to the 

carriage and to be uniform and of breadth 2a . Show that its angular velocity when it has tumed through 

an angle   is 
3

sin
2

f

a


 
 
 

 

Solution:- Let ABCD  be the door which can rotate about AB . If the train moves with acceleration 

f , then every element of the door will have the same acceleration f  parallel to the rails. Now consider 

an elementary strip PQRS  at a distance x from AB . Mass of the strip 
2

M
x

a
 , where M  is the 

mass of the door. Hence moment equation about AB  give 
2

2

0

4
cos . cos

3 2

a
m

M a dx f x m a f
a

     
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  
3

cos
4

f

a
   

Multiplying both sides by 2   and integrating it, we get 
2 3

sin
2

f

a
    . Initially 0   

when 0   0     

Hence 
3

sin
2

f

a
 

 
  

 
 

 

Example:- Two wheels on spindles in fixed bearings suddenly engage so that their angular velocities 

become inversely proportional to their radii and in opposite directions. One wheel, of radius a and 

moment of  inertia 
1I has angular velocity   initially, the other of radius b  and moment of inertia 

2I  

is initially at rest. Show that their new angular velocities are 

2

1

2 2

1 2

I b

I b I a



and 1

2 2

1 2

I ab

I b I a




 

Solution:- Let A and B be the two wheels. The wheel A is of radius a and moment of inertia 
1I  whereas 

the wheel B is of radius b and moment of inertia 
2I . Initially A was rotating with angular velocity   

and the wheel B  at rest. Now let 
1  ad 

2  be the angular velocity of A and B after the impact. Since 

the velocity of the point of contact is the same for each wheel, we have 
1 2a b    

 (1) 

  

 Also  1 1I R a      (for the wheel A)    (2) 

  2 0I R b      (for the wheel B)    (3) 

 Where R  is the impulsive force. 

 From the last two equations, we get  1 1 2 2I b I a        (4) 

 Now substituting the value of 2 from (1) in (4), we get  

  

2

1
1 2 2

1 2

I b

I b I a
 


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 Substituting the value of 
1  in (1), we have 1

2 2 2

1 2

I ab

I b I a
 


 

 

 Example:- A pendulum is constructed of a solid sphere of mass M  and radius a which is attached to 

the end of a rod of mass m  and length b . Show that there will be no strain on this axis if the pendulum 

be struck at a distance    
22 22 1 1

.
5 3 2

M a a b mb M a b mb
    

         
    

 from the axis 

Solution:- Let OA b  be the rod fixed at the point O . Let a sphere of radius a  and mass M  be 

attached to the other end A  of the rod. 

 Distance of the C.G. of the  pendulum from O  

  
   / 2m b M b a

h
m M

 



      (1) 

 Let k  be the radius of gyration of the pendulum about O , then we have  

   
2

22 22 4

5 3 2

b
m M k M b a a m

   
       

   
 

   
 

2
22 22 4

5 3 2

M m k
k b a a

m M m M

   
          

 

   

  Distance of centre of percussion from 

2k
O

h
  

 

 

 

22 22 1

5 3

1

2

M a a b mb

mb M a b

 
   

 

 
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Example:- Find the centre of percussion of a triangle ABC  which is free to move about its side BC . 

Solution:- To find the point where BC is a principle axis. Let us proceed like this. Draw AD , the 

median and AL  the perpendicular from A  on BC . Let O  be the mid-point of DL . Then by the 

elementary knowledge of M.I. and P.I BC  is a principle axis is point O . Let the mass of the ABC  

be m . The triangle of mass m  is kinetically equivalent to the particles each of mass 
3

m
 placed at the 

mid point ,D E  and F . Let AL P , then  

     

  
2 2

2 2 2 21 1 1 1
0

3 2 3 2 3 6 6

m m m
m k p p m p k p

   
        

   
 

 But the depth of C.G. below 
1

3
BC h p  . 

 Hence depth of the centre of percussion below BC  along a vertical through 

 2 1
/

2
O k h p  . 

Particular Case:- If the triangle ABC  is an equilateral triangle, then the point D  and O  coincide. In 

this case 
2 21 1

.
6 3

k p h p   

Hence the depth of the centre of percussion below BC  along the median bisecting BC  is 

2 1

2

k
p

h
   

 

Example:- Find how an equilateral lamina must be struck that it may commences to rotate about a side. 

Solution:- refer fig. above example. The triangle ABC  rotate about the side BC . The blow should 

be given at the centre of percussion when BC  is the axis of rotation of the lamina. Here BC  is the 

principle axis of triangle at its middle point (Points , ,D O L  will coincide) 

Again 
2 21 1

;
6 3

k p h p   where p  is the height of the triangle. 

  Depth of the centre of percussion below BC  along the median bisecting BC  is 

2k

h
 i.e. 

1

2
p . 

Hence the blow should be given at the middle point of the median bisecting the side about 

which the lamina rotates. 

 

 

Example:- Find the position of the centre of percussion of a sector of a circle axis in the plane of the 

sector, perpendicular to its symmetrical radius and passing through the centre of the circle. 

Solution:-  Consider the sector AOB  of a circle of radius a . Let 2AOB    

 Let a line OY  perpendicular to the plane of the sector be the axis of rotation. 
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 Then M.I. of the sector AOB about 
2 2

0 0

2 cosOY r r d dr

 

      

    
4 2

0

. 1 cos 2 . sin cos
4 4

a a
d



           

  
2

sin cos
4

M a
  


  , since mass of the sector 

2.M a   

     
2 2

2 2sin cos sin cos
4 4

M a a
M k k     

 
      

 Distance of C.G. from 
2 sin

.
3

a
O h




   

 Hence distance of centre of percussion from O  

  

2 3 sin cos

8 sin

k a

h

  



 
   

 
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Chapter-3: Motion in 2 D 

Dynamical Equations of Motion. To determine dynamical equations of motion in two dimensions 

when the forces acting on the body are finite. The motion of a rigid body consists of two independent 

motions viz., 

(i) the motion of centre of gravity, and 

(ii) the motion about the centre of gravity. 

Motion of Centre of Gravity. 

Cartesian Method 

Cartesian Method 

Motion of C.G. states that the motion of centre of gravity is such that the total mass M of the rigid 

body is allowed to act at the C.G. and all the external forces are transferred parallel to themselves to 

act at the C.G. of the body. 

Consider a particle m of the rigid body at point P whose coordinates referred to two axes fixed in 

space of two dimensions, OX, OY are (x, y). Now the effective forces acting on the particle are mx and 

my , let X, Y be the components of the external forces acting at P. By DAlembert's principle 

( ),( )X mx Y my  together with similar forces acting on all other particles of the body form a system 

in statical equilibrium, thus we have 

 

 

Σ( ) 0,Σ( ) 0X mx mY my     

and  Σ[ ( ) (( )] 0x Y my y X mx      
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and  
Σ Σ , Σ Σ

Σ ( ) Σ( )

mx X my Y

m xy yx xY yX

   


   
      …(1) 

Let (xG, yG) be the co-ordinates of the centre of gravity refered to axes OX and OY and  ,x y  be the 

co-ordinates of the point P referred to parallel axes GX and GY  through G. 

,G Gx x x y y y      

then   Σ , Σ ( where Σ )G GMx mx My my m M     

Σ  and  Σ . G GxM mx M y my     

Thus the first two equations of (1) reduces to 

Σ  and  ΣG GM X My Yx     

Motion Relative to Centre of gravity       …(2) 

Third equation of (1) gives 

      Σ G G G Gm x x yy y x xy      
 

    

    Σ G Gx x Y y y X         

Or  Σ Σ ΣG G G G G Gx y m x xy x my ym       

  Σ Σ ΣG Gy mx x my m x y y x        

  Σ Σ ΣG Gx Y y X x Y y X      

Where Σm M           …(3) 

By (2), first term on L.H.S. of (3) cancels the first two terms on the R.H.S. of (3). 

Again 
Σ Σ

 and 
Σ Σ

mx my

m m

 
 give the coordinates of G with respect to axes  and GX GY    

i.e. Σ 0,Σ 0 Σ 0,Σ 0mx my mx my         

Thus (3) reduces to  

   Σ Σm x y y x x Y y X                …(4) 

   Σ Σ
d

m x y y x x Y y X
dt

               …(5) 
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Let GA be a line fixed on the body which makes an angle θ  with GX Let GP = r and .PGX     

.AGP     

Since the body turns about ,G AGP remains constant. 

   

Again the velocity of m at point P is r  perpendicular the GP, its moment about G is r . 2r r    

  2Σ Σm x y y x mr      

Or   2 2 2Σ Σ Σm x y y x mr mr Mk           

where Mk2 is the moment of inertia of the body about G. Hence equation (5) may be put as 

   2 2Σ  or 
d

Mk x Y y X Mk L
dt

             …(6) 

where L is the moment of the external forces about G. 

Thus the equations of motion of the body are Σ , Σg gM x X M Yy  and are known as equations of 

motion of the centre of gravity 

And    Σ Σm xy yx x Y y X       

known as equation of motion about the centre of gravity, this can also be put as 2Mk L   

where L is the moment of external forces about G. 

This states that the sum of the moments, of the effective forces about the centre of gravity G, is equal 

to the sum of the moments of the external forces about G. 

Vector Method. 

Let rG be the position vector of the C.G. and F the external forces acting at any particle m of the body, 

then we have 
2

2
Σ .Gd r

M F
dt

   

But  and G G Gr x i y j F Xi Yj      

where (xg, yg) are the co-ordinates of C.G. and X, Y the components of the forces F parallel of the 

axes. 
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 (1) gives; 
2 2

2 2
Σ( )G Gd x d y

M i j Xi Yj
dt dt

 
   

 
. 

Equating coefficients of i and j on both sides, we get 

2

2
ΣGd x

M X
dt

    …(2) and   
2

2
ΣGd y

M Y
dt

       …(3) 

These are the equations of the centre of gravity. 

Let r  be the position vector, of the particle m at P, relative to G, and F the external forces acting on 

it, then we have  

2

2

d r d dr
r r F mr r F

dt dt dt
         


  


       …(4) 

Now let   be the angle that a line GA fixed in the body makes with a line GB fixed in the space, and 

let   be the angle which the line joining P to G makes with the line GB (fixed in the space), then as 

obvious from the adjoining figure, we have .AGP      

 

,
d d

dt dt

 
    [  is constant ]AGP    

Let Gm r    

 The velocity of m relative to G 

 
d

r
dt

 


 in a direction perpendicular to r in the plane AGP. 

If 1 2
ˆ , ˆe e  be the unit vectors along and perpendicular to r in the AGP plane, then we have 1êr r    and 

2
ˆ

dr d
r e

dt dt


 
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 1 2
ˆ ˆ

dr d
mr m r e r e

dt dt
  


       

2

1 2
ˆ ˆΣ e e

d d d d d
mr

dt dt dt dt dt

      
     

 
  

2 ˆ
d

mr n
dt


   where n̂  is the unit vector normal to the plane AGP. 

 2 ˆ
d

mr n
dt


    

 2d
Mk n

dt


  where k is the radius of gyration of the body about G 2 ˆ.

d
Mk n

dt

 
  
 

  

Also we have, moment of the forced F about G r F    

ˆp Fn    where p is the lwength of the perpendicular from G upon the direction of the force F 

  Equation (4) reduces to  2 ˆ ˆ
d d

Mk n p F n
dt dt

 
  

 
     …(5) 

Equating coefficients of ˆ n  on both sides, we get 

2 Σ
d d

Mk p F
dt dt

 
  

 
   …(6)  

2
2

2
Σ

d
Mk p F

dt
 


     …(7)  

Let  ,x y  be the co-ordinates of P relative to G and X, Y the components of F in the directions of the 

axes, scalar moment, of the force F about G is p F  which is equivalent to  x Y y X     

  (6th) equation may be written as  2 Σ
d d

Mk x Y y X
dt dt

 
  





  

  
2

2

2
Σ .

d
Mk x Y y X

dt


          …(8) 
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Equations (2), (3) and (7) are the dynamical equations of motion of rigid body moving in two 

dimensions, under finite forces. 

3.02. Kinetic Energy. When a body is moving in two dimensions, then to express the kinetic energy 

in terms of the motion of the centre of inertia and the motion relative to the centre of inertia. 

At any time t, let rG be the position vector of the centre of gravity of G of the rigid body, referred to an 

origin O; and let r be the position vector of a particle m, referred to an origin O, then we have 

Gr r r     

where r   is the p.v of the particle of mass m w.r.t. C. G. Now let T be the kinetic energy' of the body, 

then we get 

21

2
T mr      …(1)     

21

2
Gm r r      

 2 21 1

2 2
G Gmr mr mr r         

 
˙

2 21 1

2 2
G Gr m mr r mr         

But 0,
mr

m






  

[ r  is the position vector of the centroid relative to the centroid itself.] 

 0,     0, mr and so mr      

 2 21 1
[ ]

2 2
gT Mr mr m M            …(2) 

Another form. Let vG be the velocity of centre of gravity and let 2ê  be the unit vector perpendicular 

to the direction of r   then we readily obtain 

g

G G

dr
v r

dt
    

And 

2 2

2 2 2

2 2 2 2 1ˆ ˆ ˆ    ˆ
d d d d

r r e r and e e e
dt dt dt dt

         
           
    



  

2

2 21 1
(2) Σ

2 2
G

d
T M mr

dt

 
     

 
v   
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2

2 21 1
Σ

2 2
G

d
Mv mr

dt

 
   

 
       2 2

G Gv v     

2

2 21 1

2 2
G

d
Mv Mk

dt

 
   

 
        …(3)  

where k is the radius of gyration of the body about the centre of intertia. 

Hence equation (3) expresses that; 

The total kinetic energy of a rigid body moving in two dimensions is equal to the kinetic energy of a 

particle of mass M placed at the centre of inertia and moving with it together with the kinetic energy 

of the body relative to the centre of inertia. 

Equation (3) can also be put as 

K.E. of the body  = (K.E. due to translation) + (K.E. due to rotation)   ...(4) 

3.03. Moment of the Momentum. To find the moment of momentum of the body about the fixed 

origin O, when the body is moving in two dimensions. 

At any time t, let rG be the position vector of the centre of gravity G of the body referred the origin O, 

and let r be the position vector of a particle of mass m, referred to the origin O, 

then we have Gr r r   ; where r is the position vector of the particle of mass m w.r.t. G. 

Now let H be the moment of momentum (or angular momentum) of the body about O, then we have 

r mr     

   G Gm r m r r r r            

G G G Gmr r mr r mr r mr r           

 G G G Gr r m r mr mr r mr r             

 G G G Gr r m r mr mr r mr r                 …(1) 

But 0
mr

m

 



, being position vector of C.G. relative to C.G. 

0     0mr and so mr       

˙

(1) G GH r r m mr r           
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˙

G Gr M r r mr          [ Σ ]m M   

 
G Gr Mv r mr             …(2) 

Another form. Let n̂  be the unit vector parallel to H, then we get 

G G G Gr Mv Mr v     

  ˆ
GMv p n   

[using the definition of moment; p is the length of the perpendicular from the origin O on the direction 

of the velocity vg of centre of gravity]. 

But we have 2 ˆ
d

r mr Mk n
dt

 
    

 
         [3.01] 

and  ˆH Hn   

2ˆ(2) ˆ ˆ
g

d
Hn Mv pn Mk n

dt


      

Equating coefficients of n̂  on both sides, we get 

2

g

d
H Mv p Mk

dt


            …(3) 

This equation expresses that the moment of momentum (or angular momentum) of a rigid body about 

a fixed point O is equal to the angular momentum about O of a single particle of mass M (equal to 

mass of the body concentrated at its C.G. and moving with the centroid's. velocity), together with the 

angular momentum of the body in motion relative to the C.G. 

Equation (3) can also be written as. 

Angular momentum of the rigid body 

= Angular momentum of centre of inertia 

+ angular momentum relative to the centre of inertia. 

Category-1 

A uniform sphere rolls down an inclined plane, rough enough to prevent any sliding; to discuss the 

motion. 
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Initially, the sphere was at rest with its points P in contact with O. 

 During the motion, after any time t, let the centre "C" of the sphere describes a distance x on the 

inclined plane and  is the angle through which the sphere turns.  

Thus CP a line fixed in the body, makes an angle with the normal to the plane, a line fixed in the 

space. 

Let F be the frictional force and R the normal reaction at the point of contact B,  

then equations of motion of C.G. of the body are  

2

2
sin

d x
M Mg F

dt
             …(1) 

Since there is no motion perpendicular to the plane, we have 

0 cos or  cos .M Mg R Mg Ry             …(2) 

Also equation of motion about the centre of gravity is  

2
2

2
.

d
Mk F a

dt


          …(3)  

Since there is no sliding, so we have OB = arc PB 

,x a x a      and ax           …(4) 

  (3) gives 
2 2

2 2

k d x
M F a

a dt
           [ ]ax     
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Substituting the value of F from here in (1), we get 

2 2 2 2

2 2 2 2 2

sin
1 sin  or 

d x k d x a g
g

dt a dt a k

  
    

 
       …(5) 

i.e. the sphere rolls down with a constant acceleration 
2

2 2

sina g

a k




  

Equation (5) gives
2

2 2

sin
  ; and  , 
dx a g

t C C
dt a k


 


 integration constant. as t=0 and x =0 gives C =0  

Intergrating again, 
2

2

2 2

1 sin

2

a g
x t

a k





  

because constant of intergration again vanishes as x and t vanish simultaneously. 

Exam Points; Now we shall discuss various cases: 

(i) If the body be a solid sphere, 2 22

5
k a  and then equation (5) implies, 

5
sin . 

7
gx     

(ii) If the body be hollow sphere, 2 22

3
k a      

3
sin .

5
x g     

(iii) If the body be circular disc, 2 21

2
k a      

2
sin . 

3
x g     

(iv) If the body be circular ring, 2 2k a      
1

sin . 
2

x g     

Pure rolling: Eliminating 
2

2

d x

dt
 from (5), and (1), we get 

2
25 2 2

sin sin sin
7 7 5

a
F Mg Mg Mg k

 
       

 
  

Also from (2) cos .R Mg    

In order that there may be no sliding 
F

R
 must be less than   i.e. for pure rolling 

2
 i.e.  tan .

7

F
F R

R
       

 Category-1: Slipping of rods. 
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A uniform rod is held in a vertical position with one end resting upon a perfectly rough table and 

when released rotates about the end in contact with the table. To discuss the motion. 

Let AB be the rod having length 2a and mass M. 

Let the rod which is rotating about A makes an angle with the vertical at any time t. 

Taking A point as the origin and horizontal and vertical lines as axes, the coordinate (x, y) of centre of 

mass G are given by 

 

sin , cosx a y a      

cos , sinx a y a        

and 2sin cosa ax      , 2cos sin .ay a       

Let F be the frictional force and $R$ the normal reaction at A. Now the equation of motion of C.G. are 

2
2

2
cos sin

d x
M M a a F

dt
             …(1) 

2
2

2
sin cos

d y
M M a a R Mg

dt
               …(2) 

Again energy of the rod 
2 2 2 21 1

2 3
M x y a

  
     

  
  2 2 2 2 21

,
3

v x y k a    

2 2 2 2 21 1 2
( )

2 3 3
m a a Ma
 

      
 

  

and work done by the forces ( cos )Mg a a   . Hence from energy equation, we have 

2 2 22 3
( cos ) (1 cos )

3 2

g
Ma Mg a a

a

              …(3) 

Differentiating (3) with respect to t, we have 
3

sin
4

g

a
       …(4) 

Putting the values of   and   from (3) and (4) in (1) and (2), we get 
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3
sin (3cos 2)

4
F Mg     and 21

(1 3cos )
4

R Mg     

We observe that R does not change its sign and vanishes when 
1

cos
3

  . Hence the end A does not 

leave the plane. 

From the value of F, we see that F changes its sign as   passes through the angle 1 2
cos

3

  
 
 

; thus its 

direction is then reversed. 

At 
1

cos , 0
3

R   , hence the ratio 
F

R
 becomes infinite where

1
cos

3
  , hence unless the plane 

be infinitely rough there will be sliding at this value of  . In practice the end A of the rod begins to 

slip for some value of  less then 1 1
cos

3

  
 
 

. The end A will slip backwards or forward according as 

the slipping takes place before of after the 1 2
cos

3

  
 
 

.  

we observe that R is positive for every value of   and  . Hence the end never leaves the plane. 

Category-3: A uniform straight rod slides down in a vertical plane its end being in contact with two 

smooth planes, one horizontal and the other vertical. If it started from rest at an angle   with the 

horizontal; to discuss the motion. 

Let at any instant t, the rod makes an angle   with the horizontal. Let R and S be the reactions at the 

ends A and B of the rod AB whose length is 2a and mass M. 

With reference to point O as origin, the co-ordinates of G i.e. centre of gravity are 

cos , sinx a y a      

 2cos sinx a a     , 

 2sin cosa ay        

The equation of motion of C.G. are Mx S   
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l  2cos sinM a a S            …(1) 

and  M R Mgy     

 2sin cosM a a R Mg         

Energy equation given 

 2 2 2 21 1

2 2
M x y Mk    = work done by the gravity. 

2 2 2 21 1
(sin sin )

2 3
M a a Mga
 

       
 

  

2 3
(sin sin )

2

g

a

 
    

 
        …(3) 

Differentiating (3) w.r.t. t, we get 
3

cos
4

g

a

 
   

 
      …(4)  

Putting the values of 2  and   in (1) and (2), we have 

3 3
cos (sin sin ) sin cos

2 4

g g
S M a a

a a

  
            

  
  

3
cos (3sin 2sin )

4
Mg             …(5) 

3 3
sin (sin sin ) cos cos

2 4

g g
R Mg M a a

a a

  
             

  
  

2 21
4 6sin sin 6sin 3cos

4
Mg            

21
1 6sin sin 9sin

4
Mg           

2 2 21
1 sin sin 6sin sin 9sin

4
Mg             

2 21
(3sin ¬sin ) cos

4
Mg                …(6) 
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From (5), we observe that S = 0  when 
2

sin sin
3

   and S will be negative when this value of   is 

reached. Hence the end B leaves the wall when 
2

sin sin
3

   . 

Again from (6), we observe that R is always positive i.e. the end A never leaves the plane 

Further when the end B leaves the plane 
2

sin sin
3

    and S = 0 thus equations of motion (1), (2), (3) 

and (4) cease to hold good for further motion. 

Putting 
2

sin sin
3

    in (3), the angular velocity of the rod now becomes 

1/2

sin
2

g

a

 
 

 
, this will be 

the initial angular velocity for the next part of the motion. 

Second part of the motion. 

When the end B leaves the wall, let R1 be the normal reaction at A. Let the rod be inclined at angle   

to the horizontal. 

The equations of motion are 

0Mx            …(1) 

1M y R Mg            …(2) 

and 
2

1 cos
3

a
M R a             …(3) 

As 2sin , sin cosy a y a a         

 

Hence from (2) and (3), we get 

22
2

2

1
cos sin cos cos

3

d d g

dt dt a

     
           

    
      …(4) 

Integrating it, we get 

2

21 2
cos sin

3

d g
C

dt a

  
       

  
     …(5) 
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When 
2

sin sin , sin ,
3 2

d g

dt a

  
     

 
  

2sin 1 4 2 2
1 sin sin

2 3 9 3

g g
C

a a

  
         

 
  

or  
22 sin sin

1
9

g
C

a

  
  

 
. 

Hence from (5), we have 

2 2
21 2 sin sin 2

cos 1 sin
3 9

d g g

dt a a

     
        

    
.     …(6) 

When 0   i.e. when rod reaches the horizontal plane, let its angular velocity be Ω, then 

2 2
2 21 2 sin sin 3 sin

Ω 1 1 Ω 1 sin
3 9 2 9

g g

a a

      
          

     
.    …(7)  

 

Category-4:When rolling and sliding are combined.  

An imperfectly rough sphere moves from rest down a plane inclined at an angle α to the horizon, to 

determine the motion.  

Let C be the centre of sphere whose radius is a . Let in time t the sphere have turned through an 

angle 𝜃  

 i.e. let CB be a radius (a line fixed in the body) which was initially normal to the plane, makes an 

angle 𝜃 with the normal CA during this period. 

Let us suppose that the friction is not sufficient to produce pure rolling therefore the sphere slides as 

well as turns. So the maximum friction µR acts up the plane, μ being the coefficient of friction. Let x 

be the distance described by the centre of gravity C parallel to the inclined plane in time t, and 𝜃 the 

angle through which the sphere turns. 

As there is no motion perpendicular to the plane, so the C.G. of the sphere always moves parallel to 

the plane. The equations of motion are 

sinmx mg R    …(1)  0 = R – mg cos α …(2) 

And 22

5
m a Ra     …(3) 

Form (1) and (2), we have   sin cosx g       …(4) 

Integrating (4) w. r. t. ‘t’ we get   sin cosx g t      …(5) 
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Integrating (5) again, we get   
2

sin cos
2

t
x g      …(6) 

Constants or integration vanish as 0x  , x = 0  when t = 0 

From (2) and (3), we get 
5

cos
2

a g    

Integrating it, we get 
5

cos
2

a g t    

Integrating it again ,  we get 25
cos

4

g
t


   

The constants of integration varish as   = 0,   = 0 when t=0.   

The velocity of the point of contact A down the plane  

= velocity of C, the centre of sphere, + velocity of A relative to C x a   

 
5

sin cos cos
2

g t gt        
1

2sin 7 cos
2

g       …(8) 

Equation (8) gives rise to the following three cases: 

First case.  If  2 sin α >7µ cos α i.e. if µ  <  2/7 tan α. 

In this case, velocity of the point of contact is positive for all values of  t i.e. it does not 

vanish, hence the point of contact always slides down and the maximum friction µR acts. The sphere 

never rolls. The equations of motion established above govern the entire motion. 

Second case. If 2 sin α = 7µ cos α i.e. if μ = 2/7 tan α 

In this case velocity of the point of contact is zero for all values of t and therefore motion of 

the sphere is that of pure rolling throughout and the maximum friction µR is always exerted. 

Third case. 2 sin a < 7μ cos α i.e. if μ > 2/7  tan a 

In this case velocity of the point of contact is negative i.e. if the maximum. friction µR were 

allowed to act, the point of contact will slide up the plane which is impossible because that amount of 

friction will only act which is just sufficient to keep the point of contact at rest. Hence in this case the 

motion is of pure rolling from the very start and remains the same throughout and the maximum 

friction µR is not exerted. Therefore in this case the equations of motion established above do not 

hold good. 

Let F be the frictional force now in play, then equations of motion are 

sinmx mg F   …(9)  0 cosR mg    …(10) 

And 22

5
m a Fa   …(11) 

Because the point of contact is at rest, we have  

0x a x a        …(12) 
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From (9), (11) and (12) , we have 
5

sin
7

x a g    

Integrating above, we get  
5

sin
7

x a g t    

Again integrating above, we get 25
sin

14
x a gt    …(14) 

The constants of integration vanish as 0, 0x x  when t = 0 

Category-5: A uniform circular disc is projected with its plane vertical along a Tough horizontal 

plane with a velocity v of translation and an velocity Ω about the centre. Find the motion. angular 

Case I. When  , .v and v a    

In this case initial velocity of the point of contact P is given by v - aΩ, hence its direction is →as v > 

aΩ, so the friction µR acts in the direction ←. When the centre has moved through a distance x and  

is the angle through which the disc has turned the equations of motion are given by 

 

. .mx R mg i e x g        …(1) 

2

. . 2
2

a
m Ra mga i e a g       …(2) 

Integrating (1) and (2) and making use of initial conditions  

i.e. 0, ,t x vand we have x gt v       …(3) 

and 2a gt a        …(4) 

Now rolling commences when 0.x a  Let this happen after time t1 

Then 1 1 12 0 .
3

v a
x a gt v gt a or t

g
  



 
          

Putting this value of t1 in (3), we observe that at this time velocity of the centre i.e. 
2

3

v a
x

 
    

…(5) 

When rolling commences equations of motion reduce to  

mx F    and  
2

2

ma
Fa    …(6) 

Since there is no sliding, x a or x a    

Solving these equations, we have F = 0.  

Thus we observe that no friction is required throughout the motion for pure rolling, so equations for 

this motion are 
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0 . . 0mx i e x   and  
2

0 . . 0
2

a
m i e a    …(7) 

Integrating (7), we get 
2

tan
3

v a
x cons t


  , from (5). 

The disc therefore continues to roll with a constant velocity  
2

3

v a
 

which is less then its initial velocity. 

 Case II. when , .v and v a    

In this case initial velocity of the point of contant is 0,v a  so its direction is , hence friction 

µR acts in the direction →.  

Now the equations of motion are  

. .mx R mg i e x g      …(1) 

And 
2

. . 2
2

a
m Ra mga i e a g            …(2) 

Integrating these equations and making use of initial conditions to evaluate constants, we get 

x gt v   …(3) and  2a gt a      …(4) 

Pure rolling commences when 0,x a  let this happen after time t1 then from (3) and (4) ,  

1 12 0gt v gt a         or  1
3

a v
t

g


  

Putting this value of t1  in (3) , we get 
2

3

v a
x

 
  

When pure rolling begins, equations of motion are same as in case I by 

which F= 0, so the disc continues rolling with constant velocity 
2

3

v a
  

Case III when ,v    

In this case, initial velocity of the point of contact is ,v a  so its direction is →, hence µR acts in the 

direction ←.  

Equations of motion are 

mx R mg       i.e. x g   …(1) 

And 
2

2

a
m Ra mga       i.e.  2a g     …(2) 

Integrating these equations and making use of initial conditions to determine the constants, we get 

x gt v    …(3) and  2 _a gt a      …(4) 
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They velocity of the point of contact is x a   ( xand  are in the same direction). Pure rolling begins 

when  

0,x a  let this happen after time t1 then from (3) and (4), we get  

 1 1 12 0
3

v a
gt v gt a or t

g
 



 
         

2

3

v a
x a

 
   

If 2v > aΩ the velocity of the centre is positive, so the motion is of pure rolling with uniform velocity

2

3

v a 
 

If 2v < aΩ the velocity of the centre is negative (backward). In this case we observe from equation (3) 

that velocity of the centre becomes zero ν when 
v

t
g

  and at that time from equation (4) we observe 

that 

2 .a v a     which is positive since 2v <aΩ. Hence when 2v <aΩ, the disc begins to move backward 

before pure rolling begins. 

In other us we say that u > aΩ, the rolling will commence before the forward motion ceases.  

Category 6: 

 When two bodies are in contact; then to determine whether the relative motion involves sliding or 

rolling at the point of contact. Let P be the point of contact of a moving body placed over the other, 

assume that the initial velocity of the point of contact is zero. To find whether the relative motion is 

of sliding or rolling we make use of following two methods 

In the first method, assume that the body rolls and suppose F is the force of friction sufficient to keep P 

(the point of contact) at rest. Hence F is unknown. Again write the equations of motion along with the 

geometrical equation to express the condition that the tangential velocity of the point 

P is zero. Solve these equation and find  F/R 

In case F/R <μ, the necessary friction can be called into play to keep the point P at rest. Thus the body 

rolls and will remain so long as F/R ≤ μ, but when F/R >μ, the point of contact will slide. When this 

happens the 

R equations of motion discussed before will not hold good, and we apply the following method. 

In this method write the equations of motion on the supposition that the point of contact slids. i.e. the 

friction is µR instead of F and there is no geometrical equations. On solving these equations we find 

the tangential velocity of the point of contact P. In case this velocity is not zero and is in the direction 

opposite to the direction in which µR acts (µ has a proper sign), the body will slide at P and will remain 

so long as the velocity at P does not vanish, when velocity at P vanishes, we again apply the first method. 

Category 7: 

A sphere, of radius a whose centre of gravity G is at a distance c from its centre C, placed on a rough 

plane so that CG is horizontal; show that it will begin to roll or slide according as the coefficient of 

friction 
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axis through G; if u is equal to this value, what happens ? 

When CG is inclined at an angle to the horizontal, let A, the point of contact have moved through a 

horizontal distance x from its initial position O, and let OA = x. Assume that the sphere rolls and F be 

the force of friction sufficient for pure rolling. Since the motion is of pure rolling so x a  and the 

point of contact A is at rest 

x a   …(1) 

The coordinates of G (the centre of gravity) with reference to O the fixed point as origin and 

horizontal and vertical lines through O as coordinate axes are  cos , sin .x c a c    

Equations of motion of the sphere are  

   
2 2

2 2
cos cos

d d
F M x c M a c

dt dt
       

 2sin cosM a c c          …(2) 

 
2

2

2
sin cos sin

d
R Mg m a c M c c

dt
            …(3) 

And   2cos sinRc F a c Mk        …(4) 

We only want the initial motion when 0   and   is zero but is not zero.   

 The equations (2), (3), (4) then give 

2; ; .F ma R mg Mc Rc Fa Mk         for the initial values  

On eliminating R, and F, we get  
2 2 2

,
gc

k a c
 

 
then  

2 2 2

F ac
g

M k a c


 
and 

2 2

2 2 2 2 2
;

R k a F ac
g

M k a c M k a


 

  
 

The sphere will roll or slide according as  

2 2
. .

F ac
F or R or as i e or

R k c
      


 

Critical case.   If 
2 2

ac

k c
 


 In this case we shall consider whether F/R is a little greater or little less 

than µR when  is small but bot absolutely zero . 

From equation (1), (2) and (3) on eliminating F and R, we get 

 2 2 2 22 sin cos cosk a c ac ac gc          ...(4) 

Integrating it, we get  2 2 2 22 sin 2 sink a c ac gc       …(5) 
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As  is small, sin  can be replaced by  and cos   by unity, neglecting squares and higher powers 

of   sin  2 is also neglected.  

Thus (5) reduces to  2 2 2 2 2k a c gc     …(6) 

And then from (4),  
2

2 2 2 2 1
a

k a c ac gc
g




 
     

 
 

2 2 2

2
1

ac
gc

k a c

 
  

  
   [From (6)] 

Or  2 2 2

2 2 2 2 2 2

2 2
1 1

ac ac
k a c gc

k a c k a c

 


   
       

      
 

Or  
1

2 2 2

2 2 2 2 2 2

2 2
1 1

ac ac
k a c gc

k a c k a c

 




  
      

     
 

2 2 2 2 2 2

2 2
1 1

ac ac
gc

k a c k a c

   
    

     
 

2 2 2

2
1

ac
gc

k a c

 
  

  
 approximately  

From (1) and (2), we have 
  2

2

sin cos

cos sin

a c cF

M g c c

   

  

 


 
 

  2a c c

g c

  



 



 neglecting 

2 3,  etc. and also sin  
2  

 
 

2 2

2 2 2 2

3
1

k aac
c

k c a k a

 
  

   

  by putting the values of 
2and   as found above  

If  
2

2

3

a
k   then  F/R  is less than 

2 2

ac

k a
 

i.e.   F/R  is less than µ  or F < µR and the sphere rolls.  

If 
3

2

3

a
k  then 

2 2

F ac

R k a



i.e. 

F
or F R

R
   and the sphere slides.  

Category 8: One of the bodies fixed.  

A solid homogeneous sphere, resting on the top of another fixed sphere is slightly displaced and 

begins to roll down it. Show that it will slip when the common normal makes with the vertical an 

angle given by the equation 2 sin    5sin 3cos 2       where   is the angle of friction. 
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Also prove that the upper sphere will leave when 
1cos  (10/17). 

 Sol.  Let O be the centre of the fixed sphere whose highest point is A. Let CB be the position at any 

point t, of the radius of the upper sphere (moving sphere) which was originally vertical. 

So if P is the point of contact, then arc AP = arc BP 

. . ,i e a b then a b       …(1) 

where a and b are the radii of the lower and upper sphere respectively, and are the 

angle which the common normal OC makes with the vertical and CB, a line fixed 

in the moving sphere respectively. Let R and F be the normal reaction and the 

friction acting on the upper sphere. Since C describe a circle of radius (a + b)  

about O, its acceleration are (a+b) 2 and  a b  along and perpendicular to CO.  

