Ch. -1: Moment of Inertia

Some basic terms and their meanings.

Rigid Body: A rigid body is the system of particles such that the mutual distance of every pair of
specified particles in it is invariable and the body does not expand or contract or change its shape
in any way. i.e. the rigid body has invariable size and shape and the distance between any two
particles remains always same.

Moment of inertia of a particle: Consider a particle of mass m and a line a line AB, then the
moment of inertia of the particle of mass m about the line AB is defined as | = mr?, where r is the
perpendicular distance of the particle from the line.

Moment of inertia of a system of particles:

Let there be a number of particles mi, my, ms, .....mp, and let ry, ra, r3 ....... rp be the perp.
distances of these masses from the given line AB, then the moment of inertia of the system is
defined as

I:m1r12 +m2r22 +m3r32+ ....... myf,

:Zn:mprpz

(2N

Moment of inertia of a continuous distribution of mass: Consider a rigid body and let dm be mass
of the elementary portion of the body which is at a perpendicular distance r from the given line

AB, then the moment of inertia of the whole body is defined as | = Irzdm,

where the integration is taken over the whole body.
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Radius of Gyration: The moment of inertia of a system of particles about the line AB is

n
:Zmlorp2

(2N

Let the total mass of the system of particles be M, then

n
M = Zmp and further define a quantity K such that
p=1

n

Zmerf

I=MK2:>K2:(Lj:p=1
M

n

2 My

p=1

Then K is called the radius of gyration of the system about AB. In the case of continuous mass
distribution, we similarly have

o

Where the integration is taken for the whole body.

Product of inertia: If (X1, V1), (X2, ¥2), (X3, ¥3), ... .... (Xp, Yp), be the respective coordinates of the
particles of masses my, mp, ms, ....... my , referred to two mutually perpendicular lines OX and
QY, then the product of inertia of the system of particles with respect to the lines OX and OY, is
defined as,

p=1

If mutually perpendicular axes OX, OY, OZ be taken in space and
(X1, ¥1:20)4 (X2, Y2125 ) sevveneienne. (xp,yp,zp ) be the respective co-ordinates of the particles of
masses my, my, ....... mp, then we have, product of inertia of the system with respect to the axes

n
OXand OY =) myx,y,
p=1

n
Product of inertia of the system with respect to the axes OY and OZ = Z MyYpZpy
p=1
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n
Product of inertia of the system with respect to the axes OZ and OX = = Z MpXpZp,
p=1

Moment of inertia in some simple cases.

(@ (i) Moment of inertia of a rod of length 2a and mass M about a line through one of its extremities
perp. To its length.

Consider an element RS of breadth dx of the rod AB at distance x from the line AN, where
AN is perp. To AB, M.I. of the element RS about AN = ZMSX x2 where(ZMjéSx = mass of
a a
the element.

. M.I. of the whole rod

M M3 T 42
= j—xzdx {—} =M-—

(i) Moment of inertia of a rod of length 2a and of mass M about a line through its centre
perpendicular to its length.

Consider an element RS of breadth &x at distance x from the centre C.

.. M.I. of the element RS about NCM is= ZMSX-XZ
a

a 378 2
= M.I. of the whole rod about Mszzszdx=M|:X—} =M-%
a
_a —

2al 3
N
e -3 Hx
[ T .
A R S B
M

(b) Rectangular Lamina.

(i) Moment of inertia of a rectangular lamina about a line through its centre and parallel to one
of its edges.

Consider the strip RSPQ of breadth &x of the rectangular lamina ABCD
such that AB = 2a and AD = 2b.
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Let M be the mass of the rectangular lamina. Then mass per unit area = % = p(say).
a

.. Mass of the strip RSPQ = 2bdxp =4—Mt)(2b-8x)
a

Now using [A case (ii)], we get M.I. of the strip about

2 2
OXZMZbSX b_ :M.b_SX
4ab 3 2a 3

. : M b 1

.. M.I. of the rectangular lamina about OX = j 2—-?dx =§Mb
a

-a

Similarly M.I. of the rectangular lamina — about OY is %Ma2

(i) Moment of inertial of a rectangular lamina about a line through its centre and perp. To its
plane.

Consider an elementary area dxdy of the lamina at a distance sz + y2 from O. Mass of the

elementary area = M8x -8y
4ab

M.I. of this elementary area about the line ON through O and perpendicular to the plane of

the rectangular lamina =M8x-8y(x2 +y2)
4ab

.. M.I. of the rectangular lamina about ON is

(iii) Rectangular Parallelopiped: Let O be the centre and 2a, 2b, 2c the lengths of the edges of
the parallelopiped and further let OX, OY, OZ, be the axes of reference, parallel to the edges of
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lengths 2a, 2b and 2c respectively. Divide the parallelopiped into thin rectangular slices perp.
to OX, ABCD being one such slice at a distance x. Let the width of the slice be &x.

...M.1. of the rectangular slice about OX

2 2

2
© _2b-2¢.p-8x

_ b b? +¢ b? +¢
= MmMass x

oX

=4bcp

[mass of the slice ABCD = 2b 2c dxp]
= M.I. of the parallelopiped about OX

2 2a 2, 2

=4bCpb e _[ dx=8abCpb C

—a
b2 +c? T -
=M [ mass of the parallelopiped = 2a 2b.2cp = 8abc p]
.. . C2 +a2 a

Similarly, M.I. of the parallelopiped about OY =M and M.I. of the parallelopiped

about
2 12
0z —m2_* b

Note: M.I. of the cube of side 2a about any of its axis is %Maz.

(c) Moment of inertia of a uniform triangular lamina about one side. Let us divide the lamina ABC

by strips parallel to BC. Let PQ be one of such strips of breadth 6x at distance x from A and let p
be the length of perpendicular AN.
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P “Xie PQ — X8 1§ M is the mass of the triangular lamina, then mass per unit

a p a p

Area = 1L =p(say).
7a.
(2 p)
. Mass of the strip = 1£PQ 8 = 2—'\2/|x2 X
PR

. M.1. of the strip about BC = 2—|\2/|x8x(p—x)2
Y

2M
p_z

. M.1. of the triangle about BC = (p—x)zx dx:%Mp2

O T

(D) Elliptic disc: Moment of inertia of an elliptic disc about its major axis.

Let PRSQ be an elementary strip of breadth ox at a distance x from O, where O is the centre of
the disc. M.I. of the strip about.

2
OX =2y-8x- p-y?, where p is the mass per unit area.

.. M.1. of the elliptic lamina about OX

a 2
_ y _4P .3
= ijp ?dx_—jydx
-a -a
3
a 2\
= Zpb3j.(1—x—2} dx
3 2 a
1
2 2 2)2
y X
= | —=+>=1=>y=Dbi1-—
a2 2 y { az}

Put x = a sin¢, so that dx = a cos¢ d¢.

. M.1. of the elliptic lamina about OX
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3 n/2 3, m/2
= % j cos?’q>-acos<1>d<|)=A'p—ga I cos* ¢pdo
-n/2 0
- 4pb3a 3n nab3p
3 16 4
Again mass of the elliptic lamina
1
a a 2 E
M:pjzydx=2pb[{1—x—2} dx
-a -a a
/2 M
= 2pb I cos¢-acospdp=mabp=>p=—-
o nab

Hence from (1), M.I. of the elliptic lamina about OX i.e. about major

Similarly M.I. of the elliptic lamina about OY i.e. about minor axes = % Ma?

() Hoop or Circumference of a circle.
(i) Moment of inertia of a hoop about a diameter.

Consider an element PQ of the hoop and let it subtend an angle 66 at its centre O i.e.
A N
POQ=0560 where POX =6
By the figure it is obvious that arc PQ=a 66, where a is the radius of the hoop.

Now M.I. of the element PQ about OX = (a 66,) p-a2 sin o,

where p is the mass per unit length of the hoop.

2n
M.I. of the hoop about OX= I (ad6)p-a?sin6
00
Ma? 7

=== [(1-cos26)do= % Ma?

47t0

(i) Moment of inertia of a hoop about a line through its centre and perp. to its plane. M.I. of the
hoop about a line through O and perp. to its plane
_ 2 M >
= (a-80)p-OP =>4 86 (- OP=a, M=2map)
TC

.. M.1. of the hoop about a line through O and perp. to its plane
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2 2n 2
j o~ [o;" -
(f) Circular Disc.
(i) Moment of inertia of a circular disc of radius a about its diameter.
Consider an element r5063r of  the disc at P such that OP makes an angle 6 with the axis OX.
The perp. distance of P from OX is r sin®.

Let p be the mass per unit area of the disc. M.I. of this element about OX =
réedr-p-(rsin 6)2.

B
NV

.. M.1. of this element about the diameter OX

a

2n M a 2n
j jr3psin26d9dr=—2f Ir3sin29d6dr ('.'Mznazp)

r=0 60 T 20 6-0

a 21 2

= [e——smze} drzM—al
0 0 4

(i) Moment of inertia of a circular disc of radius a about a line through its centre perp to its
plane.

M.I. of the element r&6 &r about a line through O and perp. To the plane of the disc.
3
= (r303r) - p-OP? =M—r2d6dr (+ ma’p=M)
na
M.1. of the circular disc about a line through O and perp. To the plane of the disc.
j j —de ar = Ma”
ozorto A" 2

(9) Solid Sphere.

If a semi-circular area is revolved about its bounding diameter then the solid so generated is called
sphere. Now consider an element of area rd6 or at P such that OP =r and makes an angle 6 with
the diameter.

When this area is revolved about the diameter A ‘A, it will generate a ring of cross-section rd6 or

and radius r sin®.
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.. Mass of this elementary ring= 2zr sin6.rd6 or.p
M.1. of the elementary ring about A 'A

= (2nr sin®.rd0 8r.p) (r sind)? [see (e), (ii)]
= 27 pri(sin®0) 86 .

M.1. of the solid sphere about the diameter A 'A

aa 43 nl/2a 43
= angir sin®0dodr =4np .([ .([r sin” 0dodr

ST 2 a®> 2 8ma’p
=d4np| — | -—=dnp-—-—= =1 Say
5 0 5 3 15

But mass of the sphere, M = %na3p =p= M (1)

8 3 2
= 5.4::3 = 3(Ma2)

(h) Hollow sphere.

If semicircular arc is revolved about its diameter, then the surface so formed is known as hollow

sphere. Consider an elementary arc ad0.

This arc ad0 will generate a circular ring of radius asin6 when revolved about the diameter AB.

Now mass of the elementary ring = 27a sin6.46.p.