Hence   2 cosm a b mg F     …(2) 

And   sinm a b mg F      …(3) 

Referred the O as the origin , the coordinates of the centre C are    { sin , cos }.a b a b    

This energy equation gives us  

   
2

2 2 21 1

2 2
m x y mk     work done by gravity  

      1 cosmg a b     

Or      
2

2 2 22
2 1 cos

5 5

b a b a
a b g a b

b
    

 
       

 
 

Or  
 

 2 27 2 10
1 cos 1 cos

5 7

g g
or

a b a b
      

 
 …(4) 

Differentiating w.r.t.   to ‘t’ and dividing by 2 , we get  

 
5

sin
7

g

a b
 


  …(5) 

From (2) and (4), we get  
10

cos 1 cos
7

g
R mg m     

 17cos 10
7

mg
    …(6) 

From (5) and (3), we get  
5 2

sin sin sin
7 7

F mg mg mg      

Hence the sphere will slip if    F = µR 
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i.e. if 
 17 cos 102

sin tan .
7 7

mg
mg


 


  

or  if  2sin cos 17cos 10 sin      

or  if  2(sin cos cos sin 5 3 cos 2 sin         

or  if    2sin 5sin 3 cos 2       

The upper sphere will leave the lower one when  R = 0 , hence from (6) 

(17 cos  -10) = 0 i.e.  1 10
cos

17
   
  

 
 

When both the spheres are smooth.  In this case F = 0,  so the energy equation becomes 

    
2 21

1 cos
2

m a b mg a b      

i.e. 
 

 2 2
1 cos

g

a b
  


 

Further equation (2) remains unchanged,  

   cos 2 1 cos 3cos 2R mg mg mg         

The upper sphere will leave the lower if R = 0 

i.e.   if   1 2
3 cos 2 0 cos

3
mg or    

    
 

. 

Category 9: 

A hollow cylinder, of radius a is fixed with its axis horizontal, in side it moves a solid cylinder, of 

radius b, whose velocity in its lowest position is given if the friction between the cylinders be 

sufficient to prevent any sliding, find the motion. 

Let C be the centre of the moving cylinder and let  be the angle which a line CB fixed in the moving 

cylinder makes with the vertical, a line fixed in space. Initially B coincided with A. Let a be the radius 

of the fixed cylinder whose centre is O and b that of the movable cylinder. 

Since there is no slipping between the two cylinders therefore arc AP = arc BP  

or  a     

or    ;b a b b a b       …(1) 

 

Let R and F be the normal reaction and friction at P. Since C describes a circle of radius  (a – b) about 

O, the equation of motion of the cylinder are   2 sinm a b R mg     …(2) 

And    sinm a b F mg     …(3) 
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The co-ordinates of C with respect to O as origin and the vertical and horizontal lines as axes through 

O are {(a - b) sinIO , (a - b) cos  }. 

(its velocity)2        
2 2 22 2 2 2 2 2 2cos sin .x y a b a b a b           So kinetic energy of the 

moving cylinder at any time 't' is 

   
2 2

2 22 2 2 2 2 21 1 1 1

2 2 2 2 2 2

b b
mk m a b m m a b k   

 
       

 
 

 
   

2

2 22 2 21 1 3

2 2 2 4

a b
m a b m a b  


     

       { 1 }b a b from     

Kinetic energy at the time of projection  
2 23

4
m a b    

      ( )initially   

Therefore equation gives  

      
2 22 23 3

1 cos
4 4

m a b m a b mg a b          

i.e.       
2 22 2 4

1 cos
3

a b a b g          

Differentiating (4) w.r.t.  and dividing be 2 , we get  

 
2

sin
3

f a b g      …(5) 

Again from (2)    2cosR mg m a b     

     2 3
cos 1 cos

4
mg m a b mg        from (4) 

Or     2 7 cos 4
3

mg
R m a b       

From (3),  
2

sin sin sin
3

F mg m a b mg mg         from (5) 

Or  
1

sin
3

F mg     …(7) 

Case 1.   

In order that the cylinder may roll down completely, R should be zero at the highest point.  

i.e. R = 0  when  =  

   
 

2 1 11
0 7 4 [ ]

3 3

g
m a b mg or

a b
        


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Case 2. 

The moving cylinder will leave the fixed cylinder if  

   2 1
0 . . 7cos 4 0

3
R i e m a b        

  24 3
cos

3 7
g a b

g


 
    
 

 

  21
cos [4 3 ]

7
g a b

g
      

This gives the position when the two bodies separate.  

Case 3. 

If the rolling cylinder makes small oscillations about the the lowest point of the fixed cylinder, then   

is always small, hence equation (5) gives on taking for sin  

 
2

3

g

a b
 





 

Hence time of small oscillation is 

 

 
1/ 2

1/ 2

32
2

22

3

a b

gg

a b



  

  
   
 

 
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Example:- A uniform solid cylinder is placed with tits axis horizontal on a plane, whose inclination to 

the horizon is  , show that the least coefficient of function between it and the plane, so that  it may 

roll and not slide, is 
1

tan
3

 . If the cylinder be hollow, and of small thickness, the least value is 
1

tan
2



. 

Solution:-  At any time t , let the axis of the cylinder describe is distance x  and   be the angle turned 

Arguing as in 3.04, we have x a     [  there is no sliding] 

 Also the equations of a C.G. are given by 

2

2
sin

d x
M M g F

dt
     (1) 

 And 0 cosM g R          

 (2) 

 Again taking moments about the axis through G, the centre of gravity of the body, we have  
2 2 2

2

2 2
.

d k d x
M k F a M F a

d t a dt


           (3) 

Whence elimination of 

2

2

d x
M

dt
 in between (1) and (3), we get  

 
2 2

2 2
sin sin

k k
M g F F a F M g

a a k
     


    (4) 

But cosR M g           (5) 

  For pure rolling 

2

2 2
tan

F k

R a k
  


 

 But when cylinder is solid, we have 

2

2 2

2 2

1
1 2, tan

12

2

a

k a

a a

   



 

 In case of hollow cylinder, we have 

2
2 2

2 2

1
, tan tan

2

a
k a

a a
     


 

 

Example:- A cylinder rolls down a smooth plane whose inclination to the horizontal is  , unwrapping, 

as it goes, a fine string fixed to the highest point of the plane ; fine its acceleration and the tension of 

the string. 

Solution:- When the cylinder has rolled down a distance x  along and plane, let T be the tension in the 

string and in this time (say t ), let  be the angle turned by the cylinder, then as the string is tight, the 

motion is of pure rolling i.e. arc BP OB x a        (1) 
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  x a  and x a  equations of motion of the centre of gravity of the cylinder are 

2

2
sin

d x
M M g T

dt
         (2)  

and 

2

2
0 cos

d y
M M g R

dt
         (3) 

 Now taking moments about the centre, we have 
2M k T    i.e. 

21
.
2

M a T a     

Or 
1

2
M x T   [ x a ]      (4) 

  (5) and (2), gives 
3

sin
2

M x M g   i.e. 
2

sin
3

x g   

  
1 1 2 1

sin sin
2 2 3 3

T m x M g M g 
 

   
 

 

 

Example:- A circular cylinder, whose centre of inertia is at a distance c  from axis, rolls on a horizontal 

plane. If it be just started from a position of unstable equilibrium. Show that the normal reaction of the  

plane when the centre of mass is in its lowest position is 
 

2

2 2

4
1

c

a c k

 
 

   

 times its weight, where 

k  is the radius of gyration about an axis through the centre of mass. 

Solution:- Initially the point of contact P of the cylinder was at O  when its centre of gravity was 

vertically  above the centre of the figure. 

 
 At any time t  let the radius through G  turn through an angle  . 

Referred to O  as origin and horizontal and vertical line as axes, the co-ordinates  ,x y  of G  

fiven by sin , cosx a c y a c       

       CG c  

Equations of motion of C.G. are  
2 2

2 2
sin

d x d
m m a c F

dt dt
       (1) 

And  
2 2

2 2
cos

d y d
m m a c R m g

dt dt
          (2) 

Also energy equations gives 
2 2 2 21

2
m x y k 
  

    
  

 work done by the forces i.e. 

2
1

cos sin
2

m a c c    
    

      
    

  2 21
cos

2
mk m g c c     
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Let   be the angular velocity when G  is in its lowest position i.e.    when   ; thus 

we have  
 

2 2 2 2

22

1 4
2

2

gc
m a c k mgc

k a c
      

   
 

Now (2) gives 
2sin cosR mg mc  

 
   

 
 

 
2cos .mg mc     

   (Since in the lowest position ;     ) 

 
   

2

2 22 2

4 4
1

cg c
mg mc mg

k a c k a c

 
     

     

 

 

Example:- Two equal cylinders, of mass m , are bound together by an elastic string, whose tension is 

T, and roll with their axes horizontal down a rough plane of inclination  . Show that their acceleration 

is 
2 2

sin 1
3 sin

T
g

mg






 
 

 
, where   is the coefficient of friction between the cylinders.  

Solution:- Let 1 1,R F  be the normal reaction and friction on the upper cylinder and 2 2,R F  be the normal 

reaction and friction on the lower cylinder due to the plane. Let S  be the normal reaction between the 

two cylinders at P . The force S  acts away from the plane for upper cylinder and towards the plane 

for the lower cylinder. 

  
At any time t  let the cylinders move through a distance z  along the plane, and  be the angle 

turned by them z a z a a            (1) 

 Equations of motion of the upper cylinder are given by 1sin 2m z mg T F S     (2)  

  10 cosR mg S           (3) 

 And 
2

1mk F a S a             (4) 

 Whereas the equations of motion for the lower cylinder are given by  

2sin 2m z mg T F S            (5) 

20 cosR mg S            (6) 

And 
2

2mk F a S a             (7) 

Comparing (4) and (7),  we have 1 2F F  

Subtracting (2) from (5), we have 2S T       (8) 
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Also from (4), 

2

1

mk
F S

a
   , where 

2 2k a  

 
1 1

sin 2 2 2
2 3

m z mg T m z T T 
 

      
 

  2S T  

Or 
2 2

sin 1
3 sin

T
z g

mg






 
  

 
 

 

Example:- A uniform rod is held at an inclination   to the horizon with one end in contact with a 

horizontal table whose coefficient of friction is  , if it be then released show that it will commence to 

slide if 
2

3sin cos

1 3sin

 




 
  

 
 

Solution:- Let AB be the rod having length 2a  and mass m . Let F be the force  

 Equation (3) can also be obtained by taking moments about G, then  
2

2sin cos sin
3

a
M Ra Fa Mg Ma         [From (1) and (2)] 

Or 
3

sin
4

g

a
   

Multiplying by 2  and integrating, we get 
2 3

cos
2

g
C

a
     

When  23 3
0, 0 1 cos

2 2

g g
C

a a
           of friction sufficient to prevent 

sliding and R the normal reaction. With reference to point A as the origin, the coordinated of 

point G i.e. C.G. ae  cos , sina a  , the coordinates of point G, before the motion begins 

are  cos , sina a  . 

Thus the vertical distance moved by the C.G. is  sin sina a  . 

      

Equations of motion of C.G. are 

2

2
cos sin

d x
m m a a F

dt
 

 
    

 
  (1) 

And 

2
2

2
sin cos

d x
m m a a R mg

dt
 

 
     

 
     (2) 

The equation of energy given  2 2 2 21 1
sin sin

2 3
m x y a mg a a  
  

     
  

 

   2 2 2 21 1
sin sin

2 3
m a a amg   
 

   
 
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    2 22
sin sin

3
a ga      2 3

sin sin
2

g

a
         (3) 

 Differentiating (3) w.r.t. to t , we get 
3

cos
4

g

a
 


      (4) 

 Putting the value of 
2  and   from (3) and (4) in (1) and (2), we  

 
3 3

cos . sin sin sin cos
2 4

g g
F m a a

a a
    

   
      

  
 

 
3 3

cos 3sin 2sin cos sin
4 4

mg mg       ,   when    

and   
3 3

sin . sin sin cos cos
2 4

g g
R mg m a a

a a
    

   
       

  
 

2 21
4 6sin sin 6sin 3cos

4
mg           

  21
4 3cos

4
mg   , when    

    2 21 1
1 3 1 cos 1 3sin

4 4
mg mg      

   

 The end A will commence to slide if 
F

R
   i.e. 

2

3sin cos

1 3sin

 






. 

 

Example:- The lower end of a uniform rod, inclined initially at an angle  the horizon is placed on a 

smooth horizontal table. A horizontal force is applied its lower end of such a magnitude that the rod 

rotates in vertical plane with constant angular velocity  . Show that when the rod is inclined at an 

angle  to the horizon the magnitude of the force is 
2cot cosmg ma    where m  is the mass of 

the rod. 

Solution:- Let the horizontal force applied at the lower end A of the rod be F. Let at any time ,t   be 

the angle that the rod makes with the horizontal. Since the rod rotate with a uniform angular velocity 

     (constant) 

  0           (2) 

 
 The equation of motion of G along the vertical  

   
2

2

2
sin sin cos

d
R mg m a ma

dt
  

 
     

 
 

 
2sin .ma     from (1) and (2)     (3) 

 Since the end A is not fixed, the equation of horizontal motion of C.G. is not written . 

 Again taking moments about G, we have  
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2 sin cos cotmk Fa Ra F R          { 0   from (2)} 

   2sin . cotF mg ma      from (3) 

  
2cot cosF mg ma     

 

Example:- A rough uniform rod, of length 2a , is placed on a rough table as right angles to its edge: if 

its centre of gravity by initially at distance b  beyond the edge, show that the rod will being to slide 

when it has turned through an angle 

2

2 29

a

a b




 where  is the coefficient of friction.  

Solution:- Initially the rod was at right angles to the edge of the rough table, now it has turned through 

an angle  . Let there be no sliding when the rod has turned through this angle. A and R be the normal 

reaction and the force of friction on the rod. Acceleration of G along and perpendicular to GO  are 

respectively 
2b  be b . Equations of cosmb mg R        (1) 

 And 
2 sinmb F mg          (2) 

       
 Taking moments about O , the point contact of the rod and table, we have  

2
2 2cos , cos

3

a
mk mg b m b mg b   

 
    

 
 

  
2 2

3
cos

3

gb

a b
 


         (3) 

 Multiplying (3) by 2  and integrating , we get 
2

2 2

6
sin

3

gb

a b
 


  

The constant of integrating vanishes as initially when 0, 0   . Putting the values of   

and 
2  in (1) and (2) from (3) and (4), we have  

2

2 2 2 2

3
. cos cos cos

3 3

bg mga
R gb mg

a b a b
     

 
 and  

2 2

2 2 2 2

6 9
sin sin sin

3 3

gb a b
F mg mb mg

a b a b
  


  

 
 

The sliding commences when F R  i.e. when 

2 2 2

2 2 2 2

9
sin cos

3 3

a b mg a
mg

a b a b
  


 

 
 or 

when 

2

2 2
tan

9

a

a b


 


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Example:- A uniform rod of mass m , is placed at right angle to a smooth plane of inclination  , with 

one end in contact with it. The rod is then released. Show that when the inclination to the plane is  , 

the reaction of the plane will 
 

 

2

2
2

3 1 sin 1
cos

1 3cos
mg






 


 

Solution:- As there is no force acting the plane, so initially there is no motion along the plane. The C.G. 

i.e. point G moves perpendicular to the plane.  

Let  be the angle which the rod makes with the plane after time t , Taking A as the origin, the 

plane as x-axis and a line perpendicular to the plane as y-axis, the co-ordinates of G are 

cosx a  , siny a   

 

 Equation of motion of point G are 
2cos sin cosm y m a a R mg  

 
    

 
 (1) 

 And 

2

, cos
2

a
m R a           (2) 

 Also from energy equation, we have 

2
2 2 2 21 1

cos
3 2 3

ma
ma       work done by gravity  

  cos 1 sinmg a     or 
 

 
2

2

6 1 sin
cos

1 3cos

g

a


 







    (3) 

 Differentiating (3) w.r.t. t , we get  

 
 

 

 2 2

6cos sin 1 sin3 cos cos

1 3cos 1 3cos

g

a

   
 

 

 
  

   

 

 
 

 

2

2

3 1 sin 13
cos cos .

1 3cos

g

a


  



  
  

  

 or 
 

 

2

2
2

1 3 1 sin3
cos cos

1 3cos

g

a


  



  
  
 
 

 

 Putting the value of   in (2), we get 
 

 

2

2
2

3 1 sin 1
cos

1 3cos
R mg






 



 

 

Example:- A uniform rod is held nearly vertically with one end resting on an imperfectly rough plane. 

It is released from rest and falls forward. The inclination to the vertical at any instant is  . Prove that  

(i) If the coefficient of friction is less than a certain finite amount, the lower end of the rod will 

slip backwards before  2 1
sin / 2

6


 
  
 

 

(ii) However great the coefficient of friction may be, the lower end will being to slip forward 

at a value of  2sin / 2  between 
1

6
 and 

1

3
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Solution:- (i) Proceeding in the same way as in 3.05, we get  
3

sin 3cos 2
4

F Mg     and 

 
21

1 3cos
4

R mg   . Obviously 0F   if sin 0   or 3cos 2 0    i.e. if 0   or 
2

cos
3

 

i.e. if 0  m or  2 2
1 2sin / 2

3
   or  2 1

sin / 2
6

  .  

The value of F  is positive when   takes all intermediate value between 0  and 

1 2
cos

3
   and is continuous function of  , hence between these two values of   where F  

vanishes, F  has a maximum value for some  . Let 1F  be the maximum value. We observe 

that for 
1 2

0 cos
3

    the value of R Mg . 

Thus there is a finite value of   for which 1F R  and therefore for this value of  , sliding 

will take place before 
1 2

cos
3


 i.e. before 

2 1
sin

2 6


 . Since F is positive (in the forward 

direction) hence the slipping will start in the backward direction. 

(ii)   We observe from the value of F that if cos 3 / 2  , F changes its sign. i.e. the direction of 

the friction is reversed if  
3

' 2 3cos
4

F F m g      

 Now the slipping may start when 'F R  

 i.e. when    
2

3sin 2 3cos 1 3cos           (1) 

As   increases from 
1 2

cos
3


 to 

1 1
cos

3


, the term on the left hand side increases while the 

right hand side term decreases from 1 to 0. Therefore, for some value of   between 
1 2

cos
3



and 
1 1

cos
3


i.e. for  2sin / 2  between 

1

6
and 

1

2
the condition (1) is satisfied and the slipping 

will then start in the forward direction. 

 

Example:- A uniform rod is placed with one end in contact with a horizontal table, and is then at an 

inclination   to the horizon and is allowed to fall, when it becomes horizontal, show that its angular 

velocity is 

1/2
3

sin
2

g

a


 
 
 

 whether the plane is perfectly smooth or perfectly rough. Show also that the 

end of the rod will not leave the plane in either case. 

Solution:- Let at any instant t  the rod makes an angle   with the horizontal. Let R  and F  be the 

normal reaction and friction at the instant with O  as origin the co-ordinates of C.G. are cosx a  , 

siny a  . 
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Case I:- When plane is  perfectly rough and O  is fixed. 

 Then energy equation given 
2 2 2 21

2 2
m x y mk 

  
   

 
 work done by gravity 

  2 2 2 21 1
sin sin

2 3
m a a mga   
 

   
 

 

  2 3
sin sin

2

g

a
          (1) 

When the rod becomes horizontal i.e. when 0  , the angular velocity    (say) is given 

by 
2 3

sin
2

g

a
   or 

1/2
3

sin
2

g

a
 

 
  
 

 

Differentiating (1) w.r.t ' 't  we get 
3

cos
4

g

a
 


    (2) 

The equation of motion of C.G> is  
2

2

2
sin sin cos

d
R mg m a ma

dt
  

 
     

 
 

   
3 3

sin . sin sin cos cos
2 4

g g
R mg ma

a a
    

  
       

  
 

 [Substituting use values of 
2  and   from (1) and (2)] 

  2 21
4 6sin sin 6sin 3cos

4
mg         

  
2 2 2 21

1 3sin sin 9sin sin 9sin
4

mg         
 

 

   
2 2 21

1 3sin sin 9sin 1 sin
4

mg        
 

 

 
2 2 21

1 3sin sin 9sin cos
4

mg       
 

 

This is show that R  is always positive, therefore the end O  of the rod never leaves the plane. 

 

Case II:- When the plane is perfectly smooth.  

In this case there is no horizontal forces, hence C.G. descends in  a vertical line i.e. the only 

velocity of G being along the vertical direction sin ,y a   cosy a   

The energy equation give 
2 2 21 1

2 2
m y mk    work done by gravity i.e. 

 2 2 2 2 21 1
cos sin sin

2 3
m a a mg a a   
 

   
 

 or  
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 2 2 1 2
cos sin sin

3

g

a
   

   
     

   
, when the rod becomes horizontal i.e. when 0  , 

the angular velocity    (say) is given by  

1/2

2 21 2 3 3
1 sin sin sin

3 2 2

g g g

a a a
     

   
        

   
 

This gives the required result in the case of plane being smooth. 

Differentiating (1), we have  

2 21
cos sin cos cos

3

g

a
     
   

      
   

 

  
  2

2

2 / sin sin1
cos sin cos cos

13
cos

3

g a g

a

 
    



 
    

       
    

 

 

  

2

2 21 4
cos cos sin 2sin sin

3 3

g

a
     
     

         
     

 

    
2 21

/ cos sin sin cos
3

g a    
 

     
 

    (3) 

 Again taking moments about G , we have 

2

cos
3

a
m Ra    or 

1
sec .

3
R a m    

  

 
2 2

2

2

1
sin sin cos

3

3 1
cos

3

mg
R

  



 
   
 
  

  
  

 from (2) by putting the value of   

  
 

 

22

2

1 3cos 3 sin sin

1 3cos
R mg

  



   
  

  

 

We observe that R  is positive for every value of   and  . Hence the end never leaves the 

plane. 

 

Example:- A heavy rod, of length 2a  is placed in a vertical plane with its ends in contact with a rough 

vertical wall and an equality rough horizontal plane, the coefficient of friction being  tan . Show that  

it will being to slip down if its initial inclination to the vertical is grater that 2 . Prove also that the 

inclination  of the rod to the vertical at any time is given by  

   2 2 2 2 2cos sin 2 sin 2k a a ag            

Solution:- Let AB  be the rod of length 2a and mass m . When AB  makes an angle   with the vertical 

and let R  and S  be the resultant reactions at B  and A  respectively 

 Writing equation of motion of centre of mass G, we have  

 
2

2
sin sin cos

d
m a S R

dt
           (1) 

And  
2

2
cos sin cos

d
m a R S mg

dt
          (2) 
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 Taking moments about G, we have    2 sin cosmk Sa Ra         (3) 

 From (2), we have 
2cos sin cos sinma R S   

 
   

 
   (4) 

 From (2), we have 
2sin cos sin cosma mg R S   

 
    

 
  (5) 

 On solving equations (4) and (5), we have  

     2sin cos sinR mg ma ma               (6) 

     2cos sin cosS mg ma ma               (7) 

 Putting the values of R and S in (3), we have  

      2 2sin cos sin cosmk a mg ma ma         
 

      
 

 

       2cos sin cos sina mg ma ma        
 

      
 

 

   2 2 2sin 2 cos 2 sin 2 ]m ga ma ma          

 Or    2 2 2 2cos 2 sin 2 sin 2k a a ag         , which gives  . 

 If 2  , it is obvious that   is positive and hence  the rod start slipping if 2  . 

Example:- A hoop is projected with velocity V down on inclined plane of inclination  , the coefficient 

of friction being  tan  . It has initially such a backward spin   that after a time 1t  it starts 

moving uphill and continues to do so for a time 2t  after which it once more descends. The motion being 

in a vertical at right angles to the  given inclined plane, show that  1 2 sint t g a V   . 

Solution:- Let C  be the centre of the hoop and CB  its radius (a line fixed in the body) makes an angle 

  with CA  which is normal to the plane ( CA  is a line fixed in space), after time t . Initially CB  was 

normal to the plane. Initially the velocity of the  point of contact A down the plane = velocity of centre 

C   velocity of A relative to C V a   , which is a positive quantity 

 Hence the point of contact slides down and friction R  acts up the plane. 

 The equations of motion are sinm x mg R       (1) 

 0 cosR mg           (2) 
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 And 
2ma Ra           (3) 

 From (1) and (2), we have  sin cosx g     , integrating it, we get  

  sin cosx g t     constant when , 0x V t  .  constant V  

     

 Therefore  sin cosx g t V           (4) 

From (1) and (3), we get cosa g    , integrating it, we get cosa gt      

constant; when ,t        Constant a   

Therefore cosa gt a            (5) 

The hope will cease to move downwards, when 0x  i.e. from (4), 

 
 

1
cos sin

V
t

g   



      (6) 

Obviously the velocity of the point of contact is x a , even when 0x  , for the hoop to 

move uphill a  should be positive. It follows that throughout the downwards motion x a

is always positive. Therefore when moving downwards pure rolling does not take place. Thus 

the equations established above are true throughout the downwards motion. 

Putting the value of 1t  from (6) in (5), we get  

 
 

cos

cos sin

V
a a

 


  
 


 since a  is positive, the hoop beings to move uphill. 

When the hoop starts moving uphill. The initial velocity of the centre is zero and a  is 

positive with the sense of the direction as  . 

 Initial velocity of the point of contact 0 a   which is negative  

Thus initially the velocity of the point of contact is in the downwards direction 

sinm y mg R           (1) 

0 cosR mg          (2) 

2ma Ra         (3)
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On eliminating R , we get  cos siny g    and cosa g a    integrating these two 

equations, with the initial condition, we get  

  cos siny g t         (4) 

And 
cos

cos
cos sin

V
a gt a

 
  

  
  


    (5) 

[  when 
cos

0, 0,
cos sin

V
t y a a

 


  
   


] 

Rolling commences when the velocity of the point of contact is zero i.e. 

0y a y a      

   
cos

cos sin ' 'cos
cos sin

V
g t gt a

 
    

  
    


 

   
cos

' 2 cos sin
cos sin

V
gt a

 
  

  
  


 

 This gives value of 't  

  At this time  ' cos siny gt      from (4) 

 

When Rolling commences:- Equations of motion are sinm z F mg     (1) 

 
2ma Fa            (2) 

 And 0z a          (3) 

 Solving these equations, we get 
1

sin
2

F mg  . 

 Since tan tan cos sinR mg R mg            

We observe that F R , so the condition of pure rolling is satisfied, and hence the equation 

of motion holds good for the motion. 

From (1), we have 
1

sin sin sin
2

m z F mg mg mg      i.e. 
1

sin ;
2

z g    

integrating it, we get 
1

sin
2

z gt K    when 0t  ,  ' cos sinz y gt      , 

 ' cos sinK gt      . Therefore  
1

sin ' cos sin
2

z gt gt        

The hoop ceases to move up the hill if 0z  . Let this happen after time "t  

   
1

0 "sin ' cos sin
2

gt gt        

 Or 
 cos sin '

" 2

sin

t
t

  




  

  
 

2

cos sin 2 cos sin
' " ' 2 ' '

sin sin
t t t t t t

     

 

  
      

 
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 

2 cos sin 1 cos
.

sin 2 cos sin cos sin

V
a

g

    

      

  
    

    
 

 
1 cos

sin cos sin

V
a

g

 

   

 
  

 
 

 Hence the total time is 1 2t t  

 
 

1 cos

cos sin sin cos sin

V V
a

g g

 

      

 
   

  
 

  
1 cos sin 1

tan cos sin sin

V V
a a V

g g

  

    

 
    

 
 

 Or  1 2 sint t g a V   . 

 

Example:- A sphere, of radius a is projected up an inclined plane with a velocity V  and angular velocity 

 in the sense which would cause it to roll up V a  , and the coefficient of friction 
2

tan
7

 ; show 

that the sphere will cease to ascend at the end of a time 
5 2

5 sin

V a

g 

 
 where  is the inclination of the 

plane. 

Solution:- Let C be the centre of the sphere and CB a radius which is a line fixed in the body makes 

an angle  after time t with CA  normal to the plane CA is a line fixed in space. Initial CB  was normal 

to the plane. Initial velocity of the point of contact A  up the plane 

 = Velocity of the centre C   velocity of A relative to C . 

 0V a     as V a   

       
 Hence the friction R  acts down the plane, implying that the sphere slides as well as turns. 

 Equation of motion are sinm x mg R        (1) 

 0 cosR mg           (2) 

 And 

22
,

5

a
m Ra          (3) 

 Eliminating R  from (1) and (2), we have  sin cosx g       integrating it, we get  

  sin cosx g t K       

 Now when 0, ,t x V K V     

 Therefore,  sin cosx g t V          (4) 
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Similarly, we have 
5

cos
2

a gt   , integrating it with initial conditions i.e. when 

0,t    , we get 
5

cos
2

a gt a          (5) 

The velocity of the point contact x a  . Rolling commences, say after time 1t  when 

0x a   or   1 1

5
sin cos cos 0

2
g t V gt a


           

Or 
 

1

2 2

7 cos 2sin

V a
t

g   

 



 

Putting this value of 1t t in (4), we get 

 
 

2 2
sin cos

7 cos 2sin

V a
x V g

g
  

  

  
    

 
 

 
 

1

5 cos 2 sin cos

7 cos 2sin

V a
V

    

  

  
 


 (say) 

When rolling beings i.e. when  the point of contact has been brought to rest, let F  be the 

friction which is sufficient for pure rolling. Because the point of contact is at rest, so friction 

will try to keep it at rest if possible, hence the friction F  acts upwards. 

Equations of motion are sinm y mg F        (1) 

And 

22
.

5

a
m Fa           (2) 

Since throughout the motion the point of contact is at rest so 0y a   or y a   

y a   

Solving equations (1) and (2), we get 
2

, sin
7

F mg   

Again 
2

. cos tan . cos
7

R mg mg       i.e. 
2

sin
7

mg   

Therefore the condition F R  is satisfied. 

Putting the value of F  in (1), we get 
5

sin
7

y g    

Integrating it with initial conditions i.e. when 0t  , 1y V , we get 1

5
sin

7
y gt V   . 

The sphere will ceases to ascend when 0y  , let this happen after time 2t . 

  2 1

5
0 sin

7
gt V    or 1

2

7

5 sin

V
t

g 
   

  The total time of ascent 1 2t t   

 
 

2 2

7 cos 2sin 5 sin

V a

g g   

  
 



 5 cos 2 sin cos

7 cos 2sin

V a    

  

   
 

 
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   

 

10 sin 35 cos 14 sin cos

5 sin 7 cos 2sin

V a V a

g

     

   

     



 

 
   

 

5 7 cos 2sin 2 7 cos 2sin

5 sin 7 cos 2sin

V a

g

     

   

   



 

 
5 2

5 sin

V a

g 

 
 . 

 

Example:- If a sphere be projected up an inclined plane, for which 
1

tan
7

  , which velocity V  

and an initial angular velocity  (in the direction in which it would roll up), and if V a   show that 

friction acts downward at first and upwards afterword’s, and prove that the whole time during which 

the sphere rises is 
17 4

18 sin

V a

g 

 
 

Solution:- Let C  be the centre of the sphere and CB  a radius which is a line fixed in the body makes 

an angle   after time t with CA , the normal to the plane ( CA is a line fixed in the space). Initially CB
was normal to the plane. 

Initial velocity of the point of contact A up the plane 

   Velocity of the centre C  velocity of A relative of C  

 0V a    , since V a  . 

 
Hence the velocity of the point of contact A is up the plane, thus the friction R  acts down the 

plane. The sphere therefore slides as well as turns. 

Equations of motion are sinm x mg R          (1) 

0 cosR mg            (2) 

And 

22

5

a
m Ra           (3) 

Eliminating R from (1) and (2), we get  

 
1

sin cos sin tan . cos
7

m x mg mg mg mg            

 
8 1

sin tan
7 7

mg   
 

    
 

 or 
8

sin
7

x g    

Similarly, we have 
2 1 1

tan cos sin
5 7 7

a
m R mg mg        or 

5
sin

14
a g   (5) 
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Integrating (4) and (5) with initial conditions i.e. when 0,t x V   and    , we get 

8
sin

7
x gt V           (6) 

And 
5

sin
14

a gt a            (7) 

Let the velocity of the point of contact i.e. x a  be zero after time 1t (then the point of contact 

is brought to rest) i.e. 0x a x a      

  
1

8 5
sin sin

7 14
gt V gt a       (Putting the values of x  and  ) 

  
 

1

2

3 sin

V a
t

g 

 
 . Putting this value of 1t  in (6), we get

  1

16 5 16

21 21

V a
x V V a V

 
       (say) 

When the point of contact has been brought to rest, the pure rolling will commence if there is 

enough friction to keep the point of contact at rest. Let F be the force of friction sufficient for 

pure rolling. Equation of motion are 

22
sin ,

5

a
m y mg F m Fa      . Also 0y a 

. 

Solving these equations,  we get 
2

sin
7

F mg   while 

1 1
tan cos sin

7 7
R mg mg     . 

Hence we observe that F R   

From this we conclude that the friction required for pure rolling is more than the maximum 

friction that can be exerted by the plane, so the pure rolling is impossible.  

Inspite of exerting the maximum friction R  upwards, the friction cannot keep the point of 

contact at rest. Hence the sphere as well as turns. 

The equations of motion we sinm y mg R        (i) 

0 cosR mg      (ii) and 

22

5

a
m Ra     (iii) 

i.e. 
1 6

sin tan . cos sin
7 7

m y mg mg mg         

 1

6
sin

7
y gt V     

The sphere will cease to ascend when 0y  , let this happen after times 2t . 

  2 1

6
0 sin

7
gt V    or  2 17 / 6 sint V g   

 Hence the whole time of ascent
 

1 2

2 7 5 16

3 sin 6 sin 21

V a V a
t t

g g 

    
     

 
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 12 5 16 17 4

18 sin 18 sin

V a V a V a

g g 

      
  . 

 

Example:- An inclined plane of mass M  is capable of moving freely on a smooth horizontal plane. A 

perfectly rough sphere of mass m  is placed on its inclined face and rolls down under the action of 

gravity. If y  be the horizontal distance advanced by the inclined plane and x  the part of the plane over 

by the sphere, prove that   cosM m y mx   , and 
27 1

cos sin
5 2

x y a gt   m, where   is the 

inclination of the  plane to the horizon. 

Solution:- There are two accelerations of the centre C , one x  down the plane and other y  in a 

horizontal direction. 

 The actual acceleration of C  parallel to the plane cosx y    

     

 Equations of motion of the sphere are cos sinm x y mg F 
 
   

 
   (1) 

 sin cosm y mg R           (2) 

 And 

22

5

a
m Fa           (3) 

 Since it is a case of pure rolling x a x a         (4) 

 Equations of motion of the plane is given by sin cosM y R F      (5) 

 From (1) and (3) on adding, we have  

 
7

cos sin
5

x y g    {from (4) x a x a    } 

 Integrating above, we get 
7

cos sin
5

x y gt    

 Integrating again 
27 1

cos sin
5 2

x y gt    

 The constants of integrating vanish initially all , ,x y x  and y  are zero. Equations (5) is  

sin cosM y R F    

 cos sin sin cos sin cosmg m y m x m y mg     
   

       
   

 

  [Putting the values of  F  and R  from (1) and (2)] 
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 Or  2 2cos sin cosM y m y m x       

 cosm y m x     

    cosM m y m x    

 Integrating, we get   cosM m y m x    

 Again integrating, we get   cosM m y mx   . 

 The contants of integrating vanish as initially , ,x y x  and y  are all zero. 

 

Example:- A uniform sphere, of radius a, is rotating about a horizontal diameter with angular velocity 

  and is gently on a rough plane which is inclined at an angle  to the horizontal, the sense of rotation 

being such as to tend to cause the sphere to move up the plane along the line of greatest slope. Show 

that, if the coefficient of friction be tan , the centre of the sphere will remain at rest for a time 

2

5 sin

a

g 


 and will then move downwards with acceleration 

5
sin

7
 . If the body be a thin circular hoop 

instead of sphere, show that the time is 
sin

a

g 


 and the acceleration 

1
sin

2
g  . 

Solution:- The sphere before being placed gently on the inclined plane rotating with an angular velocity 

  about the horizontal diameter. Hence initially the velocity of the centre is zero. 

The sense of rotation at the time of placing the sphere on inclined plane is such that it tends to 

cause the sphere to move up the plane, that means sense of   is as shown in the figure. The 

initial velocity of the point of contact A down the plane  

  Velocity of the centre C   velocity of A relative to C . 

0 a   , which is a positive quantity. 

  
Hence the initial velocity of the point of contact is down the plane, so the friction R  acts up 

the plane. 

  Equation of motion are sinm x mg R        (1) 

 0 cosR mg           (2) 

 And 
2mk R           (3) 

 Where tan   

 Eliminating R  from (1) and (2), we get  

 sin tan , cos 0 0 0m x mg mg x x            (4) 

 From (2) and (3), we get (Initially when 0, 0t x  ) 
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 2 tan cos sinmk mg a mga        or 
2 sink ga     

Integrating it, we get 
2 2sink gat k      

From equation (4) and (5), we observe that the centre of the sphere does not move at all, but 

the sphere goes on revolving. 

The sphere will cease to rotate when 0   

  From (5), we get 
20 singat k     or 

2

sin

k
t

ga 


  

For sphere 
2 22

5
k a , and for the hoop 

2 2k a , hence the sphere will remain at rest for a time 

2

5 sin

a

g 


 and for the hoop this time will be 

sin

a

g 


. 

Now when x  and a  become zero, the velocity of the point of contact x a
 
 

 
 becomes 

zero, therefore pure rolling may commence provided the friction is sufficient for pure rolling. 

Let F be the value of friction sufficient for pure rolling. 

The equation of motion are sinm y mg F     (i) 

2mk Fa   … (ii) and 0y a    (iii) 

As 0y a y a y a         

Solving (i) and (ii) with the help of (iii) we get 
 2 2

sin

1 /

mg
F

a k





 which obviously less than 

sinmg  . 

When F R , the rolling continuous and the equations (i), (ii) and (iii) hold good. 

From (ii) we get 
 

2

2 2

sin

1 /

ag
k

a k


 


 or 

 

2

2 2

singa
y

a k





  ( a y  ) 

Putting 
2 22

,
5

k a y  i.e. acceleration in case of sphere is 
5

sin
7

g   

Putting 
2 2 ,d a y  i.e. acceleration in case of hoop is 

1
sin

2
g  . 

 

Example:- A homogenous sphere of radius a, rotating with angular velocity   about horizontal 

diameter is gently placed on a table whose coefficient of friction is  . Show that there will be slipping 

at the point of contact for a time 
2

7

a

g




 and that then the sphere will roll with angular velocity  2 / 7

. 

Solution:- Since the sphere is gently placed on the table, the initial velocity of the centre of the sphere 

is zero, while angular velocity is  .  

Initial velocity of the point contact = initial velocity of the centre C  Initial velocity of the 

point of contact with respect to C .  

   0 a   in direction  
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Hence the point of contact will slip in the direction   , therefore full friction R acts in the 

direction   . 

Let x e the distance advanced by the centre C in the horizontal direction and   be the angle 

through which the sphere turns, then at any time t  equations of motion are, 

 m x R        (1) 

 (Here R mg ) and 

22

5

a
m Ra       (2) 

 

  Therefore, from (1) x g  and from (2) 
2

5
a g   

  Integrating these equations, we get x gt    (3) 

  And 
5

2
a gt a         (4) 

  Since initially when 0t  , 0,x     

  Velocity of the point contact x a   

Hence the point of contact will come to rest when 0x a  i.e. when 

5
0

2
gt gt a  

 
    
 

 or when 
2

7

a
t

g




 . 

Therefore, after time 
2

7

a

g




 the shipping will stop and pure rolling will commence. 

Putting this value of t  in (4), we get 
2

7


   when rolling commences, the equations 

of motions are m x F    (i) 
22

5

a
m Fa      (ii) and 0x a    (iii) 

From (i) and (ii) with the help of (iii), we get ma F   and 
2

5
ma F     

x a x a 
 

   
 

 

Adding these two equations, we get 
7

0
5

ma   or 0     const. 
2

7


 . 
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Example:- Three uniform spheres, each of radius a and of mass m  attract one another according to the 

law of the inverse square of the distance. Initially they are placed on a perfectly rough horizontal plane 

with their centres forming a triangle whose sides are each of length 4a . Show that  the velocity of their 

centres when they collide is 

1/2
5

14

m

a

 
 
 

 where   is the constant of gravitation. 

Solution:- Let ,A B  and C  be the points of contact of the spheres with the horizontal plane, when they 

are initially at rest. ABC  is an equilateral triangle of side 4a . Let O  be the centre of the triangle 

ABC  

Due to the symmetry of the attraction, the spheres will move in the way that their points of 

contact with the horizontal plane always form equilateral triangle. 

  
 Let , ,L M N be the new positions of the points of contact with the horizontal plane after time 

t  

 Let OL x   

 By geometry, we observe that  
1

cos30
23

LM LM
OL x

x

 
  

 
 

 Therefore, initially 
4

3

a
x

 
  
 

 because initially the side of the triangle is 4a . 

Now when the spheres collide 
2

3

a
x

 
  
 

 because in this case the sides of the triangle will 

become 2a (As radius of each sphere is a , so the distance between their centres will be 2a ) 

Let L  be the point of contact of the first sphere with horizontal plane at time t . 

Force of attraction on this sphere due to other two spheres is 

2 2

2 2
cos30 cos30

m m

LM LN

  
  
 

in the direction LO  

  
2 2

2 2

3 3
. . 3

3 2 3 2

m m
LM LN x

x x

 
     

 

2

23

m

x


 in the direction LO  i.e. towards x  decreasing. 
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As the plane is perfectly rough, there is pure rolling thus the force of friction at the point of 

contact is F  and acts opposite to the tendency of the motion of the point of contact, i.e. F acts 

towards x decreasing. 

The equations of motion of the first sphere are 

2

2 3

m
m x F

x

 
   

 
  (1) 

22

5

a
m Fa
 

  
 

       (2) 

Since there is no slipping, the velocity of the point of contact x a  is zero i.e. 

x a x a              (3) 

 From (1), (2) and (3) on eliminating F  and a , we have 
2

5

7 3

m
x

x


   

 Integrating, we get 

2
10

7 3

m
x K

x

 
  

 
 

 Now, when 
4

, 0
3

a
x x  ,  

10 3
.
47 3

m
K

a


    

  

2
10 1 3

43

m
x

x a

   
        

       (4) 

When the spheres collide i.e. when 
2

3

a
x  ; from (4), the velocity at that time is 

2
10 3 3

2 47 3

m
x

a a

   
        

 or 

1/2
5

14

m
x

a

 

  
 

 

 

Example:- A thin napkin rings, of radius a is projected up a plane inclined at angle   to the horizontal 

with velocity v , and an initial angular velocity   in the sense which would cause the ring to move 

down the plane. If 5v a   and 
1

tan
4

  , show that the ring will never roll and will cease no 

ascend at the end of a time 
 4 2

9 sin

v a

g 

 
 and will slide back to the point of projection. 

Solution:- Initial velocity of the point of contact is v a  , which is up the plane, hence the friction 

R  acts down the plane. 

 The equation of motion are sinm x mg R    

  sin cosmg mg      or  sin cosx g       

   
1

sin tan cos
4

g   
 

   
 

 or 
5

sin
4

x g      (1) 
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 And 
1 1

tan . cos . sin
4 4

ma Ra mg a mg a           

  
1

sin
4

a g            (2) 

Integrating (1) and (2) and applying initial conditions that at 0,t x v   and    , we get 

5
sin ,

4
x g t v            (3) 

And 
1

sin .
4

g t a             (4) 

From (3), we observe that velocity of the centre is zero after time 
4

5 sin

v

g 
. 

The velocity of the point of contact at any time x a  

5 1
sin sin .

4 4
g v g t a        {From (3) and (4)} 

3
sin

2
v a g t     

Hence the point of contact will come to rest after time 
 2

3 sin

v a

g 

 
 0x a

 
  

 
 

It can be seen that 
 2 4

3 sin 5 sin

v a v

g g 

 
  as 5v a   

  Pure rolling may begin before the upward motion ceases if the friction is sufficient for pure 

rolling. 

 At this time 
5

6

v a
x

 
  which is positive and 

5

6

a v

a



  which is  5ve v a   or 

5

6

v a

a


 
  in clockwise direction 

 When pure rolling commences, and rotation is in the, clockwise direction, the equations of 

motion are sinm y mg F    

 
2 ,ma Fa y a     and y a . 

 Solving these equation, we get 
1

sin
2

F mg    
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 But 
1 1

tan . cos sin
4 4

R mg m g     ; hence friction is not sufficient for pure rolling. 

Hence the sliding persists and pure rolling is not possible. The above equations of motion now 

become 
1

sin sin tan . cos
4

m y mg R mg mg           

 
3

sin
4

mg   or 
3

sin
4

y g        (i) 

 And 
2 1 1

tan . cos . sin
4 4

ma Ra mg a mg a           or 
1

sin
4

a g    (ii) 

 Integrating (i) and (ii) and applying the initial conditions when 
5

0,
6

v a
t y

 
   and 

5

6

a v
a


 , we get 

3 5
sin .

4 6

v a
y g t

 
        (iii) 

 And 
1 5

sin .
4 6

a v
a g t 


    

 We observe that 0y  after time 
 2 5

9 sin

v a

g 

 
 

 Putting this value of time (iv), we get 
 2 5

9

a v
a


   

 Therefore, total time of upwards motion 
     2 5 4 2

2
3 sin 9 sin 9 sin

v a v a v a

g g g  

     
    

 Again, when the upwards motion ceases, we have  
2

5
9

a a v    which is negative since 

5v a  , hence the ring returns. 

 The velocity of the point of contact. 

   Velocity of the centre   velocity relative to the centre 

    
2 2

0 5 5
9 9

y a a v a         

 a  positive quantity  as 5v a   i.e. the velocity of the point of contact is up the plane ; 

therefore friction R  acts downwards ; hence the equations of motion are 

1
sin sin tan . . cos

4
m z mg R mg mg         

 i.e. 
5

sin
4

z g         (1) 

 and 
1

tan cos .
4

ma Ra mg a        i.e. 
1

sin
4

a g    (2) 

Integrating (1) and (2) and applying the initial condition that when 0t  , 0z   and 

 
2

5
9

a a v   , we get  
5 1 2

sin , sin 5
4 4 9

z gt a gt a v       

Hence the velocity of the point of contact down the plane z a   
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  
5 1 2

sin sin 5
4 4 9

gt gt a v 
 

     
 

 

  
2 3

5 sin
9 2

v a gt      

Which is positive  5 ;v a   hence the ring slides back to the point of projection. 

 

Example:- A napkin ring, of radius a , is projected forward on a rough horizontal table with a linear 

velocity u  and a  backward spin   which is 
u

a
 . Find the motion and show that the ring will return 

to the point of projection in time 
 

 

2

4

a

g a u





 


 where   is the coefficient of friction. What happens 

if a   ? 

Solution:- Initially ,u    and u a  . This initial velocity of the point of contact is u a   and 

is in the direction   . Hence the friction R  acts in the direction   . For this forward motion, 

equations of motion are m x R mg      i.e. x g      (1) 

 And 
2ma Ra mg       i.e. a g        (2) 

Integrating (1) and (2) and applying the initial conditions that when 0,t x u   and   , 

we get x gt u          (3) 

And a gt a            (4) 

 

 The ring ceases to move forward if 0  , let this happen after time 1t , then from (3) 1

u
t

g
  

Again integrating (4) and applying the condition that when 0, 0x t  , we get 

21

2
x gt ut           (5) 

Thus the distance traversed by the ring in time 
u

t
g

  is found by putting 
u

t
g

  In (6) i.e. 

2 2

2 2

1

2 2

u u u
x g u

g g g


  

   
      

  
     (6) 

  And then a a u    which is in the direction  u a    

 Hence the ring returns. 
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 When the ring returns  

 Initial velocity of the point of contact is in the direction    hence the friction R  will act 

in the direction   . 

 For this motion equations are m y R mg    i.e. y g  and 
2ma Ra mga       

i.e. a g      (ii)  

 Integrating (i) and (ii) and applying the initial condition i.e. when 0t  , 0y   and 

a a u   , get y gt   (iii) and a gt a u       (iv) 

 This equations hold good unit pure rolling commence i.e. unit y a  (the velocity of the point 

of contact) is zero. Let this occur after time 2t then from (iii) and (iv), we have 

2 2 0gt gt a u      i.e. 
2

2

a u
t

g


  

 Hence from (iii) 
2

a u
y


        (v) 

 Integrating (iii) again, we get 
21

2
y gt    0, 0at t y   

 Putting ,
2

a u
t

g


  we get 

 
2 2

1

2 2 8

a ua u
y g

g g


 

 
  

 
  (vi) 

 When rolling begins, equations of motion are m z F  and 
2ma Fa   . 

 Since there is not sliding, hence z a z a    . 

 On solving these equations, we get 0F  , hence no friction is required then 0z   i.e. z   

constant  0,
2

a u
at t z from v

 
   
 

 i.e. when pure rolling commences (in return 

motion) the ring continues to move with its initial constant velocity 
2

a u
. 

 Again the point where pure rolling commences is from the point of projection at distance 

 
22

2 8

a uu

g g 


   {from (6) and (vi)} 

 Therefore, the time taken to traverse this distance is 
 

22

3
2 8 2

a uu a u
t

g g 

     
     

   

 

or 
 

2
3

4

u a u
t

g a u g 


 


. 

 Hence the total time when the ring returns to the point of projection is 

 

2

1 2 3
2 4

u a u u a u
t t t

g g g a u g   

   
      

  
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 

 

 

2

2

4 4

a uuu a u

g g g a u g a u   


   

 
. 

 

Second Part:- What happens when u a  ? 

To know this we should consider the motion in the forward direction already discussed in the 

beginning. 

In that case velocity of the point of contact is    x a gt u gt a          [From (3) 

and (4)] 2 gt a u     

Rolling will commences when 0a a  i.e. when 
2

u a
t

g

 
 . 

Again it is proved that the ring ceases to move forward after a time 
u

g
for the moment of 

projection. 

Hence the rolling commences before the forward motion has ceased i.e. if 
2

u a u

g g 

 
  i.e. 

u a  . In other words we say that u a  , the rolling will commence before the forward 

motion ceases. 

 

Example:- A homogeneous solid hemisphere, of mass M  and radius a, rests with its vertex in contact 

with a rough horizontal plane and a  particle, of mass m , is placed on its base; which is smooth, at a 

distance c from the centre. Show that the hemisphere will commence to roll or slide according as the 

coefficient of friction is greater or less than 
  2 2

25

26 40

mac

M m a mc 
 

Solution:- Let C  be the centre of the base and G  the centre of gravity of the hemisphere. At point P

, distant c  from the centre, a particle of mass m  is placed. What CG  is inclined at an angle   to the 

vertical, let A the point of contact have moved through a horizontal distance x from its initial position 

O , i.e. OA x . Assume that the hemisphere rolls, and the point of contact A is at rest, so x a , 

hence x a  and x a . 

     

 The co-ordinates of G, referred to O as origin are
3 3

sin , sin
8 8

a
a a a  
 

  
 

 

 The equations of motion of the hemisphere are 

2

2

3
sin sin

8

d a
F S M a

dt
  

 
   

 
 

 
23

cos sin
8

a
M a    

  
    

  
      (1) 
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2

2

3
cos cos

8

d a
R Mg S M a

dt
 

 
    

 
 

  
23 5

sin cos
8 8

a a
M  
 

  
 

     (2) 

 Taking moments about G, 

 
23 3

cos sin
8 8

a a
Sc F a R Mg  

 
    

 
     (3) 

 The co-ordinates of particle P re  cos , sina c a c    , where GP c  

 The equation of motion of the particle is  

 
2

2

2
cos sin cos sin

d
S mg m a c m c c

dt
   

 
      

 
  (4) 

As the initial motion is required i.e. when 0  , 0   but 0   we have from (1), (2), (3) 

and (4)  

 
2

5
,

8

5

8

F Ma R Mg S

a
Sc F Mk and S mg mc



 


   


   


 for the initial values. 

Eliminating F  and S  from first, third and fourth of the late for above equations, we get 

2 2 225

64
Mk Ma mc mgc
 

   
 

      (5) 

But 

2

2 2 22 3 83

5 8 320

a
Mk Ma M Ma

 
   

 
 

Hence (5) reduces to 
2 2 283 25

320 64
Ma Ma mc mgc

 
   

 
 or 

2 2

20

13 20

mgc

Ma mc
 


 . Then 

2 2

5 20
.

8 13 20

mgc
F Ma

Ma mc



 and  

 2 2

2 2 2 2

13 2020
.
13 20 13 20

Ma M m Mmcmgc
R Mg mg mc g

Ma mc Ma mc

 
   

 
 

  
  2 2

25

26 40

F mac

R M m a mc


 
 

 The hemisphere will commence to roll or slide  

 If F  or R i.e. If  or 
F

R
  

 Or    or 
  2 2

25

26 40

mac

M m a mc


 
 

 

Example:- If a uniform semi-circular wire be placed in a vertical plane with one extremity on a rough 

horizontal plane, and the diameter through that extremity vertical, show that the semi-circle will begin 

to roll or slide according as   be greater or less than 
2 2



 
. If   has this value, prove that the wire 

will roll.  
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Solution:- Let C be the centre of the base of the semi-circular wire and G be its centre of gravity, then 

2a
CG


 . 

Let as assume that the wire rolls. When CG  is inclined at an angle   to the horizontal, let the 

point of contact A have moved through a distance x  from its initial position O , i.e. OA x . 

Since the motion is assumed to be of pure rolling, therefore x a  

 

  x a  and x a . 

The co-ordinates of the centre of gravity G with reference to O  as origin are 

2 2
cos , sin

a a
x a 

 

 
  

 
 

 Equations of motion of the wire are: 

 

2 2

2 2

2 2
cos cos

d a d a
F m x m a

dt dt
  

 

   
      

   
 

 
22 2

sin cos
a a

m a  
 

 
   

 
      (1) 

 

2
2

2

2 2 2
sin cos

sin

d a a a
R mg m a m

dt
  

  

  
       

   
  (2) 

 And 
22 2

cos sin
a a

R F a mk  
 

 
   

 
     (3) 

Since we want only initial motion, when 0   ; 0  , but 0  . The equations (1), (2) and 

(3) give us 
22 2

, ;
a a

F ma R m g m R Fa mk  
 

      For the initial values. 

On eliminating F  and R  between these equations, we get 

 

2
2 2

2

4 2a a
k a g

 

 
   

 
      (4) 

 But 

2

2 2 2a
mk ma m



 
   

 
 or 

2
2 2

2

4a
k a


   

 Thus (4) gives us, 

2 2
2 2

2 2

4 4 2a a a
a a g

  

 
    

 
 or 

g

a



  

 Then .
g mg

F ma ma
a


 

    

 

2

2 2

2 2 2 2
. 1

a a g
R mg m mg m mg mg

a




    

 
       

 
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  
 

2

22
.

22

F mg

R mg

 

 
 


 

 Hence the wire will roll or slide according as  

F   or R  or    or 
F

R
  or    or 

2 2







 

If   has this value then the wire will commence to roll  

If 

2
2

3

a
k   i.e. If 

2 2
2

2

4

3

a a
a


   i.e. if 

2 2

3

2 4

3

a a


  

i.e. if 
2 6  , which is true. 

Hence for 
2 2








, the wire rolls. 

 

Example:- A heavy uniform sphere, of mass M , is resting on a perfectly rough horizontal plane, and 

a  particle, of mass m , is gently placed on it at an angular distance   from its highest point. Show 

that the particle will at once slip on the sphere if 
  
 

2

sin 7 5 1 cos

7 cos 5 1 cos

M m

M m

 


 

 


 
, where   is the 

coefficient of friction between the sphere and the particle. 

Solution:- Let C be the centre of the sphere. The horizontal plane is perfectly rough. So if the sphere 

rolls on the plane, the particle of mass m  remains at rest placed at point P , such that CP  is inclined 

at an angle     to the vertical. Let the distance of the point of contact A be x  from the initial 

position O  i.e. OA x . Since the sphere rolls, x a  and the point of contact is at rest hence x a

. 

      
 Let R and F be the reaction and friction at the point P  

With point O as the origin and the horizontal and vertical lines through O  as co-ordinates axes, 

the co-ordinates of point P  are given by    sin , cosx a a y a a            

      2cos sinx a a a            

     2sin cosy a a           

 Equations of motion of the particle m are  

     sin cos sinmg F xm m y            

     cosm a a           (1) 

     cos sin cosR mg m x m y              
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     2sinma ma ma            (2) 

The energy equation gives 

 

2
2 2 2 2 21 2

2 5

a
M Ma m x y 
  

     
  

 work done by gravity  

     cos cosmga       

i.e.      2 2 2 27
1 cos cos cos

10
Ma ma mga             of  

     2 2 27 10 1 cos 10 cos cosMa ma mga              

Differentiating w.r.t to ' 't  and dividing by 2 , we have  

    2 2 2 27 10 1 cos 5 sinMa ma ma             

      5 sinmga        (3) 

As we only want initial, when 0  , 0   but 0   equations (1), (2) and (3) reduce to  

 

 2 2

sin 1 cos

cos sin

7 10 1 cos 5 sin

F mg ma

R mg ma a

Ma ma mg a

  

 

  


   


  


     

 these equations give the initial values of F,R 

and  . 

On solving these equations, we get  

  
 2 2

5 sin
sin 1 cos

7 10 1 cos

mga
F mg ma

Ma ma


 


  

 
 

 
 

 

7 5 1 cos
sin

7 10 1 cos

M m
g

M m






 


 
 and  

 2 2

5 sin
cos sin

7 10 1 cos

mga
R mg ma

Ma ma


 


 

 
 

 
 

 

2
7 cos 5 1 cos

7 10 1 cos

M m
g

M m

 



 


 
 

  
 

 
2

7 5 1 cos
sin

7 cos 5 1 cos

M mF

R M m




 

  
  

   

 

 The particle will slip on the sphere if F R  or if 
F

R
   

 i.e. if 
  
 

2

sin 7 5 1 cos

7 cos 5 1 cos

M m

M m

 


 

 


 
 

 

Example:- A homogeneous sphere, of mass M , is placed on an imperfectly rough table, and a particle, 

of mass m , is attached to the end of a horizontal diameters. Show that the sphere will begin to roll slide 
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according as   is greater or less than 
 

2 2

5

7 17 5

M m m

M Mm m



 
. If   be equal to this value. Show that 

the sphere will begin to roll if 
2 25 11m M Mm  . 

Solution:- Let the radius of the sphere be a and mass .M B  is the point at which a particle of mass m  

is attached. Let in time t  the sphere have turned through an angle   and the point contact have moved 

through a distance x  from its initial position O . i.e. OA x . 

Let G  be the common centre of gravity of two masses, such that CG c , then 

   Mc m a b c M m ma      i.e. 
ma aM

c BG a c
M m M m

    
 

 

 
Assume that the sphere rolls and F  be the force of friction sufficient for pure rolling. Since 

the motion is of pure rolling. 

  x a ; and x a . Also    
2

22 22
,

5

a
M m k M Mc m a c      

 
     

2 2 2 2 2 2 2

2 2 2

2
2

5 5

Ma Mm a ma M Ma Mma

M m M m M m
    

  
 

  
 

 

2

2

2

2 7

5

Ma M m
k

M m





        (1) 

 Referred to O  as origin the co-ordinates of C.G. are  cos , sinx c a c   . 

 The equations of motions are  

       
2 2

2 2
cos cos

d d
F M m x c M m a c

dt dt
         (2) 

    2sin cosM m a c c  
 

    
 

    (3) 

And      
2

2
sin

d
R M m g M m a c

dt
        

  2cos sinM m c c 
 

    
 

     (4) 

And     2cos sinRc F a c M m k          (5) 

As we discuss only and the initial motion when 0  , and   is zero but 0  , 

equations (3), (4) (5) ;  become 
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 

   

2

F M m a

R M m g M m c

Rc Fa Mmk








  


    


 


 For the initial values of ,F R  and   

Solving these equations, we get 
2 2 2

gc

k a c
 

 
, putting for   in above equations, 

we have 
   

2 2

2 2 2 2 2 2
;

R k a F gca
g

M m k a c M m k c a


 

     
 

The sphere will commence to slide or roll according as F   or R  

i.e. if 
2 2 2

gca

k a c


 
 or 

2 2

2 2

k a
g

k c a





 

 
 

i.e. if    or 
 2 2

ac

k a



 

i.e. if    or 
 

2 2

5

7 17 5

m M m

M mM m




 
 (putting the value of c ) 

Critical Case:- Suppose 
 

2 2

5

7 17 5

m M m

M mM m





 
 

We have prove 
 

 

2

2
7 2

5

a M M M
k

M m





in (2) and the sphere will roll if  2 2 / 3k a  proved 

in 3.10 i.e. if 
 

 
 

2

2
7 2

/ 3
5

a M m M
a

M m





 or    

2
3 7 2 5M m M M m    or 

 2 2 221 6 5 2Mm M M Mm m     i.e. 
2 25 11m M Mm  . 

 

Example:- A solid sphere, resting on the top of another fixed sphere is slightly displaced and begins to 

roll down. If the plane through their axes makes an angle  with the vertical when first cylinder is at 

rest, show that it will slip when the common normal makes with the vertical an angle given by 

 
2

2 2sin 3 cos 2 cos }k k b b        where b  is radius of the moving sphere and k  is the radius 

of gyration. The upper sphere will leave the fixed sphere if 

2
1

2 2

2 cos
cos

3

b

k b


   
  

 
 

Solution:- Let CB  a radius fixed in the moving sphere makes an angle   with the vertical, initially B  

coincided with A . Let R  and F  be the reaction and friction respectively. Since there is no slipping 

between the two spheres, therefore, arc AP arc BP , i.e.    0a b      or a b   or 

 b a b    
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Referring to O  as the origin and horizontal and vertical lines through O  as co-ordinates axes, 

the co-ordinates of C  are  sinx a b    and  cosy a b      (2)  

The energy equation gives  

   2 2 2 21
cos cos

2
m k x y mg a b  
  

      
  

    (3) 

Or     
22 2 21

cos cos
2

k a b a b   
 

     
 

 

Or       
2

2 22 2

2

1
cos cos

2

k
a b a b g a b

b
   

 
      

 
 

Or 
  

 
2

2

2 2

2
cos cos

b g

k b a b
  


 

 
      (4) 

Differentiating (3) and dividing by 2 , we get 
  

2

2 2

singb

a b k b


 

 
   (5) 

As C  describes a circle of radius  a b  about O , its acceleration are   2a b   and 

 a b   along and perpendicular to O . Therefore the equations of motion of the sphere are 

  2 cosm a b mg R            (6) 

And   cosm a b mg F           (7) 

Hence from (6) and (4), we have 
 

 
2

2 2

2
cos cos cos

b mg
R mg

b k
  

 
   

  

 

 2 2 2

2 2
3 cos 2 cos

mg
k b b

k b
    

 
 and from (7) and (5), we have 

 

2 2

2 2 2 2

sin
sin sin

mgb mgk
F mg

b k k b


  

 
 

  
 

2

2 2 2

sin

3 cos 2 cos

F k

R k b b



 


 
 

 The sphere will slip when F R  i.e. if  2 2 2 2sin 3 cos 2 cosk k b b      
 

 

The upper sphere will leave the fixed sphere if 0R   i.e. if  2 2 23 cos 2 cosk b b    i.e. 

2
1

2 2

2 cos
cos

3

b

k b


   
  

 
.  
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Example:- A homogenous sphere rolls down on imperfectly rough fixed sphere starting from rest at 

the highest point. If the spheres separate when the line joining their centres makes an angle  with the 

vertical, prove that 
2cos 2 sin Ae     where A is the function of  only.  

Solution:- As the fixed sphere is imperfectly rough so the moving sphere rolls as well as slide on it thus 

friction R  acts upwards. Let a  be radius of moving sphere. 

 Equations of motion are sin
dv

mv mg R
ds

       (1) 

 And 

2

cos
mv

mg R
a

         (2) 

     

 Eliminating R from (1) and (2), we get  
2 21

sin cos
2

dv v
g

ds a
       

 Or  
2 2

. 2 2 sin cos
dv d v

g
d ds a


   


    

 Or  
2

22 2 sin cos
dv

v ag
d

   

     

ds
s a a

d




 
   

 
 

 Above is linear differential equations, its solution is  

 2 2 22 sin cosv e C ag e d         

    
2

2

2
2 sin cos 2 cos sin

1 4

age
C



      




        
 

 Or  2 2 2 2

2

2
3 sin 1 2 cos

1 4

ag
v e C e u    



       
 

 

 Again when 0  , 0v    2

2

2
1 2

1 4

ag
C 


  


 

 Therefore,  2 2 2 2

2

2
3 sin 1 2 cos

1 4

ag
v e e u    



      
 

 

       2

2

2
1 2

1 4

ag



 


 

 Or    2 2 2 2

2 2

2 2
3 sin 1 2 cos 1 2

1 4 1 4

ag ag
v u e    

 
      
  

 

 The sphere separates where 0R  , thus from (2), we have 
2 cosv ag   or  

 2

2

2
3 sin 1 2 cos

1 4

ag
u  


   
 

 2 2

2

2
1 2 cos

1 4

ag
e ag 


  


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Or      2 2 2 22 3 sin 1 2 cos 2 1 2 1 4 cose              
 

 

Or  2 26 sin 3cos 4 1 2 e        

Or  2 24
cos 2 sin 1 2

3
e        

Or 
2cos 2 sin Ae      ,where  24

1 2
3

A    

 

Example:- A rough solid circular cylinder rolls down a second rough cylinder which is fixed with its 

axis horizontal. If the plane through their axes make an angle   with the vertical when first cylinder is 

at rest, show that the bodies will separate when this angle of friction is 
1 4cos

cos
7

  
 
 

 

Solution:- Refer figure of Ex. 1  

Let CB  a radius fixed in the moving cylinder make an angle   with the vertical, initially B  

coincided with A . Let c  and b  be the radii of fixed and moving cylinder respectively. As 

there is no slipping between the two cylinders, therefore arc AP arc BP  i.e. 

   a b       

  a b  
 

  
 

 or  b a b    

Referring to O as the origin and horizontal and vertical lines through O  as co-ordinates axes 

the co-ordinates of C  are     sin , cosa b a b    

The energy equations gives     2 21
cos cos

2
m k a b mg a b   
 

     
 

 

Or       
2 22 21

2 cos cos
2

a b a b g a b          

         b a b    

Or    2 4
cos cos

3

g
a b          (1) 

The centre C  describes the circle of radius  a b  about O  

    2 cosm a b mg R          (2) 

 From (1) and (2), 

    
4

cos cos cos 7cos 4cos
3 3

mg mg
R mg           

 The bodies will separate when 0R   

 i.e. when 7cos 4cos 0    or 
4

cos cos
7

   

 or 
1 4

cos cos
7

   
  

 
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Example:- A uniform sphere of radius a is gently placed on the top of a thin vertical pole of height 

 h a  and then allowed to fall over. Show that  however rough the pole may be the sphere will slip 

on the pole before it finally falls off it. 

Solution:- Let OP  be a fixed vertical pole of height h  and a  sphere is gently placed at top P  and 

then displaced. Let us assume that friction is sufficient to keep the point of contact at rest, so the sphere 

turns about P  without slipping.  

Let at any time t  the angle turned by the sphere be   and F  be the force sufficient to keep the 

point of contact at rest.  

Equations of motion of C.G. of the sphere arc sinma mg F      (1) 

And 
2 cosma mg R           (2) 

 

Energy equation gives  
2

2 2 21 2
cos

2 5

a
m a mg a a  
 

   
 

  

Or  2 10
1 cos

7
a g           (3) 

Differentiating (3), we get 
5

sin
7

a g        (4) 

From (1) and (4), we have sinF mg ma     or 

5 2
sin sin sin

7 7
F mg mg mg      

From (2) and (3), we have 
2cosR mg ma    or  

   
10 1

cos 1 cos 17cos 10
7 7

R mg mg mg        

The sphere finally fall of when 0R   i.e. when 17cos 10 0    or 
10

cos
17

   

Also the sphere will slip when F R  or 
F

R
   

Or 
2sin

17cos 10








 we observe that if   is not negative, then 0   when 0   

         (i.e. when motion 

just begins) 

And     when 
10

cos
17

       (i.e. when particle falls off) 
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Thus sphere will slip between 0   and 
1 10

cos
17

   if   lies between 0 and  . 

Thus we observe that however rough the pole may be, the sphere will slip on the pole before it 

finally falls over. 

 

Example:- A uniform beam of mass M  and length l  stands upright on perfectly rough ground; on the 

top of it which is flat rests a weights of mass m , the coefficient of friction between the beam and the 

weight being  . If the beam is allowed to fall to the ground, its inclination  to the vertical when the 

weight slips is given by  
4

3 cos / 6 sin 2
3

M m M M m  
 

    
 

 

Solution:- Let at any time t , the rod AB make an angle   with the vertical with m  resting on the top 

B . Now, taking moments about A  for the beam, we get 
21 1

. sin .
3 2

M l M l F l    

 Further equations of motion for mass m  are sinml mg F      (2) 

 
2 cosM l mg R            (3) 

    
  Whence eliminating F  between (1) and (2), we obtain  

   
3

3 2 sin
2

M m l M m g          (4) 

Again Multiplying both sides by 2  and integrating, we get  

   23 3 2 cosM m l M m g c       

When 0  ,  0 3 2c g M m      

       23 3 2 1 cosM m l g M m         (5) 

   sinF ml mg     [using (2)] 

  
 

 

3 2 sin
sin

2 3

m M m g
mg

M m





 


 by (4) 

   
 

sin

2 3

mMG
F

M m





       (6) 

  Further  
2cosR mg l   , using (3) 

  
  3 2 1 cos

cos
3

mg M m
mg

M m




 
 


 by (5) 
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   
   4 9 cos 3 2

3

mg M m M m
R

M m

  



 

   
   

1 sin

2 4 9 cos 3 2

F M

R M m M m






  
 

  But /F R F R     when the weight slips 

   
   

1 sin

2 4 9 cos 3 2

M

M m M m







  
 

   
4

3 cos sin 2
3 6

M
M m M m 



  
     

   
. 

 

Example:- A circular plate rolls down the inner circumference of a rough circle under the action of 

gravity, the planes of both the plate and the circle being vertical. When the line joining their centres is 

inclined at an angle   to the vertical, show that the friction between the bodies as 
1

sin
3

  times the 

weight of the plate. 

Solution:- Let O be the centre of the fixed circle whose radius is a  and C be the centre of circular 

plate that rolls down and its radius is b . 

Let at any instant the radius CB (a line fixed in the body) make an angle   with the vertical a 

line fixed in space. Initially, B  coincided with A , a fixed point on fixed circle. OA  is inclined 

at an angle   to the vertical OC . 

As there is no slipping between the bodies 

  Arc AP arc BP  

 [upper side in the figure] 

 i.e.     2a b         or a b  
 

    
 

 

 or    b a b b a b              (1) 

      

 Equations of motion of the plate are   sinm a b F mg      (2) 

 And 

2

.
2

b
m F b           (3) 

On eliminating   and   from (1) , (2) and (3), we get i.e.  
sin sin

3 3
F mg

 
    (times 

the weight). 
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Example:- A circular cylinder of radius a and radius of gyration k  rolls without slipping inside a fixed 

hollow cylinder of radius b . Show that the plane through their axes moves in a circular pendulum of 

length  
2

2
1

k
b a

a

 
  

 
 

Solution:- Let  be the angle through which the plane of axes turn and let  be the angle which CB  a 

line fixed in the moving cylinder makes with the vertical. 

 The outer cylinder is fixed. Equations of motion of the inner cylinder are  

  sinm b a F mg           (1) 

And 
2mk Fa           (2) 

      
 Again there is no slipping  

  arc AP arc BP  or  b a     or  a b a     (3) 

Eliminating F  and   between (1), (2) and (3), we get  

   
2 2

2
sin sin

mk mk
m b a mg b a mg

a a
             or  

 
2

2
1 sin

k
b a g

a
 

 
    

 
  or 

 
2

2
1

g

k
a b

a

  
 

  
 

 as   is small. 