M.I. of the elementary ring about AB= (2ra sin6.50.p.).a sin’0

= 2na*psin® 050 [see (e)...(iii)]
= M.1. of the hollow sphere about the diameter AB

Y T
= 2ma*p[sin® 0d0 = 2ma* - M > [sin®6do ( M= 4na2p)
4ma
0 0
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/2 /2 ) 2

Ma2 . 3 2 . 3
—-2jsm 0do = Ma jsm 0do=Ma 3
0 0

(i) Ellipsoid. Consider an elementary volume 8x 8y 6z in the positive octant of the ellipsoid

2 2 2
[X—z] +(Z—2] +(Z—2J =1. Let p be mass per unit volume then mass of the elementary volume
a c

= p-(8x-8y-8z)

-
_________

Distance of this element from OX = (y2 + 22)

. M.L. of the ellipsoid about OX

= SIijdx dydz(y2 + 22), the integration being taken over the positive octant of the ellipsoid and
2 2 2 2 2 2
X y z . X y z
— |+| = |+| = |£1.Putting | — |=u,| = |=V, | —= |=wW We get,

1 -1 1 1
x=au2,dx=§au 2 du; y=bv2,dy=§bv 2 dv;

1 1 1
z=cw2,dz=zcw 2 dw

Now, M.I. of the ellipsoid about OX

11 1
8.|‘”%abc(b2vﬁtczzw)u_gv_iw_E dudvdw whereu+v+w<1

1 1 1 1 1 1

abCp”j b%u 2v 2w 2 +c2u 2v 2W_2]dudvdw

abCij bu2 v2 w2 +c?u2 v2 w2 Jdu dvdw

()

abcp-| b2

(using Dirichlet’s theorem)
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n__dabcpm b®+c?
G
2)\ 2

(Where M= %nabc pj

1]
QD
o
[z

o
—_—
(o
N
+
(@]
N
S~

|
<

(J) Right circular cylinder.

Let there be a right circular cylinder of radius a and height h.
Consider a circular disc of thickness 6x at a distance x from O the centre of base.
Mass of the disc = na® 8x. p, where p is mass per unit volume.

.. M.1. of the disc about the axes perp. to the plane of the disc

= na28Xp-%a2 [see f (ii)]

O

in
nin
"

[

n l‘

i
LA
niw
win

"
\

[ Vo Kol

non

- .x. -

4

h 4
M.1. of the cylinder = ™2 pjdx:nzi—r]p: 1 a2 [ nazhp}
2 0 2 2

Easy to Remember for Exam: The following table shows the moments of inertia of various rigid
bodies considered above. In all cases it is assumed that the body has uniform density.

Sr.No. Rigid Body Moments of inertia
1. Uniform rod of length 2a and mass M. 1.5
(i) | About an axis perp. to the rod through the centre of mass. 3 Ma
(ii) | About a line perp. to the rod through an end. 4 Ma?
3 a
2. Rectangular plate of sides 2a, 2b and mass M M/ o o
(i) | About an axis perp. to the plate through the centre of ?(a +b )
mass. 1,
(i) | About a line through centre parallel to the side 2a. 3 Mb
3. Rectangular parallelopiped of edges 2a, 2b, 2c. About a M/ > o
line parallel to the edge 2a, through the centre _(b +e )
4. Circular plate of radius a and mass M. 1.5
(i) | About its diameter. 4 M
(ii) | About a line perp. to the plate through the centre. 1 Ma?
2
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5. Elliptic disc of axes 2a and 2b and mass M. 1 Mb2
(i) | About the axis 2a. 4
(i) | About a line perp. to the disc through its centre. A
(a +b )
6. Circular ring of radius a and mass M. 1 MaZ
(i) | About a diameter. 2 a
(if) | About a line perp. to the plate through the centre. Ma?
7. Solid sphere of radius a and mass M. About a diameter. 2 MaZ
5
8. Hollow sphere of radius a and mass M. 2. 5
About a diameter (thickness negligible) 3 Ma
9. Ellipsoid of axes 2a, 2b and 2c. about the axis 2a. M (b2 N Cz)
Routh's Rule:

For remembering the moment of inertia of symmetric rigid bodies. M.I. about an axis of symmetry

8 Sumof the squares of perp. semi axes
3,40r5

= Mass

The denominator is 3, 4 or 5 according as the body is rectangular (including rod) elliptical
(including circular) or ellipsoid (including sphere). (using Dirichlet’s theorem)

Theorem of Parallel Axes

The Moment of Inertia and The Products of inertia about axes through the centre of gravity
are given, to find the moments and products of inertia about parallel axes.

Let OX, QY, OZ be a set of co-ordinate axes through any point O, parallel to a set of co-
ordinate  axes GX', GY', GZ' through G, the centre of gravity. Let ((X,)‘/, 7)) be the co-

ordinates of G with regard to co-ordinate axes OX, OY, OZ.

Let the co-ordinates of any element of mass m situated at the point P with regard to axes OX,
oY, 0Z be (x, y, z) and with regard to parallel axes through G be (x’, y’, 2°)

SX=X+X,Yy=Y+Y,2=Z+Z7'

M.1. of the body about OX = Zm(y2 +22)
=Y m|(v+y) +(z+2) |

:Zm[(yz +72 +2y'7+22'7+y'2+z'2ﬂ
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:Zm(yz +22)+Zm[(y'2+2'2)+2372my'+ ZZZmz'}

Now referred to G as origin, the co-ordinates of the centre of the gravity of the body.

=me': Zmy‘: Zmz':
S em O m

.'.me'zo,Zmy‘zo,Zmz'zo

Hence M.I. of the body about OX = Zm(yz +22)+Zm(y'2+ 2'2)

(v°+2°) > m+ M.L about GX’

M(72 +72)+ M.L. about GX’

= M.l. of mass M placed at G about OX + M.I. about GX".
Again product of inertia of the body about OX and OY.

= Y mxy=>Y m(x+X)(y+y)
= > mX'Y+ Y MY+ > mXy'+ D MRy + > mXY'+y Y mX XY my'+ Xy m

= Z M X'y'+ MXY = The product of inertia about (GX’ + GY”) + Product of inertia of mass M
placed at G about the axes OX and QY.

Moment of Inertia about a line: To find the moment of inertia about any axis through the meeting
point of three perp. Axes, the moments and products of inertia about these three axes being
known.

Proof: Let OX, OY, OZ be a set of three mutually perp. Axes.
Let A = M.I. about OX,
B = M.I. about OY, C = M.I. about OZ,

Fa

D = Product of inertia w.r.t. axes of y and z. E = Product of inertia w.r.t. axes of z and x and F
= Product of the inertia w.r.t. axes of x and y. Now if m’ is the mass of the element at P
whose co- ordinates are (X, y, z), then we easily have
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A=Zm'(y2 +zz),B=Zm(x2 Jrzz);C:Zm'(x2 +y2); D=>m'yz, E=Y m'zx
F=> m'xy

Let OA be a line with direction cosines (I, m, n). From P draw PM L to OA, then PM? = OP?
— OM?

= (x> +y*+ 2% — (IXx + my + nz)

[ OP:(x2+y2+22),ON=(Ix+my+nz)}

x? (1— I2)+y2 (1—m2)+z2 (1— nz)—Zmnyz —2Inzx — 2lmxy

xz(m2+n2)+y2(lz+n2)+zz(l2 +m2)—2mnyz—2Inzx—2Imxy

[using 12 +m? +n? :1}

Iz(y2 +zz)+m2(x2 +22)+n2(x2 +y2)—2mnyz—2Inzx—2Imxy

.. Moment of inertia of the body about OA,

= > m'PM? = IZZm‘(y2 +22)+m22m'(x2 +22)+n22m'(x2 +y2)—2ngm'yz
—2In>"m'zx-2Im>» m'xy

| = Al + Bm? + Cn? — 2Dmn — 2EIn — 2FIm

Moment of Inertia of Heterogeneous Bodies:

In the case of a heterogeneous body whose boundary is a surface of uniform density, the method
of differentiation can be successfully used in finding the moment of inertia of the body, the
method is as follows:

(i) Suppose the M.I. of a homogeneous solid body of density p is known

(ii) Let this M.I. be expressed as a function of single parameter o (say) i.e.
M.1. = p (a).

Then the M.I. of a shell which is considered to be made of a layer of a uniform density
p:pq)'(a)da. ...(1)

In case the density is not uniform and the variable density is given to be o then we have,

M.1= [o¢'(at)da Q)
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D’alemberts principle

Motion of a particle. The motion of a single particle under the action of given forces is:
determined by the Newton’s second law of motion, which sates that the rate of change of momenutm
in any dirction is proportionate to the applied force in the direction.

From this law it is deduced that P = mf where f is the acceleration of particle m in the direction of the
force P.
Here mf is called the effective force and P the applied force.

If (X, y, z) be the co-ordinates of a moing particle of mass m at any time t
referred to three rectangular axes fixed in spce anf X, Y, Z, be the components of the forces acting on
the particle in directions parallel ot the axes of X, y, z respectively,

Exam Point: the motion is found by solving the following three simultaneous equations:
mX=X,my=Y mzZ=2

Motion of a rigid body.

Explanation: If the rigid body is considered as the collection of material particles. we can write the
equation of motion of all particles according to the above law but here the external forces include, over
and above the applied forces, the mutual actions between the particles. As regards mutual actions
between any two particles we assume that (1).

The mutual action between two particles is along the line which joins them (2). The action and reaction
beetwen them are equal and opposite. In order to find the motion of a rigid body or bodies, D' Alembert
gave a method by which all the necessary equations may be obtained of the body. In doing so only the
following consequence of the laws of motion is kept in view:

The internal actions and reactions of any system of rigid bodies in motion are in equilibrium amongst
themselves.

Impressed and effective forces.

Impressed forces. The external forces acting on a rigid body are termed as impressed forces e.g. weight
of the body.

If the body is tied to the string, then tension in the string is the impressed force on the body.

Effective forces. When a rigid body is in motion, each particle of it is acted upon by the external

impressed forces and also by the molecular reactions of the other particles. If we assume that particle is
separated from the rest of the body, and all these forces are removed, there is some force which would
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make it to move in the same direction as before. This force is termed as effective force on the particle,
it is the resultant of the impressed and molecular forces on the particle.

D'Alemberts Principle. The reversed effective forces acting on each particle of the body and the
external forces of the system are in equilibrium.

Let (x,y,z) be the co-ordinates of a particle of mass m, a rigid body of at any time t.

Let f be the resultant of its component accelerations X, V,Z, so that the effective force on m is mf.

Let F be the resultant of the impressed forces on m and R be the resultant of mutual actions, then mf is
resultant of F and R.

In case mf is reversed, the mf (reversed), F and R are in equilibrium. So for all the other particles of the
body. Thus the reversed-effective forces X(mf) acting on each particle of the body, the external forces
(=F) and the internal actions and reactions (2R) of the rigid body form a system of forces in equilibrium.
But =R i.e. the internal actions and reactions of the body are itself in equilibrium i.e. ZR=0 Hence the
forces ZF and Zmf ( reversed are in equilibrium

ie.Z-(mf)+ZF=0

Hence the reversed effective forces acting at each point of the system and the impressed (external)
forces on the system are equilibriu.

Note. This principle reduces the dynamical proble to the statical one.

Vector Method:
Consider a rigid body in motion.
Let at any time t, r be the position vector of a particle of mass m
and F and R be the external and internal forces respetively acting on it.

Now by Newton’s second law m(d?r/dt?) = F + R or F + R -m(d?r/dt?) = 0
i.e. the three forces, namely F, R and —m(d?r/dt?) are in equlibrium.

Now applying the same argument to every particle of the rigid body,
2
the force XF, 2R and Z(—m %) are in equilibrium, where the summation extends to all particles.

Since the internal forces acting on the rigid body form pairs of equal and opposite forces, thus their
vector sum must be zero

i.e.ZR =0

= The forces ZF and —=m (d?r/dt?) are in equilibrium. This proves the D’ Alembert’s Principle.

Angular momentum of a system of particles:
If r be the position vector of a particle of mass m relative to a point O, then the vector sum

H=2Xr x mv=Xmr x v; is called angular momentum (or moment of momentum)
of the system about O.

General equation of motion:
To deduce the general equation of motion of rigid body form D’ Alembert’s Principle,
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Cartesian method. Let (x, y, z) be the coordinate of a particle of mass m at any time r
referred to a set of rectangular axes fixed in space. Let X, Y, Z represent the components, parallel to the
axes of the external force acting of it.

By D’ Alembert’s Principle of the forces
X—mX,Y —my,Z —mZ
Together with similar forces acting on each particle of the body will be in equilibrium.
Hence as in statics the six conditions of equilibrium are
2(X—mX)=0,2(Y —my)=0,>(Z —mZ) =0.
2[y(Z -mz)—z(Y —my)] =0
2[z(X —mX) —x(Z —mZ)]=0
and 2[x(Y —my)—y(X —mx)]=0
Where summations are to be taken over all the particle of the body.
These equations give

YmX=XX,YXmy=>Y,>Xmi=xZ
>Ym(yz—zy)=2(yZ —zY)
2m(yX —xZ2) =2 (zX — xZ)
and X m(xy — yX) = 2(xY — yX)
These are the six equations of motion of any rigid body: Exam Point
The first three equations can be written as

d d d

—2mx=2X,—2>my.=2Y,—>mz.=27

™ > » o xmy.=> = 3 2
and the other three equations are written as

%Zm(yz -2y)=2(yZ —zY)
%Zm(yf(— X2)=2(zX —xZ)

%Zm(xy—y@i(xv—ym

Vector Method:
At time t let r be the position vector of a particle mass m and F be the external force acting on it, then
by D’ Alembert’s Principle

2 2
sl -m9F i sF=0orsmif —5F (1)
dt dt

Taking cross product by r, we get
ermd—zrzerF ...(2)
dt?
Equations (1) and (2) are in general, vector equations of motion of a rigid body.
Again r=xi+yj+zk ...(3)and F=Xi+Yj+Zk ...(4)
where X, Y, Z are the components of F.
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From (3) (d?r/dt®)=(d*x/dt* )i+(d®y/dt*)j+(d®v/dt* )k ..(5)

Putting for r, F and (dzr/dtz) from (3), (4) and (5) respectively in (1) and (2), we get
Zm[(dzx/dtz)i +(d2y/dt2)j+(dzz/dt2)k]=2(Xi +Yj +ZK)
and Zm(xi+yj+zk)><[(d2x/dr2)i+(d2y/dt2)j+(dzz/dr2)k]

=3[(Xi + yj + zK) x (Xi + Y] + ZK)]
Equating the coefficients of i, j, k, we get the six conditions of equilibrium as obtained earlier.

Linear Momentum:

The linear momentum in a given direction is equal to the product of the whole mass of the body and
the resolved part of the velocity of its centre of gravity in that direction.

Let (X,VY,Z) be the co-ordinates of the C.G. of the system and M the whole mass, then
MX—-Zmx,My=Xmy and M Z =Xmz

Differentiating these relations, we get

M X = Zmx etc. Hence the result.

Motion of the center of inertia:
To prove that the centre of ineria (C.G.) of a body moves as if the whole mass of the body were collected
at it, and as if all the exteral forces were acting at it in directions parallel to those in which they act.

Let (X,Y,Z) be the co-ordinates of the C.G. of the body of mass M then
M X =2mx, so that M X = ZmX.
But from the general equation of motion, we have Xmx =XX
Therefore,

MX=3X...(1)
Similarly we have, My =XY .....2)and MZ =3Z ...(3)

The equation (1) is the equation of motion of a particle of mass M (placed at the centre of inertia) acted
on by a force X parallel to the original directions of the forces on different particles.
Similarly the equations (2) and (3) can be interpreted.

Motion relative to centre of interia:
The motion of a body about its center of inertia is the same as it would be if the centre of inertia were
fired and the same forces acted on the body.
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Let (X,V,z) be the co-ordinates of the centre of gravity G of the body with reference to the rectangular
axes through a fixed point, say O.

Let (x Y.z ) be the coordinates of a particle of mass m with G (centre of inertia)

as original axes parallel to the original axes and (x, y, z) be its coordinates with y

- - XI
reference to original axes. @

Then x=X+x,y=y+yand z=7+7 /O X
Now consider the fourth equation of the general equation of motion of rigid body, “Y
m(yZ —z§) =X(yZ —zY). ..(1)

If r is position vector of any particle of mass m of the system relative to a point O, the original of vectors
then the point with position vector = (2Xmr /> m) is defined as the centroid of the system.

Again, (y2-29)=(V+y)(Z+2")—(z+2")(V+)

(- x=%X+xetc)

Therefore, from (1), we get

IM(YZ—2Y) =Emy Z +EmyZ +Emy'Z +Xmy-Z' —SmzZy—-3ImZ §'—-Imz'y—Imz'y'...(2)
As G (the centre of inertia) is the origin of coordinates w. r. t. the new axis.

S IMX'=Zmy'=Zmz' =0 (zﬂ =Oetc.j
=m

Therefore ImX'=0=Xmy'=3mZ",also ¥m=M =total mass of the body. Again X,y,Z and their
differential coefficients are common to all particles of the body, so we can take them outside the sigma
sign.

Hence equation (2)

=IM(YyZ-29)=MYZ-MZy+Em(y'Z'-7'y")

.. Equation (1) becomes

MYZ-MZy+Xm(y'2'-z'y)=3{(V+Y')Z—(Z+2")Y}=2YZ +Zy'Z-27Y -3z'Y.

we know that MZ =3XZ, M y =XY.
Hence Im(y'Z'-z'y)=2(y'Z -2"Y).

Similarly, we get other two equations.
But these equations are the same as would have been obtained had we regarded the C.G. to be a fixed
point and same forces acted on the body.

Note. 1. The two important properties discussed above, are called the principle of conservation of
motion of translation and rotation and together called the principle of independence of translation and
rotation.

Note. 2. The motion of the C.G. is the same as if the whole mass collected at the point and is therefore
independent of rotation.
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Note 3. The motion round the C.G. is the same as if that point were fixed and is therefore independent
of the motion of that point.

Impulsive Forces:
When the forces acting on a body are very large and act for a very short time,
then their effects are measured by impulses.
Let a particle of mass 'm' be acted upon by a force F always in the same direction,
the equation of motion is m (dv/dt) = F. .. (D
where v is the velocity of the particle at time t.

If t be the time during which the force F acts and vi,v» be the velocities before and after the action of
the force, then on integrating (1), we have

Now if F increases indefinitely while t decreases indefinitely, then the integral on the right hand
side of (2) may have a definite finite limit.
Let this finite limit be | then equation (2) may be written as
m(v—vi)=1........ 3)

The velocity during the time 7t has increased or decreased from vi to v,. Supposing that the
velocity have remained finite, let v be the greatest velocity during the interval. Then the space
described is less than vt. Since vt — 0 ast — 0, hence we conclude that the particle has not
moved during the action of the force F. It could not have time to move, but its velocity has been
changed from v to va.

Thus in the case of finite forces which act on a body for indefinitely short time, the change of
place is zero and the change of velocity is the measure of these forces. A force so measured is
called an impulse. We can define impulse as the limit of a force which is indefinitely greater but
acts only for an indefinitely short time e.g. the below of a hammer is a force of this kind. In fact
an impulsive force is measured by the whole momentum generated by the impulse.

Note- When impulsive force acts, the finite forces acting on the body may be neglected in calculating
the effect.

Let F be the impulsive force and f a finite force acting simultaneously on the body.
Then, m(vi-vo) = jF dt +j fdt=P+ fr.
0 0

But since ft — 0 as T — 0, f may be neglected in forming the equations.

Note- Application of D' Alembert's principle to impulsive forces, general equation of motion.
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Scalar Method.

let u, v, w be the velocities parallel to co-ordinate axes before the action of impulsive forces
and u’, v’, w’ be the velocities after the action of these forces.

Let X', Y', Z' be the resolved parts of the impulsive forces parallel to the axes.

Then, from Zm; =3X,
on integrating with respect to t, we get

{Zm%} =IZth:2J’th=2x'
at |, 9 °

zm(u -u)=2X".
Similarly, =m(v' —v)=Y'and Tm(w —w)=52'

Observation-Thus the change in the momentum parallel to any of the axes of the whole mass M.

supposed collected at the centre of inertia and moving with it is equal to the impulse of the external
forces parallel to the corresponding axis. Again we have the moment equation

=m(y Z-7 j'/) =?2m(yZ —zY)

T =2[y_|.; Zdt 2 Ydt}

Since the interval t is so short that the body has not moved during this period, we may take x,y,z
as constants, thus the above equation becomes

Zm{y(w' —w)-z(V —v)} =x(yz' -2Y)
Similarly, we have other two equations

Zm{x(v' ~v)-y(u —u)} =3(xY -yX')

Integrating this we have {Zm(y -1 yﬂ

0

and Zm{z(u' —u)-x(w —W)} =3(2X' -x2')

Hence the change in the moment of momentum about any of the axes is equal to the moment about
that axis of the impulses of the external forces.

PREVIOUS YEARS QUESTIONS
CHAPTER 1. MOMENT OF INERTIA

QL. Find the moment of inertia of a right circular solid cone about one of its slant sides
(generator) in terms of its mass M, height h and the radius of base as a.

[6C UPSC CSE 2022]

QL. Prove that the moment of inertia of a triangular lamina ABC about any axis through A in

M
its plane is —( 82 + By + »*
p o (B4 Br+r)
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where M is the mass of the lamina and £,y are respectively the length of perpendiculars
from B and C on the axis. [5e UPSC CSE 2020]

Q2. Show that the moment of inertia of an elliptic area of mass M and semi-axis a and b about
282

- 1 L
a semi-diameter of length r is ZM Further, prove that the moment of inertia about a

re
. 5M , . . . .

tangent is e p“, where p is the perpendicular distance from the centre of the ellipse to the

tangent.

[5e UPSC CSE 2017]

Q3. A uniform rectangular parallelepiped of mass M has edges of lengths 2a,2b,2c . Find the

moment of inertia of this rectangular parallelepiped about the line through its centre parallel to
the edge of length 2a. [5¢c 2017 IFoS]

X2

2
Q4. Calculate the moment of inertia of the ellipse — +y—2 =1
a® b

(i) relative to the x-axis
(i) relative to the y-axis and
(iii) relative to the origin. [5e 2016 IFoS]

Q5. Find the moment of inertia of a right solid cone of mass M, height h and radius of whose
base is a, about its axis. [8a 2016 I1FoS]

Q6. Calculate the moment of inertia of a solid uniform hemisphere x* + y* +z* =a®, z >0 with
mass m about the OZ-axis. [5e UPSC CSE 2015]

Q7. Find the moment of inertia of a uniform mass M of a square shape with each side a about
its one of the diagonals. [7b 2015 IFoS]

Q8. Show that the moment of inertia of a uniform rectangular mass M and sides 2a and 2b
2Ma’b?
3(a’+b?)
Q0. Four solid spheres A, B, C and D, each of mass m and radius a, are placed with their centres

on the four corners of a square of side b. Calculate the moment of inertia of the system about a
diagonal of the square. [5e UPSC CSE 2013]

about a diagonal is . [6b 2014 IFoS]

Q10. A pendulum consists of a rod of length 2a and mass m; to one end of which a spherical
bob of radius a/3 and mass 15 m is attached. Find the moment of inertia of the pendulum:

(i) about an axis through the other end of the rod and at right angles to the rod.
(i) about a parallel axis through the centre of mass of the pendulum.