Therefore, length of the simple equivalent pendulum is  
2

2
1

k
b a

a

 
  

 
. 

 

Example:- A disc rolls on the inside of a fixed hollow circular cylinder whose axis is horizontal, the 

plane of the disc being vertical and perpendicular to the axis of cylinder ; if when in the lowest position, 

its centre is moving with a velocity 
 

1/2

8

3

g

a b

 
 

 
, show that the centre of the disc will describe and 

angle   about the centre of the cylinder in time 
 

1/2

3
.log tan

2 4 4

a b

g

    
   

  
. 

Solution:- Let C be the centre of the disc and O be the centre of the fixed hollow cylinder whose radius 

is a . Let a line CB  (fixed in the body) which was initially in a vertical position and coincided with 

OA  makes an angle   with the vertical. 

Assume that the disc rolls, so that the arc AP arc BP  or  a b     or  b a b   

or  b a b   .        (1) 
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Referring to O  as the origin and vertical and horizontal lines through O  as axes, the co-

ordinates of centre C  are     sin , cosa b a b    

Kinetic energy of the disc at any time t  is 

 
2

2 2 2 2 2 21 1 1

2 2 2 2

b
m x y mk m a b  

  
       

   
 

 
 

22
2 2 2

2

1

2 2

a bb a b
m a b

b b
   

     
       

    

 

  
2 23

4
m a b    

It follows that the initial K.E. of the disc    
3 8

2
4 3

m g a b mg a b     

Since at 
 

2 8
0

3

g
t

a b


 
   

 
 

Therefore, the energy equations gives    
2 23

2
4

m a b mg a b     the work done 

by gravity   1 cosmg a b      

Or       
2 2 23

1 cos 2 cos
4 2

m a b g a b mg a b


        

Or 
 

2 8
cos

3 2

g

a b


 


 or 

 

1/2

28
cos

3 2

d g

dt a b

  
  

 
 

Or 
 

1/2

0

3
sec

2 2

a b
dt d

g





 

  
 

   

Or 
 

1/2

3
log tan

2 4 4

a b
t

g

    
    

  
 

 

Example:- A solid homogenous sphere is rolling on the inside of a fixed hollow sphere, the two centres 

being always in the same vertical plane. Show that the smaller will make complete revaluation if, when 

it is in its lowest position, the pressure on it is greater that 
34

7
 times its own weights. 

Solution:- Let O be the centre of the fixed hollow sphere whose radius is a  and C  the centre of the 

moving solid sphere whose radius is b . Let CP  be a radius (a line fixed in the body) makes an angle 

  with the vertical (a line fixed in space) initially B  coincided with A . 
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 Let  be the angle that the line of centres make with the vertical at any time t . 

As there is not slipping between the two bodies, therefore, arc AP arc BP  or 

 a b     or   b a b         (1) 

C  describes a circle of radius  a b  about O . 

Equation of motion of the sphere is   2 cosm a b R mg      (2) 

Taking the horizontal and vertical lines through O  as coordinates axes. Coordinates of the 

centre C  are     sin , cosa b a b    

So at any time t , the (velocity)2 of the centre   
2

cosC a b  

    
2

2 2sina b a b       

  At any  time t , kinetic energy of the sphere  
2

22 21 2 1

2 5 2

b
m m a b     

    
22 2 21 2 1

,
2 5 2

m m a b m a b      from (1)  

  
2 27

10

m
a b   . 

  

  Initially K. E. of the sphere  
2 27

10

m
a b    where   is the initial angular velocity. 

 Hence energy equations gives,  

    
2 22 27 7

10 10

m m
a b a b       work done by the gravity  

    cosmg a b a b         

 i.e.      2 2 10
1 cos

7

g
a b a b            (3) 

 Again from (2),   2cosR mg m a b     

     2 10
cos 1 cos

7

mg
mg m a b        

 The sphere will make complete revolutions if 0R   when    

 i.e.   2 20
0

7

mg
mg m a b       i.e. 

 
2 27

7

g

a b
 


 

 This gives least value of   for making complete revolution. 
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Again to know the value of R  in the lowest position put 0   and     in equation (2); 

then  R (in lowest position)   2cos0mg m a b     

   
 

227 27

7 7

mg g
mg

a b

  
    

  

 

   
34 37

7 7
mg   times the weight. 

 

Example:-  A cylinder of radius a , lies within a rough fixed cylindrical cavity of radius 2a . The centre 

of gravity of the cylinder is at a distance c  from the axis, and the initial state is that of stable equilibrium 

at the lowest point of the cavity. Show that the smallest angular velocity with which the cylinder must 

be started that it may roll right round the cavity is given by  
 

 

2

2

2 2

4
1

a c
a c g

a c k

  
    

   

 where 

k  is the radius of gyration about the centre of gravity. 

Find also the normal reaction between the cylinder at any position. 

 

Solution:- Let O be the centre of fixed cylindrical cavity whose radius is given 2a , C  the centre of 

the moving cylinder whose radius is given as a . At time t  let CB  (a line fixed in the moving body) 

makes an angle   with the vertical (a line fixed in space). By geometry each of the other angles are 

also equal to   as marked. Initially B  coincided with A ; it can be easily derived that B  lies on the 

vertical line OA . Taking the horizontal and vertical lines through the fixed point O  as co-ordinates 

axes, the coordinates of the gravity G  are.   

       

  sinx a c   ,  cosy a c    ,where CG c  

 So that  cosx a c   ,   2siny a c     

     2cos sinx a c a c        

     2sin cosy a c a c         

     
2 22 2 2 2 2 2cos sinx y a c a c         

  2 2 22 cos2a c ac      

 So at any time t , (velocity)2 of  
2 2C a c    

       (when 0,   ) 

 Hence energy equation gives 
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  
22 2 2 2 2 21 1

2 cos2
2 2

m k a c ac m k a c             
 

     cosmg a c a c              (1) 

 Equations of motion of the cylinder is cos sin cosR mg m x m y       

    2cos sin sinm a c   
 

    
 

 

      2sin cos sinm a c   
 

   
 

 

      2sin 2 cos 2m c a  
 

   
 

 

 Or   2cos sin 2 cos 2R mg m c a c   
 

    
 

     (2) 

 The cylinder will roll round the cavity if 0R   when   ; 

 Then from (2),   2g a c          (3) 

 And from (1)      
2 22 2 2 2 4k a c k a c g a c           

   
   (4) 

 Eliminating 
2  between (3) and (4), we have  

     
2 22 2 2 4

g
k a c k a c g a c

a c
           
   

 

 Or        
2 2 22 2 4k a c a c g k a c a c           

   
 

 Or  
 

 

2

2

22

4
1

a c
a c g

k a c

 
    

   

 

 Which is the required result. 

 

Example:- A solid spherical ball rests in limiting equilibrium at the bottom of a fixed spherical globe 

whose inner surface is perfectly ough. The ball is struck a horizontal blow of such a magnitude that he 

initial speed of its centre is ;v prove that is v lies between 
10

7
gd

  
  
  

and  
27

7
gd

  
  
  

the ball 

would leave the globe, d  being the difference of the radii of the ball and the globe.  

Solution:- Refer Ex. 4 and with the same figure, we have  d b     or  b a b d      

where d a b  .        (1) 

Initial velocity of the centre is given by  

 

  
2 2 2d v   For initial value.      (2) 

 At any time t , the K.E. of the ball is given by 

2
2 2 2

1

1 2

2 5

b
T m d 

 
  

 
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2 2 2 2 2 21 2 7

2 5 10

m
m d d d  
 

   
 

 

       

 At the time of projection. K. E. of the ball will be 
21 7

.
2 5

m v  using (2)  

 Again, energy equation gives  
2

2 21 7 1 7
cos

2 5 2 5

v
m d m mg d d      

   
2

2 10
1...cos

7

v
d g

d
      

 Again centre C  describes a circle of [radius a about O , so we obtain] 

 
2 cosmd R mg          (4) 

 Eliminating 2d  between (3) and (4), we readily get 

 
210

cos 1 cos
7

v
R mg mg m

d
      

  
21 7

17cos 10
7

v
R mg

gd


  
    

  
 

 Now, the ball would leave the globe when 0R   

  

27
17cos 10 0

v

gd


 
   
 

 

  

2 210 7 7 10
cos

27 17

gd v v gd

gd gd


 
        (4) 

 But cos  is to be numerically less than 1  
27 10 17v gd gd   . 

  

1/2

27

7
v gd

  
   

  
 

 Again when   is obtuse, we have cos ive    

 i.e. 
27 10v    positive i.e.  10 /17v gd   

 i.e. 

1/2 1/2

10 27

7 7

gd gd
v

      
       

      
 

 

Example:- A thin hollow cylinder of radius a  and mass M  is free to turn about its axis which is 

horizontal and a  smaller cylinder of radius b  and mass m  rolls inside it without slipping, the axes of 

the two cylinders being parallel. Show that when the plane of the two axes is inclined at an angle   to 

the vertical angular velocity of the large cylinder  is given by  
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     2 2 22 2 cos cosa M m M m gm a b         provided both the cylinder are at rest when 

  .  

Solution:- Let O be the centre of the outer cylinder and C  the centre of the inner cylinder. The figure 

is the vertical section of the system through O  and C . 

 Let CB  be the line fixed in the inner cylinder and ON  be the line fixed in the outer cylinder. 

Initially ON  and CB  coincided with OA  i.e. initially B  coincided with N . 

After time t  when the line OC  makes an angle   with the vertical, let ON  and CB  make 

angels   and   with the vertical. 

Since there is no slipping,   Arc NP arc BP   

  

  i.e.    a b         b a a b       

  or  b a a b            (1) 

Considering the motion of the cylinders and taking moments about their centres of gravity, we 

get 
2mb FB   (for smaller)        (2) 

And 
2Ma Fa    (for largest)       (3) 

From (2) and (3) we have mb Ma      

Integrating, we get mb Ma         (4) 

      (initially   and   are both zero) 

From (1) and (4) on eliminating  , we get  Ma ma m a b      or  

   a M m m a b     or   
 a M m

a b
m

 


     (5) 

The coordinates of the centre of gravity C  of the smaller cylinder with reference to O  which 

is at rest are     sin , cosa b a b   . 

Hence energy equation gives  

    
22 2 2 2 21 1

cos cos
2 2

Ma m b a b mg a b    
 

      
 

  (6) 

In (6) putting the values of b  and  a b   from (4) and (5) respectively we get 

 
  

2
2 2 2 2 2

2 2
2 cos cos

M mM
Ma m a a mg a b

m m
    

 
     

 
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Or 
 

  
2

2 2

2
2 cos cos

M mM
a M mg a b

m m
  

 
     

 
 

Or       
22 2 22 cos cosa M m M M m m g a b        

 
 

Or      2 2 22 2 cos cosa m M M m m g a b        

Or      2 2 22 2 cos cosa m M M m m g a b         which is the required result. If 

   . 

 

Example:- A uniform circular cylinder of mass M  is free to rotate about its axis which is smooth and 

horizontal and about which its radius of gyration is equal to its radius. A uniform solid sphere of mass 

m  is placed with its lowest point in contact with the highest generator of the cylinder, both sphere and 

cylinder being initially at rest. The sphere is then slightly disturbed and rolls down the cylinder. Show 

that the slipping takes place before, the sphere leaves the cylinder, and begins when 

    2 sin 17 6 cos 10 4M M m M m      where   is the inclination to the vertical of the 

plane through their axes and   the coefficient of friction. 

Solution:- Let O  be the centre of the cylinder whose radius is a  and C  the centre of the sphere whose 

radius is b . 

Let the cylinder have turned through an angle   to the vertical and CB  a line fixed in the 

sphere make an angle   with the vertical, a  line fixed in space. 

Initially B  coincided with A and OAand CB  were vertical. 

Since there is no slipping, hence arc AP arc BP . 

i.e.    a a      or  b a a b         (1) 

    
Considering the motion of the cylinder and the sphere respectively and taking moments 

about their centres, we get 
2Ma Fa   (for the cylinder) ; and 

22b
m Fb

m
   (for 

the sphere)  

  
5

mb
Ma 


  i.e 

5

2

M
b a

m
   

 Integrating, we get 
5

2

M
b a

m
   {Initially   and   zero so constant vanishe} (2) 

Putting the value of   from (2), we get  
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  
5

2

M
a a a b

m
      

i.e.  
5 2

2

M m
a a b

m
 


   or  

2

5 2

m
a a b

M m
   


 

then  
5

5 2

M
b a b

M m
   


 

the coordinates of C, the centre of the sphere with reference to O  the origin and vertical and 

horizontal through O as axes are     sin , cosa b a b    

  (Velocity)2 of   
2

cosC a b    

       
2

2 2sina b a b        

 Therefore energy equations gives  

      
2

22 2 2 21 1 2
, cos

2 2 5

b
Ma a b mg a b a b   

 
       

 
 or  

 
 

2
2 2

2

1 4

2 5 2

m
M a b

M m



  

 
      

2
2 22 2

2

1 2 25
. 1 cos

2 5 5 2

M
m a b a b mg a b

M m
  

 
       

  

 

Or 
 

 
   

2 2

2

5 2 1
1 cos

25 2

M M m
a b g

M m
 

 
    

  

 

Or    21
1 cos

5 2 2

M
a b g

M m
 

 
    

 
 

Or    27 2
2 1 cos

5 2

M m
a b g

M m
 


  


 

Or    2 10 4
1 cos

7 2

M m
a b g

M m
 


   


 

Differentiating above and dividing by 2 , we get 

  
5 2

sin
7 2

M m
a b g

M m
 


 


 

Equations of motion are   2 cosm a b mg R    and   sinm a b mg F     

     2 10 4
cos cos 1 cos

7 2

M m
R mg m a b mg mg

M m
   


     


 

 
10 4 10 4

cos 1
7 2 7 2

M m M m
mg mg

M m M m


  
   

  
 

     17 6 cos 10 4
7 2

mg
M m M m

M m
     

 and  sinF mg m a b     
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5 2 2 sin

sin sin
7 2 7 2

M m M mg
mg mg

M m M m


 


  

 
 

  
   

2 sin

17 6 cos 10 4

F M

R M m M m






  
 

 Slipping begins when F R  i.e.    2 sin 17 6 cos 10 4M M m M m         

 Above equation gives the value of  , when slipping begins where    

Now 
 

2 sin

7 2

F M mg
R

M m



 
 


 which is obviously positive for all values of   lying between 0 

and  . 

Hence the slipping begins before the sphere leaves the cylinder. 

Example:-  The mass of a sphere is 
1

5
 of that of another sphere of the same material which is free to 

move about its centre as a fixed point, the first sphere rolls down the second from rest at the highest 

point, the coefficient of friction being  . Prove that sliding will begin when the angle   which the line 

of centre makes with the vertical is gives by  sin 2 5cos 3     

Solution:- Let the mass of the lower and upper sphere be M  and m  respectively so that 5M m . 

The lower sphere is free to move. Let of upper sphere. 

Let the lower sphere have turned through and angle   such that OA , a line fixed in the lower 

sphere make an angle   with the vertical and the line CB (a line fixed in the upper sphere) an 

angle   with the vertical. Initially OA  and CB  were vertical and B  coincided with A , OC  

the line joining the centres makes an angle   with the vertical.  

Since there is no slipping between the sphere, so arc AP arc BP   i.e. 

   a b       

Or  a b a b c           [Here  c a b  ]   (1) 

 

 The equation of motion for the lower sphere is 

22

5

a
M Fa      (2) 

 Equations of motion for the upper sphere are and 
2 cosmc mg R     (3) 

 sinmc mg F            (4) 

 Since C describe a circle about O  of radius  a b c  . 

 Hence F  is the friction sufficient for pure rolling. 
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 Also 

22

5

b
m Fb           (5) 

 From (2) and (5), we have 
a b

m M

 
  or 

a b a b c

m M m M m M

    
  

 
 

  
m

a c
m M

 


 and 
M

b c
m M

 


 

 Energy equations gives  
2 2

2 2 2 21 2 1 2
cos

2 5 2 5

a b
M m c mg c c   

 
    

 
 

 Or 
   

 
2 2

2 2 2 2 2 2

2 2

1 2 1 2
. . 1 cos

2 5 2 5

m M
M c m c c mg

m M m M
   

 
    

   

 

 Or  2 22
. 2 1 cos

5

Mm
m c mgc

M m
 

 
    

 

 Or    
2

22 5
. 2 1 cos 5

5 6

m
m c mg M m

m
 

 
    

 
 

 Or  2 3
1 cos

2
c g          (6) 

 Differentiating (6) w.r.t. ' 't  and dividing by 2 , we get 
3

sin
4

c g    (7) 

 From (3), we have  2 3
cos cos 1 cos

2
R mg mc mg mg         

 [from (6)] 

 
5cos 3

2
mg

  
  

 
  

 From (4), we have  

 
3 1

sin sin sin sin
4 4

F mg mc mg mg             [from (7)] 

  
   

1 2 sin
sin .

4 5cos 3 2 5cos 3

F
mg

R mg




 
 

 
 

 Sliding will being when F R  or 
F

R
  i.e. when 

 
sin

2 5cos 3








 or  

 sin 2 5cos 3     

 

Example:- A rough cylinder, of mass M , is capable of motion about its axis which is horizontal; a 

particle of mass m is placed on it vertically above the axis and the system is slightly disturbed. Show 

that the ‘particle will slip on the cylinder when it has moved through an angle   given by 

 6 cos sin 4M m M m      , where   is the coefficient of friction. 

Solution:- Assume that F is the force of friction which keeps the particle at rest the radius OP  makes 

an angle   with the vertical. Referred to O  as the origin, the co-ordinates of particle are 

 sin , cosa a   

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/  

 Energy of the particle  
2 2 2 21 1

2 2
m x y ma 
 

  
 

 

         

 Energy of the cylinder 

2
21

2 2

a
M  due to rotation 

 The energy equation gives

2
2 2 21 1

2 2 2

a
M ma    work done by gravity  1 cosmga    

 Or    22 4 1 cosa M m mg          (1) 

 Differentiating above the dividing by 2 , we get  2 2 sina M m mg    (2) 

 The particle m  describes a circle about O , therefore, 
2 cosma mg R    (3) 

 And sinma mg F          (4) 

 Hence  
2

2 4
cos cos 1 cos

m g
R mg ma mg

M m
       


  [From (1)] 

    2 cos 4 1 cos
2

mg
M m m

M m
      

 

 6 cos 4
2

mg
M m m

M m
    

 and 

22 sin
sin sin

2

m g
F mg ma mg

M m


     


 

[From (2)]  
sin sin

2 2
2 2

mg mMg
M m m

M m M m

 
   

 
   (4) 

From (3), and (4) 
 

sin

6 cos 4

F M

R M m m






 
 

The particle slips from the cylinder when F R i.e. when 
F

R
  

i.e. when 
 

sin

6 cos 4

M

M m m







 
 

or when  6 cos 4 sinM m m M       

or when  6 cos sin 4M m M m      , which is the required result. 

 

 

 

Example:- A circular cylinder of radius a  and of radius of gyration k  rolls without slipping inside a 

hollow cylinder of radius b  which is free to move about its axis. Show that the plane through their axis 
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will move like a simple circular pendulum of length   1b a n   where 
 2 2

2 2

2 2

/

1 .

k a
n

b mk

a mK





 where k  

and K  are the radii of gyration, of the inner and outer cylinders respectively, about their axes; and m  

and M  their masses. 

Solution:-  Adjoining figure is the vertical section through the centres of gravity of the two cylinders. 

The centre O  remains fixed and the outer cylinder turns about it, let   be the angle turned by it when 

the plane of the axis makes an angle   with the vertical. Let CB  a line fixed in the inner cylinder makes 

an angle   with the vertical a line fixed in space. Since there is no slipping so Arc AP Arc PB  ] 

i.e.    b a       or   b a b a           (1) 

  

 Equations of motion are 
2Mk Fb          (2) 

 For outer cylinder 
2Mk Fa       (3) 

 And   sinm b a F mg        (4) for inner cylinder  

 From (2) and (3), we have 

2 2Mk mk
F

b a

 
    or  

       2 2 2 2 2 2 2/ / / /

b a b a
F

b MK a mk b MK a mk

   
   


 

 
 

   2 2 2 2/ /

b a

b MK a mk





. (By virtue of (1)) 

 Therefore, 
 

   
 

 2 2

2 22 2 2 2

2 2

/
.

/ /
1 .

k ab a
F m b a

b mkb MK a mk

a MK





    




 

  m b a n    ,where 
 2 2

2 2

2 2

/

1 .

k a
n

b mk

a MK





 

 Putting this value of F in (4), we get      sinm b a m b a n mg        

 Or   1 sinb a n g      or 
  1

g

b a n
  

 
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      (  is small taking   for sin ) 

 Thus length of simple equivalent pendulum is   1b a n  . 

 

Example:- Two unequal smooth spheres, one placed on the top of the other are in unstable equilibrium, 

the lower sphere resting on a smooth table. The system is slightly disturbed, show that sphere will 

separate when the lines joining their centres make an angle   with the vertical given by the equation 

  3cos 3cos 2m M m    , where M  is the mass of the lower, and m  that of the upper spere. 

Solution:- Let C  and 'C  be the centres a  and b  the radius of the lower and upper sphere respectively 

and their masses are M  and m  respectively. Let after time t  the lower sphere have moved through a 

distance x  on the table when 'CC  the line joining their centre makes an angle   with vertical.  

As both the sphere are given to be smooth there are no forces acting on them to turn either 

sphere about its centre i.e. there is no rotation. 

 

The co-ordinates of centres of gravity of both sphere with reference to O  as origin are  ,x a  

(for the lower sphere) and    sin , cosX x a b Y a b       (for the upper sphere) 

There  is no horizontal force on the system, since the sphere and the planes are smooth. Thus 

  cos 0
d

M x m x a b
dt


 

    
 

 

 Integrating above we get    cos 0M m x m a b        (2) 

     (Initially 0x   , so that constant = 0 ) 

 Or  cos
m

x a b
M m

   


      (3) 

 Energy equations gives 

      2 2 21 1
cos )

2 2
M x m X Y mg a b a b 

 
      

 
 

 Or    
22 2 21 1

2 cos
2 2

M x m x a b a b x  
 

     
 

 

    1 cosmg a b     

Putting for 
2x  from (3) we get 

 

 
   

2
2 22 2 2

2

1
cos

2

M m m
a b m a b

M m
 

 
  



 

 
 

  
2

2 2 22 cos 1 cos
m

a b mg a b
M m

  


    
 
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 Or 
 

 
   2 2cos 2 1 cos

m a b
a b g

M M
  

 
    

 
 

 or  
 

  2 2 2
sin 1 cos

g
M m M m

a b
     


    (4) 

 Differentiating (4) with respect to t , we have  

 2 2sin cos sin sin
M m

M m m g
a b

    


  


     (5) 

Let R be the reaction between the two spheres. 

Considering the horizontal motion of the lower sphere, we have  

  2sin cos sin
m

R M x M a b
M m

  
  

       
  

 

Or   2sin cos sin
Mm

R a b
M m

  
 

   
  

    (6) 

By (6), R vanishes i.e. sphere separate, when 
2cos sin     (7) 

 

 On eliminating 
2  from (5) and (7), we get  

 
sin

M m
M m g

a b
 


 


 or 

sin
g

a b
 


 

 Thus from (7) 
2cos sin sin

g

a b
  
 

 
 

 or 
 

2 cosg

a b


 


 

 Putting this values of 
2  in (4), we get 

 
   

  2 cos 2
sin 1 cos

g g
M m M m

a b a b


   

 
 

 

 Or      21 cos cos 2 1 cosM m M m        

 Or   3cos 3cos 2m M m     which is the required result. 

 

Example:- A hemisphere of mass M  is free to slide with its base on a smooth horizontal table. A 

particle of mass m  is placed on the hemisphere at an angular distance   from the vertex, show that 

the radius to the point of contact at which the particle leaves the surface, makes with the vertical an 

angle   given by equation   3cos 3cos 2cos 0m M m       

Solution:- Let in time t  the centre of the hemisphere have moved through distance x  on the placed 

and its velocity be x  while 'CC  make an angle  with the vertical where C  in the centre of the 

hemisphere and 'C  is point where particle is placed. Let x  and a  be the horizontal and tangential 

velocities of the particle.  
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With reference to O  as the origin, the coordinates of centre of gravity of particle are 

sin , cosX x a a Y a            

  

As there in no horizontal force on the system, so cos 0
d

M x m x a
dt


  

    
  

. 

Integrating above equation we get cos 0M x m x  
 

   
 

 (since 0x    initially, so 

constant 0 ) 

Or 
 

cosma
x

M m


 


        (1) 

Kinetic energy of the hemisphere is 21

2
M x  and that of the particle is 

2 21

2
m X Y
 

 
 

. Since 

there are no-forces to turn the hemisphere, so there is no rotational energy. Hence the energy 

equation gives  2 2 2 21
2 cos cos cos

2
M x m x a a x mga    

 
     

 
 (2) 

Putting for x  from (1) and (2), we get  

 

   
 

2 2 2 2 2
2 2 2

2

cos 2 cos
2 cos cos

m M m a a m
a ga

M mM m

 
   


    


 

Or  2 2 21 cos 2 cos cos
m

a ga
M m

   
 
   

 
 

Or      2 2cos 2 cos cosM m m a g M m           (3) 

Considering horizontal motion of the hemisphere, we have sinM x R    or 

sin
d

M x R
dt


 

  
 

  or 
 

cos sin
M ma d

R
M m dt

  
 

   
  

. 

The particle leaves the hemisphere of 0R     [from (1)] 

i.e. if cos 0
d

dt
 
 

 
 

or 
2cos sin         (4) 

equation (3) may be written as  

    2 2sin ) 2 cos cosa M m g M m        

Differentiating it with regard to ' 't  and dividing by 2 , we get  
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 
 2 2sin sin cos sin
M m g

M m m
a

     


      (5) 

Thus from (4) and (5), we get sin
g

a
    

2 cos
g

a
    

Putting this value of 
2  in (3), we get  

     2cos cos 2 cos cos
g

M m m x a g M m
a

  
 

     
 

 

Or   3cos 3cos 2cos 0m M m      which is the required result. 

 

Example:- Two homogenous sphere of equal radii and masses m  and 'm  rest on a smooth horizontal 

plane with 'm  on the highest point of m . If the system be disturbed show that the inclination   of 

their common normal to the vertical is given by     2 27 5 'sin 5 ' 1 cosa m m g m m       

Solution:- Let C  and 'C  be the centres of the two spheres whose masses are m  and 'm  respectively 

CA  and 'C B  of are the redii (line fixed in the bodies) which were initially vertical. Let in time  t  

the lower sphere have moved through distance x  on the table while the line of their centres 'CC  make 

an angle   with the vertical and the bodies have turned through angle   and   in space. As there is 

no sliding, hence Arc AP Arc BP i.e.    a a       or        or 2    . 

      
Considering the motion of the spheres and taking moments about their centre C  and 'C , we 

have 

22
'

5

a
m Fa   (for the upper sphere); 

22
'

5

a
m Fa   (for the lower sphere) 

  'm m   or 
'm m

 
  

 Integrating it, we get 
   

2

' ' 'm m m m m m

    
  

 
 

     (by componendo and dividend) 

  
 

2

'

m

m m


 


 

 
2 '

'

m

m m


 


(initially 0   ) 

The coordinates of C  and 'C  with respect to O  as origin, are  ,x a  and 

 2 sin , 2 cosx a a a    respectively. 

Since there is no horizontal force on the system, we have ' cos 0
d

m x m x a
dt


  

    
  
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Integrating it, we get ' 2 cos 0m x m x a  
 

   
 

  

      (initially 0x   , so constant = 0) 

Or  ' 2 'cosm m x am    or 
2 '

cos
'

am
x

m m
 





    (2) 

The energy equation gives 

 

2 2
2 2 2 2 21 2 1 2

' 4 4 cos
2 5 2 5

a a
m x m x a a x   
   
       

   
 

         2 ' 1 cosam g    (3) 

 Putting for ,x   and in   (3), we get  

     

2 2 22 3 2
2 2 2

2 2 2

4 ' 4 '2 4 '
cos cos

5' ' '

a mm mma m a

m m m m m m
  


 

  

 

 
   

 
2 2 2 2 2 2 2

2 2

2

8 ' cos 2 4 '
4 ' . 4 ' 1 cos

' 5 '

a m a m m
a m am g

m m m m

  
 


    
 


 

Or 
 

 

 

 
 

2
2 2

2 2

' ' 2 ' 2 'cos
cos 1 1 cos

'' 5 '

m m m m m m m
a g

m mm m m m


  

  
     

   

 

Or 
   

 
2

22 'cos
1 1 cos

5 ' '

m m
a g

m m m m


 

 
    

  
 

Or      2 22 5 5 ' 5 'cos 5 ' 1 cosm m m m a m m g         

Or      2 27 5 'sin 5 ' 1 cosm m a m m g       which is the required result. 

 

Example:- A uniform solid cylinder rests on a smooth horizontal plane and on it placed a second equal 

cylinder touching it along its highest generator, if there is no slipping between the cylinders and system 

moves from rest, show that the cylinder separate when the  plane of either axes makes an angle   with 

the vertical given by the equation 
3 22cos 4cos 35cos 20 0      . Also show that until the 

cylinder separate the same generators remain in contact. 

Solution:- The adjoining figure is the vertical section of the system through the centre of gravity of the 

cylinder. Let C  and 'C  be the centres of two cylinders, CA  and 'C B the lines fixed in the cylinder 

making angle   and   with the vertical at time t , Initally CA  and 'C B  were vertical and B  

coincided with A. 

Since there is no slipping, between the two cylinder, hence arc AG arc BG  where G  is 

their point of contact. The cylinder being equal (gives) 
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  'ACG BC G    

 Considering motion of the two cylinder and taking moments about C  and 'C , we have  

 

2

2

a
m Fa   (for the lower cylinder) ; and 

2

5

a
m Fa   (for the upper cylinder) 

 Integrating we get    

 Again integrating        

    The constants vanish when initially , ,    and   are all zero. 

Again 'ACG BC G   i.e.       i.e. 2     i.e.  the same generators 

remain in contact until the cylinder separate.  

Since there is no horizontal force on the two cylinder considered combined together therefore, 

the common centre for gravity G (which is the point of contact) will descend vertically. Let the 

vertical through G cut the horizontal plane in O , then 0 is a fixed point. With O  as origin and 

horizontal and are  sin 2 cosa a a  , then  sin ,a a  respectively.  

 

2 2
2 2 2 2 2 2 2 2 2 21 1

cos cos 4 sin
2 2 2 2

a a
m a m a a    

    
       

    
 

  2 2 cosmg a a        (Here we have taken   ) 

Or    2 23 2sin 4 1 cosa g      

Or    2 25 2cos 4 1 cosa g           (1) 

Differentiating and dividing by 2  we get  

 2 25 2cos 2 sin cos 2 sina a g           (2) 

Now consider the horizontal motion of the upper cylinder  

 
2

2

2
sin cos sin cos sin 0

d
R F m a ma

dt
    

 
    

 
   (3) 

And also 

2

2

a
m Fa      (4) (taking moment about 'C ) 

Eliminating F between (3) and (4), we get  

 
2sin cos sin cos

2

ma
R ma


     

 
   

 
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i.e. 
2sin 3cos 2sin

2

ma
R   

 
  

 
 

The cylinders will separate if 0R  , i.e. if 
23cos 2sin   

Now we eliminate   and 
2  between (1), (2) and (5) 

Putting the value of   from (5) in (2), we get  

  2 2 22sin
5 2cos 2 sin cos 2 sin

3cos
a a g


   


    

Or  2 25 cos 3 sina g     

Putting this value of 
2  in (1), we have  

    2

2

3 cos
5 2cos 4 1 cos

5 cos

g
g


 


  


 

i.e.     2 23 5 2cos cos 4 1 cos 5 cos        

i.e. 
3 2 315cos 6cos 20 20cos 4cos 4cos          

i.e. 
3 22cos 4cos 35cos 20 0      , which is the required result. 

 

Example:- A uniform rough ball is at rest within a hollow cylindrical garden roller, and the roller is 

then drown along a level-path with uniform velocity V . If  2 22

7
V g b a  , show that the ball will 

not completely round the inside of the roller; ,a b , being the radii of the ball and roller. 

Solution:- Let O  be the centre of the roller and C  the centre of the spherical ball moving inside the 

cylindrical roller. Let CN  be the radius of the ball was vertical when it was in its lowest position. When 

the roller has moved through a distance x , let CN  have turned through an angle . The line joining 

the cetnre   with the vertical and the ball has turned through an angle  . As there is no sliding. 

 arc BM arc BN  

 i.e.    b a       

 or  b a a b           (1) 

  

 Again the velocity of the roller is constant i.e. x b V   

 Then 0x b        (2) 
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Let R and F be the normal reaction and friction. As C describes a circle of radius  b a about 

O   so accelerations along CO  and perpendicular to CO  are   2b a   and  b a   

respectively. 

Thus equation of motion are   2 cosm b a R mg     (3) 

  sinm b a F mg          (4) 

and 

22
.

5

a
m F a         (5) 

Eliminating F  between (4), and (5) we get  

  
2

sin
5

a
b a g       or    

2
sin

5
b a b a g       

    [since  b a a a a       by virtue of (2)] 

Or  
7

sin
5

b a g         (6) 

Integrating it, we get   27
2 cos

5
b a g A      (7) 

Initially the velocity of the C.G. is   0x b a     

 i.e.  b a x V       
 

27
2

5

V
A g

b a
  


 

 Hence the equation (7)gives  

    
 

2
27 7

2 1 cos
5 5

V
b a g

b a
     


   (8) 

 Substituting for 
2 from (8) in (3), we get  

  
2 210 1 7

cos cos 17 cos 10
7 7

R V V
g g g

m b a b a
  

 
       

  
 

The necessary condition that the ball should roll completely round the fixed cylinder is that R  

is positive when   , and if R  is positive in this position.  

Hence 

27
10 17 cos 0

V
g

b a
 




 
   

 
 

Or 

27
27

V
g

b a



 or 

 2
27

7

g b a
V


  

   Revision at a Glance  

(i) 
2, ,G GM x X M y Y Mk L    where L is the moment of external forces about G. 

(ii) K.E. of the body  = K.E. due to translation 
21

2
GMv

 
 
 

  K. E. due to rotation 
2 21

2
Mk 

 
 
 

 

(iii) Moment of momentum about the fixed origin 
2

GPO Mv Mk   . 
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PREVIOUS YEARS QUESTIONS 

CHAPTER 2. EQUATION OF MOTION IN 2D / D'ALEMBERT PRINCIPLE 

 

Q1. A rod of length 2a  revolves with uniform angular velocity   about a vertical axis through 

a smooth joint at one extremity of the rod so that it describes a cone of semi-vertical angle  . 

Prove that the direction of reaction at the hinge makes with the vertical, an angle 

1 3
tan tan

4
  

 
 

. [1d IFoS 2022] 

Q2. A particle is constrained to move along a circle lying in the vertical xy-plane. With the help 

of the D'Alembert's principle, show that its equation of motion is 0xy yx gx   , where g is 

the acceleration due to gravity. [5d UPSC CSE 2021] 

 

 

Q1. A uniform rod OA, of length 2a, free to turn about its end O, revolves with angular velocity 

 about the vertical OZ through O, and is inclined at a constant angle   to OZ; find the value 

of  . 