[Given: The centre of mass of the pendulum is a/12 above the centre of the sphere.]

[8a UPSC CSE 2012]
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Q11. Let a be the radius of the base of a right circular cone of height h and mass M. Find the
moment of inertia of that right circular cone about a line through the vertex perpendicular to
the axis.

[5e UPSC CSE 2011]

Q12. From a uniform sphere of radius a, a spherical sector of vertical angle 2« is removed.
Find the moment of inertia of the remainder mass M about the axis of symmetry. [8a 2011
IFoS]

Q13. A uniform lamina is bounded by a parabolic arc of latus rectum 4a and a double ordinate
at a distance b from the vertex.

If b =%(7+4\/7), show that two of the principal axes at the end of a latus rectum are the
tangent and normal there. [5e UPSC CSE 2010]

Q14. Show that the sum of the moments of inertia of an elliptic area about any two tangents at
right angles is always the same. [5d 2010 1FoS]
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Ch. -2: D’alemberts Priniple & Motion
about a fixed axis

Motion of a particle. The motion of a single particle under the action of given forces is:
determined by the Newton’s second law of motion, which sates that the rate of change of momenutm
in any dirction is proportionate to the applied force in the direction.

From this law it is deduced that P = mf where f is the acceleration of particle m in the direction of the
force P.
Here mf is called the effective force and P the applied force.

If (X, y, z) be the co-ordinates of a moing particle of mass m at any time t
referred to three rectangular axes fixed in spce anf X, Y, Z, be the components of the forces acting on
the particle in directions parallel ot the axes of x, y, z respectively,

Exam Point: the motion is found by solving the following three simultaneous equations:
mX=X,my=Y mZ=2

Motion of a rigid body.

Explanation: If the rigid body is considered as the collection of material particles. we can write the
equation of motion of all particles according to the above law but here the external forces include, over
and above the applied forces, the mutual actions between the particles. As regards mutual actions
between any two particles we assume that (1).

The mutual action between two particles is along the line which joins them (2). The action and reaction
beetwen them are equal and opposite. In order to find the motion of a rigid body or bodies, D' Alembert
gave a method by which all the necessary equations may be obtained of the body. In doing so only the
following consequence of the laws of motion is kept in view:

The internal actions and reactions of any system of rigid bodies in motion are in equilibrium amongst
themselves.

Impressed and effective forces.

Impressed forces. The external forces acting on a rigid body are termed as impressed forces e.g. weight
of the body.

If the body is tied to the string, then tension in the string is the impressed force on the body.

Effective forces. When a rigid body is in motion, each particle of it is acted upon by the external
impressed forces and also by the molecular reactions of the other particles. If we assume that particle is
separated from the rest of the body, and all these forces are removed, there is some force which would
make it to move in the same direction as before. This force is termed as effective force on the particle,
it is the resultant of the impressed and molecular forces on the particle.

D'Alemberts Principle. The reversed effective forces acting on each particle of the body and the
external forces of the system are in equilibrium.
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Let (x,y,z) be the co-ordinates of a particle of mass m, a rigid body of at any time t.
Let f be the resultant of its component accelerations X, ¥, Z, so that the effective force on m is mf.
Let F be the resultant of the impressed forces on m and R be the resultant of mutual actions, then mf is

resultant of F and R.

In case mf is reversed, the mf (reversed), F and R are in equilibrium. So for all the other particles of the
body. Thus the reversed-effective forces X(mf) acting on each particle of the body, the external forces
(2F) and the internal actions and reactions (ZR) of the rigid body form a system of forces in equilibrium.
But R i.e. the internal actions and reactions of the body are itself in equilibrium i.e. ¥R=0 Hence the
forces ZF and =mf (reversed are in equilibrium

i.e.X—-(mf)+XF=0

Hence the reversed effective forces acting at each point of the system and the impressed (external)
forces on the system are equilibriu.

Note. This principle reduces the dynamical proble to the statical one.

Vector Method:
Consider a rigid body in motion.
Let at any time t, r be the position vector of a particle of mass m
and F and R be the external and internal forces respetively acting on it.

Now by Newton’s second law m(d?r/dt®) = F + R or F + R —m(d?r/dt?) = 0
i.e. the three forces, namely F, R and —m(d?r/dt®) are in equlibrium.

Now applying the same argument to every particle of the rigid body,

2
r ! ki : :
the force 2F, XR and Z[—m 3?] are in equilibrium, where the summation extends to all particles.

Since the internal forces acting on the rigid body form pairs of equal and opposite forces, thus their
vector sum must be zero

i.e.2R=0

= The forces ZF and —xm (d’r/dt?) are in equilibrium. This proves the D’ Alembert’s Principle.

Angular momentum of a system of particles:
If r be the position vector of a particle of mass m relative to a point O, then the vector sum

H = Xr x mv = Zmr X v; is called angular momentum (or moment of momentum)
of the system about O.

General equation of motion:
To deduce the general equation of motion of rigid body form D ’Alembert’s Principle,

Cartesian method. Let (X, Y, z) be the coordinate of a particle of mass m at any time r
referred to a set of rectangular axes fixed in space. Let X, Y, Z represent the components, parallel to the

axes of the external force acting of it.

By D’ Alembert’s Principle of the forces
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X—mX,Y —my,Z —mZ
Together with similar forces acting on each particle of the body will be in equilibrium.
Hence as in statics the six conditions of equilibrium are

(X =mxX)=0,2(Y —my)=0,>(Z —mZ) =0.

2[y(Z —mZ)—z(Y —my)]=0

2[z(X —=mX) —x(Z —mZ)]=0
and 2[x(Y —my)—-y(X —mX)]=0
Where summations are to be taken over all the particle of the body.
These equations give

2mX=2X,2my=2Y,>mi=x27Z
2m(yZ-2y) =2(yZ - 7Y)
2m(yX—xZ) =2(zX —xZ)
and 2 m(xy — yX) = 2(xY — yX)
These are the six equations of motion of any rigid body: Exam Point
The first three equations can be written as

d d d

—2mXx=2X,—>my.=2Y,—>mi.=>7

o 2 )3 o xmy.=2 o 2 )3
and the other three equations are written as

& m(yz-29) - Xz -2Y)
%Zm(yx —X2)=2(zX —xZ)

d
g =MOI=yX) = 2(xY —yX)

Vector Method:
At time t let r be the position vector of a particle mass m and F be the external force acting on it, then
by D' Alembert’s Principle

2 2
) —md—2r +EF=Ooerd—2r=ZF ..(D)
dt dt

Taking cross product by r, we get
d’r
ermwzﬂxF ...(2)

Equations (1) and (2) are in general, vector equations of motion of a rigid body.

Again r=xi+yj+zk ...(3)and F = Xi+Yj+Zk ...(4)
where X, Y, Z are the components of F.

From (3) (d®r/dt?*)=(d*x/dt* )i+(d?y/dt*) j+(d*v/dt* )k ..(5)

Putting for r, Fand (d?r/dt*) from (3), (4) and (5) respectively in (1) and (2), we get

Zm[(dzx/dtz)i +(d?y/dt?) j +(d22/dt2)k] =3 (Xi +Yj + Zk)
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and EnKxL+yj+zk)x[(d2x/dr2)i+(d2y/dt2)j+(dzz/dr2)k]
=Z[(Xi + yj + zK) x (Xi + Y] + Zk)]
Equating the coefficients of i, j, k, we get the six conditions of equilibrium as obtained earlier.

Linear Momentum:

The linear momentum in a given direction is equal to the product of the whole mass of the body and
the resolved part of the velocity of its centre of gravity in that direction.

Let (X,Y,Z) be the co-ordinates of the C.G. of the system and M the whole mass, then
MX—-Zmx,My=Xmyand M Z =Xmz

Differentiating these relations, we get

M X =Xmx etc. Hence the result.

Motion of the center of inertia:
To prove that the centre of ineria (C.G.) of a body moves as if the whole mass of the body were collected
at it, and as if all the exteral forces were acting at it in directions parallel to those in which they act.

Let (X,Y,Z) be the co-ordinates of the C.G. of the body of mass M then
M X =Xmx, so that M X =XmX.
But from the general equation of motion, we have Xmx =ZXX
Therefore,

MX=3X...(1)
Similarly we have, My =3Y ....(2)and MZ =37 ...(3)

The equation (1) is the equation of motion of a particle of mass M (placed at the centre of inertia) acted
on by a force XX parallel to the original directions of the forces on different particles.
Similarly the equations (2) and (3) can be interpreted.

Motion relative to centre of interia:
The motion of a body about its center of inertia is the same as it would be if the centre of inertia were
fired and the same forces acted on the body.

Let (X,V,z) be the co-ordinates of the centre of gravity G of the body with reference to the rectangular
axes through a fixed point, say O.

Let (x Y.z ) be the coordinates of a particle of mass m with G (centre of inertia)

as original axes parallel to the original axes and (X, y, z) be its coordinates with y

- - X’
reference to original axes. @

Then x=X+Xx,y=yY+yand z=7+2 /O X
Now consider the fourth equation of the general equation of motion of rigid body, 7Y
>m(yZ —zy) = X(yZ —zY). ..(D)
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If r is position vector of any particle of mass m of the system relative to a point O, the original of vectors
then the point with position vector ¥ = (2 mr /> m) is defined as the centroid of the system.

Again, (yZ-29)=(F+y')(Z+2")—(z+2")(§+)

(- x=%X+X'etc)

Therefore, from (1), we get

IM(yZ—2Y)=ImyZ +ZmyZ +3Xmy'Z +Imy-7' —SmZy—-3ImzZ §'-Imz'y—-Imz'y’...(2)
As G (the centre of inertia) is the origin of coordinates w. r. t. the new axis.

sLZmx'=Zmy'=Xmz'=0 ( 2mx = Oetc.j
zm

Therefore EmX'=0=Xmy'=%mz',also Zm=M =total mass of the body. Again X,y,Z and their
differential coefficients are common to all particles of the body, so we can take them outside the sigma
sign.

Hence equation (2)

=IM(yZ-2y)=MYZ-MZy+Em(y'Z'-7'y")

.. Equation (1) becomes

MYZ-MZy+Xm(y'Z2-2'y)=3{(Y+Y)Z—-(Z+2")Y} =2yZ+3Zy'Z-27Y —-3z'Y.

we knowthat MZ =XZ, My =XY.
Hence Zm(y'zZ'-z'y\=2(y'Z—-2"Y).

Similarly, we get other two equations.
But these equations are the same as would have been obtained had we regarded the C.G. to be a fixed
point and same forces acted on the body.

Note. 1. The two important properties discussed above, are called the principle of conservation of
motion of translation and rotation and together called the principle of independence of translation and
rotation.

Note. 2. The motion of the C.G. is the same as if the whole mass collected at the point and is therefore
independent of rotation.

Note 3. The motion round the C.G. is the same as if that point were fixed and is therefore independent
of the motion of that point.

Impulsive Forces:

When the forces acting on a body are very large and act for a very short time,
then their effects are measured by impulses.

Let a particle of mass 'm' be acted upon by a force F always in the same direction,
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the equation of motion is m (dv/dt) = F. .. (D
where v is the velocity of the particle at time t.

If t be the time during which the force F acts and v1,v2 be the velocities before and after the action of
the force, then on integrating (1), we have

m(vz—v1)=Ith ....... )

Now if F increases indefinitely while t decreases indefinitely, then the integral on the right hand
side of (2) may have a definite finite limit.

Let this finite limit be | then equation (2) may be written as
mvzvy) =1....... (3)

The velocity during the time t has increased or decreased from vi to vz. Supposing that the
velocity have remained finite, let v be the greatest velocity during the interval. Then the space
described is less than vt . Since vt — 0 ast — 0, hence we conclude that the particle has not
moved during the action of the force F. It could not have time to move, but its velocity has been
changed from va to v2.

Thus in the case of finite forces which act on a body for indefinitely short time, the change of
place is zero and the change of velocity is the measure of these forces. A force so measured is
called an impulse. We can define impulse as the limit of a force which is indefinitely greater but
acts only for an indefinitely short time e.g. the below of a hammer is a force of this kind. In fact
an impulsive force is measured by the whole momentum generated by the impulse.

Note- When impulsive force acts, the finite forces acting on the body may be neglected in calculating
the effect.

Let F be the impulsive force and f a finite force acting simultaneously on the body.
Then, m(vi—vz) = [Fdt+[fdt=P+fr.
0 0
But since ft — 0 as © — 0, f may be neglected in forming the equations.
Note- Application of D' Alembert's principle to impulsive forces, general equation of motion.
Scalar Method.
letu, v, w be the velocities parallel to co-ordinate axes before the action of impulsive forces

and u’, v’, w’ be the velocities after the action of these forces.
Let X', Y', Z' be the resolved parts of the impulsive forces parallel to the axes.

Then, from Zm; =3X,
on integrating with respect to t, we get

[Zm%} =I2th=ZIth=ZX'
dt , 3 !
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Zm(u' —u)=zx' .
Similarly, m(v' —v)=Y'and Tm(w —w)=3Z'

Observation-Thus the change in the momentum parallel to any of the axes of the whole mass M.

supposed collected at the centre of inertia and moving with it is equal to the impulse of the external
forces parallel to the corresponding axis. Again we have the moment equation

Zm(yi— z g/) =?7m(yZ —zY)

T

Integrating this we have {Zm(yi—z yﬂ =Z[yjor Zdt—zj'ot Ydt}

Since the interval T is so short that the body has not moved during this period, we may take X,y,z
as constants, thus the above equation becomes

Zm{y(w' ~w)-z(v —v)} =3(yz' -zY')
Similarly, we have other two equations

Zm{x(v' ~v)-y(u —u)} =3(xY -yX')

0

and Zm{z(u' —u)—x(w' —w)} =Z(ZX' —xZ')

Hence the change in the moment of momentum about any of the axes is equal to the moment about
that axis of the impulses of the external forces.
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Motion about a fixed axis
A rigid body is rotating about a fixed axis. To find the moment of the effective forces
about the axis of rotation.

Let the axis of rotation be OZ, perpendicular to the plane of the paper. Take a plane AOZ through
Oz and fixed in space, cutting the plane of the paper along OA. Let this plane be taken as the
plane of reference. Let be the angle, which another plane ZOG through the axis fixed in the body
makes with the plane AOZ.

z 4
N
\r'Q
¢ ©
O 1§)
—~_ A

Take a particle of mass m at Q and let the plane through OZ and Q cut the plane of the paper
along OP. Let the angle between ZOP and ZOG be o . When body rotates about OZ; o remains
constant. Let the angle between the plane ZOP and the plane ZOA be ¢ . Now

0+a=¢ 9=6 and e=¢
The accelerations of the particle of mass m are

rcif and rZi; along QN and perpendicular to QN respectively.

Therefore effective forces on the particles are mr¢> and mr ¢ in the above said directions. Again

°2 o2 oo oo
ro =r6 and rop=ro
2 "
The moment of the force mr ¢ about OZ is zero and moment of the force mr¢ about OZ (& NZ)

is r.mrg=mr¢=mr20
Exam Point- Hence the moment of the effective forces of the whole body about OZ is

Tmr? 0 = 0 Tmr? = Mk? 6 where K is the radius of gyration of the body about OZ.

Moment of momentum about the axis of rotation.

Velocity of the particle mis rdS perpendicular to QN.

Therefore the moment of momentum of the particle about OZ is mr2<i> or mr’o.
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Hence the moment of momentum of the whole body about OZ
is Zmr’ ¢ = (Zmr?)0 =0=mr’ = Mk
12

Kinetic Energy: The kinetic energy of the particles of mass m is %mr2 )

Hence K.E. of the whole body is

' 2 2 .
Zlmrzq)2 —x e’ 2Lt smee = I o”
2 2 2 2
Equation of motion:

The impressed forces include besides the external forces, the reactions on the axis of rotation OZ.
We take moment about OZ, so that this reaction could be avoided i.e. the moment of the effective
forces about OZ will be equal to the moment of the external forces about OZ.

Thus Mk2 6 =L ,
where L represents the moment of all external forces about OZ.
Above equation is called the equation of motion of the body.
In the case of impulsive forces if o, and »,be angular velocities of the body just before and just after
the action of the impulses, L the moment of the impulses then we of the impulses then we have
Mk?* (0, —o,)=L.

The Compound Pendulum: N
To determine the motion of a body acted on by the force of gravity
only and moving about a fixed horizontal axis. 9
N,
Let us take plane of the paper as the plane through the centre of gravity Mg

G of the body and perpendicular to the fixed axis.

Let the plane meet the axis in C.
Let 6 be the angle between the vertical and (G i.e. 6 is the angle between a plane fixed in space
and a plane fixed in the body.

Let CG = h. The forces on the body are:

(i)  itsweight M g acting downward through G.
(ii)  the reaction at C of the fixed axis to eliminate this reaction.

We take moments about the fixed axis to eliminate this reaction.
The equation of motion is Mk? 0=—M gh sin®

=—=—""sinf= —ﬂ—?e, (6being small)
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Equation (1) shows that motion is S.H.M. Hence the time of complete oscillation of compound
kZ

pendulum is 2x (—J
gh

Simple Equivalent Pendulum. We know that equation of motion of a particle of any mass

2
suspended by a string of length | is % = —%sine = —%6(9 beingsmall)

The time of complete oscillation is 2 (l]
g

o )

2
This length [k?] in the case of a compound pendulum is called the length of the simple

equivalent pendulum.

Centre of Suspension:

Through C, if a line be drawn perpendicular to the axis of rotation cutting it at C, then C is called
the Centre of suspension.

2

Centre of Oscillation. If O is the point on CG produced such that CO =1 = kF (the length of the

simple equivalent pendulum) then the point O is called the centre of oscillation.
Showing that the centres of suspension and oscillation are convertible

Let us take 0 and O’ as the centre of suspension and oscillation 'respectively
2

-.00 = k? Where OG = h, and K is radius of gyration of the body about the e

g G

axis through O. Now if K is the radius of gyration of the body about an axis V|G

through G parallel to the axis of rotation, then Mk? = MK? + M .OG?
= Mk? = MK? + Mh* = k* =K? +h?
K +h? _K*+0G”
h 0oG
= 000G =K’ +0G* = K* =0G(00 -0G)=0G.0G. (D

~.00 =

Let O” be the centre of oscillation when the body rotates about a parallel axis through O’. We
can show as above that K =0'G.0'G

From (1) and (2), we observe that O" is simply the point O. Thus if the body were suspended
from a parallel axis through O’, O is the centre of oscillation. This proves the theorem.
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Minimum time of oscillation of a compound pendulum.

If K is the radius of gyration of the body about an axis through G parallel to the axis of rotation,

then k?=K?+h?,
2 2 2 2

Therefore length of the simple equivalent pendulum is | = kF = K ;h :KT

The time of oscillation of a compound pendulum will be least when the length of the simple
equivalent pendulum is minimum. For that

2 2
a_d K 021K oh-k.
dh dnl h

+h.

The length of simple equivalent pendulum in this case

KZ+h? K*+K?
h K

In case h =0 or o i.e. if the axis of suspension either passes through G or be at infinite, the

corresponding simple equivalent pendulum is of infinite length, thus the time of oscillation is
infinite.

= 2K.

Reactions of the axis of rotation.

A body moves about a fixed axis under the action of forces and both the body and the forces are
symmetrical with respect to the plane through the C.G. perpendicular to the axis, find the
reactions of the axis of rotation.

Let O be the point where the plane through G perpendicular to the axis
of rotation meets this axis. By symmetry the actions on the axis reduce
to a single force at O, the centre of suspension.

Let the components of this single force be X and Y along and
perpendicular to GO respectively.

Now G describes a circle round O as centre, its acceleration along and

perpendicular to GO are ho and ho.

Equations of motion of C.G. are
2

Mh® =X —-Mgcoso ........ (1)

Mho =Y —Mgsin® ... (2)

By taking moments about O, Mk? 0 =—Mghsino... (3)

where k is the radius of gyration about the axis.
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Y is obtained by eliminating 0 from (2) and (3), By integrating (3) and determining the constant
from the initial conditions, and then from we can find X.

Resultant reaction R = (X 2 +Y2) and tan¢:(éjwhere ¢ is the angle which the direction of

R makes with GO.
Note: On resolving X and Y horizontally and vertically,
The horizontal reaction = X sin6—Y cos6 Vertical reaction = X cos0+Y sin0

Motion about a fixed axis: Impulsive forces.

Consider a rigid body under the effect of impulsive forces. Let w and w’ be the angular velocities
about the axis just before and just after the action of impulsive forces. Now change in moment of

momentum about the axis = Mk? (m’ — (9) . Also let L the moment of external impulses about the

axis of rotation, then we have Mkz(oj —co): L (since change in moment of momentum of the

body about the axis is equal to the moment of the impulsive forces about it).

Centre Of Percussion:

If a body, rotating about a given axis, is so struck that there is no impulsive pressure on the axis,
then any point on the line of action of the force is called a centre of percussion. If the line of
action of the blow is known, the axis about which the body begins to turn is called the axis of
spontaneous rotation. Obviously this combines with the position of the fixed axis in the first case.

Centre of Percussion of a rod:

Consider a rod AB of length 2b. Let it be suspended freely from one end A. Let a horizontal blow
of impulse P be applied to it at the point C where AC = x. Al » X

If X is the impulsive action at A and w the angular velocity communicated to
the rod, then the equations of motion are

Mk’ =P, (moment eq" .. (D) aw
) ol e
M(aw—-0)=P+X .. (2)
where aw is the velocity with which G moves. C

P

Now if the blow has been given through the centre of percussion then X =0
and equation (2) becomes Maw =P . B

Substituting this value of P in (1), we get
2
X = K =length of the equivalent simple pendulum.
a

General Case of Centre of Percussion:
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Let us take the fixed axis as the axis of y. Also let centre of gravity G lie in the y-plane, so that

coordinates of G are (x,y,0).

If Q is the point where the blow is applied then take a plane
through Q and perp. to xy-plane as the xz-plane so that
coordinates of Q may be (£,0,&). Now consider any other point

P of mass m of the body at a distance r from Oy at any angle &
with  z-axis. The coordinates of P  will be
X=rsin®,y =const., z=rcoso.

If before the blow, angular velocity is @ and the velocity
component along the axes are u, v, w respectively, then we have

X=u=1c0s0,0 =zw,y=v=0,z2=w=—1sinf - 0 = —xw.

If after the blow, the angular velocity is @ and velocity component along the axes becomes as
u,v,w,thenu =zo,vV =0;W = —xo.