[5c UPSC CSE 2019] 

Q2. A circular cylinder of radius a and radius of gyration k rolls without slipping inside a fixed 

hollow cylinder of radius b. Show that the plane through axes moves in a circular pendulum of 

length  
2

2
1

k
b a

a

 
  

 
. [6c UPSC CSE 2019] 

Q3. A uniform rod OA of length 2a is free to turn about its end O, revolves with uniform 

angular velocity  about a vertical axis OZ through O and is inclined at a constant angle   to 

OZ. Show that the value of   is either zero or  

1

2

3
cos

4

g

a

  
 
 

. [7c 2014 IFoS] 

Q4. A weightless rod ABC of length 2a is movable about the end A which is fixed and carries 

two particles of mass m each one attached to the mid-point B of the rod and the other attached 

to the end C of the rod. If the rod is held in the horizontal position and released from rest and 

allowed to move, show that the angular velocity of the rod when it is vertical is 
6

5

g

a
. 
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[8b 2012 IFoS] 

Q5. The ends of a heavy rod of length 2a are rigidly attached to two light rings which can 

respectively slides on the thin smooth fixed horizontal and vertical wires Ox and Oy. The rod 

starts at an angle   to the horizon with an angular velocity  3 1 sin 2g a    and moves 

downwards. Show that it will strike the horizontal wire at the end of time 

 2 3 log tan cot
8 4 8

a g
    

   
  

. [8a UPSC CSE 2011] 

 

CHAPTER  3. LAGRANGE'S EQUATION OF MOTION 

Q1. A particle at a distance r from the centre of force moves under the influence of the central 

force 
2

k
F

r
  , where k is a constant. Obtain the Lagrangian and derive the equations of 

motion. [5d UPSC CSE 2022] 

 

Q2. Derive the Lagrange's equation for a spherical problem. [8a IFoS 2021] 

Q3. Obtain the Lagrangian equation for the motion of a system of two particles of unequal 

masses connected by an inextensible string passing over a small smooth pulley. [6C UPSC 

CSE 2021] 

 

Q1. A particle is attached to a center by a force which varies inversely as the cube of its distance 

from the center. Identify the generalized coordinates and write down the Lagrangian of the 

system. Derive then the equations of motion and solve them for the orbits. Discuss how the 

nature of orbits depends on the parameters of the system.  [8a 2020 IFoS] 

Q2. For a dynamical system 

  2 21
1 2 2

2
T k       , 

A

B

C

m

m
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  
2

2 21
2

n
V k     , 

where  ,   are coordinates and n, k are positive constants, write down the Lagrange's 

equations of motion and deduce that  

   2 1
0

k
n

k
   

 
    

 
. 

Further show that if ,      at 0t  , then    for all t. [6c 2019 IFoS] 

Q3. Suppose the Lagrangian of a mechanical system is given by  

   2 2 2 21 1
2 2

2 2
L m ax bxy cy k ax bxy cy      , 

where    , , , 0 , 0a b c m k   are constants and 2b ac . Write down the Lagrangian equations 

of motion and identify the system. [6c UPSC CSE 2018] 

Q4. A particle of mass m is constrained to move on the inner surface of a cone of semi-angle 

 under the action of gravity. Write the equation of constraint and mention the generalized 

coordinates. Write down the equation of motion. [8c 2018 IFoS] 

Q5. Two uniform AB, AC, each of mass m and length 2a, are smoothly hinged together at A 

and move on horizontal plane. At time t, the mass centre of the rods is at the point  ,   

referred to fixed perpendicular axes ,x yO O  in the plane, and the rods make angles    with 

Ox. Prove that the kinetic energy of the system is  

2 2 2 2 2 2 2 21 1
sin cos

3 3
m a a     
    

        
    

. 

Also derive Lagrange's equations of motion for the system if an external force with components 

 ,X Y  along axes acts at A. [6c UPSC CSE 2017] 

Q6. Consider a mass m on the end of a spring of natural length l and spring constant k. Let y be 

the vertical coordinate of the mass as measured from the top of the spring. Assume that the 

mass can only move up and down in the vertical direction. Show that  

 
2'21 1

2 2
L my k y l mgy     

Also determine and solve the corresponding Euler-Lagrange equations of motion.   

[8a 2017 IFoS] 

Q7. A hoop with radius r is rolling, without slipping, down an inclined plane of length l and 

with angle of inclination . Assign appropriate generalized coordinates to the system. 

Determine the constraints, if any. Write down the Lagrangian equations for the system. Hence 

or otherwise determine the velocity of the hoop at the bottom of the inclined plane. [8b UPSC 

CSE 2016] 
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Q8. A bead slides on a wire in the shape of a cycloid described by the equations  

 sinx a     

 1 cosy a    

where 0 2    and the friction between the bead and the wire is negligible. Deduce 

Lagrange's equation of motion. [8b 2016 IFoS] 

Q9. Two equal rods AB and BC, each of length l, smoothly joined at B, are suspended from A 

and oscillate in a vertical plane through A. Show that the periods of normal oscillations are 

2

n


 where 2 6

3
7

g
n

l

 
  
 

. [8a UPSC CSE 2013] 

Q10. Find the Lagrangian for a simple pendulum and obtain the equation describing its motion. 

[5d 2011 IFoS] 
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Motion in Two Dimensions 
(under impulsive forces) 
 

Example:- Two rods AB  and BC  of length 2a  and 2b  and of masses proportional to their lengths, are 

freely joined at B are laying in a straight line. A blow is communicated to the end A , show that the 

resulting kinetic energy when the system is free is to the energy when C  is fixed as 

    
2

4 3 3 4 : 12a b a b a b   . 

Solution:- Case I:- When the system is free. Let the mass of the unit length be m , then length of the rod 

2AB a   mass of 2AB ma ; length of the rod 2BC b   mass of 2BC mb . Further let 1G  be 

the C.G. of the rod AB  and 2G  that of BC . 

Let P be the impulse applied at A  at right angles to AB  then there will be an impulsive action 

between the two rods at B . Let the impulse be Q , in opposite directions on the two rods AB  

and BC  respectively. 

 

Just after the impulse, let 1u  be the velocity of the centre of  gravity of AB  and 1  its angular 

velocity 2u  and 2  similar quantities for BC .  Since the rods ,AB BC  are started fro rest, the 

equations of motion of the rod AB  are  

 12mau P Q    (motion of 1G )    (1) 

And   
2

12
3

a
ma P Q a    (taking moment about 1G )  (2) 

Similarly for the motion of 2, 2BC mbu Q  (motion of 1G )   (3) 

And 
2

22 .
3

b
mb Qb    [taking moment about 2G ]  (4) 

The rods are connected at B , so the velocity of the point B  of the rod AB    velocity of the 

point B  referred to BC        

i.e. 1 1 2 2u a u b            (5) 

substituting the values for 1 1 2 2, ; ,u u   in (5), we get  

 
 

 

3 3

2 2 2 2 2

P Q P Q Q Q pb
Q

a a b b a b

 
    


 

  Velocity of the point A at which the below has been given  
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   

 
1 1

3 4 3

2 2 2

P Q P a bP Q
u a

am am am a b


 
    


 

 Now substituting the value of Q  in (1), (2), (3) and (4), we get  

 

 

 1

2 31

2 2 4

a b Pbp
u P

ma a b ma a b

   
   

   
, 

 

 

 1

3 23

2 2 4

b a Pb p
a

ma a b ma a b


   
  

   
,  

   2

1

2 2 4

b p P
u

mb a b ma a b

  
  

   
, and 

   2

3 3

2 2 4

b p P
b

mb a b m a b


  
  

   
 

So in this case total kinetic energy. 

 = K.E. of the rod . .AB K E  of the rod BC . 

 
2 2 2 2

2 21 2
1

1 1
2 .2

2 3 2 3

a b
ma u mb u

    
      

   
 

 

 

 

 

2 22 2

2 22 2 2 2

2 3 3 2

16 16

a b P b a P
ma

m a a b m a a b

        
     

         

 

   

2 2

2 22 2

3

16 16

P P
mb

m a b m a b

       
     

         

 

 
 

 

 

 

2 22 2

2 22 2 2 2

2 3 3 2

16 16

a b P b a P
ma

m a a b m a a b

  
  

   

 

  
   

2 2

2 22 2

3

16 16

P P
mb

m a b m a b

 
  

   

 

 
  

 

 

 

2 2

12

4 3 4 3

44

p a b a b a b P
E

ma a bma a b

  
  


. Say  

 

Case II:- When C  is kept fixed. 

 In this case, for the motion of AB , we get  

 12mau P Q         (1) 

 And  
2

12
3

a
ma P Q a    

 For the motion of BC , we also have 
2

1

4
2 2

3

b
mb bQ     

 [taking moments about C ]      (2) 
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 Now velocity of B  referred to AB   velocity of B  referred to BC  

  1 1 22u a b           (4) 

 From (1) and (2), we get  1 1

1
2 4 .

2
u a P Q

ma
     

 Substituting from this and from (3) and (4) we readily get  

   
1

2 4 3
2 2

Q
P Q

ma mb
     or 

 

 

2

3 4

bP
Q

a b



 

 Substituting this value of Q  in (1), (2) and (3), we get  

 
 

 
1

3 61 2

2 3 4 2 3 4

a b Pb P
u P

ma a b ma a b

 
   

  
, and  

 

 
1

3 2 .3 2 3
.

2 3 4 2 3 4

a b Pb P
a P

ma a b ma a b


 
   

  
 

 Also, 2

3

2 3 4

b P
b

ma a b


 
  

 
 

  Total K. E. of . .AB K E  of BC  

 
2

2 2 2 2 2
1 1

41 1 1
.2 . 2

2 3 2 3

b
ma u a mb




  
     

   
 

 

2

2 2

2 2 2 2

1 3 6 1 9 3 2

4 3 4 3 4 3 4

a b a b
ma P P

m a a b m a a b

     
     

        

2 2

22 2

4 9
.

3 4 3 4

b P
mb

m b a b

 
  

  

 

 
 

 
 

 

2 2

2 2

22

3 7 4 3
12

3 44 3 4

a ab b a b
b P P E

ma a bmab a b

  
  


 say 

  
 

 

 

 

2 2

1

2

4 3 3
/

4 3 4

a b P a b PE

E ma a b ma a b

       
    

       
 

 Or       21

2

4 3 3 4 / 12
E

a b a b a b
E

     

 

Example:- ,AB BC  are two equal similar rods freely hinged at B  and lie in a straight line on a smooth 

table. The end A is struck by a below perpendicular to  AB ; show that resulting of A is 
1

3
2

 times of B  
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Solution:- Let P be the impulsive force applied at A. Just after the blow let 1 1,u   and 2 2,u   be the linear 

and angular velocities of the rods AB  and BC  respectively. When the blow is struck, there will be an 

impulsive action between the two rods at B . Let Q  be the impulsive actin at the joint B  in opposite 

directions on two rods. Also let 2a be the length of each rod and m  be the mass, then equations of 

motion for the rods AB  and BC  are  

   

   

1

2

1

0 1

1
, 2
3

m u P Q

m a P Q a

   



  


 for the rod AB  

And 
 

2

2

2

(3)

1
4

3

mu Q

and m a Q a

 



 


 for the rod BC  

   
 But the rods are connected at B  so the velocity of B, as deduced from each rod must be equal,  

 i.e.  1 1 2 2 1 1

5 9
;

4 4

P P
u a u a u a

m m
            (5) 

  1 1

1 1

5 9

7 14 4 3
5 9 2 2

4 4

P P
u aVelocity of A m m

P PVelocity of B u a

m m








     




 

  Velocity of 
1

3
2

A   times the velocity of B . 

 

Example:-  A rectangular lamina, whose sides are of lengths 2a  and 2b , is at rest when one corner is 

caught and suddenly made to move with prescribed speed V  in the plane of the lamina; show that the 

greatest angular velocity which can thus be imparted to be lamina is 

 2 2

3

4

V

a b
 

Solution:- the corner A is suddenly made to move with prescribed velocity V  in plane of the lamina, such 

thatV  makes in angle   (say) with BA , just after the impulse, let ,u v  be the velocities of the centre of 

gravity G parallel and perpendicular to AB , and let  , be the angular velocity of the lamina.  

 Now  2 2DG a b  ; 

 So 

 2 2
cos

b

a b
 


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 2 2
sin

a

a b
 


 

   

       
   Equations of motion are mu X      (1) 

  mv Y        (2) 

 And 
2 2

3

a b
m Xb Ta


        (3) 

Now velocity of A parallel BA   velocity of G parallel to BA  velocity of A parallel to BA  relative 

to G  

     
 

2 2 2 2

2 2
cos cos

b
V u a b u a b

a b
        


 

  cosV u b          (4) 

And velocity of A perpendicular to AB   velocity of G perpendicular to AB   velocity of A 

perpendicular to AB  relative to G. 

   
 

1 2 2 2

2 2
sin sin

b
V c a b v a b

a b
   

 
      

 
 

  sinV v a          (5) 

 Substituting the values of X  and Y  [using (1) and (2)] in (3), we have  

   
2 2

cos sin
3

a b
ab a V b b V a a    


        [using (4) and (5)] 

  
 

 
2 24

cos sin
3

a b
V b a  


       (6) 

 Differentiating (6), with respect to " " , we get    2 24
sin cos

3

d
a b V b a

d


 


     

 For  to be maximum, we must have 0
d

d




  

 i.e. sin cos 0b a     

 2 2

cos sin 1

b a a b

 
  


 (7) 

  (6) and (7) give 
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  
   

2 2
2 2

2 2 2 2

4

3

b a
a b V

a b a b

 
  
  
 

 or 

 2 2

3

4

V

a b
 


. 

 

Example:- A square lamina ABCD  rest on a smooth horizontal plane. If the corner A is made to move 

with velocity u  along the 3A  produced then determine the initial angular velocity of the lamina.  

Solution:- For a square let us choose b a . The corner A is made to move with velocity u  along BA  

therefore, V u  and   . Hence angular velocity u along BA  is obtained by putting ,V u     in 

result (6) of Ex. 3, we get. 

     2 24
cos sin

3
a a u a      or 

28

3
a au    to 

3

8

u

a
   . 

 Above relation gives the required angular velocity. 

 

Example:- Two equal uniform rods AB  and BC  are freely joined at B  and turn about a smooth joint at 

A . When the rods, are in a straight line   being angular velocity of AB  and u  the velocity of the centre 

of mass BC ; BC  impinges on a fixed inelastic obstacle at a point D ; show that the rods are 

instantaneously brought to rest if 
2

2
3 2

u a
BD a

u a









 where 2a  is the length of the either rod. 

Solution:- Let 1  be the angular velocity of BC  before the impulse P  is given at D . Here BD x  say 

so that 1G D x a  . Obviously there will be an impulsive action between the two rods at B  and let it be 

X , in opposite directions on the two rods. Now further if the rods are instantaneously brought to rest, 

then the equation of motion of rod AB  is 
24

, . 2
3

m a X a   (taking moments about B)    (1) 

  
 Also equations of motion of BC  are mu P X       (2) 

  21

3
m a P X a Xa         1G C x a     (3) 

But the rods are connected at B  so the motion of B  as deduced from each rod must be the 

same. 

  2a   vel. Of 1G   vel. Rel. to 2 1G u a   

 Putting the value of P  and 1  from (2) and (4) in (3), we obtain  

       
1

, 2
3

m a u a mu X x a Xa mu x a X x         
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     
1 2

2 . .
3 3

m a u a mu x a m a x       [putting for X  from (1)] 

     
1 1 2

2 3 3 2 2
3 3 3 2

u a
a u a u x u a x BD a

u a


 




      


 

 

Example:- There particles of equal masses are attached to the ends A  and C  and the middle point B  of 

al light rod ABC  and the system is at rest on a smooth table. The particle C  is struck a blow at right 

angles to the rod. Energy communicated when the system is free as 24 : 25  

Solution:- Let P  be the impulse of the blow imparted at B  and mass of each particle at , ,A B C  be m  

where 2AC a . 

 1st case. Let A be no fixed. i.e. system is free.  

The C.G. of the three particle is at B  and the system is at rest before the action of the impulse. 

Let u   be the velocity of the point B . When total mass 3m  is supposed to be placed at B , let 

  be the angular velocity of the rod after the action of the impulse, then the equations of motion 

are 3mu P  

   [motion of C.G. i.e. B]    (1) 

       

 
23mk Pa   [taking moments about B]   (2) 

 And 2 2 23mk ma ma   

 So that 
2 2

3

a
k   

 Now K.E. 
2 2 21 1

3 . 3
2 2

mu mk    

   
2 2 2 2 2

2

2 2 21

3 3 5
. . 1

2 9 9 6 2 12

m P P a P P
K E k

m m k m m

   
      

  
 

2nd Case. Let A be fixed:- Here the mass m  attached at  A  does not move, so the rod turns about A say 

with angular velocity 1 . Hence the particle m  and B  describes a circle of radius a about the fixed point 

A and the particle m  at C  describes a circle of radius 2a  about the point A, so that their linear velocities 

are 1 1, 2a a   respectively.  

 Then taking moments about A, we obtain 
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2 2

1 1 1

2
4 . 2

5

P
ma m a P a

ma
       

 Also,   2 2 2 2 2 2

1 1 12

1 1 5
. . . 4

2 2 2
K E ma m a ma       

 

 

 

2

2

2

1

. .5 4 2 24
.

2 2 5 5 . . 5

K EP P
m

m m K E
     

 

Example:- Three equal uniform rods AB , ,BC CD  are freely jointed and placed in a straight line on a 

smooth table. The rod AB  is struck at its end A  by a by a blow which is perpendicular to its length, find 

the resulting motion and show that the velocity of the centre of AB  is 19 times that of CD  and its 

angular velocity 11 times that of CD  

Sol:- Let each rod be of length 2a  and mass m  and P  be the impulse of the blow at A . Hence there will 

be impulsive action at B  and C  in opposite directions, which also taken as X  and Y  respectively. 

Just before the blow, the three rods are at rest and after the blow let 1 1 2 2 3 3, ; , ;u u u   be 

the velocities of C.G.’s and the angular velocities of the rods ,AB BC  and CA  respectively.  Then 

we have. For 
2

1 1. ,
3

a
AB mu P X m Pa Xa       (A) 

   

For, 
2

2 2. ,
3

a
BC mu X Y m Xa Y a         (B) 

For 
2

3 3. ,
3

a
CD mu Y m Y a        (C) 

Now velocity of B  should be the same as deduced from motion of AB  and BC  and similarly 

velocity of C  should be the same as deduced from the motion of BC  and CD  respectively.  

For 1 1 2 2B u a u a         (1) 

For 2 2 3 3C u a u a         (2) 

  
 

1 1

3 2 4P XP X P X
u a

m m m


  
     

 From (B), we have 
 

2 2

3 4 2X YX Y X Y
u a

m m m


 
     

  (1)   2 4 4 2P X X Y     or 4X Y P     (3) 

 Again from (B), we obtain 
 

2 2

3 2 4X YX Y X Y
u a

m m m


  
     
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 And 3 3

3 4Y Y Y
u a

m m m
      [using C] 

  2 4 4X Y Y    or 4 0X Y   [using (2)]  (4) 

 Solving (3) and (4), we get 
4

15

P
X    and 

15

P
Y   

  1 1

1 4 19 3 4 11
,

15 15 15 5

P P P P
u P P

m m ma ma


   
        

   
 

 2 2

1 4 3 4 5
,

15 15 3 3 15 15 5

P P P P P P
u

m m a ma


   
           

   
 

 3 3

1 3
,

15 15 5

P P
u

m ma ma


 
   

 
 

  1 3

19
; ; 19 ; 1

15 15

P P
u u

m m
   i.e. 1 319u u  

 i.e. velocity of centre of AB  is 19 times that of CD  

 Further 1 2

11
; : 11; 1

5 5

P P

ma ma
     i.e. 1 311   

 i.e. the angular velocity of AB  is 11 times that of CD . 

 

Example:- The uniform rods, AB  and BC , of the same material are smoothly joined to B  and placed in 

a horizontal line; the rod BC is struck at G  by a blow at right angles to it, find the position of G so that 

the angular velocities of AB  and BC  may be equal in magnitude. 

Solution:- Let 2AB a  and 2BC b  and let m  be mass of each rod per unit length. Also let 1G  be the 

centre of gravity of the rod BC  and 2G that of the rod AB .  

 Let P  be impulse applied at a point G  of the rod BC  such that 1GG x . 

    

After the application of the blow, let 1u be the velocity of 1G  the centre of gravity of BC , and 

1  it   angular velocity, 2u  and 2  similar quantities for the rod AB , in the direction as shown 

in the above figure. 

When the blow is struck, let the impulsive action at B  between the two rods be Q , in opposite 

directions on the two rods. 

Initially the rods BC  and AB  were at rest  

  12m bu P Q   (motion of 1G )      (1) 

 
2

12
3

b
m b Px Qb    (motion of 2G )      (2) 

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/   

 2.2m au Q ;   (motion of 2G )      (3) 

 And 
2

22
2

a
m a Qa  ; (motion about 2G )     (4)  

Further the rods are connected at B , so the velocity of B , from each rod, must be the same i.e. 

1 1 2 2u b u a            (5) 

 Now we have two cases:  

Case (i):- If 1 2   (equal in magnitude and same in direction) 

 Equations (3) and (4)   2 1
2

3 3

a a
u

 
       (6) 

 And equation (5)  1
1 1 1

3

a
u b a


     , i.e. 1 1

4 3

3

a b
u 

 
  
 

 

 Also (2), 
2 3

1 1 2

2
2 2

3 3

b mb
xP m Qb mabu        [using (3)] 

  
3 2

2 21
1 1 2 1

2 2 2

3 3 3 3

amb ma b mb
u b a


  

 
     

 
 

  12P mbu Q   [using (1)] 1 22 2mbu mau   [using (3)] 

 
2

1
1

24 3
2

3 3

maa b
mb





   [after substituting for 1u  and 2u ] 

     2 2

1 1

2 2
4 3 3

3 3

m m
a ab b a b a b        

  
 

  

2 22 3
.

3 2 3 3

m b a b a
x

m a b a b a b

 
 

  
 

 

Case (ii):- If 1 2    (magnitude equal but opposite in direction) 

 In this case (3) and (4)  1 2
2

3 3

a a
u

 
     

 And (5),  1
1 1 2 2 1 1 1

3 4
,

3 2

a b a
u b u a o u


   


          

  
3 3

1 1 2

2 2
2

3 3

mb mb
xP Qb mabu       [using (2)] 

  
3 2

2 21
1 1 2 1

2 2 2

3 3 3 3

amb ma b mb
u b a


  

 
       

 
 

 Now 12P mbu Q   [from (1)] 

 
  2

1 1

2 3 4 2

3 3

mb b a ma
 


   [substituting for 1u  and 2u ] 
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  2 2

1

2
3 4

3

m
b ab a     

  
 

 
 2 2 2 2

2 22 2

2 3

3 3 42 3 4

mb b a b b a
x

b ab am b ab a

 
 

  
 

 

Example:- Two uniform rods AB  and BC  are freely joined at B and laid on a horizontal table. AB  is 

struck by a horizontal blow of impulse P  in a direction perpendicular to AB  at a distance c  from its 

centre ; the lengths of ,AB BC  being 2a  and 2b and their masses M , find the motion immediately, 

after the blow. 

Solution:- Let 1 2,u u be the velocity of 1G  and 2G , the centres of gravity of the rods AB  and BC  

respectively, and 1 2,   be the angular velocities of the rod just after blow.  Let D be a point in AB  where 

the impulse P  is imparted, and 1DG c . 

 Before the impulse, the rods are at rest.  

There will be an impulsive action at B between the two rods AB  and BC  when the blow is 

struck. Let this action Q  in opposite directions on the two rods, then for the motion of AB , we 

have  1 0M u P Q         (1) 

And 
2

1
3

a
M Pc Qa         (2) 

   

 And for motion of BC we have  2' 0M u Q     (3) 

 And 
2

2'
3

a
M Qb          (4) 

Now as the rods are connected at B , the velocity of the point of the rods AB is the same as that 

of the some point B of rod BC  

  1 1 2 2u a u b           (5) 

 Substituting the value of 1 1 2 2, ; ,u u  from (1), (2), (3), (4), in (5), we have  

 
  3

3
' '

Pc QaP Q Q Q

M aM M M


      

' 3
. 1

4 '

P M c
Q

M M a

 
  

  
 

  1

1 ' 3
1 1

4 '

P M c
u

M M M a

  
       

 and 1

3 1 ' 3
1

4 '

P c M c

Ma a M M a


  
       

 

 1

1 3
1

4 '

P c
u

M M a

 
  

  
 and 

 
2

3 3
1

4 '

P c

b M M a


 
   

  
 

 Hence the four quantities which determine the motion have been obtained. 
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Example:- Two uniform rods, .AB AC  are freely joined at A  and laid on a smooth horizontal table so 

that the angle BAC  is a right angle. The rod BAC  is struck by a blow P  at B  in a direction perpendicular 

to AB , show that the initial velocity of A  is 
2

4 '

P

m m
 where , 'm m  are the masses of AB  , AC  

respectively. 

Solution:- The initial motion of A  is to be perpendicular to AB , hence the action at A  (say X ) must be 

along AC . 

Let 1u  be the linear velocity of 1G  and 1 , the angular velocity of AB . Then since impulse on 

AC  is along CA , the rod AC  will only move in the direction CA  say with linear velocity 2u . 

Now for equation of motion, we have   

      

 

 

   

1

3

1

.... 1

1
,.. 2

3

mu P X

m a P X a

  



  


 motion of AB  

 2'm u X  motion of AC    (3) 

But the rods the connected at A, so the motion of A as deduced form the motion of AB  

and AC  must be the same 

   1 1 2u a u      (4) 

Now putting the values of 1 1,u   and 2u  [from (1), (2), (3) in (4) we have 

   3 2 '

' 4 '

P X P X X Pm
X

m m m m m

 
    


 

Whence substitution in (3) provides us 2

2

' 4 '

X P
u

m m m
 


 i.e. velocity of the rods 

2

4 '

P
AC

m m



 of velocity of 

2

4 '

P
A

m m



 

 

Example:- ,AB BC  and CD  are there equal uniform rods lying in a straight line an a smooth plane, and 

they are freely jointed at B  and C . A blow is applied at the centre of BC  in a direction perpendicular to 
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BC . If   be the initial angular velocity of AB  or CD , and   the angle they make with BC  any time, 

show that the angular velocity is 

 21 sin




. 

Solution:- Let P  be the impulse of the blow applied at 2G , the centre of BC , and X  the impulsive 

action at B  or C . 

Just after the impulse, let U  be the velocity of the centre of BC , and V  be the velocity of centre 

of AB  and CD , the angular velocities being  .  

   
Now, we have :  2mU P X     (1) for the rod BC  

 mV X    (2) and 
2

3

a
m Xa   for the rod AB  or CD  

AB  and BC  are connected at B , so the velocity at B  as deduced from BC  and AB  must be 

the same i.e. U V a       (4) 

  (2) and (3)  
3

a
V


       (5) and 

4

3

a
U


    (6) 

After the action of the impulse, the rods are set in motion and move in the horizontal plane under 

finite forces. The rod BC  retains is horizontal position where as AB , and DC  turn about B  

and C . 

    
At any time t , let AB  or DC  make an angle   with BC  and further let u be the velocity of 

BC . Now co-ordinates of 1G  relative to BC  (with B as origin) are cosx a  , siny a  . 

  sin , cosx a y a     

  actual velocity of 1G  along CB  and the right angles to CB  is given by  

 sina  
 
 
 

 and cosu a  
 

 
 

 

 Now K.E. of the system

2 2
2 2 2 2 21 1

. 2 cos cos sin
2 2 3

a
mu m u a a    

  
      

  
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2

2 21 8
3 4 cos

2 3

a
m u au  
 

   
 

 

 When 0, u U   ; and    

  initial K.E. of the system 
2

2 21 8
3 4

2 3

a
m U aU  
 

   
 

 

Now there is no displacement, in the points of application of (reactions and weights), at right 

angles to the horizontal plane, so no work is done by these forces, and thus implying that there 

should be no change in the . .K E  of system i.e.  

2 2
2 2 2 21 8 1 8

3 4 cos 3 4
2 3 2 5

a a
m u bu m U aU    
   

       
   

 or  

 
2

2 2 2 28
3 4 cos 8 / 3

3

a
u au a           (7) 

      [Substituting the value of U ] 

Again after the action of the impulse, the motion is under finite forces hence there are no forces 

on the system in the horizontal plane. The horizontal momentum of the system remains constant 

viz. 

 2 cos 2mu m u a mU m U a  
 

     
 

 

Or 3 2 cos 3 2u a U a      

Or 3 2 cos 2u a a     [Putting the value of U]    (8) 

  (7) and (8) 

 21 sin





 


 (eliminating u ) 

 

Example:- Four equal uniform rods, ,AB BC  and DE  are freely joined at B , C  and D  and lie on a 

smooth table in the form of a square. The rod AB  is struck by a blow at A  at right angles to AB  from 

the inside of the square, show that the initial velocity of A is 79 times that of E . 

Solution:- Let the impulse applied at A be P  from inside, so that 1 2 3, ,u u u  and 4u  are the velocities of 

1 2 3, ,G G G  and 4G  in the direction of blow. Further let 1  and 2  be the angular velocities of AB  and 

CD  respectively. The angular velocities of BC  and DE are zero, because the impulsive reactions upon 

these two rods are along the rods themselves. 

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/   

 
 Then we have  

 

 

 

1 1

2

1 1

....... 1

.... 2
3

mu P X

a
and m Pa X a

  



  


 (for the rod AB) 

 Where 2AB a  and 1X  is the impulsive action at B , 

 2 2 1mu X X    (for the rod BC ) 

 Where 2X  is the impulsive action at C      (3) 

 

   

 

3 2 3

2

3 2 3

...... 4

........ 5
3

mu X X

a
and m X a X a

   



  


(for the rod CD) 

 Where 3X  is the impulsive action at 4 3.D mu X   (for the rod DE)  (6) 

Now the velocity of the point B as deduced from AB must be equal to the velocity as deduced 

from BC. 

  1 1 2u a u          (7) 

 Similarly, for the point C 2 3 3u u a      (8) 

 And for the point D.  3 3 4u a u      (9) 

 Whence substituting the values of 1 1,u   and 2 ,u  in (70, in readily obtain  

 1 1 2 13P X P X X X      i.e. 1 25 2X X P     (10) 

Also substituting the value of 1 3,u u  and 3  in (8), we obtain  

   2 1 2 3 2 33X X X X X X       i.e. 2 3 15 2X X X    (11) 

Finally substituting the value of 3 3,u   and 4u  in (9), we obtain  

   2 3 2 3 33X X X X X      i.e. 2 32 5 0X X     (12) 

Soling (11) and (12), we get  

 2 1

5

21
X X  and 3 1

2

21
X X   (10) 1 1

5
5 2

21
X X P    i.e. 1

21

50

P
X   
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Hence 2
10

P
X   and 3

25

P
X   

Putting these value in (1),  (2) and (6), we get 1

21

50

P
mu P   i.e. 1

71

50

P
u

m
  and  

1

3 21

50

P
a P

m


 
  

 
i.e. 1

87

50

P
a

m
   and 4

25

P
mu   i.e. 

4
25

P
u

m
  

  1 1

4

71 87

50 50 79

1

25

P P

m mu avelocity of A

Pvelocity ofE u

m



  
   

      
 
 
 

 

 

Example:- A uniform flat rod, of length 2a  rests on a rough horizontal plane with its weight uniformly 

distributed. A horizontal force P  large enough to produce motion is applied suddenly at the end 

perpendicular to the length of the rod. Show that initially point, where x  is given by the positive root of 

the equation 3 2 31 2 2
0

3 3

P P
x a x a

W W 

 
    
 

 

W being the weight of the rod and   the coefficient of friction. 

Solution:- Let the impulse  P  be given at the end A and let 'O be the point about which the rod begins 

to turn where 'GO x . Just after the application of the impulse, let   be the angular velocity of the rod. 

Hence velocity of the centre of gravity G  just after the impulse is x  as shown in the figure. 

      
 Due to the impulse P , there is an impulsive friction at each point of the rod. 

Now consider an element y  of the rod to the right and also to the left of the point 'O  where 

'O Q y . 

 Friction on each of these elements 
2

W
y

a
   

 Now taking moments about the point 'O  we have  

 
2

2

0 0
3 2 2

a x a x
a W W

M x P a x y dy y dy
a a

  
 

 
      

 
   

[The moments of implusive frictions are negative because they tend to decrease ] 

  
2 2

0 0
2 2 2

a x a x

W y W y
P a x

a a a

 
 

   
      

   
i.e.  
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   
2

2 2 2

3 2

a W
M x P a x a x

a




 
     

 
 

 Also moments of centre of gravity G, gives 
0 0

2 2

a x a x
W W

M x P dy dy
a a

 


 

      

 [The friction on the right hand of O  is opposite to P , while on the left is in direction of P] 

     
2 2 2

W W W
M x P a x a x M x P x

a a a

  
           (2) 

 Whence eliminating   between (1) and (2), we readily obtain  

    
2

2 2 2

3 2 2

a P W W
x P a x a x

x a a

   
       

  
 

  3 2 31 2 2
0

3 3

P P
x a x a

W W 

 
    
 

 

Example:- A lamina in the from of an equilateral triangle ABC  lies on a smooth horizontal plane. 

Suddenly it receives a blow at A in a direction parallel to BC , which causes A to move the velocity V . 

Determine the instantaneous velocity of B  and C  and describe the subsequent motion of the lamina. 

Solution:- As the impulse is parallel to BC, the velocity of 1G  , the centre of gravity of the triangular lamina. 

ABC must also be parallel to BC. Let this velocity be u , and  be the angular velocity of ABC  

 Equations of motion of the C.G. of the lamina are: mu P   (1) 

 And 
2 2 2 2

3
3 3 3 3 3

m a a a
P a

 
   

 
      (2) 

 (taking moments about G) 

   . / 3GDetc a  

     
  Velocity  of the point A  (velocity of G+ velocity of A relative to G) 

 Or 
2

3
3

V u a   . Now (1) and (2)  2 3 .a u   

  4 5V u u u    i.e. 
1

5
u V  and 

2 3

5
a V  . 

  Velocity of B  velocity of G+ velocity of B relative to G 

https://mindsetmakers.in/upsc-study-material/


 

Download books https://mindsetmakers.in/upsc-study-material/   

 
2

3
3

u a    

  Velocity of B parallel of BC 

 = (Velocity of B parallel of BC + velocity of B relative to G parallel to BC) 

  
2 1 2

3 cos60
3 5 5 5

V
u a V V       and velocity of B at right angles to BC 

 = (velocity of G at right angles to BC) 

  + (velocity of B, relatives to G) to BC 

 
2 2 3

3 sin 60
3 5

a a V       . 

Finally proceeding in the same manner, the velocities of C are 
5

V
  and 

2 3

5
V  along and 

perpendicular to BC 

 

 

Example:- A square plate, of side 2a , is falling with velocity u , a diagonal being vertical, when an inelastic 

string attached to the middle point of an upper edge becomes tight in vertical position. Show that the 

impulsive tension of the string is 
4

7
Mu , where M  is the mass of the plate. 

Solution:- When the string becomes tight, a jerk experienced by the string resulting an impulsive tension 

in the string say T. 

Just after the impulse let 'u be  the vertical velocity of G, and   be the angular velocity of the 

square, while just before the jerk, the velocity of G is u  and there no angular velocity. It is to note 

that there will be no velocity in the horizontal direction, as there is no horizontal impulse.  

 
 Equations of motion of the square plate ABCD  are: 

  'M u u T         (1) 

 And 
22

3 2

a a
M T        (2) 

Also, the velocity of K relative to G is a  at right angles to GK . Hence its resolved part is 

cos 45a  i.e. 
1

2
a  in  vertical upward direction.  
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But just after the impulse, the point K is reduced to rest. 

  vertical velocity of the point 0 ' 0
2

a
K u


      (3) 

  
3

0
4

T T
a

W M

    
      
    

i.e. 
4

7
T M u  

 

Example:- A light string is wound round the circumference of a uniform reel of radius a and radius of 

gyration k  about its axis. The free end of the string being tied to a fixed point, the reel is lifted up and let 

fall so that at the moment when the string becomes tight, the velocity of the centre of reel is u  and the 

string is vertical. Find the change in the motion and show that the impulsive tension is 
2

2 2

k
mu

a k

 
 

 
 

Solution:- When the string becomes tight, a jerk is experienced by the string resulting an impulsive tension 

in the sting, say T . 

Just after the jerk let v be the velocity of the centre of gravity G and   the angular velocity while 

just before the jerk the velocity of G is u  and there is no angular velocity. 

 

 Equations of motion of the reel are  m v u T    (1) 

 And 
2mk Ta        (2) 

 Just after the impulse, the velocity of the point contact K is zero. 