If X,Y,Z are the components of the blow at the point Q, then equations of motion will be
X = Zm(u' —u) = Zmz(m' —0)) = (m' —co)ZmZ

=(0 -0)Zm=M (o —@)E:o(sinceE:o) (D
Y =3m(v —v)=0( sincev' =0and v=0) . (2)
Z=3m(w -w)=—(o ~0)=mx=—(0 - 0)xxm =-M (o ~o)x .. (3)
—Yg=zm{y(w’ ~w)-z(v —v)}:—(m’ —0)Zmxy =—(o —o)F (@)

=F=0 (Y =0)
X -7 =2m{z(u' —u)—x(w' —w)} =—(0 —0)Im(2 +X*) =Mk’ (0 —0)  ...(5)

[M KZis the M.1. of the body about y-axis]
Y :Zm{x(v' —v)— y(u' —u)} :—(m' —co)Zmzx:—(oo' —m)D =D=0[-Y=0] ...(6)

Thus we get X =0, Y = 0, which implies that blow has no components parallel to the axes of x
and y. Hence the blow must be perp. to xy- plane which contains the fixed axis and the
instantaneous position of the centre of gravity. Also we see that F =0 and D = 0 which implies
that the y-axis which is also the axis of the body is a principal axis at the point where the plane
through the line of action of the blow perp. to the fixed axis cuts it. This is a necessary condition
for the existence of the centre of percussion. So if the fixed axis is not a principal axis at some
point, then there is no centre of percussion.

2

Using equation (3) and (5), we get & = LS .. (D)
X

The obvious conclusion from the relation (7) is that the distance of the centre of percussion from
the fixed axis is the same as that of the centre of oscillation.
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Points to remember in finding out the centre of percussion of a body for fixed axis.
(i)  Find the point where the fixed axis is principal axis.

2

(i) Takea distancek—.
X

2

(iif) Draw an axis perp. to the plane containing the fixed axis and C.G. at a distance K below
X

the point where fixed axis is principal axis.
(iv)  Any point on this line is a centre of percussion of the body for the fixed axis.

Examples

Example 1:- Two uniform spheres, each of mass M and radius a, are filmy fixed to the ends of two
uniform thin rods. Each of mass m and length |, and the other ends of the rods are freely hinged to a
point O. The whole system revolves as in the Govemor of steam-Engine, about a vertical line through
O with the angular velocity @. Show that when motion is steady, the rods are inclined to the vertical

M(I+a)+;ml

atan angle & given by the equation cosf = — . 1 :
@ M(l +a)2+§ml2

Solution:- Take an element X in one of the rods at a distance Xxfrom O. Let PN,CM be the
perpendiculars on the vertical line through O. Here C is the centre of one of the spheres.

. ) m . )
The reversed effective force on the rod at P is 5x|—a)2xsm 6 along NP and the revered effective

force on the sphere is M & (a+|)sin 6 along MC, On taking moments about O for the system of

a rod and a sphere on one side of the vertical OM , we have
2{5x(m/|)a)2xsin 9xcos€}+M o?(a+1)sing(a+1)cosd

=Mg(a+l)sin@+mg(l/2)sing

1
Or J.Ima)zsinecosexdeJrM wz(a+l)zsin¢9cos¢9
0

:Mg(a+l)sin9+%mglsin9
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Oor wz{%mI2+M(a+|)2}cosé?=g{%ml+M(I+a)}

1mI+M(I+a)
Or 0039:%1
@ ng2+M (1+a)’

Example 2:- A cannon of mass M , resting on a rough horizontal plane of coefficient of friction u is
fired with such a charge that he relative velocity of the ball and cannon at the moment when it leaves

2
. . . . mu
the cannon is u. Show that the cannon will recoil a distance ( J along the plane, m

M+m) 2ug

being the mass of the ball.
Solution:- Let | be the impulse between the cannon and the ball and V,V be their velocities. Since

their relative velocity is u, we have V +v=u 1)
And mv=1=MV. 2)
From (1) and (2), we have (MV /m)+V =u or V ={mu/(m+M )}

I

Again on the rough plane, for the cannon the equation is M X=—u R =— Mg, where X is

the distance cannon has moved.
. i

X=—u 0, Multiplying by 2 x and integrating, we get
X* =—2 ugx+C

[ 0
When x=0,x=V , sothat C =V ?, x* =V 2 —2 1 gx when the cannon comes to rest X=_0

x=(V2/2,ug) or x=(mu/M +m)’(1/29)
[+ V=(mu/M+m)]

Example 3:- Arod of length 2a, is suspended by a string of length |, attached to one end if the string

and rod revolve about the vertical with uniform angular velocity, and their inclination to the vertical be
4tan @ —3tan ¢ )sin
€ and ¢ respectively, show that 3—' :( ¢)_ ¢ :
a (tang—tané)sing

Solution:- Take a small element oX of the rod AB atadistance X from A. Let be the uniform angular

M M
velocity of the rod. Mass of the element = 2—a§ X. Its reversed effective force = 2—a§xNP o® | along
NP.
M . i ’
= 2—5x(| sin@+xsing)w* along NP.
a
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ol
>e\
%\ gé.\(;w’)mz
P 2a
N >
T Ref. eff. force
?B
Mg

The external forces on the rod are (1) the tension T of the string and (2) of the weight Mg of

the rod.
Resolving horizontally, vertically, and taking moments about A, we have

. M , M L% .
Tsin0=——0’INP 6x=—o’ [ (Isin0+xsing)dx
0

2a 2a
= ZMawz (2al sin@+2a’sin (,/5) [Horizontally] 1)
T cos@ =Mg [Vertically] (2

and M gasin¢:%a}22 NP. ox.xcos ¢ [Moment equation]

2a
ZZMaa)z .([(Isin 0+ xsin ¢ ) x cos ¢ dx

3]
:Mco2 I'sin@cos¢ 2a’ +8isin $COS ¢
2a 3

or  af=_395N¢ @3)
(3Isin@+4asin ¢)cos ¢
sin@ + ,(Isin@+asing)
cos6 g
Putting value of @ from (3) in (4), we get
sing _ 3sing(Isind+asing)
cos® (3lsin@+4asing)cosg
or sin@cos ¢(3lsin @ +4asin g) =singcosO(lsin @ +asin¢)
or 3l'sin §(sin &cos p—sin pcosH)
=asin ¢(3sin gcos@—4sin Hcos p)
or 3_|=sin¢(33in¢cos¢9—4sin @cosy)
a  sind(sindcosg—singcoso)
_sing(3tang—4tand) (4tand—3tang)sing
sing(tan 6 —tan ¢) (tang—tan @)sin &
Example 4:- A plank, of mass m and length 2a , is initially at rest along a line of greatest slope of a
smooth plane inclined at an angle « to the horizon, and a man; of mass M , staring from the upper end

(4)

Dividing (1) by (2), we have
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walks downs the plank so that it does not move, show that he will reach the other end in time.

1/2
4Ma
{(m+M)gsina}

Solution:- Suppose that the man has come down a distance X in times t, starting from the end A of
the plank. Since the plank does not move, its centre is fixed. If X be the distance of the C.G. of the

system from A, then (M +m)X =am+ Mx .

I [l

The gives (M +m)X=M x (1)

[
Again the motion of the C.G. of the system is given by (M + m) X = Ext. forces acting
parallel to the plank =XX =(m+M)gsina (2)
From (1) and (2), we get

e o (m+M)gsin
Mx:(m+Mjgsina orx=( - |\2|g na

Integrating twice and applying the condition that when we have
m+M )gsin
—(m+M)gsina 1,
M 2

1/2
4Ma }

Putting X =2a, we get the time to reach the other end as -
(m+M)gsina

Example 5:- A uniform rod OA, of length 2a, free to turn about its end O, resolves with uniform
angular velocity @ about a vertical OZ through O, and is inclined at a constant angle « to OZ,

show that the value of « is either zero or cos‘l(Bg /4aa)2).
Solution:- Consider a small element PQ =dxat a distance x from O. The point P will move in a
horizontal circle whose radius is PL =Xsin«a . Here only effective force on the element PQ is

P OXPL&” = pdx.xsina w”, where p is the density of the rod and angular velocity @ is constant.

Reversing the  effective force and taking moment about O, we have
2a

(pox.xsina o’ )xcosa=M gasina or ,oaozsinoccos(;cj'x2 dx=M gasina or
0

(M /2a)w’sinacosa(8a’/3)=M gasina

daw’ cosa
3

cosa = (3g /4aa>2) e X= cos‘l(Sg /4aa)2)

(- 2ap=M)or Sino{g— J:O . it implies either sina=0 ie. a=0 or
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AY

Xe——0
o N . ,
p POxxsina®
O™ G Rev. eff. force
a
A

Mg

VA

Example 6:- A thin circular disc of mass M and radius a, can tum freely about a thin axis OA. Which
is perp. To its plane and passes through a point O of its circumference. The axis OA is compelled to
move in a horizontal plane with angular velocity @ about its end A. Show that the inclination & to

the vertical of the radius of the disc through O is Cos‘l(g /aa)z) unless w” < g/a and then @ is

zero.

Solution:- Consider the circular disc in the vertical plane so that the axis OA about which it turns is
horizontal. When the axis OA moves horizontally round A, the disc will be raised in its vertical plane
and its radius OC makes an angle @ with the vertical. Consider an element oém at P . Let PL be
perpendicular to the vertical through O and LN be perpendicular from L to the vertical through A so
that PN is perpendicular to AN. Now P describes a circle of radius PN with a constant angular

velocity @ about N . Thus the reversed effective force along NP is SmMNP”.

PLO - %:ﬁo

Again NP=NL+LP
Sm .’ NP =6m .@*NL+6m .0*LP ie. the force Sm w*NP s equivalent to forces

Sm @’ LP and other Sm w”NLalong NL . The external forces on the disc are its weight Mg

and the reactionat O.

By D’ Alemberts Principle, Rev. effective forces along with external forces form the system in
equilibrium. Hence moment of Rev. effective forces + moment of external forces = 0 i.e.
moment of effective forces about OA = moment of external forces (1).

In order to avoid reaction at O, we take moment about the line OA. Since NL and OA lie in
one plane (they are parallel also) the shortest distance between them is zero.

Moment of the forces dm®x NL about OA is zero. Further the shortest distance between
OA and LP is OL and the shortest distance between OAand the vertical through Cis a
sin . Hence moment of the force Smw’LP about OAis given by Sma?°LP xOL . Taking

moments about OA, we get Mgasin 8 =~5mw’LPxOL or aMgsin@ = a)ZZ(ém LP.OL)
. But 3(6m LPOL) = product of inertia of the disc about OL and horizontal line through
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O =product of inertia about the parallel lines through C+Mx'y". Where X', y" are the co-
ordinates of C with respect of the vertical and horizontal through O.
=0=Ma’sin&cosé

=  aMgsind =’ Ma’sinfcos@ =sin@=0 or cos@ = (g /aa)z), where aw® > g

But »” <(g/a)=>cos@>1, which is impossible and hence in this case cosd =1 i.e. =0

Example 7:- A thin heavy disc can tum freely about an axis in its own plane, and this axis revolves
horizontally with a uniform angular velocity @ about a fixed point on itself. Show that the inclination

@ of the plane of the disc to the vertical is given by cosé = (gh / kza)z) where h is the distance of

the centre of inertia of the disc from the axis and k is the radius of the gyration of the disc about the
axis. If @ < gh<k?, prove that the plane of the disc is vertical.