  0v a         (3) 

  
2

2

1
0

T a
u T

m mk

 
   

 
  

2

2 2

k
T mu

a k

 
   

 
 

 

Example:- A uniform inelastic rod falls without rotation, being inclined at an angle  to the horizon and 

hits a smooth fixed peg  at a distance from its upper end equal to one third of its length. Show that the 

lower end begins to descend vertically. 

Solution:- Let AB  be the rod which strikes the fixed smooth peg  at C , the inclination of the rod, say   

at that time. Let S be the impulse at the peg  C . Perpendicular to the rod. Just before the impact, the 

rod was falling without rotation under gravity. Hence it must have then only the vertical velocityV . Just 

after impact, let ,u v be the horizontal and vertical velocities of the C.G.  
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 Now equations of motion of the rod AB  are as follows: 

      

 
 

   

sin ..... 1

cos ..... 2

mu S

m u V





  


   

 motion of C.G. 

 And 
2

.
3 3

a a
m S        (3) (taking moments about C.G) 

Substituting the value of S  from (3) in (1) and (2), we readily get sinu a   , cosv a    

 Now velocity of the end A relative to G a   (perpendicular to AB) 

 And horizontal velocity at A= horizontal velocity of G+ horizontal velocity of A relative to G 

 sin sin sinu a a a           (Substituting value ofu ) 

 And vertical velocity of A = vertical velocity of G 

    + Vertical velocity of A relative of G 

  cos cos cosv a V a a V            (Substituting for v ) 

 Implies that after the impact the lower end A being to descend vertically. 

 

Example:- Four equal rods, each of mass m and length 2a  are freely joined at their ends so as to from a 

rhombus. The rhombus falls with a diagonal vertical, and is moving with velocity V  when it hits a fixed 

horizontal inelastic plane. Find the motion of the rods immediately after the impact, and show that their 

angular velocities are equal to 
 2

3 sin

2 1 3sin

V

a




, where  is the angle each rod makes with the vertical. 

Show also that the impact destroys a fraction 
2

3sin

1 3sin





 
 
 

 of the kinetic energy just before the impact.  

Solution:- Let PQRS  be the rhombus formed of four equal rods each of length 2a  and mass m , fall with 

the diagonal RP  vertical. By symmetry, the motion of the rod RS is the same as the motion of RQ  while 

the motion of the rod PS  is the same that of PQ . Hence we need only to consider the motion of PQ  

and QR alone. 

Just after impact at P  with the horizontal plane, the rod PQ  turns about P , say with angular 

velocity  1 , while the rod QR  turns about Q , say with angular velocity 2 , with the direction 

as shown in the figure. 
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Due to symmetry, the impulsive action at R  will be only horizontal, let it be equal to H . Further 

let 
1 1,X Y  be the horizontal and vertical impulses at Q  in opposite directions on the rods ,PQ QR  

respectively. As after impact, R  moves in vertical direction so horizontal velocity of the point R  

relative to 0Q    horizontal velocity of Q  horizontal velocity of R  relative to 0Q   

  
1 22 cos 2 cos 0a a      

  
2 1    

 Now we have horizontal velocity of 
1 1 cosG a  , and vertical velocity of 

1 1 sinG a   

  Horizontal velocity of 
2G  horizontal velocity of Q  horizontal velocity of 

2G  relative to Q . 

   
1 2 12 cos cos cosa a a          2 1    

 And vertical velocity of 
2 1 2 12 sin sin 3 sinG a a a         

  

Now considering the combined motion of PQ  and QR  and taking moments about P , we get 

2 2

1 1 1 1

4
cos .3 cos 3 sin . sin

3 3

a a
m m a a a a       
   

    
   

 

       2 sin 4 cosmVa a    H  

  1

sin 2 cos
2

V H

a ma

 
         (2) 

 Again considering motion of the rod QR  alone and taking moments about Q , we have 

  
2

2 1 1cos . cos 3 sin . sin sin
3

a
m a a a a m V a       
  

     
  

.2 cosH a   

  2

1

2 sin 2 cos
4sin

3

V H

a ma

 
 
 

    
 

    (3) 

  (2) and (3)give 

 
 

2

1 1 2

4 2 sin 3 sin
4sin

3 2 1 3sin

V V

a a

 
  



 
    

 
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Now K.E. just before the impulse 2 2

1

1
4 2

2
mV mV E    (say) and K.E. just after the impulse 

2 [K.E. of . .PQ K E  of QR ] 
2E  (say) 

Or 
2 2

2 2 2 2 2 2 2

2 1 2 1 1

1 4 1
2 cos 9 sin

2 3 2 3

a a
E m m a a     

  
     

  
 

 2 2 2

1

8
1 3sin

3
ma      2 1    

22
2 1

2 2

3sin3sin
2

1 3sin 1 3sin

E
mV



 
 

 
 

 

Example:- An equilateral triangle, formed by inform rods freely hinged at their ends, is falling freely with 

one side horizontal and upper-most. If the middle point of this side be suddenly stopped, show that the 

impulsive actions at the upper and lower hinges are in the ration  13 : 1. 

Solution:- The middle point O  of the rod QR  is suddenly stopped, so the impulse is imparted at O . 

Hence an impulsive actin between the two rods at Q  is generated. A similar impulse is generated at R

as there at symmetry about O . The action at P  will be horizontal due to symmetry. Let it be X  in 

opposite direction on the two rods PQ  and PR . 

 
Just before the blow there was only vertical velocity for every rod. As the system has been 

stopped,  there are no linear velocities and no angular velocities for any rod after the blow. Now 

considering the motion of the rod PQ , or  PR , we get 1 0X X     (1) 

   [  There is no horizontal velocity of G before and after the impulse] 

 Taking moments about G , we get  

 1 1 1 1 10 sin 60 cos60 sin 60 0X LQ YGL X LM X a Y a Xa        

  1 1

3 3
0

2 2 2

a a a
X X Y        (2) 

 [  There is no angular velocity of PQ  before and after the impulse] 

  
     

2 2 2 2

1 1 12 13

1

X Y X Xreaction at Q

reaction at P X X

 
    
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Example:- An inelastic sphere of radius a rolls down a flight of perfectly rough steps, show that if the 

velocity of the centre on the first step exceeds  ga its velocity will be the same on every step, the step 

being such that , in its flight, the sphere never impinges on an edge. 

Solution:- Let E  be the edge of the first step and let v  be its velocity at E . Now the sphere has a 

tendency to turn about the edge E and let  be the angle through which it turns in time t . 

 Now equations of motion of the sphere are given 

 

 By 2 cosma ma R       (1) 

 And 
2

22
sin

5

a
m a mga 
 

  
 

   (2) 

   (taking moments about E) 

 (2)  2 2 10
cos

7

ga
a c     

 When  
2 10

0, ,
7

ga
a v c v       

   2 2 210
1 cos

7

ga
a v     or  

2
2 10

1 cos
7

ga v
a

a
     

  (1) gives  
210

1 cos cos
7

g v R
g

a m
      

 Or  
210

cos 1 cos
7

g v
R m g

a
 

 
    

 
  

2

0

v
R m g

a

 
   

 
 

 Obviously  
0

R


 will not remain positive, if  

 2v a g  i.e.  v ga  

Which implies that the sphere leaves the step at once if the velocity  v ga . After traveling 

the distance on the first step, the sphere strikes the second step say at the point K. But the step 

is inelastic so the sphere will not rebound and will roll on the second step with the velocity v . 
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When it has rolled a distance x  on the second step, let S be the force of friction, sufficient for 

pure rolling, then equations of motion are given by m x S   (3) 

 
22

5

a
m Sa         (4) 

But the motion is of pure rolling, so we have x a x a     (5) 

From above, we have 0x x    constant v  

Which implies that the sphere rolls on the scorned step with the uniform velocity v . Hence 

velocity at every step is the same. 

 

Example:- A sphere of mass m  falls with velocity V  on a perfectly rough inclined plane of mass M  and 

angle   which rests on a smooth horizontal plane. Show that the vertical velocity of the centre of the 

sphere immediately after the impact is 
  2

2

5 sin

7 2 5 sin

M m V

M m m







 
 the bodies being all supposed perfectly 

inelastic. 

Solution:- Just before the impact velocity of the sphere is V in vertical direction    there being no 

angular velocity then. Just after the impact let u  and v  be the velocities and   the angular velocity of 

the sphere as shown in the figure. 

 
 just after the impact, the inclined plane also begins to move in the horizontal direction. 

 Now equation of motion are  

 
   

   

sin cos 1

cos sin 2

m u R S

m v u R S

 

 

   


    

 

 And 
22

5

a
m Sa     (3) 

 Also, the motion of the inclined plane is given by ' sin cosMV R S    (4) 

Now horizontal velocity of the point K of the sphere   horizontal velocity of the point K of the 

inclined plane. 

  cos 'u a V    and vertical velocity of the point K of the sphere = vertical velocity of the point 

K of the inclined plane.  
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  sin 0 sinv a v a        

 From (1) and (4) it is easy to see that 'MV mu  , i.e. '
mu

V
M

   

Now multiplying (2) by sin  and (1) by cos , and then adding these to (3), we obtain 

 
2

cos sin 0
5

a
mu m v V m


       

   
2 2cos 2 cos

sin 0
5

Ma a Ma
v V u

M m M m

    


 
      

  
 

   
2cos 2

sin 0
5 sin

Ma v
v V

M m

 




 
    

 
  sinv a   

     2 25 cos 2 5 sinM M m M m v        

    2sinM m V    

   2 27 2 5 sin 5 sinM m m v M m V        

  
  2

2

5 sin

7 2 5 sin

M m V
v

M m m








 
 

 

Example:- Of two inelastic circular discs with milled edged each of mass m  and radius a, one is rotating 

with angular velocity   round its centre O , which is fixed on a smooth plane, and the order is moving 

with spin in the plane with velocity v  directed towards O . Find the motion immediately afterwards, and 

show that the energy lost by the impact is 
2 2

21

2 5

a
m v

 
 

 
. 

Solution:- The disc P  is rotating about its centre O  with angular velocity  (say) while disc Q  is moving 

with linear velocity v  towards O  as shown in the figure. Further let F  be the impulsive friction at the 

point of contact, K. But the discs are inelastic, so they will not rebound, and hence after the impact, then 

velocity of the disc Q  will be along 
1O Q . 

 
Further let the velocity of Q  be u , along the common tangent. Also let 1  and 2  be angular 

velocities of P  and Q after the impact, then equations of motion are: 
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  
2

1
2

ma
Fa        (1) (for the disc P) 

 mu F    (2)  and 
2

2

2

ma
Fa   (3) [for the disc P] 

But the discs P  and Q  touch each other at K , so the velocity of the point of contact K as 

deduced from disc must be equal. 

 i.e. 
1 2a u a    

Now putting the value of 
1,u   from (2), (1) and (3) in (4), we easily obtain 

2 2F F F
a

m m m
     

i.e. 
5

ma
F


  

  1

2 3

5 5

a a
a a

 
     ; and 

5

a
u


 : Also 2

2

5

a
a


   

  Total K.E. after the impact =K.E. of the disc . .P K E  of the disc Q  

 
2 2

2 2 2

1 2

1 1

2 2 2 2

a a
m m u 

 
   

 
 

 
2 2 2 2 2 2 2 2

2

9 4 3
2

50 25 50 20

a a a a m
m E

    
     

 
 (say) 

 But K.E. before the impact 
2

2 2

1

1 1

2 2 2

a
m mv E    (say) 

 Hence loss in K.E. 
1 2E E   

 
2 2 2 2 2

2 2 21 1 3 1

2 2 2 20 2 5

a ma a
m mv m v

 


 
     

 
 

 

Example:- If a hollow lawn tennis ball of elasticity e  has on striking the ground supposed perfectly rough, 

a vertical velocity v  and angular velocity   about a horizontal axis, find its angular velocity after impact 

and that the range of the rebound will be 
4

5

a
ev

g


 

Solution:- Just before the impact v  is vertical velocity and  the angular velocity while just after impact 

let ', 'u v  be the horizontal and vertical velocities and '  the angular velocity   , the equations of 

motion are  

 'mu F     (1) and  'm v v R    (2) 

 And  22
'

3
m a Fa      (3) 
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 The point of contact P  is reduced to rest instantaneously, there being no sliding,  

  ' ' 0u a   also 'v ev  

 Now eliminating from (1), (3) we get  

  
2

' '
3

a u     

 Or  
2 5 2

' ' '
3 3 3

u a u u a       

 Or 
2

'
5

u a      (4) 

  Range after rebound 
  2 . . .horizonal velo vert velo

g
  

2

5

2 . .
2 ' ' 4

8 5

a ev
u v a

ev
g g




   .  

 

Example:- An imperfectly elastic sphere descending vertically comes in contact with a fixed rough point, 

the impact taking place taking place at a point distant   from the lowest point, and the coefficient of 

elasticity being e . Find the motion, and show that the sphere will start moving horizontal after the impact 

if 1 7
tan

5

e
   
  

 
 

Solution:- Before the impact the sphere is descending vertically say with velocity V ; implies that it has 

then no horizontal velocity and no angular velocity. Just after the impact let 1u  and 1v  be the velocities of 

the sphere along and perpendicular to PG  and   its angular velocity as marked in the above figure. 

     
 Then the equation of motion are  
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  1 sinm v V F        (1) 

  1 cosm v V R       (2) 

And 
22

5

a
m Fa       (3) 

 After impact then is no sliding velocity i.e. velocity of the point P  along tangent at P  is zero. 

  1 10v a v a      

 Also 1 1 cosu ev     (by Newton’s Law) 

 From (1) and (3), we get  1

2
sin

5

a
v V      

  1 1 1

2 5
sin sin

5 7
v V v v V       

  1

5
sin

7
v a V    

Then sphere will start moving horizontally after impact if the vertical velocity of sphere 0  i.e. if 

1 1cos sin 0u v    

Or 1

1

tan
u

v
    or 

cos
tan

5
sin

7

eV

V






  

Or 2 17 7
tan tan

5 5

e
e    

    
 

 

 

Example:- A rough imperfectly elastic ball is dropped vertically and when its velocity is V , a man suddenly 

moves his racket forward in its own plane with velocity U , and thus subjects the ball to pure cut in a 

downward direction making an angle   with the horizon. Show that, on striking the rough ground, the 

ball will not proceed beyond the point of impact, provided 

    
2

2
sin 1 cos 1 1 sin cos

a
U V e V

k
   

 
     

 
 

Solution:- Let P be a point on the ball such that it is hit by the man. Obviously the plane of the racket is 

tangential to the ball. Since the man moves the racket in its own plane with velocity U , the velocity of 

the point of contact P will also be U along the tangent at P  
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Just before the impact the velocity of the ball is given to be V , there being no horizontal velocity 

and no angular velocity. 

Just after the impact, let ,u v  be the horizontal and vertical velocities and   the angular velocity 

as marked in the figure.  Then we have for the motion of ball. 

Just before the impact, the moment of momentum about P  

 sinmV a    [  moment of momentum 2mk mv p  ] 

After impact, moment of momentum about P  

 
2 cos sinmk mua mva     

  change in moment of momentum  

  2 cos sin sinmk mua mva mVa        

 But the impulse is applied at P , hence moment of the impulse at P is zero. 

 Now 
2 cos sin sin 0mk mua mva mVa           (1)  

 (Change in moment of momentum = moment of the impulse)  

 But velocity of the point P of the racket = velocity of the point of the ball. 

  cos sinU v v a      

 Again multiplying (1) by cos  and (3) by sin  and adding, we get 

 Also by Newton’s experimental law, we have  

 sin cos cosu v eV           (3) 

 Now (2) and (1) 
 

2 2

sina U V

a k





 


 

 
  2 2 2 2

2 2

cos sin cosUk V a e k a
u

a k

    



 

Now after striking the ground, let 1 1 1, ,u v   be horizontal, vertical and angular velocities. Then 

taking moments about the point of contact of the ball with ground, we have 

   2 2

1 1 0mk mu a mk mua           (4) 

(  Change in moment of momentum = moment of the impulse) 

Also the point of contact has no horizontal velocity so we get  

1 1 0u a           (5) 

(4) and (5) 
2 2

1 2
1

k k
u u

a a


 
    

 
      (6) 

From (6), it is clear that 1u  will be negative if 
2k

u
a
  
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Thus we can say that the ball will not proceed beyond the point of contact, if 
2k

u
a
 , or 

  2 2 2 2

2 2

cos sin cosUk V a e k a

a k

    


 

 

 

2

2 2

sink a U V

a a k





 or if 

    2 2 2 2 2sin cos sin cosk U V Uk V a e k a        

2 2cos sin cosUk Vk     

    2 2 2 2sin cos sin cosVk V a e k a        

      2 2 2 2 2sin cos sin cosk U V V a k e k a          

    2 2 2sin cos 1 sin cosk U V e k a V         

i.e. If     
2

2
sin 1 cos 1 1 sin cos

a
U V e V

k
   

 
     

 
 

 

Example:- A tennis ball of hallow spherical space is given by underground cut, and hits the ground at the 

other side of the net at a distance c from it, if u  and v its horizontal and  vertical velocities and   its 

angular velocity when it hits the perfect rough ground, show that the ball will return back towards the net 

if 2 3a u  . Further show that it will rebound over the net if 
 2 2 3

5

ev a u
c

g

 
 and will touch the net 

overhead if 
 

 
2

2 2 3 55
.

2 2 3

ev a u gce
k

a u





 



, where e  is the coefficient of restitution and h  is the height 

of the net. 

Solution:- After the impact let 1u  and 1v  be the velocities of the centre of gravity G  of the ball and 1  

its angular velocity. 

 Let F  be the impulsive friction and R  the impulsive normal reactions of motion if the ball are  

  1m u u F         (1) 

  1m v v R         (2) 

And  2

1

2

3
m a Fa         (3) 

Where 1ev v  

Just after the impact there is no horizontal velocity of the point of contact, so 1 1 0u a    (4) 

From (1) and (3), we obtain 
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  1 1

2
0

3
u u a       i.e.  1 1

2

2
a u u a      

   1 1

3
0

2
u u u a     

  1 1

2 3
5 2 3

5

a u
u a u u





     

Hence the ball will return back toward the net if 1u  is positive when 2 3 0a u    or when 

2 3a u  . 

Second part:- After rebounding from the ground, the ball moves in a parabolic path. Now considering the 

horizontal motion of the ball, we have 
1

c
t

u
  where t  is time taken by the ball to reach the net or 

5

2 3

c
t

a u



 

 Now t , must be less than the time of reaching the ground.  

  
5 2

2 3

c ev

a u g



 or 

 2 2 3

5

ev a u
c

g

 
  

 

Third part:- Let the vertical height to which the ball rises be h  then have 
2 2

1

1 1
'

2 2
h v t gt ev gt     

        ( 1v ev ) 

 

 
2

2 2 3 55

2 2 3

ev a u gc
e

a u





 



 

Clearly the ball will touch the net of the height h  overhead if 'h h  i.e. if 

 

 
2

2 2 3 55

2 2 3

ev a u gcc
h

a u





 



 

 

Example:- Three particles of equal masses are attached to the ends, A and C and the middle point B of 

light rod ABC, and the system is at rest on a smooth table. The particle C is struck by a blow at right angles 

to the rod; show that the energy communicated to the system when A is fixed is to the energy 

communicated when the system is free as 24 : 25. 
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Solution:- Let , ,A B C be the three points of a rod. Where the three particles each of mass m ,be the 

placed. Now let the end A be free, and an impales P be applied at C , such that the rod begins to rotate 

about the point B . Then if the velocity of mass at is 1u , the velocities of the masses A and C are 1 1u a  

, 1 1u a   respecitvley. 

Case I:- When the end A is free. 

 We have    1 1 1 1 1mu m u a u a      

 1
3

P
P u

m
         (1) 

 Taking moments about C , we have   

  1 1 1 12 0 3 2 0mu am u a a u a          (2) 

  1
2

P
a

m
   [using (1)] 

     

Velocity of the mass at 1 1

5

3 2 6

P P P
C u a

m m m
      and the K.E. communicated to the rod 

1

2
  impulse at C  

    (velocity of C) 
2

1

1 5 1 5
.

2 6 12

P P
P E

m m
    (say) 

 

Case II:- When A is fixed.  

In this case the rod will begin to rotate about A, with an angular velocity   and an impulsive 

thrust (=X say) will be generated at A. 

 Now the moment about A gives  
2 2 2

2 . 2 5 2
5

P
m a ma p a m a P a

m
          

  Velocity communicated to 2C a  

 (  C describes a circle, about A, of radius 2a ) 

 Hence its velocity perpendicular to 
4

2
5

P
AC a

m
      

2

1

2
E P  (Velocity of C) 

2

2

1 4 2

2 5 5

P P
P E

m m
    (say)  
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  
 

 
1 2

2
2 1

5 /12 25 24

24 252 / 5

P mE E

E EP m
     

 

Example:- Three equal rods, , ,AB BC CD  are freely jointed and placed in a straight line on a smooth 

table. The rod AB  is struck at its end A by a blow which is perpendicular to the length; find the resulting 

motion and show that the velocity of the centre of AB  is 19 times that of CD , and its angular velocity 

11 times that of CD . 

Solution:- Let P be the impulse of the blow applied at A and let    1 1 2 2 3 3, , ,u u u   be the velocities 

angular velocities of the rods , ,AB BC CD  respectively just after the blow. 

 Again let Q  and R be the impulsive reaction at B  and C  respectively, then we have  

 1mu P Q         (1) 

  
2

1
3

a
m P Q a         (2) [for the rod A,B] 

    
  

 1mu R Q          (3) 

  
2

2
3

a
m Q R a         (4) [for the rod BC] 

 3mu R     (5); 
2

3
3

a
m Ra    (6) [for the rod CD] 

As the rods are connected at B and C, the velocity of B as considered from AB  then velocity of 

A as considered from BC. 

  Velocity of 1G   velocity of B relative to 1G  

   Velocity of 2G   velocity of B of relative to 2G  

  1 1 2 2u a u a           (7) 

 Similarly for C, we have 2 2 3 3a u a u       (8) 

 Now from (7) and [(1) to (4), we easily obtain         3 3P Q P Q R Q Q R        

  2 8 2 4P Q R P Q R      

 Also from (8) and [(3) to (6)], we get    3 3Q R R Q R R       

  4Q R   

  From (9) to (10), we get easily 15P R  and 4Q R   
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 1 1

2 3

15 4
19

velocity of G u R R

velocity of G u R


    and 

 
1

2

3 15 4
11

3

R Rangular velocity ofAB

angular velocity of CD R






   . 

 

Example:- Two equal uniform rods. AB and BC, are freely jointed at B and turn about a smooth joint at A. 

When the rods are in a straight line,   being the angular velocity of AB and u the velocity of the centre 

of mass of BC, BC impinges on a fixed inelastic obstacle at point D, show that rods instaneously brought 

to rest if 
2

2
3 2

u a
BC a

u a









 where 2a  is the length of either rod. 

Solution:- When the rods AB  and BC  are in a straight line,   is the angular velocity of AB  and u  the 

velocity of 2G  the centre of gravity of BC , and let 1 be the angular velocity of BC  about 2G  before 

impinging on an inelastic obstacle at D , such that  BC x . 

    
There will be an impulsive reaction between the two rods at B denoted by Q acting on opposite 

directions as marked in the above figure. 

Now the velocity of B as deduced from AB  the velocity of B as deduced from BC . 

  2a   velocity of 2G   velocity of B relative of  2 1G u a  .  

 Take moments about A to remove the unknown reaction at A, we get  

24 2
. .2
33

a
m a Q Q a m


          (1) 

 For the rod BC , we get  mu P Q        (2) 

 And    
2

1
3

a
m P x a Qa           (3) 

  (2) and (3) 
 

1
3

x aa Px
m u P P

x a


 
       

 
    (4) 

 With this substitution in equation (4), we readily obtain  

 
1

22

3 3 3

u ax a a
u u u

a




    
        

     
 

  
 2 23 2 4 2

3 3 3

u ax u a u a

a

     
    

   
 

  
 

 

2 2

3 2

a u a
x

u a









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Example:- A disc of any form moving in its plane without rotation with velocity V  at right angles to a fixed 

plane strikes the plane so that the distances of its centre of gravity from the point of impact and from the 

plane are r  and p . Assuming the plane to the be elastic and sufficiently rough to prevent sliding, show 

that the impulsive pressure and friction are respectively 
   2 2

2 2

1m e V p k

r k

 


 and 

   
1/2

2 2

2 2

1m e V p r p

r k

 


 where k  is the radius of gyration. Also show that loss of kinetic energy is 

  
 

2 2 2 2

2 2

11

2

m e k p V

r k

 


 

Solution:- Let the disc strike the horizontal plane at K. Before the impact, V is the vertical velocity of G. 

After the impact let  , ,u v w be the velocities and angular velocity of the disc. Angular velocity of K relative 

to G is r  perpendicular to GK  where GK r  

 Now equations of motion are  

 m v V R            (1) 

mu F         (2) 

2 sinmk Fp Rr     or  2 2 2mk Fp R r p       (3) 

p  being the perpendicular from G on the tangent at K . 

  
 Also since there is no sliding. 

  tangential velocity of the point K   velocity of G  Velocity of K relative to G. 

   0 0
p

u r u p
r
            (4) 

 Also Newton’s rule    2 2V ev v r p eV       (5) 

 Now eliminating ,u   from (4) with the help of (2) and (3), we readily obtain 

 
   2 2 2 2

2

2 2 2 2
1

R r p Rp r pF Fp F p
p

m mk mk m k mk

              
 

 

     2 2 2 2F k p Rp r p         (6) 
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 Now  
 2 2

2

2 2
2

R r pR Fp
V r ph eV

m mk mk

  
      

 
 

 

 [Putting the values of ,v   in (5) from (1)] 

 This gives, 
 

 
2 2

2 2

2 2
1 1

Rp r pR r p
V e

m k mk

 
    

 
 

  
 

 
 

2 2 2

2 2 2

2 2 2 2
1

Fp r pR
k r p V e

mk k p mk


       

 

  
   2 2

2 2

1 .mV e k p
R

k r

 



 

Second Part:-   
     2 2 2 2

2 2 2 2

1Rp r p mV e r p
F p

k r k r

  
 

 
 [using (6)] 

  Loss of K.E. 
1

2
R  (velocity of the point K in the direction of impulse before impact + the velocity 

after impact) 

    
1 1

1
2 2

R V tV e RV E      say 

 [  Velocity in the direction of F is zero, hence loss of K.E. in that direction is zero] 

   
2 2

2 2

2 2

1
1

2

k p
E mv e

k r


 


 [putting the value of R] 

 

Example:- Four freely jointed rods, of the same material and thickness, form a rectangle of sides 2a  a 2b  

and of mass 'M . When lying in this form on a horizontal plane, an inelastic particle of mass M  moving 

 with velocity V  in a direction perpendicular to the rod of length 2a  impinges on it at a distance 

c  from its centre. Show that the K.E. lost in the impact is 
2

2

2

1 1 1 3 3
1

2 ' 3

a b c
V

M M a b a

  
    

  
 

Solution:- Let AB be a rod length 2b  and mass 2m  and BC of length 2a  and mass 1m . Let u be the linear 

velocity of 1G , the C.G. of BC, and   the angular velocity just after the action of the imulse (i.e. when the 

particle of mass M  strikes at E such that  1G E c . 

Let I be the impulse applied. Obviously the rods AB  and CD  will not rotate and remain parallel.  
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Now velocity of AB= velocity of B= velocity of 1G   velocity of B rel. to 1G u a   velocity of 

CD = velocity of 1G   velocity of C rel. to 1G u a   and the velocity of the point E  just after 

the blow   velocity of 2G   velocity of E rel. to 1G u a   

(Since the .a v of BC  is in opposite direction to the AD ) 

We also have 
   

1 2 1 2
1 2

' '

2 2 2 4 2

m m m m M M
m m

a b a b a b

  
     

   
 

Now equation of motion for the system (all the four rods) is  

 'M u I        (1) 

And for the particle, of mass M, we have  M V u c I      (2) 

Taking moment of momentum about G, the centre for all the rods, we have 

   
2 2

1 1 1 2 2
3 3

a a
b m m ub m m u a a m a u c Ic            

   
2 2

2

1 2 1 2

2
2 2 3

3 3

a a
m m a Ic m m Ic


 

 
     

 
 

  
 

 
2 ' 3 '

3

a M a M b
cM V c u

a b




 
   

 
 

     [Putting the value of I  and 1 2,m m ] 

   
2' 3

.
3

M a a b
cM V c u

a b





  


 

 Using (1) and (2), we get  'M u M V c u      (3) 

   'M M u MV M c    

 Now putting the value of in (3) from (4), we obtain 

  
 22 3

' .
3 '

c M V ca a b
M c M V c

a b M M


 


 

 
 

     
 

 

'
' / '

'

c M M V c
cM V c M M M M M

M M





     


 

  
2

2

3
.

' 3 '

M a a b VM
c

M M c a b M M

 

  
   

 

  
 1 '

M V K
c

M K M
 

 
 where 

 

2

2

3

3

c a b
K

a a b





 

   
 

 

 

'
'

1 ' 1 '

M M M VM V K
M M u M V

M K M M K M

  
    

    
 

  
 1 '

M V
u

M K M


 
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 Now loss of K.E. = loss of the energy of the four rods + loss of energy of the particle. 

    
1 1

. .
2 2

I V u c I u c E         (say) 

 [  Impulse on the particle and rod is equal and opposite] 

   
1 1

. .
2 2

E I V V M V u c       

 
   

 

2 2

2

2

1 '

2 1 ' 1 1 3
2 . 1

' 3

M M V V

M K M a bc

M M a a b

 
     

   
    

 

 

Example:- , ,AB BC CD  three equal uniform rods hinged freely at B and C are lying on a smooth 

horizontal table, so that ABC  and BCD  are at right angles on opposite sides of BC . A blow is given to 

A in the direction AC . Prove that D  begins to move in a direction 1 7
tan

4

  
 
 

 with CD . 

Solution:- Let P  be the impulse applied at A in the direction of AC . Before impulse the system is at rest. 

After impulse, let the velocity of 1G , the centre of gravity of AB , be  1 1,u v  and the angular velocity of 

this rod AB  be 1 . Similarly the angular velocities of the other rods BC  and CDare 2  and  3  

respectively.  

 

 Hence, we obtain velocity of B along 1AB u    (1) 

 Velocity if B perpendicular to AB   velocity of 1G   velocity of B rel. to 1G   

 1 1v a         (2) 

 Velocity of 2G along AB  velocity of B   velocity of 2G  relative to 1 2B u a   (3) 

 Velocity of 2G  perpendicular to AB  = the same as that of 1 1 1G v a    (4) 

 Velocity of C along AB   velocity of B  velocity of C  relative to 1 22B u a   (5) 

 Velocity of C  perpendicular to AB   the same as that of 2G  or 1 1 1G v a    (6) 

 Velocity of 3G  along AB  the same as that of 1 22C u a      (7) 

Velocity of 3G  perpendicular to AB   velocity of 2G  velocity of 3G  relative to 

2 1 1 3G v a a             (8) 

Velocity of D along AB   the same as 1 22C u a       (9) 
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Velocity of D perpendicular to AB   velocity of C   velocity of D relative to 

1 1 32C v a a             (10) 

Taking moments about C  for the rod CD , we have  

 2

2 1 1 3 1 1 3

1
0 3 3 4 0

3
a a v a a v a a                (11) 

Again taking moments about B for the rods BC  and CD , we get  

     2 2

3 2 1 2 1 1 3 1 2

1 1
2 2 0

3 3
a a a u a a v a a a u a                (12) 

     
2

2 1 2 1 22 2 0
3

a
a u a a u a         [using (11)] 

  1 29 16 0u a           (13) 

 For all the rods, taking moments about A, we get  

     2

1 2 3 1 2 1 1 3

1
2 2 3

3
a a u a a v a a             

     1 2 1 1 12 0u a a v a av             (14) 

         
2

1
1 1 3 1 1 114 13 2 2 0

3

a
a v a a a v a av


            

  1 1 315 13 6 0v a a            (15) 

 Now resolving all the velocities perpendicular to AB, we have  

     1 1 1 2 1 1cos 45 cos 45 cos 45 cos 45u v u a v a       

    1 2 1 1 32 cos45 cos45 0u a v a a         

Or  1 1 1 2 23 2 3 0u v a a a              (16) 

If the direction of motion of D makes an angle   with DC , then obtain 

3

31 1 2

21 2 2

2 3tan 3
23

9

a

v a a

au a


 


 


  

     
  

  [using (11) and(13)] 

From equations (11) and (15), we get 31 1 2
1 1 3

17
; 7

17 21 3 3

av a a
v a a

 
      

 
 

Putting these values in (16 and making use of (13), we have 

2
3 3 2 3

16
17 14 3 0

3

a
a a a a


         

  32
3

2

37 7
4

3 4

a
aw




      3

2

3 7
tan

4





      
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Example:- AB and CD are two equal similar rods connected by a string BC, AB, BC and CD form three sides 

of the square. The point A of the rod AB is struck by a blow in a direction perpendicular to the rod, show 

that the initial velocity of A is seven times that of D. 

Solution:- Let 1u  be the velocity of 1G  then C.G. of AB  and 1 the angular velocity of AB  and 2 2,u   

those of CD . 

As a matter of fact, the initial motion of B must be perpendicular to AB , so that the tension in 

the string  at B must be along BC.  

Let P  be the impulse applied at A perpendicular to AB , then we have . 

 1mu P T       (1) 

  
2

1
3

a
m P T a       (2) 

 2mu T      (3) 

 
2

3 .
3

a
m T a      (4) [motion of CD] 

 
As AB and CD  are connected by a string, the velocity of B  the velocity of 

1 1 2 2C a u u a         (5) 

Substituting the values of 1 1 2 2, , ,u u    [From (1) to (4) in (5), we have 

     3 3 / 4P T P T T T T P        

   1 1

2 2

5 9

7

3 1

T T
u aInitial velocity of A m m

T TInitial velocity of D a u

m m








  




 

  

Example:- A light rod ABC  has three particles each of mass m  attached to it at , ,A B C . The rod is 

struck by a blow P  at right angles to it is a point distant from A equal to BC . Prove that the K.E. set up 

is 
 
 

2 2 2

2 2

1

2

P a ab b

m a ab b

 

 
 where AB a , BC b . 

Solution:- Let the three particles each of mass m  be placed at , ,A B C  of a light rod ABC , and let the 

impulse P be applied at O  such that AO BC b  , where ,AB a BC b   
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Let u be the velocity of C  and  , the angular velocity of the rod just after the blow, then the 

velocity of B  is u b , the velocity of A is  u a b    and the velocity of the point O  at 

which the impulse is applied is u a . Since the system was at rest initially, the velocity of O  

just before the impact is zero. 

    
Now equation the total momentum perpendicular to rod, the impulse, we have 

      3 2
P

mu m u b m u a b P u a b
m

             

Also taking moments about O , we easily obtain  

        20u a b b m u b a b mua u a b b            

  
 

  

 

 2 2 2 2

3 2 /

3 2

u a b P mu

b a b b a b a b a ab b

  
  

     
 

  
2

2 2

b P
u

a ab b m


 
, and 

 

 2 2

a b P

ma ab b





 
 

 Hence the velocity of point O  is given by  

 
 

2 2
2

2 22 2

1
.

P a b ab P
u a b a a b

m a b ab mm a b ab


 
         

 

K.E. set up 
2

P


  (velocity of the point O ) 
 
 

2 2 2

2 2

1

2

P a b ab

m a b ab

 


 
 

 

Alter. K.E.     
2 2 21

]
2

m u a b u b u       

 
   

2 2 2 2 4

22 2 2 2

1

2

P a a b b

m a ab b a b ab

 
  

    
 

 

 But  
2

2 2
.

a P
u a b

a ab b m
  

 
 and 

2 2
.

ab P
u b

a ab b m
 

 
 

  
 

 

 
 

2
2 2 2 2 2 22 2

2 2 22 2

1 1
. .

2 2

a b a b a b abP P
K E

m m a b aba b ab

    
  
    
 
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Generalised Co-ordinates. 

 Suppose that a particle or a system of N- particles moves subject to possible constraints, as for 

example a particle moving along a circular wire or a rigid body moving along an inclined plane, 

then there will be necessarily a minimum number of independent co-ordinates then needed to 

specify the motion. These co-ordinates denoted by q1, q2, ……, qn, are called generalized co-

ordinates. These co-ordinates may be distances, angles or quantities relating to them. 

 Degrees of freedom. 

 The number of independent co-ordinates required to specify he position of a system of one or 

more particles is called the number of degrees of freedom of the system. 

 Ex. 1. A particle moving freely in space require 3 co-ordinates, e.g. (x, y, z), to specify its position. 

Thus the number of degrees of freedom is 3.  

 Ex. 2. A system containing of N-particles moving freely in space require 3N co-ordinates to 

specify the position. The number of degrees of freedom is 3N. 

 A rigid body which can move freely in space has 6 degrees of freedom i.e., 6 co-ordinates 

are required to specify the position. 

 Let 3 non-collinear points of a rigid body be fixed in space, then the rigid body also fixed in 

space. Let these points have co-ordinates (x1, y1, z1) ; (x2, y2, z2) ; (x3, y3, z3) respectively, a total 

of 9. Since the body is rigid, we must have  

   (x1 – x2)
2 + (y1 – y2)

2 + (z1 – z2)
2 = constant.  

   (x2 – x3)
2 + (y2 – y3)

2 + (z2 – z3)
2 = constant. 

   (x3 – x1)
2 + (y3 – y1)

2 + (z3 – z1)
2 = constant. 

 Hence 3 co-ordinates can be expressed in terms of the remaining six. Thus six independent co-

ordiantes are needed to describe the motion i.e., there exit six degrees of freedom. 

Transformation equation. 

 Let rv = xv i + yv j + zv k be the position vector of v-th particle with respect to xyz co-ordinate 

system. The relationships of the generalized co-ordinates q1, q2, ……, qn the position co-ordinates 

are given by the transformation equations.  

   

 

 

 

1 2

1 2

1 2

, ,....., ;

, ,....., ;

, ,....., ;

v v n

v v n

v v n

x x q q q t

y y q q q t

z z q q q t




 


 

  …..(1) 

 Where t denotes the time. In vector (1) can be written as  

   rv = rv (q1, q2,….. qn ; t)   ……(2) 

 Where the functions in (1) or (2) are continuous and have continuous derivatives.  

Classification of Mechanical systems. 

 (1) Scleronomic system. 

 The mechanical system in which t, the time, does not enter explicity in equation (1) or (2) is 

called a scleronomic system. 

 (2) Rheonomic system. 

 The mechanical system in which the moving constraints are involved and the time t does enter 

explicitly is called a Rheonomic system. 

 (3) Holonomic system and Non Holonomic system.  
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 Let q1, q2,….., qn, denote the generalized co-ordinates describing a system and let t denote the 

time. If all the constraints of the system can be expressed as equations having the form (q1, 

q2,……, qn ; t) = 0 or their equivalent, then the system is said to be Holonomic otherwise it is be 

Non-Holonomic system.  

 (4) Conservative and non-conservative system. 

 If the forces acting on the system are derivable from a potential function [or potential energy]  V, 

then the system is called conservative, otherwise it is non-conservative.  

Kinetic energy and generalized velocities.  

 

 The K.E of the system is 2

1

1

2

n

v v

v

T m r



  . 

The K.E of the system can be written as a quadratic form in the generalized co-ordinates. q .  

If the system is independent of time explicitly i.e., Scleronomic then the quadratic form has only terms 

of the type a aa q q  . In case the system is Rhenomic, linear terms in q  are also present.  

TOTAL AND PARTIAL DIFFERENTIAL COEFFICIENTS (Required further) 

If  ,u f x y , where x and y are function of a single variable t, we have 

u u
du dx dy

x y

 
 
 

. 

But ,
du dx

du dt dx dt
dt dt

   and 
dy

dy dt
dt

 . Therefore 

du u dx u dy

dt x dt y dt

 
 
 

. 

This value of du dt  is called the total differential coefficient.    

In general, if  ,u f x y , where x and y are functions of t, we can show that  

1 2

1 2

... n

n

dxdx dxdu u u u

dt x dt x dt x dt

  
   
  

. 

Similarly, if  ,u f x y , where x and y are functions of two other variables 1t  and 2t , then we 

have  

1 1 1

u u x u y

t x t y t

    
 

    
 ....(1) 
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and 
2 2 2

u u x u y

t x t y t

    
 

    
. ....(2) 

These results can be extended to any number of variables. 

 

Generalised Forces.  

 If W is the total work done on a system of particles by forces Fv acting on the v-th particle, then  

 

1

N

dW dq 





  where 

1

N
v

v

v

r
F

q











  

 is called the generalized force associated with generalized co-ordinates qx. 

 Suppose that a system undergoes increments dq1, dq2,…, dqn, of the generalized co-ordinates q1, 

q2,….., qn, then the v-th particles undergoes a displacement.  

 

1

n
v

v

r
dr dq

q








    ……(4) 

  Total work done is given by  

 
1 1 1

N N n
v

v v v

v v

r
dW F dr F dq

q


  

  
   

  
    …..(5) 

 Now, let 

1

N
v

v

v

r
F

q











  

 Then (5) 
1 1 1

N N n
v

v

v

r
dW F d d

q
 

 

 
  

 
    
      …..(6) 

 We have 

1

,
N W W

dW
q q


 




 
  

 
     …..(7) 

Note. (i)   varies from (1) to n, the number of degree of freedom. 

 (ii) v aries from 1 to N, the number of particles in the system.  

Lagrange’s equations.  

 Let F be the net external force acting on the v-th particle of a system, then by Newton’s second 

law 

 v vm r F  

  v v
vv v

r r
m r F

q q 

 
  
 

     ……(8) 

  v v
vv v

r r
m r F

q q 

 
  
 

     ……(8) 

  

1 1

N N
v v

vv v

v v

r r
m r F

q q  

 
  
 

       ……(9) 

  
1 1 1

– v

N N N
v v v

v v v v

v v v

r r rd d
m r m r F

dt q dt q q    

     
      
      

    
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 But rv = rv (q1, q2,….., qn ; t)     ..…(10) 

  1 2
1 2 2

......v v v v
v n

r r r r
r q q q

q q q t

   
    
   

   ..…(11) 

  v vr r

q q 

 


 
 [Cancellation law of the dots]   …..(12)  

 Also,   1 2
1 2

....v v v v
v n

n

r r r r
r q q q

q q q q q t 

     
     

      
 

 = 
2 2 2

1 2
1 1

....v v v v
n

n

r r r r
q q q

q q q q q q q t   

     
     

        
 

 = 1 2
1 2

....v v v v
n

n

r r r r
q q q

q q q q q q t q   

             
          

              
 

 or v vdr rd d d

q dt dt q dt q q dt   

        
        

          
  …..(13) 

    [interchange law of the order of operators] 

 Now, 
1 1 1

–
N N N

v v v
v v v v

av v v

r r rd
mv r m r F

dt q q q   

    
 

    
    …..(14) 

 and  21 1

2 2
v v v v v

v

T m r m r r      …..(15) 

  v
v v

v

rT
m r

q q 




 
      …..(16) 

 and v v
v v v v

v

r rT
m r m r

q q q  

 
 

  
   [using (12)] …..(17) 

  (14)  – v
v

v

rd T T
F

dt q q q  

   
 

   
  

 or –
d T T W

dt q q q


  


   

  
   

 using (7)   …..(18)  

Note. The quantity 
T

P
q








 is called the generalized momentum associated with the general co-

ordinates q. 

Lagrangian function.   

 If the forces are derivable from a potential function V, then  

 –
W V

q q


 


 

 
 

 

 Since the potential, or potential energy is a function of q’s only (and possibly the name t) then, 

we have  

  – – – – – 0
d T T V T V

T V
dt q q q q q q     

          
      

          
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 – 0
d L L

dt q q 

  
  

  
, where L = T – V   …..(19) 

 The function L defined by L = T – V is said to be Lagragian function.  

Generalised momentum. 

 We defined 
T

P
q








 to be the generalized momentum associated with generalized co-ordinates 

q, or the conjugate momentum. 

 In case the system is conservative, we have 

        / / / /T L V T q T q T q T q                  

 Because V, he P. E. of the system does not depend upon q  

  /p L q      

 

Kinetic energy as a Quadratic function of velocities.  

 If at time t, the position of the vth particle (mass m), of a holonomic system is defined by rv, 

then K.E. is given by  

 2

1

1
,

2

N

v v

v

T m r


   where  1..... ;v v nr r q q t     …..(1) 

 So, that 1 2
1 2

....v v v v
v n

n

r r r r
r q q q

q q q t

   
    

   
 

  

2

1 2
1 21

1
....

2

N
v v v v

v n
nv

r r r r
T m q q q

q q q t

    
    

    
  

 =   2 2 2
11 1 22 2 12 1 1 1 1 1 1 2 2

1
... 2 2 .... 2 .

2
nn n n n n na q a q a q a q q a q q a q a q a q a           

 

 …..(2) 

 Where     
1

/ . /
N

rs v v r v s

v

a m r q r q s r


       

      
2 2

1 1 1

/ , / , / .
N N N

v
rr v v r v v r v v r

v v v

r
a m r r a m r t a m r q

t  

 
          

 
    

 From (2), we see that T is a quadratic function of the generalized velocities.  

 The case t is not explicitly involves, is of considerable importance. Hence, 

 We have 0vr

t





 and therefore (2) implies that  

  2 2 2 2
11 1 22 2 12 12 1 2

1
... 2 2 ....

2
nn n nT a q a q a q a q a q q        …..(3) 

 = 

1 1

1

2

n n

rs r s

s r

a q q
 

  where rs sra a .    …..(4) 

 Now using Euler’s theorem for homogeneous functions, we get  
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 1 2
1 2

... 2n
n

T T T
q q q T

q q q

  
   

  
 

  

1 1

2
n nT

T q p q
q

  
  


 


   

 i.e., 1 1 1 22 ...... n nT p q p q p q     

To deduce the principle of energy from The Lagrange’s equations (Conservative field) 

 Lagrange’s equations are: 

 – – ;
d T T V

dt q q q  

   
 

   
  (a = 1, 2, …. n)  …..(1) 

 we know that  

  2 2 2
11 1 22 2 12 1 2

1
.. 2 ....

2
m nT a q a q a q a q q       

 That is, T can be expressed as a quadratic expression in generalized velocities. Hence applying 

Euler’s theorem. We get 

 

1

2
n T

q T
q








        …..(2) 

 Also, 

1 1

n ndT T T
q q

dt q q
 

   

 
 

 
      …..(3) 

 Now multiplying the n equations of (1) by 1 2, ,....., nq q q  respectively and then adding we get  

 1 1
1 1 1

... – ...n n
n

d T d T T T
q q q q

dt q dt q q q

          
         

          
 

 = 1
1

– ... n
n

V V
q q

q q

  
  

  
 

  
1 1 1 1

– – –
n n n nd T T T V

q q q q
dt q q q q

   
         

                 
       

                 
     

   2 – – 0
d dT dV dT dV

T
dt dt dt dt dt

     

    0
d

T V T V
dt

      constant.  

 

 

Hamilton's form of the equations of Motion.  

 Here we shall obtain the differential equations of motion of a conservative holonomic dynamical 

system in a form which constitutes the basis of most of the advanced theory of dynamics. 

 Let (q1, q2 ...., qn) be the generalised co-ordinates and let L (q1, q2 ,...., qn ; 1 2

. ..

n
q ,q ...,q ;t), 

 the kinetic potential of the system, so that the equations of motion in the Lagrangian form are 
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.

i

d
L / q

dt

 
  
 

– ( L/qi) = 0; (i = 1, 2 ,...., n)      

 ...(i) 

 writing pi = 
.

i
L / q   we get  

.

ii
p L / q    (i = 1, 2 ,...., n)     

 ...(ii) 

hence from the former of these sets of equations we can regard either of the sets of quantities (q1, q2 ...., 

an)  

or (p1, p2 ,....,pn) as functions of the other set. 

 Now, let  denote the increment in any function of the variables (q1, q2 ...., qn; p1, p2, ...., pn) or 

1 2 1 2

. . .

n nq ,q ....,q ;q ,q ,....,q
 
 
 

 (q1, q2, …., qn, q1, q2, …., qn); then we get 

 
1

n
.

.i i

i i i i

L L L L
dL dq d q

q q tq

 
       

   
 

  (when L contains t explicitly) 

 1

1

n
. .

i i i

i

L
p dq p d p dt

t

 
   

 
  

 
1 1

n n . ..

i i ii i i

i i

L
d p q p dq p d p dt

t 

   
     

  
   

   
1 1

n n
. .

i i i ii i

i i

d p q L q dp p dq L / t dt.
 

    
         

    
   

 Thus if the quantity 
1

n
.

i i

i

p q L


 
 

 
  when expressed in terms of (q1, q2 ...., qn ; p1, p2 ,...., pn; t) 

be denoted by H, we have 

  – –
n

i i i i

i l

L
dH q dp p dq dt

t





  

   –
n n n

i i i i i i

i l i l i li i

H H H L
dq dp dt q dp p fq dt

q p t t  

   
   

   
    

 , – ,i i

i i

H H H L
q p

p q t t

   
   
   

 

If H does not contain t explicity (i.e. does not contain t explicitly) we have 

 
i

i

H
p

q

 
  

 
 and 

i

i

H
q

p

 
  

 
….(4) 

These equations are called as Hamilton’s equation or Hamilton’s canoncial equation and the function 

H is called Hamiltonian.  

The total order of Hamilton equation is the same as the total order of Lagrange’s equations, names 2n. 

But whereas Lagrange’s equations present us with n equation each of the second order. Hamilton’s 

present us with n equation each of the second order.  
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Hamilton’s equations are 2n equations. Each of the first order. Hamilton’s equation can also be written 

as i i

i i

dp dq
dt

H H

q p

 
    

    
    

. 

Physical significance of the Hamiltonian. 

If the Hamiltonian H is independent of t explicity prove that it is  

(a) constant and (b) equal to the total energy of the system.  

Proof. (a)  We have 
n n

i i

i l i li i

q pdH H H

dt q dt p dt 

  
 

 
   

  0
n n

i i i i i i

i l i l i i

H H
p q q p p and q

q p 

  
        

  
   

 H = constant, say E. 

(b) By Eulre’s theorem on homogeneous function, we have  

 2 ,i

i

T
q T

q





 where T is the K.E. of the system. 

But 
 

,
i i i

T VL T
L T V

q q q

  
    

 
(V does not depend on 

iq ) 

or 2 2i i i i

i i

L L
q T q p T p

q q

  
     

  
   

  2i iH p q L T T V T V E         

Passage from the Hamiltonian to the Lagrangian. 

Suppose that we are given a function  , ,H q p t and are told that the motion of the system satisfies the 

canoncial equations  

i i

i i

H H
p and q

q p

    
     

    
  …(1) 

Then we want to find a function    1, 2 1 2,.........,....... ; , ; , . . , ,n nL p p p q q q t i e L p q t  

Such that the motion also satisfies the equations  

0
i i

d L L

dt q q

     
     

     
  …(2) 

Solve the first set of equation in (1) for the p’s in terms of the q’s the q ’s and t. 

Then write 
n

i i

i l

L q p H


  and express L as a function of the q’s, the q ’s and t. This is the required 

Lagangian.  

sin
n

i i i

i li

L
p u g L p q H

q 

   
      

   
  

 
i

i

d L
p

dt q

  
  

  
 and 

i i

L L

q q

    
    

    
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 0i

i i i

d L L H
p

dt q q q

       
        

       
 

i.e. L satisfies (2) assuming (1).  

Principle of Least Action. 

Principle of least action states that if T is kinetic energy, at time t, of a conservative, holonomic 

dynamical system specified by the generalized co-ordinates, then the integral 
2

1

2

t

t

I Tdt   has necessary 

an extreme value, minimum or maximum, on actual path as compared with varied path as the systems 

passed from one configuration at time t0 to another configuration at time t1.   

    

We know that L = T – V, i.e. Lagrangian = k.E. – P.E. 

and T + V = E (const), since system is conservative.  

But by Hamilton’s principle, we know that  

   
2 2 2

1 1 1

0 – 0 2 – 0

t t t

t t t

L dt T V dt T E dt         

    
2 2

1 1

2 0 2 0.

t t

t t

T dt T dt       …(1) 

     [ 0E  as E, the total energy is const.] 

Result (1), is know as Principle of least action.  

Equation (1) can also be written as 0,A  where 
1

0

2

t

t

A T dt   and is defined by action as follws:  

This implies that principal of least action states that the action in the actual path is minimum compared 

with the varied path, as the system passes from one configuration to another.  

 

EXAMPLES TO SUBSTANTIATE. 

Ex. 1. (i) Set up the Lagrangian for a simple pendulum, and 

          (ii) obtain an equation describing its motion.  

Sol. (i)  

 

Choose as generalized coordinates,  

the angle  made by the string OB of the pendulum and the vertical OA. Let l be the length of OA,  

https://mindsetmakers.in/upsc-study-material/


 

Download study materials https://mindsetmakers.in/upsc-study-material/  

then K.E., is given by 

  
22 2 21 1 1

2 2 2
T mv m l ml     

 Where m is the mass of the bob.  

The potential energy of mass m is given by  

      – – cos 1– cosV mg OA OC mg l l mgl     

   2 21
– – 1– cos

2
L T V ml mgl    

(ii) Hence Lagrange’s  equation gives 

    2– 0 – – sin 0
d L L d

ml mgl
dt dt

 
 

  
   

  
 

  – sin – sin
g

l g
l

       

 Which is the required equation of motion. 

Ex. 2. A particle of mass m moves in a conservative force field. Find 

 (a) the Lagrangian function, (b) the equations of motion in cylindrical co-ordinates (z). 

 

 Sol. we have  0 0 0 0 sayOP OP P P OA AP P P         

  sin cosj i zk       where i, j, k 

 are the unit vector along OX, OY and OZ respectively.  

 Hence the unit vector along the direction of  increasing is  

 Given by 1 / sin cosj i
 

     
 

 

 Similarly 1 /
 

 
 

 

 = 
cos – sin

–sin cos
j i

i j
   

   


 

 Now  sin cos
d d

v j i zk
dt dt


        

 = cos sin – sin cosj j i i kz          

 =  cos – sin cos – sinj j j i zk         
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 = 1 1 zk    

  2 2 2 21

2
T m z       and  , ,V V z    

 (a) Hence the Lagrangian function is  

   2 2 2 21
– – , ,

2
L T V m z V z        

 
 

 (b) Lagrange’s equations are  

  – 0
d L L

dt

  
 

  
 i.e., 

d

dt
  2– 0

d V
m m

dt

 
   

 
   

 i.e.,  2– –
V

m


  


 

 – 0
d L L

dt

  
 

 
 i.e.,  2 0

d V
m

dt


   


 

 or  2 –
d V

dt


  


 

 and – 0
d L L

dt z z

  
 

  
 i.e.,   0

d V
mz

dt z


 


 or –
V

mz
z





 

Ex. 3. A particle Q moves on a smooth horizontal circular wire of radius. A which is free to rotate 

about a vertical axis through a point O, distance c from the centre C. If the QCO  , show 

that  

   2– cos sin .a a c c      

 Where  is the angular velocity of the wire.  

 Sol. Let OQ = r, and AOQ =  

  2 2 2 – 2 cosr a c ac       …..(1) 

 

  cos – – cosr a c         …..(2) 

 The particle Q moves on circle of radius a, so its velocity along the tangent QT will be  but 

Q revolves about O with angular velocity , which causes a velocity a at the right angles to 

OQ. 

  
2
Qw   (velocity)2 of the particle at Q 
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 =  2 2 2 2 2 cos –a r ar         

 , –AOQ CQO      

 Now  2 2 2 2 21 1
2 cos –

2 2
T mvQ m a r arw         

 
 

 

– ,

– cos

NQT OQ r

HQ a c

    


  

 

NOTE:-  

If r  is the position vector of the particle at any time t. the r / r   is the vector tangent to the curve  = 

constant i.e., a vector in the direction of r (increasing r), A unit vector in this direction is thus 

given by 1 /
r r

r
r r

 

 

. 

 Similarly,  /r   is the vector tangant to the curve r = constant, A unit vector in the direction 

is given by 1 /
r r 

 
 

 

 =    2 2 2 2 21
– 2 cos 2 – cos

2
m a a c ac a a c        
 

 =  cos –r    

 and work function = 0  (  weight does no work) 

  Lagrange’s  equation  – 0
d T T

dt

  
 

 
 

   2 2cos – sin – sin 0
d

a a a c ac ac
dt
         
 

 

   2 2– cos sin – sin – sin 0a a a c a c ac ac             

   2 2– cos sina a c c      

Ex. 4. Use Lagrange’s equations to find the differential equation for a compound pendulum which 

oscillates in a vertical plane about a fixed horizontal axis.  

 Sol. 

 

Let the plane of oscillation be represented by xy – plane, where N is its intersection with the 

axis of rotation and G is the centre of gravity. 

 Let the mass of the pendulum be M and let its moment of interia about the axis of rotation be 

MK2.  

Then potential energy relative to the horizontal plane through N is V = –Mgh cos.  
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 Also, 2 21

2
T Mk   

  21
– cos

2
L T V Mk Mgh         …..(1) 

  2L
Mk


 


 and – sin

L
Mgh


 


 

 Now Lagrange’s  equation gives  

  2– 0 sin 0
d L L d

Mk Mgh
dt dt

  
      

  
 

 i.e., 
2

2
sin 0 – sin

gh
Mk Mgh

k
         

 When  is small, we have 
2

2
–

gh
D

k
     (sin = ) 

 or 2

2
0

gh
D

k

 
   

 
 

 This is the differential equation of the pendulum. 

Ex.5. A uniform rod, of mass 3m and length 2l, has its middle point fixed and a mass m attached at 

one extremity. The rod when in horizontal position is set rotating about a vertical axis through 

its centre with an angular velocity equal to 
2ng

l

 
 
 

 show that the heavy end of the rod will 

fall till the inclination of the rod to the vertical is  –1 2cos 1 –n n
 


  

 and will then rise again. 

 Sol. The mass m is attached at L. On the rod ML, take a point p such that  

 OP   , the element PQ d  .  

 

Further at any time t,  

let the plane through it and the vertical have turned through an angle  from its initial position and let 

the rod be inclined at an angle  to the rod be inclined at an angle  to the vertical.  

Taking O, the mid point of the rod, as the origin and OX, OY (a line perpendicular to the plane of the 

paper) and OZ as axes of refrence,  

then co-ordinates of the point P on the rod are: 

 sin cos , sin , cosx y z           
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  cos cos – sin sinx        

 cos sin sin cos , – sin .y z         Thus, 
2v  = (velocity)2 of. 

 2 2 2 2 2 2 2sinP x y z         . 

   2 2 2 2 2sinLv l      = (velocity)2 of mass m,  

 Now mass of the element 
3

2

m
PQ d dm

l
   , say. 

  Its kinetic energy  

  2 2 2 2 21 1 3
. . sin

2 2 2

m
dm v d

l
         

 =  2 2 2 23
sin

4

m
d

l
       

 and K.E. of the rod =  2 2 2 2

–1

3
sin

4

m
d

l
       

  2 2 2 21
sin

2
m l     

 Again, (velocity)2 of the particle  2 2 2 2sinm l     . 

  Kinetic energy of the particle of mass  2 2 2 21
sin

2
m ml     . 

  Total K.E. = T = K.E. of the rod + K.E. of the particle  

 =    2 2 2 2 2 2 2 21 1
sin sin

2 2
ml ml          

  2 2 2 2sinT ml      

 Also the work function is given by cosW mgl C   

 Lagrange’s -equation is –
d T T W

dt

   
 

  
 

 Which gives  2 22 sin 0
d

ml
dt

     

 Integrating it, we get 
2sin K    (constant). 

 Initially, 
2


   and 

2ng

l

 
   

 
 

 
2ng

K
l

 
   

 
 

 2 2
sin

ng

l

 
     

 
     …..(1) 
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 and Lagrange’s -equation is –
d T T W

dt

   
 

  
 

 i.e.,  2 2 22 – 2 sin cos sin
d

ml ml mgl
dt

       

 or 
22 – 2 sin cos – sinl l g          …..(2) 

 Substituting value of   from (1) in (2), we have 

 
22 – 4 cot cos – sinl ng ec g         …..(2’) 

 Integration provides us 
2 22 4 cot 2 cosl ng g k      . 

 Initially , 0, 0
2

k


       

  
2 22 4 cot 2 cosl ng g         …..(3) 

 The red will fall till 0   

 i.e., 
24 cot 2 cosng g    or 2 22 cos – cos sin 0n      

  either cos 0
2


     which gives initial position. 

 as 2 22 cos – sin 0 cos 2 cos –1 0n n      . 

 Solving it, 
 

  
2

2
–2 4 4

cos – 1
2

n n
n n

 
     

 [the other value being inadmissible because  can not be obtuse] 

 or  –1 2cos – 1n n
 

   
  

. This proves the required result. If we substitute this value of  in 

equation (2’), then we find that  comes out to be positive. Hence at that time the rod begins to 

rise.  

Ex. 6. A mass m hangs from a fixed point by a light string of length l and a mass m’ hangs from m by 

a second string of length l’. For oscillations in a vertical plane, show that the periods of the 

principal oscillations are the values of 
2

n


 where n is given by the equation 

 4 2 2' 1 1 '
– 0

' '

m m m m
n gn g

m l l ml l

  
   

 
 

 Sol. A any time t, let the strings be inclined at angle  and  to the vertical. Co-ordinates of m 

are  sin , cosl l  . 
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  (velocity)2 of 2 2m l   while co-ordinates of m’ are 

 .sin 'sin .Bx l l     cos 'cosBx l l    

 cos 'cosBy l l      

 (velocity)2 of  

 
2 2 2 2 2 2' 2B Bm x yx l l ll         

      [ and   are small] 

 Now let T, be the kinetic energy and, W the work function, of the system, then we have 

  cos ' cos 'cosW mgl m g l l     

  ' cos ' 'cosgl m m m gl     

 and 2 2 2 2 2 21 1
' ' 2 '

2 2
T ml m l l ll        

 
 

   2 2 2 21
' ' ' 2 '

2
m m l m l m       

 
 

 Lagrange’s -equation is given by –
d T T W

dt

   
 

  
 

     2' ' ' – '
d

m m l m ll gl m m
dt
      
 

    …..(1) 

 While Lagrange’s -equation gives  

 2' ' ' ' – ' '
d

m l m ll m gl
dt
    
 

 

  ' –l l g           …..(2) 

 Equation (1) and (2) again give 

   2 2' ' ' 0m m lD g m l D          …..(3) 

  2 2' 0lD l D g           …..(4) 

 Eliminating , we get    2 2 4' ' – ' ' 0m m lD g l D g m ll D     
 

 

 i.e.,     4 2 2' ' ' ' 0mll D m m l l gD m m g       
 

   …..(5) 

 Now let    cos ; – sinA nt B D nA nt B        
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  2 2 2– cos –D n A nt B n      and 4 4D n      …..(6)   

  (5) and (6) give mll’     4 2 2– ' ' ' 0n m m l l gn m m g      

 or 
 4 2 '' 1 1

– 0
' '

m mm m
n gn

m l l mll

  
   

 
    …..(7) 

Ex. 7. (a) A mas M hangs from a fixed point at the end of a very long string whose length l is a, to M 

is suspended a mas m by a string whose length l is small compound with a; prove that the tiem of a 

small oscillation of m is 2 .
M l

M m g

 
  

 
 

Sol. Here, we have m = M, m’ = m, l = a, l’ = l 

 4 21
– 0

M mM m l
n gn

M a l Mal

  
    

 
 

i.e., 
  2

4 2

2
– 1 . 0

M m gM m l g l
n n

M a l aMl

  
   

 
   …..(8)  

But a is larger compared to l  0
l

a
  

Hence the equation (8), gives 

4 2– . . 0
M m g

n n
M l


  i.e., 2 .

M m g
n

M l


  

 Time of a small oscillation = 
2

2 .
M l

n M m g

 
   

 
 

Ex.8. (b) At the lowest point of a smooth circular tube, of mass M and radius a, is placed a particle of 

mass M’, the tube hangs in a vertical plane from its highest point, which is fixed, and can tum freely 

in tis own plane about this point. If the system be slightly displaced, show that the periods of the two 

independent oscillations of the system are 

2
2

a

g

 
  

 
 and 

–1

2
Mag

M M

 
    

 

And that for one principal mode of oscillations, the particle remains at rest relative to the tube 

nd for the other, the centre of gravity of the particle and the tube remain at rest.  

Sol. Let C be the centre of the tube and A the position of the particle M’ at time t when OC and 

CA make angle 3 and  with the vertical 
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sin sinAx a a    , 

cos cosAy a a     

and  

(velocity)2 of 
2 2
A AA x y   

   
2 2

cos cos – sin – sina a a a       

    [neglecting small quantities of the higher order] 

Also  sin , cosC a a    

(velocity)2 of    
2 2 2 2cos – sinC a a a       

Now let T, be the kinetic energy and W the work function of the system then we readily obtain 

 cos ' cos cosW Mga M g a a K      

 ' cos ' cosM M ga M ga K     

T = K.E. of circular tube + K.E. of particle  

   2 2 2 2 2 2 2 2 21 1
2

2 2
M a a M a a a           

2 2 2 2 22 ' 1
' '

2 2

M M
a M a M a


           …..(2) 

 Lagrange’s -equation gives.  

2 2' ' – ' –
d g

M a M a M ga
dt a
      
 

  

    2 ' ' – ' .
g

M M M M M
a

           …..(3) 

Also Lagrange’s -equation gives 

2 2' ' – ' –
d g

M a M a M ga
dt a
      
 

    …..(4) 

Equations (3) and (4) can be re-written as 

   2 22 ' ' ' 0M M D M M c M D      
 

    …..(5) 

and  2 2 0D D c     where 
g

c
a

 .     .….(6) 

Eliminating  between these two equations, we get 

     2 2 42 ' ' – ' 0M M D M M c D c M D      
 

 

i.e.,    4 2 22 3 2 ' ' 0MD c M M D c M M      
 

. 

To sole (7).        …..(7) 

Let    cos ; – sinA pt B D pA pt B       

 2 2 2– cos –D p a pt B p      and 
4 4D p       ..…(8)  
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 (7) and (8) give    4 2 22 – 3 2 ' ' 0Mp c M M p c M M     
 

 

i.e.,    4 22 – 3 2 ' ' 0Mp c M M p c M M      0   

which again gives    2 22 – – ' 0p c Mp c M M  
 

 

 2
1

2

c
p   and 

 2
2

'c M M
p

M


  

i.e., 2
1

2

g
p

a
  and 2

2

'M M g
p

M a


    

g
c

a

 
 

 
 

Hence periods of oscillations are given by  

1

2

p


 and 

1

2

p


 i.e., by  2 2 /a g  and 

 
2

'

M a

M M g

 
    

 

Multiplying (6) by  and adding to (5), we have 

       2 2 ' ' – 'D M M M M M           …..(9) 

Now choose  such that 

2 ' '
'

'

M M M M
M

M

  
  

 
 and  – 'M M   . 

Taking 'M  , equation (9) reduces to  

    2 1
' ' – ' '

2
D M M M c M M M        

and when  – 'M M   equation (9) reduces to  

   2 '
– – –

M M
D c

M


      

 Principal co-ordinates are –   and   ' 'M M M   0.  

For the first mode, – 0   . i.e.,    . This shows that the particle is at rest relative to the 

tube. For the second mode we have  ' ' 0M M M    . 

Further, the x-coordinates of C.G. of the particle and the tube  

= 
 sin ' sin sin

'

Ma M a a

M M

    


 

=   '
'

a
M M

M M
  


  (since  and  are small  sin = and sin = ) 

=   ' ' 0
'

a
M M M

M M
   


   [using above results] 

 The common C.G. of the particle and the tube remains at rest.  

 

HAMILTONIAN 

Ex. 9. A particle moves in the xy-plane under the influence of a central force depending only on its 

distance from the origin. 
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(a) Set up the Hamiltonian for the system. 

(b) Write Hamilton's equations of motion. 

Sol. (a) Let the potential due the central force be V (r). Then, we 

have  

 
21 1

2 2
T mv m   [(radial velocity)]2 + (transverse velocity2)  

 
2 2 21

( )
2

m r r    

 
2 2 21

( ) ( )
2

L T V m r r V r      

   2( / ) , ( / )rp L r mr p L r mr         

   2( / ), ( / )rr p m p mr    

 Thus i i r rH p q L p q p q L        

  2 2 21
( ) ( )

2
rp r p m r r V r       

  
2( / ) ( )r rp p m p p mr     2 2 2 2 2 21

{( / ) ,( / )} ( )}
2

rm p m r p m r V r    

  
2 2 2( / 2 ) ( / 2 ) ( )r rp m p m V r   = total energy of the system 

(b) Hamilton's equations are 

  ( / ), ( / )i i ip H qi q H p         

  
2( / ) ( / ), /r r er H p p m H p p mr              

2 3( / ) ( / ) ( ), ( / ) 0ip H r p mr V r p H             

 Ex. 10. A particle of mass m moves in a force field of potential V. Write 

(a) the Hamiltonian and 

(b) Hamilton's equations in spherical polar co-ordinates. 

Sol. (a)  K.E. is given by 

 2 2 2 2 2 21
( sin )

2
T m r r r         ....(1) 

 2 2 2 2 2 21
( sin )

2
L T V r r r V          ....(2) 

We have  
2( / ) , ( / )rp L r mr p L mr          

2 2( / ) sinp L mr       
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  2 2 2( / ), / ), / ( sin )rr p m p mr p mr           ...(3) 

Now Hamiltonian is given by 

i i rH p q L p r p p L          

2 22

2 2 2
( , , )

2 2 2 sin

r p pp
V r

m mr mr
     


 

= total energy of the system 

(b) Hamilton's equations are given by 

 ( / ), ( / )i i i iq H p p H q        

i.e. 
i

H pr
r

p m


 


   

22

3 3 2sin
r

ppH V
p

r mr mr r

 
    

 
 

 
2

pH

p mr






  


   

2

2 3

cos

sin

pH V
p

mr



  





 
   

 
 

 
2 2sin

pH

p mr






  

 
  

H V
p

 
 
 

 

 Ex. 11. A particle of mass m moves in a force field of potential V. 

(a) Write the Hamiltonian and 

(b) Hamilton's equations in cartesian co-ordinates. 

Sol. (a) We have 

 2 2 21
( )

2
T m x y z     

  2 2 21
( ) ( , , )

2
L m x y z V x y z       ....(1) 

 ( / ) , ( / ) ; ( / )x y zp L x mx p L y my p L z mz             

  ( / ), ( / ), ( / )x y zx p m y p m z p m    

Thus  2 2 21
( ) ( , , )

2
x x y zH p qx L p x p p z m x y z V x y z           

 ( / ) ( / ) ( / )x x y y z zp p m p p m p p m    2 2 2 2 21
[( / ) ( / ) ( / ) ( , , )]

2
x y zm p m p m p m V x y z     

 2 2 2( / 2 ) ( / 2 ) ( / 2 ) ( , , )x y zp m p m p m V x y z     

 = total energy of the system. 

(b) Hamilton's equations are: 

 ( / ); ( / ); ( / )x y zp H x p H y p H z             and 
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 ( / ); ( / ); ( / )x y zx H p y H p z H p          

 ( / ), ( / ), ( / )x y zp V x p V y p V z             

 ( / ), ( / ), ( / )x y zx p m y p m z p m    

Ex.12. A sphere rolls down a rough included plane; if x be the distance of the point of contact of the 

sphere from a fixed point on the plane, find the acceleration.      

Sol. We have 2 2 2 2 2 21 1 2
( )

2 2 5
T m x k m x a

 
      

 
 2 22

5
k a

 
 

 
 

  2 2 21 2 7
;

2 5 10
m x x mx
 

   
 

 ...(1) V = m g x sin ...(2) 

  27
sin

10
L T V mx m g x         ...(3)  

Now  
7

( / ) (5 / 7 )
5

x xp L x mx x p m        

 Thus 
7

sin .(5 / 7 )
10

x x xH L p x mx m g x p p m        

 25
( / ) sin

14
xp m m g x        ...(4) 

 One of Hamilton's equations gives 

7 5
( / ) sin sin sin

5 7
xp H x mg mx mg x g            

 Ex. 13. If the Hamiltonian H is independent of time explicitly, prove that it is. 