Solution:- Let OM be the horizontal axis in the plane of the disc which, rotates about O so that the
vertical line ON is the axis of rotation of the system. Consider an element of mass om, at P . Draw

PN perpendicular to this vertical axis ON then effective force for Sm is Sm@*PN . Here PN is

not in the plane of the disc. From P draw PM perpendicular to OM , here PM s in the plane of the
disc. Through N draw NK perpendicular to OM and from P draw PK perpendicular to NK so
that PK is perpendicular to KM , thus if ZPMK =8, 8 is the inclination of the disc to the vertical,

KM being vertical.

Again PN =PK+KN. Therefore, dma’PN =dme’PK +Sma?KN . Thus the
effective force on om are SMw’PK and sm@?KN . Since KN is parallel to OM , the
moment of the force Sm@?K N about OM will be zero and the moment of Smw?PK  about
OM is Smw’PK.KM . The OM , we get Mghsin 8 =26m@°PK KM

=326ma’ (PMsing)(PM cos6) =’ sindcos O =5m PM 2
But 6mPM? = M.I. of the disc about OM = M k? ,where k is the radius of gyration
Mg hsin 8 = @” sin 8 cos @ Mk®

. h
Hence either sin@ =0 i.e. #=0 or cosd = %—kz :
w
h
If ° < g , as in that case cosé >1 the only possible value of @ is zero and then plane of

K2

the disc is vertical.
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Example 8:- A rough uniform board, of mass m and length 2a, rests on a smooth horizontal plane,
and a boy, of mass M , walks on it from one end to the other, show that the distance though which the

board moves in this time is 2 Ma/(m+ M )

Solution:- Here the weight of the boy and the board are downwards, the actions and reactions between
the boy and the board vanish for the system. The reaction of the smooth plane is acting vertically
upwards. Thus there are no external forces on the system in the horizontal direction. Thus by D’
Alembert’s Principle the C.G. of the system does not move. As the boy goes to left, the board comes to
the right.

AM) G C(m) B

A C(m) "I'B:(M)

Let X be the distance of the C.G. of the system and X be the distance through which the board
moves, when the boy goes from one end to the other.

Now in the initial position, (M +m)X = M 2a+ma
In the final position, (M +m)X =M x+m(a+x)
Therefore, M.2a+ma=M x+m(a+Xx)

or x=2Ma/(M+m).

Motion about a Fixed Axis

Example:- A straight uniform rod can turn freely about one end O, hangs from O vertical. Find the
least angular velocity with which it must begin to move so that it may perform complete revolution in
a vertical plane.

Solution:- Let the rod OA at any instant t make an angle & with initial vertical position OX . Let G

be the centre of gravity and GN perpendicular to OX . Let OA=a and mass of the rod be m. The
equation of motion is

M
mk?@=-mg (g]sine

O

X A

mg
Moment of effective forces about the axis of rotation = mk? & and moment of external forces
about the axis of rotation =—mg(a/2)sin @
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[uE|

= 2af=-3¢gsind+C (1)
Let @ =@ when §=0 s aw =3g+C (2)

Hence from (1) and (2), we get ad=a »” —3g(1—cos6) we required that & =0 when
O=rx
0=aw’-6g9 =>w=,/(6g/a)

Example:- A perfectly rough circular horizontal board is capable of revolving freely round a vertical
axis through the centre. A man whose weight is equal to that of the board walks on and around it at the
edge, when he has completed the circuit, what will be his position in space.

Solution:- Let any time t,6 and ¢ be the angles described by the board and man respectively and let

s
F be the action between the feet of the man and the board. Equation of motion for the manis ma¢ =F

1)
F (man)
F
U (Board)
(I
Equation of motion for the board is mk® 8 =—Fa 2)

On eliminating F between (1) and (2), we g et
m 2

’P+k’0=0= ¢ +6=0 [ k? :%}
Integrating twice the above equation and considering that initially both man and the board were
at rest, we get 2¢=6=0.
Therefore, when ¢ —6 =27z (after completing the circuit)
We get, 3=27 = ¢=27/3.
This is the angle in space described by the man.

Example:- A uniform rod AB is freely movable on a rough inclined plane whose inclination to the
horizon is 1 and whose coefficient of friction is x , about a smooth pint fixed through the end A : the

bar is held in the horizontal position in the plane and allowed to fall from this position, if & be the angle
through which it falls from rest show that (sin@/ @) = ucoti.
Solution:- Let any instant t, the position of the rod be AB, making an angle & with the initial

horizontal position. The external forces acting on the rod, perpendicular to the plane, are the normal
reaction R and resolved part of its weight i.e. mgcos i. External forces acting on the rod in the plane

are, (i) the resolved part of its weight, m g sini acting down the line of greatest slope through G (centre
of gravity). (ii) the friction R = umgcosi acting perpendicularto AB through G; (iii) the reaction
at A. We take moments about A to avoid reaction, so
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mgsini

R =mgcosi
mkzEzmgsini.acose—umgcosia

— K= ga(sinicosd— ucosi), where 2a is length of the rod.
Multiplying the above equation by 28 and integrating, we get
k26"‘2 =2agsinisind—-2uag@cosi+D
When 0 =0, 0=0 - D=0.Hence K’ é=2agsinisin9—2,uagecosi
Rod will come to rest when é =0

0=2agsinisin#—2 uag cosi= (sin@/d) = ucoti

Example:- A uniform vertical circular plate of radius a, is capable of revolving about a smooth
horizontal axis through its centre; a rough perfectly flexible chain, whose mass is equal to that of the
plate and whose length is equal to its circumference hangs over its rim in equilibrium , if one end be

1/2
slightly displaced show that the velocity of the chain when the other end reaches the plate is (%)

Solution:- Let x be the distance described in time t. Let v be the velocity of the string and & be the

angular velocity of the plane, then v =x=a#.Let m be the mass of the plate and that of string, then

K.E. of the string =Emv . K.E. of the plate :Emk 0 =§mk —
1 a* v 1_,
=—M—.—=-mv
2 2 a 4
2

1 1 3
Hence, the total K.E. generated :Emvz +va2 = va2
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At time t, length of the string hanging to the right is [%a+ xj and hanging to the left is

[%a—xj, the weights of these two portion are respectively, %(%aﬂ) and

T
(——Xj.
2 2

1 1
The depths of the C.G.’s of these portions below AB are > (%a + X] and E(%a - XJ

Hence when X is the displacement, work function on the right is

lem(ﬂ_% j _[_Hj
2ra\ 2

Work function of the left is W, = mg ( x) l(ﬂ—a — xj
27 2 2\ 2
2 2
ra
Total work function W =W, +W, = ( j (——xj
Aral\ 2
1)
In the initial position i.e. when X =0
mg z’a® 1
W, = =—mgra From (1
Cpe PRY [ ]
m N (ra 21 mg x?
Hence total work done =W —W, = e (—+ X +(—— x| —=r2a?|=19%
4 ra 2 2 2 2ra

2
mg X R 20 X .
2ra 3ra

. 3
Therefore energy equation gives M mv? =

a
When X = % (i.e. when other end reaches the plate)

2

y _1ﬁag:v_(zﬂagj”
6 6

Example:- One end of a light string is fixed to a point of the rim of a uniform circular disc of radius a
and mass m and the string is wounded several times round the rim. The free end is attached to a fixed
point and the disc is held so that the part of the string not in contact with it, is vertical. If the disc be let
go, find the acceleration and the tension of the string.

Solution:- Let the free end be attached to the fixed point P . Let A be the initial position of the centre
of gravity G. Let T be the tension of the string. There being no horizontal force the C.G. will move
vertically downward. Let X be the distance moved by G in time t and during this period, & be the angle
turned through some radius.

m

mg-T=mx 1)

il 2]
And  Ta=mk?0=mZg (2)
2
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a mn|

Again x=a#, .. x=a#6
m S - 29
On eliminating T and @ from (1), (2) and (3), we get mga =ma X+ mzx = X :?

Substituting this value in (1), we get T = %m g

Example:- Two unequal masses m, and m, (m1 > mz) are suspended by a light string over a circular

pulley of mass M and radius a. There is no slipping and the friction of axis may b e neglected. If f

be the acceleration: show that this is constant, and if k* be the radius of gyration of the pulley about
a2

the axle, show that k> =——{ (g —f)m,—(g+ f)m

Solution:- Let intime t, m, move a distance X downwards and m, move a distance X upwards. Let
g
6 be the angle through which the pulley has rotated in time t. Since x ='a@,, .. x=aéb.
M
Equations of motion of m, and m, are m Xx=mg —T, @

and m,x=T,-m,g. (2)

vmlg

Equation of motion of the pulley is M k? ] =Ta-T,a

(Moment is taken about the axle)
[T

21 I
= |\/|§X=T1—T2 -.-ezg )
m 2
Adding (1), (2) and (3), we get x (ml +m, +M gJ—mlg =m,g
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m m, —m
= x=f = (m-m,)g — , which is constant.

m+m,+M —
a

2
From above we get f(m1+m2)+|v;—i<f =(m,—m,)g

=  k? :M_Zf[(ml—mz)g—(mlmz)f]:Ma—:[(g—f)ml—(g+ fym,]

Pressure on the pulley =T, +T, .
Again on subtracting (1) from (2), we get (m, —m,) )I< =T,+T,—(m+m,)g
[N
= T,+T,=(m-m)x+(m+m,)g=(m,—m)f+(m+m,)g.

Example:- Fine string has two masses M and M ' tied to its ends and passes over a rough pulley, of
mass m, whose centre is fixed. If the string does not slip over the pulley, show that M will descend
M-M"

M +M '+(mk2 /az)

pulley. If pulley be not sufficient rough to prevent sliding, and M be the descending mass, show that

with acceleration g where a is the radius and K the radius of gyration of the

VAUTT

its acceleration is W g and that pulley will now spin with an angular acceleration equal to
+M'e

2M M 'ga(e*” -1)

mk*(M +M 'e*")

Solution:- First part, when the pulley is rough enough to prevent sliding proceeding like Ex.6 the
equations of motion of masses and pulley are

Mx=Mg-T 1)
m
And M'x=T'-M'g 2)
(I
And moment of effective forces about the axis of rotation =mk* 8 =(T —-T ")a (3)

an} an}
Again x=a6, x=a#é

mkza—XZ:T—T' ()

Adding (1), (2) and (4), we x[M +M "+ (mk? /az)]z(lvl ~M")g
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(M-M")g
M +M '+(mk2 /az) '
Second Part:- When the pulley is not sufficiently rough to prevent sliding, then we can not take
X =ad. In this case, statics, we have T =T 'e*”

®)
Solving (1), () and(), we have T-=

1
= Acceleration X =

2MM ‘ge"” . 2MM'g

= and
M+M'e"” M +M 'e#”

M-—M'e"”
M +M'e”

T
X =

7 2¢0ale” -1 :
Further putting above valuesof T and T " in (3), we get 8 = J ( > ) . MM
mk M+M"e”

Example:- Two unequal masses, M and M ' rest on two rough planes inclined at an angles « and
/ tothe horizon: they are connected by a fine string passing over a small pulley, of mass m and radius
a, which is placed at the common vertex of the two planes; show that the acceleration of either massis

g[m(sina —ucosa)—M'(sin B+ u'cos B) |
M +M '+(mk2 /a2)

is the radius of gyration of the pulley about its axis and M is the mass which moves downwards.