(a) a constant, and 

(b) equal to the total energy of the system. 

Sol. (a) 
1 1

( / ) ( / ) ( / )
n n

i i i i
i i

dH dt H p p H q q
 

         

 
1

( ) 0
n

i i i i
i

q p p q


     [  ,( / ) ( / ) ]i i i iH p q H q p        

  H = constant = E say. 

(b) By Euler's theorem on homogeneous functions, we have 

  
1

( / ) 2
n

i i
i

q T q T


        ...(2) 

Put ( / ) { ( ) / } ( / ) ( / ) ( / )i i i i i ip L q T V q T q V q T q                 

 { ( / ) 0iV q    as V is independent of }iq  
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 (2) 
1

2
n

i i
i

q p T


    

Thus 
1

2 2 ( )
n

i i
i

H q p L T L T T V T V E


            

Ex. 14. Write the Hamiltonian function and equation of motion for a compound pendulum. 

Sol. We have 21
cos ( / )

2
L I mgh p L I          

where I = mk2 

 21
cos

2
i iH p q L p L I mgh             

21
cos

2
I mgh     

  2 21
( / ) cos ( / 2 ) cos

2
H p I mgh p I mgh        { ( / )p I  

 ( / ) ( / ),( / ) sinH p p I H mgh          

Thus the Hamilton's equations for   and p  are given by 

/ ( / )H p p H          

i.e. p      and  sinp mgh      But  p I p I      

 sin sin 0.
mgh

I mgh
I

       

This is exactly the same as obtained previously using Lagrange's equations. 

Ex. 15. Obtain Euler's equations from Hamilton's equations. 

Sol. We know that  
2 2 2

1 2 32 ( ),T A B C     

  2 2 2

1 2 2

1
( )

2
L T V A B C          ...(1) 

Also Euler's geometrical relations give 

1 sin sin cos      

2 cos sin sin ;      and 

3 cos      

Now H = T + V 1 2 2

2 2 3

1
( )

2
A B C V       

Again, 31 2

1 2 3

L L L L
P

 

  

    
    

     
 

1 2 3sin cos .0A B C           ...(1) 

1 2 3sin cos sin sin cos
L

P A B C  


        


 ...(2) 

and  3( / )P L C      
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Solving the three equations for  1 2 3, ,    we have 

1

2 3

cos1
sin ( cos )

sin

1 sin 1
cos – ( cos ) ;and .

sin

p p p
A

p p p p
A C





 

  

  

 
    

 
      

 

Also, Hamilton's equations are 
H

p


 


and 

H

p


 


 

Now 
H

p





   

 31 2
3

1 2 3

H H H V
C

 


  

     
     

       
 

 1 2 2 1 3

1
. .0

A V
A B B C

A B
    

   
      

  
 

 1 2( )
V

A B 



  


 

 1
1 1( )

d V
C A B N N

dt




 
     

 
 

This is Euler's third Familiar dynamical equation 

Also,  31 2

1 2 3

( / )
H H H

H p
p p p

 

  


  

   
      

     
 

 1 2 3 3( cos sin )cot sin cot            

i.e. 3 3cos cos           

This is Euler's third geometrical equation. 

On the same lines, we can deduce Euler's other equations (dynamical and geometrical). 

Ex.16 Prove that 

 
H H

dt dt

    
   

   
 where H is the Hamilton's function. 

Sol. Let q1, q2 ...., qn be the generalised co-ordinates then Hamilton's equation are given by 

 1

i

H
p

q





 and 1

i

H
q

p





(i = 1, 2, ..., n)   ...(1) 

But Hamiltonian H is a function of q's and ps' 

 
1 1

n n

i i
i i

i i

H H H H
q p

t dt q p 

   
   

  
 

 
1 1

( )
n n

i i i i
i i

H H
p q q p

t t 

 
     
 

   [using (1)] 

Ex.17 Use Hamilton's equations to find the equations of motion of a projectile in space. 

Sol. Let (x, y, z) be the co-ordinates of the projectile in space at time t, then we have 

2 2 21
( ),

2
T m x y z V mgz     
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 2 2 21
( )

2
L T V m x y z mgz       

, ,x y

L L L
p mx p my pz mz

x y z

  
      

  
 

But L does not involve t explicity therefore Hamiltonian H is given by H = T + V = 
1

2
 

2 2 2( )x y z mgz    

22 2
2 2 2

2 2 2

1 1
( )

2 2

yx z
x y z

pp p
m mgz p p p mgz

m m m m

 
         

 

 

Now Hamilton’s equations are given by 

0x

H
p

x


  


 …(1), 

x

x

pH
x

p m


 


 …(2), 

0y

H
p

y


  


 …(3), 

y

y

pH
y

p m


 


 …(4), 

z

H
p mg

z


   


 …(5), 

z

z

pH
z

p m


 


 …(6) 

 

Using (1) and (2), we have x  = 0 …(7) 

Using (3) and (4), we have y  = 0 …(8) 

Again making use of (6) and (5), we have 

zmz p mg    or z g.   

These (7, 8, 9) are the equations of motion of the projectile in space. 
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ASSIGNMENT TO IMPROVE 

Q. 1. A bead, of mass M, slides on a smooth fixed wire, whose inclination to the vertical is  and has 

hinged to it a rod, of mass m and length 2l, which can move freely in the vertical plane through 

the wire. IF the system starts from rest with the rod hanging vertically, show that  

       2 24 1 3cos ; 6 sin sin – sinM m M m g          where  is the angle between the 

rod and the lower part of the wire. 

 Sol. Let OL be the fixed wire. At any time t. let the bead of mass M bet at A where OA = x, also 

let  be the angle which the rod AB makes with the lower part of the fixed wire.  

 

 Take O as origin and the fixed wire OL as x axis and a lien through O and prep. To OL as y 

axis; the co-ordinates of G, the C.G. of the rod AB, are  cos , sinx l l    

 i.e.,  cosGx x l    and sinGy l   

  – sin ; cosG Gx x l y l     

  (velocity)2 of    
2 22 2 2 – sin cosG G GG v x y x l l       . 

 Now let T be the kinetic energy and W the work function of the system  

 Then we easily get  

 Total energy = T = K.E. of the bead + K.E., of the rod  

    
2

2 22 21 1
– sin cos

2 2 3

l
Mx m x l l

 
       

  

 

   2 2 21 2
– sin

2 3
M m x mlx ml      

 Also, the work function is given by  

  cos cos cos –W Mgx mg x l         

 =    cos coscos –M m gx mgl      

  Lagrange’s x-equation gives, –
d T T W

dt x x x

   
 

   
 

 i.e.,    – sin cos
d

M m x ml M m g
dt
         

 or    2– sin – sin – cos cosM m x ml ml ml M m g          .  …..(i) 
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 –
d T T W

dt

   
 

  
 

 i.e., 24
[ sin ] cos

3

d
mlx ml mlx

dt
      

  – sin –mgl   . 

 or 
4

– sin – cos cos
3

xml x ml ml x ml       

  – sin –mgl    

 or  
4

– sin – sin –
3

x l g          …..(ii) 

 Eliminating x  between (i) and (ii), we get 

  2 24
– sin – sin cos

3
ml M m l ml

 
      
 

 

    cos sin – sin –M m g          

 or 2 23 3 cos – 3 sin cosl M m m ml       
 

 

 =  3 cos sin .M m g    

 Whence on integrating, we get 

  2 24 3 cos 6 sin sinl M m m M m g C        
 

   …..(iii) 

 When   2, 0, –6 sinC M m g       . 

 Putting the value of C in (iii), we get  

      2 24 3 cos 6 sin sin – sinl M m m M m g          

Q.2. A uniform rod, of length 2a, which has one end attached to a fixed point by a light inextensible 

string, of length 
5

12
a , performing small oscillations in a vertical plane about its position of 

equilibrium. Find the position at any time, and show that the period of its principal oscallations 

 are 
5

2
3

a

g

 
  

 
 and 

3

a

g

 
  

 
 

 Sol. Figure is self explanatory. At any time t, let the string and the rod by inclined at  and  to 

the vertical OY.  
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 Co-ordinates of G are given by  

 
5

sin sin
12

Gx a a    

 
5

cos cos
12

Gy a a   . 

 ' 5
cos cos

12
G

a
x a a   . 

 ' 5
– sin sin

12
G

a
y a a

 
   

 
 

 
2 2
G Gx y   (velocity)2 of G 

  
2 2

2 2 225 5
cos

144 6

a a
a        

 
2

2 2 2 225 5

144 6

a
a a      

     [ and   are small so  cos 1   ] 

 
2

2 2 2 2 2 21 25 5

2 3 144 2

a
T m a a a

  
         

   

 

 
2

2 225 192 120
288

ma      
 

 

 and 
5

cos cos
12

W mg a a
 

   
 

 

  Lagrange’s -equation gives 

  
2

2 5
– 25 60 –

144 12

d T T W d ma mga

dt dt

      
        

     

 

       { sin as     is small} 

  
12

5 12 – .
g

a
           …..(1) 

 and Lagrange’s  -equation gives 
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  
2

192 60 – 5 16 –12
144 2

d ma g
mga

dt

  
       

  

   .….(2) 

 Equation (1) and (2)   2 25 12 12 0D c D       ..…(3) 

 and  2 25 6 12 0D D C     where (g/a) = c.    …..(4) 

 Now elimination  between these two equations, we get  

     2 2 45 12 16 12 – 60 0D c D c D    
 

 

 or  4 2 25 63 36 0D cD c          …..(5) 

 Let  cosA pt B     – sinD pA pt B   , 

    2 2 2– cos 2D p A pt B p      and 
2 4–D p   . 

 Substituting these values in (5), we get 

    4 2 2 4 2 25 – 63 – 36 0 5 – 63 36 0p c c p cp c       0    

    2 2 2 23 12
5 – 3 –12 0 5 – – 0

g g
p c p c p p

a a

  
    

  
 

 2
1

3

5

g
p

a
   and 2

2

12g
p

a
   

 The periods of oscillations are 
1

2

p


 and 

2

2

p


 

 i.e., 
5

2
3

a

g

 
  

 
 and 2

12

a

g

 
  

 
 i.e., 

5
2

3

a

g

 
  

 
 and 

3

a

g

 
  

 
. 

Q. 3. A uniform rod, of mass 5m and length 2a, turns freely about one end which is fixed, to its other 

extremity is attached one end of a light string of length 2a, which carries at its other end a 

particle of mass m, show that the periods of the small oscillations in a vertical plane are the 

same as those of simple pendulums of length 
2

3

a
 and 

20

7

a
 

 Sol. Let the string BC and the rod AB make angle  a  with the vertical at any time t. The 

particle of mass m is tied to the end C of the string. 

  

 Now 2 sin 2 sincx a a     
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  2 cos coscx a    

 2 cos 2 coscy a a    

  –2 sin sincy a    

   (velocity)2 of 
2 2
c cm x y   

 =  2 2 24 2a      . 

 Again co-ordinates of G are  sin , cosa a  . 

  (velocity)2 of 2 2G a   

 Now let T be the kinetic energy, and W the work function of the system, then we have  

 Total K.E. = K.E. of rod + K.E. of particle of mass m. 

  
2

2 2 2 2 21 1
5 .4

2 3 2

a
T m a m a

 
           

 

 

 2 2 216
2 4

3
ma

 
      

 
 

 and  5 cos .2 cos cosW mga mg a     

 
2 2

7 cos 2 cos 7 1– 2 1–
2 2

mga mga mag mag
    

          
   

 

  Lagrange’s  equation is given by  

 –
d T T W

dt

   
 

  
 

  
32 7

4 – 32 12 –21
3

d g g

dt a a

 
        

 
     …..(1) 

 Lagrange’s  equation is given by 

  
2

4 4 – . ., 2 2 –
d g g

i e
dt a a

              …..(2) 

  (1) and (2)   2 232 21 12 0D c D         …..(3) 

 and  2 22 2 0D D c     where 
g

c
a
 .      

 Now eliminating ‘’ between (3) and (4), we get 

   2 2 232 21 2 – 24 0D c D c D    
 

 

 or 4 2 240 74 21 0D cD c    
 

 

 Now let    cos – sinA pt B D pA pt B           …..(5) 

   2 2 2– cos –D p A pt B p      and 
4 4D p   . 

 Substituting these in (5), we get 
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  4 2 240 – 74 21 0p cp c    i.e., 
4 2 340 – 74 21 0p cp c   as 0   

 or   2 22 – 2 20 – 7 0p c p c   

 i.e., 2 23
2 – 20 – 7 0

g g
p p

a a

  
  

  
 

  2
1

3

2

g
p

a
  and 2

2

7

20

g
p

a
  

 Hence length of equivalent pendulums are  

 
2
1

g

p
 and 

2
2

g

p
 i.e., 

2

3

a
 and 

20

7
a. 

Q. 4. A uniform rod, of length 2a, can tum freely about one end, which is fixed. Initially it is inclined 

at an angle , to the down-ward drawn vertical and its is et rotating about a vertical axis 

through its fixed end with angular velocity . Show that, during the motion, the rod is always 

inclined to the vertical at an angle which is > or < . According as 2 3

4 cos
or

a
  


 and that 

in each case its motion is inclined between the inclination  and  

  –1 2cos – 1– 2 cosn n n
 

  
  

, when 
2 2sin

3

a
n

g

 
  

 If it be slightly disrobed when revolving steadily at a constant angle , show that the time of a 

small oscillation is  

 

 2

4 cos
2

3 1 3cos

a

g

 
 

  
 

 

 Sol. The rod OA is turning about the end O. Take a point P on the rod such that OP   . And 

the element PQ d  . 

  

  mass of element 
2

m
PQ d

a
  ,  

 Where m is the mass of the rod Further at any time t, let the rod be inclined at an angle  to the 

vertical and let the plane through the rod and the vertical have turned through and  from its 

initial position OX, then co-ordinates of the point P are  

 sin cos , sin sin , cosp px y z            

    22 2 2 2 2 2 2 2velocity of sinP P P Pv P x y z            
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 And kinetic energy of the element 21

2 2
P

m
PQ v

a
  

  2 2 21
sin

2 2

m
d

a

        

 Now, let T, be the K.E. of the rod OA, then we have  

    
2 2

2 2 2 2 2 2 2

0

1 2
sin sin

2 2 3

a
m ma

T d
a

             

 or  
2

2 2 22
sin

3

ma
T       

 Also the work function, cosW mga C   

 Lagrange’s - equation gives 

 
2

24
sin 0

3

d ma

dt

 
    

 

 i.e., 2sin 0
d

dt
   
 

     …..(1) 

  
2sin   = K (constant),       …..(2) 

 Initially 
2, , sinK           

 Thus (2) gives 
2 2sin sin            …..(3) 

 and Lagrange’s -equation is – 0
d T T

dt

  
 

 
 

 When  A pt B   , the period of motion is given by 
2

T
p


 . If l is the length of the simple 

equivalent pendulum, we have 

  
2

2 /
g

T l g l
p

     

  
2 2

24 2
– .2sin cos – sin

3 3

d ma ma
mga

dt

 
       

 

 

  2– sin cos – sin
4

g

a
             …..(4) 

 Eliminating   between (4) and (3), we have 

 
2 4

3

sin 3
– cos – sin .

4sin

g

a

 
   


       …..(5) 

 Initially , 0    , 2 2 3
sin – cos

2

g
A

a
    .  

 Substituting this value of A in (6), we get 

 
2 4

2 2

2

sin 3 3
cos sin – cos

2 2sin

g g

a a

 
       


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 or  
2

2 2

2

sin 3
sin 1– cos – cos

2sin

g

a


 

         

 

  
2 2 2

2

3 sin 3 sin
1– cos – cos

2 3sin

ng g a
n

a a g

     
              

 

   2

2

3 cos – cos
. 2 cos cos – sin

sin

ng
n

a

       
 

 

 i.e.,  2 2

2

3 cos – cos
. cos 2 cos 2 cos –1

2 sin

g
n n

a

         
 

   …..(7) 

 From (7), we see that 0  , when 

    2cos – cos cos 2 cos 2 cos –1 0n n      
 

 

 i.e., if either cos – cos   i.e.,     (the initial position) 

 or 2cos 2 cos 2 cos –1 0n n     

 i.e., 
 2–2 4 4 1– 2cos

cos
2

n n   
 

   

 or  2cos – 1– 3 cosn n n           ..…(8) 

  

 (the other value being inadmissible because that gives value of cosnumerically greater than 

unity.) 

 Hence the motion is included between  =  and  = 1 where  

  2
1cos 1– 2 cos –n n n
 

   
 

 

 The rod will move above or below its initial position, if 1 > or <  or if 1cos or cos     

 i.e., if  
221– 2 cos or cosn n n      

 i.e., if 
2

3
or 4 cos

ng
n

a
  


 i.e., if 2 3

or
4 cos

g

ac
  


. 

 2nd part. 

Small oscillations about the steady motion: The motion will be steady if the rod goes round, inclined 

at the same angle  with the vertically or mathematically if  = (throughout the motion), then 

0  . 

 Making these substitutions in (5), we get, 

 
2 4

3

sin 3
– cos – sin

4sin

g

a

 
  


 i.e., 2 3

4 cos

g

a
 


 

 When 2  has this value and there are small oscillation about the position  

    , then putting      in equation (5) we get 
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 

   
4

3

3 sin 3
cos – sin

4 cos 4sin

g g

a a


     

  
 

 
 

 
 

4

3

sin cos cos – sin sin3
– sin cos cos sin

4 cos sin cos cos sin

g

a

     
      
       

 

 
 

 
 

4

3

sin cos – sin3
– sin cos

4 cos sin cos

g

a

    
    
     

, approximately 

     
–33 sin

– 1– tan 1 cot – 1 cot ,
4

g

a

        
  

 approx. 

  
3 sin

– 4cot tan
4

g

a


    , app. = 

 2–3 1 3cos
–

4 cos

g

a

 
  


 say 

  time of small oscillation 

 2

2 4 cos
2

3 1 3cos

a

g

 
    

    
 

. 

Q. 5. A uniform bar of length 2a is hung from a fixed point by a string of length b fastened to one end 

of the bar. Show that when the system makes small normal oscillations in a vertical plane, the 

length l of the equivalent simple pendulum is a root of the quadratic, 

 2 4
– 0

3 3

ab
l a b l

 
   

 
 

 Sol. Figure is self explanatory. 

  

 At any time t, let the string OA and the rod AB make angles  and  with the vertical.  

 sin sinGx b a     

 cos cosGy b a     

 
2 2
G Gx y   = (velocity)2 of G 

  2 2 2 2 2 cos –b a ab         

 
2 2 2 2 2b a ab          [ and   are small] 

 Now let T be the kinetic energy and W the work function of the system, then we easily obtain 

  cos cosW mg b a    
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 And 
2

2 2 2 2 21
2

2 3

a
T m b a ab

 
        

  

 

 
2

2 2 21 4
2

2 3

a
m b ab
 

      
  

 

  Lagrange’s equation is –
d T T W

dt

   
 

  
 

    2 –
d

m b ab mgb
dt

       { sin 0}   

  –b a g           …..(1)   

 Lagrange’s –equation is given by 24
–

3

d
m a ab mag

dt

 
    

 
 

  4 3 –3a b g          …..(2) 

 Equations (1) and (2) again can be written as  

  2 2 0bD g aD           …..(3) 

 and  2 23 4 3 0bD aD g          …..(4) 

 Eliminating  between these equations, we obtain 

   2 2 44 3 – 3 0bD g aD g abD    
 

 

 i.e.,  4 2 24 3 3 0abD a b gD g     
 

     …..(5) 

 Now let  cos
g

A t B
l

  
    

   

 

 Where l is the length of the simple equivalent pendulum. 

 Then – sin
g g

D A t B
l l

    
      

     

 

 2 – cos –
g g g

D A t B
l l l

  
      

   

 and 
2

4

2
,

g
D q

l
   

    
2 2

2

2
5 – 4 3 3 0

g g
ab a b g

ll

 
      

  

 

   23 – 4 3 0l a b l ab      0   

  2 4
– 0

3 3

ab
l a b l

 
   

 
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Q. 6. A uniform straight rod of length 2a, is freely movable about its centre and a particle of mass 

one-third that of the rod is attached by a light inextensible string, of length a, to one end of the 

rod ; show that one period of principle oscillation is  5 1
a

g

 
   

 
 

 Sol. Figure is self explanatory. 

  

 At time t, let  and  be the inclinations of the rod and the string to the vertical. Co-ordinates of 

C are  

 sin sinCx a a     and cos cosCy a a     

 cos cosCx a a     and – sin sinCy a a    

   2 2 2 2 2 2 22 cos –C Cx y a a a          

 
2 2 2 2 22a a a       

 [neglecting higher powers of mall quantities] 

  (velocity)2 of the particle 
2 2 2 2 2 22CC v a a a       . 

 And velocity of the C.G. of the rod i.e., of O, is zero. 

 Now let T, be the kinetic energy and W, the work function of the system then we easily get 

 cos cos
3

mg
W a a C     

 and 
2

2 2 2 2 2 21 1
2

2 3 2 3

a m
T m a a a

              
 

 
2

2 22 2
6

ma      
 

 

  Lagrange’s -equation is given by  

 
2 22

– 2 –
3 3 3

d ma ma mga g

dt a

 
        

 

    …..(1) 

 While Lagrange’s -equation gives 
2 2

–
3 3 3

d ma ma mga

dt

 
     

  

 

 i.e., –
g

a
            …..(2) 
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 Equation (1) and (2) again give 

  2 22 0D c D           …..(3) 

 and  2 2 0D D c           …..(4) 

         where 
g

c
a

 . 

 Eliminating  in between (3) and (4), we get 

    2 2 42 – 0D c D c D     i.e., 4 2 23 0D cD c    
 

  …..(5) 

 To solve (5), let    cos – sinA pt B D pA pt B        

  2 2 2– cos –D p A pt B p      and 
4 4D p   . 

 With these substitutions, (5) gives 

  4 2 2– 3 0p cp c    

  
4 2 2– 3 0p cp c      0   

  
   2 2

2
3 9 – 4 3 53 5

.
2 2 2

c c c g
p c

a

  
   
 

 

  
2
1

3 – 5
.

2

g
p

a
  and 

2
2

3 5
.

2

g
p

a


 . 

  one period of principal oscillations corresponding to p1, is given by  

 
 

1

2 3 52 2
2 . 2

9 – 53 – 5

a a

p g g

      
        

      

 

 
 

2
5 16 2 5

2 2
4 4

a a

g g

 
      

          
      

 

 

 =  5 1
a

g

 
   

 
. 

Q.7. A smoother circular wire, of mass 8 m and radius a swings in a vertical plane, being 

suspended by an inxtensible string of length a attached to one point of it, a particle of 

mass m can slide on the wire, Prove that the periods of small oscillations are 

 
8 8

2 ,2 ,2 .
3 3 9

  
a a a

g g g
 

 Sol. At any time t, let the string OA, and the radius AC be inclined at angle θ and ϕ with the 

vertical and further let the radius of the particle (m) be inclined at an angle ψ with the vertical.  

 Now co-ordinates of C are 
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  sin sin , cos cos .   a a a a  

∴  2 2 2 2 2 2(velocity) of 2 .cos      C a a a  

2 2 2 2 22     a a a  approximately . 

 
. cos cos

sin . sin

   
 

      

C

C

x a a

y a
 

Also co-ordinates of the particle m (i.e. 

of the pt. P) are 

 

 

sin sin sin ,

cos cos cos .

   

   

P

P

x a

y a
 

∵

    2 2 2 2 2velocity of 2 2 2 app,          m a  

Let T, be the kinetic energy and W, the work function of the system, then we readily get  

   8 cos cos cos cos cos      W mg a a mg a a a  

  9cos 9cos cos   m ga  …(1) 

and  2 2 2 2 2 2 2 2 2 2 21 1
8 2 2 2 2

2 2
                       

T m a a a a ma . 

i.e. 2 2 21
9 17 18 2 2

2
           T m  …(2) 

Lagrange’s θ, and ψ equations give 

  9 9 9    
g

a
  …(3) 

  9 17 9    
g

a
  …(4) 

and ,  
g

a
 …(5) 

which can be rewritten as  

 2 2 29 9 9 0    D c D D   …(6) 

 2 2 29 17 9 0    D D c D  …(7) 

and  2 2 2 0    D D D c  …(8) 

Eliminating ϕ and ψ in (6), (7) and (8), we get 

 

2 2 2

2 2 2

2 2 2

9 9 9

9 17 9 0



  



D c D D

D D c D

D D D c

 

i.e.      2 2 2 28 9 9 2 8 9 0      
 

D c c D c D D c  
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i.e.  2 4 2 28 9 8 27 9 0      D c D cD c  

i.e.    2 2 28 9 8 3 3 0     
 

D c D c D c  

Now let θ = A cos (pt + B), then 

   2 2 2sin , cos          D pA pt B D p A pt B p …(10) 

∴ (9) gives    2 2 28 9 8 3 3 0   p c p c p c   0    

⇒  2 2 29 3 3
8 8 0.
   

      
   

g g g
p p p

a a a
 

i.e. 2 2 2

1 2 3

9 3 3
, ,

8 8
  

g g g
p p p

a a a
 

Thus periods of small oscillations are 
1 2 3

2 2 2
, ,

  

p p p
 

i.e. 
8 8

2 ,2 ,2
9 3 9

  
a a a

g g g
 

Q. 8. Four uniform rods; each of length 2a, are hinged at their ends so as to form a rhombus 

ABCD. The angles B and D are connected by an elastic string and the lowest end A rests on a 

horizontal plane while the end C slides on a smooth vertical wire passing through A; in the 

position of equlibrium the string is strected to twice its natural length and the angle BAD is 2α. 

Show that the time of a small oscillation about this position is  

 
1/2

22 1 3sin
2 cos

3 cos2

   
  

  

a

g
 

Sol. In the position of equilibrium, rods are making angles α with the vertical.  

When the system is slightly displaced from the position of equilibrium, let the rods make 

angle (α + θ) with the vertical θ being a small displacement.  

Now assuming the fixed end A as origin and the horizontal and vertical lines through it 

as co-ordinate axes, the co-ordinates of G2 are     sin , 3 cos a a  

 

       
2 22

2velocity of cos 3 sin         G a a  

2 2 2[(1 8sin ( ] .   a  

Co-ordinates of G1 are      sin , cos a a  

∴ 2 2 2

1(velocity) of  G a . 

∴ Kinetic energy of the four rods taken together is  

  
2 2

2 2 2 2 2 2 21 1
2. . 2. 1 8sin

2 3 2 3

   
             

   

a a
T m a m a . 

   
1 4 2 3

2
2 28

1 sin and
3

          G G G G

ma
v v v v  
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The work function W is given by W = 2   cos mga  

  
 2 sin

2 3 cos 2
  

       
 


a

O

y c
mg a dy

c
 

    
2

8 cos 2 sin


     m ga a c
c

 

Lagrange’s θ equation gives 

      
2

2 2 216
1 3sin 16 sin cos

3

 
          

 

d ma
ma

dt
 

      
4

8 sin cos 2 sin


     m ga a a c
c

 

⇒ 
2

216
(1 3sin ( )}

3
    

ma
 

      
4

8 sin cos 2 sin


     
a

m ga a c
c

…(1) 

Initially when θ = 0, 0, 0, sin ,   c a hence (1) gives 

2

cos
 



m gc

a
 

Putting this value of λ in equation (1), we get 

  
2

216
1 3sin

3
    

ma
 

 
 

  
8 cos

8sin 2 sin
cos

  
        



mg
m ga a c  

*The force 2 sin m l also contributes to W. The distance of the point of application at O′of this 

force from the vertical OZ is equal to sinl , hence the contribution 2 2 2sin m l  to W is as given 

in (2).  

** If W is the work function of the system, then P.E. = C – W.  

i.e.    
2

216
1 3sin 8 sin cos

3
       

ma
m ga  

    
8

cos 8sin 2 sin cos sin
cos

      


mg
a a  

 2

8 cos2 3 cos2
app. app.

cos 2 cos 1 3sin

 
      

   

m ga g

a
 

∴ Time of a small oscillation about the position of equilibrium is given by  

 22 cos 1 3sin
2

3 cos2

    
  

  

a

g
 

HAMILTONIAN 
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Q.9. Using cylindrical coordinates    , , z   write the Hamiltonian and Hamilton’s equations for a 

particle of mass m moving in a force field of potential V    , , z  . 

Sol. In cylinderical coordinates, co-ordinates of any points are  

 cos  y =  sin , z = zx ,     ...(1) 

 2 2 2 2 2 2 21 1
( )

2 2
T= m x y z m z         ...(2) 

   2 2 2 21
,

2
L T V m z V  , z            ...(3) 

2,
L L

p mp  p m   
 

 
   

 
 and 

z

L
p mz

z


 


 

 

Evidently, L does not involve t explicity, therefore Hamiltonian H is given by 

 2 2 2 21

2
H T V m z V         

2 2 22
2 2

2 2 2 2

1 1

2 2

z
z

p p pp
m V p p V

m m m m

  


 

   
          

      
 

Hence, Hamilton’s are given by: 

2

2
;

p pH V H
p

m p m

 



 


  

  
     

  
 

2
;







  
      

   

pH V H
p

p m
 

;
  

     
  

z
z

z

pH V H
p z

z z p m
 

Q. 10. Using cylindrical coordinates, write the Hamiltonian and Hamilton’s equations for a 

particle of mass moving on the inside of a frictionless cone 2 2 2 2tan  x y z  

Sol. 

Like previous example, we have 

   2 2 2 2 2 2 2 21 1
cot

2 2
        T m x y z m  

  cos , sin , cot        x y z …(1) 

 2 2 2 21
cosec

2
    m  …(1) 

and cot ,      V W mgz mg  
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  [∵ the particle is above the vertex origin)]. 

⇒  2 2 2 21
cosec cot

2
        L T V m mg …(2) 

This gives, 2 2cosec , 

 
       
 

L L
p m p m

p
…(3) 

Again, L does not involve t explicitly, therefore Hamiltonian H is given by  

 2 2 2 21
cosec cot

2
        H T V m mg  

2 2 2 2

2 2 2 2 2 2

1 1
cot cot

2 cosec 2 cosec

   
   

            
         

p p p p
m mg mg

m m m
 

Thus Hamilton’s equations are given by:  

2

2 2
cot ; .

cosec

 





 
       

   

p pH H
p mg

m p m
 

0


   



H
;         

2
.






  

 

pH

p m
 

Q.11. Write the Hamiltonian and equation of motion for a simple pendulum. 

Sol. We have  2 21

4
T ml    and  (1 cos ),V mgl    

  2 21
(1 cos )

2
L T V ml mgl        ...(1) 

  2 2 2 21
(1 cos )

2
i iH p q L p L ml ml mgl 

 
           

 
 

 2 21
(1 cos ) totalenergy

2
ml mgl T V        

Now 
2 2 2( / ) ( / )p L ml p ml        

2 2 2 2 21
( / ) (1 cos ) ( / 2 ) (1 cos )

2
H ml p ml mgl p ml mgl          

2( / ) ( / ),( / ) sinH p p ml H mgl          

Now Hamilton's equation of motion of  and p  are 

2/ , ( / )H p p H p ml               and lg sinp m     

These represent Hamilton's equations for a simple pendulum. 

From above, we have 
2 2l . ,p m i e p ml       

 
2 sin ( / )sin 0ml mgl g l     

This gives the equation of motion of the simple pendulum. 

Q.12 . If H is the Hamiltonian, prove that if f is any function depending on position, momento 1 time then 
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 (df/dt) = ( f/ .... + [H, f]) 

Sol.   We have 

 ( / ) ( / ) {( / )( / ) ( / )( / )}i i i i
i

df dt f t f q dq dt f p dp dt          

 ( / ) ( / ) {( / )( / ) ( / )( /)}i i i
i

df dt f t f q H p f p H              

{  By Hamilton's equation / , ( / )}i i i iq H p p H q         

( / ) ( / ) [ , ]df dt f t H f      where, [H, f ] is the Poisson Bracket) 

PREVIOUS YEARS QUESTIONS 

CHAPTER 4. HAMILTON'S EQUATION OF MOTION 

 

Q1. By writing down the Hamiltonian, find the equations of motion of a particle of mass m 

constrained to move on the surface of a cylinder defined by 2 2 2x y R  , R is a constant. The 

particle is subject to a force directed towards the origin and proportional to the distance r of 

the particle from the origin given by F kr  , k is a constant. [6c UPSC CSE 2020] 

Q2. Find the condition on a, b, c (real numbers) such that the dynamical system with equations 
2 ,p aq q q bp cq     is Hamiltonian. Compute also the Hamiltonian of the system. 

[5d 2020 IFoS] 

Q3. Using Hamilton's equation, find the acceleration for a sphere rolling down a rough inclined 

plane, if x be the distance of the point of contact of the sphere from a fixed point on the plane. 

[7a UPSC CSE 2019] 

Q4. Consider a mass-spring system consisting of a mass m and a linear spring of stiffness k 

hanging from a fixed point. Find the equation of motion using the Hamiltonian method, 

assuming that the displacement x is measured from the unscratched position of the string. 

[7b 2019 IFoS] 

Q5. The Hamiltonian of a mechanical system is given by, 

2 2

1 1 1 2 2 2H p q aq bq p q    , where a, b are the constants. Solve the Hamiltonian equations and 

show that 2 2

1

p bq

q


 = constant. [7c UPSC CSE 2018] 

Q6. For a particle having charge q and moving in an electromagnetic field, the potential energy 

is  U q v A   , where   and A  are, respectively, known as the scalar and vector 

potentials. Derive expression for Hamiltonian for the particle in the electromagnetic field. 

[6c 2018 IFoS] 
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Q7. Consider a single free particle of mass m, moving in space under no forces. If the particle 

starts from the origin at 0t   and reaches the position  , ,x y z  at time  , find the Hamilton's 

characteristic function S as a function of , , ,x y z  . [5c UPSC CSE 2016] 

Q8. Solve the plane pendulum problem using the Hamiltonian approach and show that H is a 

constant of motion. [6b UPSC CSE 2015] 

Q9. A Hamiltonian of a system with one degree of freedom has the form 

 
2

2 2

2 2 2

t t tp b k
H bqpe q e be q  




        

where , ,b k  are constants, q is the generalized coordinate and p is the corresponding 

generalized momentum.  

(i) Find a Lagrangian corresponding to this Hamiltonian. 

(ii) Find an equivalent Lagrangian that is not explicitly dependent on time. 

[7c UPSC CSE 2015] 

Q10. Derive the Hamiltonian and equation of motion for a simple pendulum. 

[5c 2015 IFoS] 

Q11. Find the equation of motion of a compound pendulum using Hamilton's equations. 

[5e UPSC CSE 2014] 

Q12. Derive the Hamiltonian and equation of motion for a simple pendulum. 

[5c 2013 IFoS] 

Q13. Obtain the equations governing the motion of a spherical pendulum. [5d UPSC CSE 

2012] 

Q14. Derive the differential equation of motion for a spherical pendulum. [6b 2012 IFoS] 

Q15. A sphere of radius a and mass m rolls down a rough plane inclined at an angle   to the 

horizontal. If x be the distance of the point of contact of the sphere from a fixed point on the 

plane, find the acceleration by using Hamilton's equations. [8a UPSC CSE 2010] 

 

CHAPTER  5. Work & Energy (Equilibrium/Centre of Mass) 

 

Q1. A plank of mass M is initially at rest along a straight line of greatest slope of a smooth 

plane inclined at an angle  to the horizon and a man of mass M' starting from the upper end 

walks down the plank so that it does not move. Show that he gets to the other end in time 

 
2 '

' sin

M a

M M g 
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where a is the length of the plank. [8b 2014 IFoS] 

 

Work & Energy (Statics) 

Q2. A mass 1m , having at the end of a string, draws a mass 
2m  along the surface of a smooth 

table. If the mass on the table be doubled, the tension of the string  

is increased by one-half. Show that 1 2: 2 :1m m  . [(8a) 2010 IFoS] 
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