Solution:- Suppose in time t, the mass M moves a distance X downwards, and also M moves a

distance X upwards. Let the pulley turn through an angle @. In the same time t.

where 1 and u'are the coefficients of friction k

m [
Xx=af#, Xx=ad. The equations of motion of the masses M and M ' are

N
Mx=Mgsina—M g ucosa—T 1)
I
M'x=T'-M'gsing—-M"'g ucosp 2)

il

Equation of motion of pulley is mk* 6= (T —T")a

a
2 a
SLS . Y == 3)
a

Adding (1), (2) and (3), we get
[mkz +M+M ]iz g[ M (sing - ucosa)—M'(sin f—pu'cosa) |

a2
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- X:g[M(sina—ycow)—M'f(szinﬂ+y'cosﬂ)]
m

aZ

M+M '+

Example:- A uniform circular disc is free to turn about a horizontal axis through its centre perpendicular
to its planes. A particle of masses attached to a point in the edge of the dis. If the motion starts from the
position in which radius to the particle makes an angle « with the upward vertical, find the angular
velocity when m is in its lowest position. Take the mass of the discas M .

Solution:- The circular disc is turning about the fixed horizontal axis OX , through its centre O. Let
o be the angular velocity when m is in its lowest position. Say L then energy principle gives.

Change in K.E. = work done by forces.
}'J

A R (m)

L

2
=mg(a+acosa) or a’(2m+M)=4g(1+cosca) or

2
= 1maza)erlM adh “P Ay
2 2

= L a COSg
V=2 m ) WO/

Remark: The weight of the disc does not work as its C.G. is fixed.
Example:- A solid homogeneous cone of height h and vertical angle 2 oscillates about a horizontal

1
axis through its vertex. Show that the length of the simple equivalent pendulum is c h (4 +tan® a)

Solution:- Let OX be the horizontal axis through the vertex O. Let us take a circular disc PQ of
thickness ox at distance x from O. Moment of Inertia of disc about OX

=(p7x’ tan’ a5x)G x* tan’ o + xzj.

P &)

A B

Therefore, M.I. of whole cone about OX
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h
M k? = pyztanza(1+%tan2ajjx4dx
0
:pﬂtanza(l+ltan2ajlh5
4 5
:ip;rtanzo:(tanzoc+4)h5
20
:iM(tanzoz+4)h2 [M _Li h®tan® o p
20 3
2 3 2 2 . 3
k :—(tan a+4)h . Again OG =—h.
20 4

2
Therefore the length of the simple equivalent pendulumi.e. | = Cl)<_G = g(tan2 a+ 4) h

Example:- A solid homogeneous cone of height h and semi-vertical angle « oscillates about a
1
diameter of its base. Show that the length of the simple equivalent pendulum is 3 h(2+3tan2 a)

Solution:- Referring to the fig. of the example 10. We observe that M.l. of the cone about AB

h 2 2
=jp7zx2 tanzadx{Xta%ﬂh—k)z}

h
I prtan’ a[x4tan2a+4x2(h—x)2}dx
0
h
'D”tan aJ' x tan2a+4x4—8hx2+4h2x2)dx

0

5 5 4 3
=1p7rtan2a h—tan2 4h——8hh— 4h2h
4 5 5 3

=%p7rtan2ah5 Etanza+%}:6—1op7rh4 tanza[?,tanza+2}

Y h2(3tan2a+2) , since M :lﬁhstanza.p
20 3

Y h2(3tan2a+2):kzzihz(Stan2a+2), where Kis the radius of
20 20

M k?
gyration of cone about AB. Hence length of the simple equivalent pendulum

k2 k2 1 ,
= — = :—h(3tan a+2)
distanceof G fromAB (h/4) 5

Example:- An elliptical lamina is such that when it swings about one latus rectum as a horizontal axis,
I o1
the other latus rectum possess through the centre of oscillation, prove that the eccentricity is 5

Solution:- When one of the focii say H , is the centre of suspension then the other focus H 'is the
centre of oscillation. LHL" is the latus rectum (horizontal axis) about which the elliptic lamina
oscillates.
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The length of simple equivalent pendulum t = HH '=2ae 1)
Also HG =aeand M k? =Moment of Inertia of the body about the axis of the rotation.

2

LHL =M | 2 4 a%? :>k2=1a2(1+4e2) 2)
4 4

HG

k2 1a°(1+4e?)
Z ae
12’ (1+4e%)

Form (1) and (2), we get 2ae =—
4 ae

= 8e® =1+ 4¢? :>4e2:1:>e=%.

Example:- A uniform elliptic board swings about a horizontal axis at right angles to the plane of the
board and passing through one focus. If the centre of oscillation be the other focus prove that its

eccentricity is ,/(2/5)

Solution:- Refer fig. before example here M k* = M {%(az +b2)+ a’ ez}

2 2
Length of simple equivalent pendulum | = L = gl i(a2 +b? +4a2e2) (1)
HG ae 4ae

Also | =2ae .. 2ae=i(a2+b2+4a2+e2)
4ae

= 8a’e’ =a’+b*+4a%*’=a’ +(1+ ez)a2 +4a%?
- 5a’e® =2a? :>e:«/(2/5).

Example:- A flat circular disc of radius a has a hole in it of radius b whose centre is at a distance ¢
from the centre of the disc (C <a—b) . The disc is free to oscillates in a vertical plane about a smooth
horizontal circular rod of radius b passing through the hole. Show that the length of the equivalent

. 1 a*-b*
pendulumis C+—- —;
2 a‘c

Solution:- Let O" be the centre of the hole in the disc whose centre is O. OO'=c (given). The disc
is oscillated in a vertical plane about a smooth horizontal circular rod of radius b passing through O’

h_p;zazc—pyrbz.o a’c

prbi—prb?  al-b?

If h be the depth of C.G. of the body from O', then
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()

Let k be the radius of gyration about the axis of rotation, then we have
b

2
ma’— pabh?)= pra? a—+c2 —prh? .=
(pra®—pab?)=p [ > pb* .=

, a’+2a’c®-b’
- 2(a’-b?)

I=k_2= a?+2a’c*-p* / a’c
h | 2(a’-b%) (a*-b?)

a’+2a%c?-b* 1a*-b?
= 2 =C+— >
2a‘c 2 ac

Example:- A bent lever, whose ams are of length a and b, the angle between them being o , makes
small oscillations in its own plane about the fulcrum, show that the length of the corresponding simple

CIR a’+b’
pendulum is —
3 \/(a“ +2a%?cosa + b“)

Solution:- Let G, and G, be the centre of gravity of the arms OA and OB of the lever. Let OA=a
and OB =D. Also let OA be the axis of xand a perpendicular line OY the axis of y. Then the co-

ordinates of G, and G, will be [%a,o) and (%bcosa,%bsin aj respectively.

a 1a b 1bcos

Now if (X,¥) isthe C.G. of the lever, then X =

aw+bw 2 a+b
where @ is the weight of unit length of the rod.
1, .
y_ aa).0+ba).§bSIna _1 b2 Sina
aw+bw 2 a+b

Also the distance of C.G. (X,¥) from O(0,0)is

= = 1

X° + 2)= a* +2a’b* cosa +b*

(¥ +y 2(a+b)\/{ j

Now if Kk is the radius of gyration about the axis of rotation through O, then we have

2 2 3 3
(a+b)wk2=aw.f(1aj +bm.f(1b) S L
32 302 3(a+b)
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Hence the length of the simple pendulum
k2
" Dist.of C.G.of thelever fromO
_1a’+b’ 2(a+b)

"3 a+h (a“+2a2b2 cosozjtb“)l/2

a®+bd

1/2
(a4 +2a’b®cosa + b“)

winN

Example:- A uniform triangular lamina can oscillate in its own plane about the angle A. Prove that the
3(b* +¢*)-a’

4\/{2(b2 +c2)—a2}

Solution:- Let AH be perpendicular to the plane of the lamina so that it oscillates in its own plane
about AH . Instead of the triangular lamina of mass m, we can have three perpendicular each of mass

length of the simple equivalent pendulum is

1
gm placed at the mid points D, E, F of the sides respectively. Distance of D from AH is.

H

B 7D C
AD=[ AL’ +LD*]" <[ AL* +(BD- Bl_)ZT/2
=[AL® +BD? + BL® ~2BD.BL |

=[(AL* +BL?)+BD* - 2BD, Bl_]”2

2 1/2
_ (ABZ)2+(%BCJ —2650) ABCOSB}

1/2 1/2
, a’ , a’ a’+c?-Db?
=|c?+——-accosB| =|c*+—-ac.———
4 2ac

4
Distance of E from AH =EA=Db/2

_(2b?+2¢? —a? JM
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Distance of F from AH =FA=c/2
M.L. of the triangle about AH

2 2 .2 2 a2
12

3

4 4 4

_ 3*+3c?-a’
12
Hence length of the simple equivalent pendulum
k® SRS
Dist.of C.G. fromAH AG 2 AD
3
k’ _ 3k?

g.;(sz +2c%a? )”2 \/(sz +2¢? _aZ)
3(3b2+302—a2) 3(b2+c2)—a2

B 12,[(2b% + 2% a?) B 4,26 +2¢%)-a?)

mk? :%[sz +3¢? —a2] = k?

Example:- An ellipse of axis a,band a circle of radius b are cut from the same sheet of thin uniform

metal and are superposed and fixed together with their centres coincident. The figure is free to move in
its own vertical plane about one end of the major axis. Show the length of the equivalent simple

5a* —ab+2b
4a
Solution:- Mass of the circle zb’p .
Mass of the ellipse 77z abp, where p is the mass of the sheet per unit area.

pendulum is

Mass of the system zb’p+abp
Now taking Kk to be the radius of gyration of the body about a line through A perpendicular to
lamina, we have(n ab+ nbz)p k?

A'

2 2 2
= b’p. (aﬁ%}rﬂabp[a%a Zb j

= 4z b(a+b)pk® =7b’p(4a’ +2b% )+ rab p(5a% +b?)

- k2:b(zbz+4"312)+<'91(5az+bz):5a3+4a2b+ab2+2b3
4(a+b) 4(a+b)
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5a’(a+b)—ab(a+b)+2b*(a+b)

4(a+h)
2 2
_ (a+b)(5a° +ab+2b*) :1(5a2 ab+287)
4(a+b) 4
Hence length of the equivalent simple pendulum
B k? _k? 5a’+ab+2b?
" Dist.of C.G.of thesystem from A a 4a

Example:- A uniform rod of mass m and length 2a can oscillate about a horizontal axis through one
. ) 1 . .
end. A circular disc of mass 24m and radius ga can have its centre clamped to any point of the rod

and its plane contains the axis of rotation. Show that for oscillations under gravity the length of the
simple equivalent pendulum lies between (a/2) and 2a.

Solution:- Let AB be the rod axis of rotation pass through A . Let the centre C of the disc, be clamped

at a distance x from A.
A

B

0
ma+24m.x  2a’+24x’

The distance of C.G. of the system i.e. of the rod and the disc together, h =

m-+24m 25
then if K is the radius of gyration then
2
(m+24m)k? = mfa2 +24mx (E.EJ +x°
3 4 3
, 4a*+2a’*+72x* 2a’+24x’
= ke = =
3x2 25
Hence length of the simple equivalent pendulum
k> (2a®+24x° a+24x 2a” + 24X’
l=—= / =>l=— )
h 25 25 a+24x

. .. |
For maximum of minimum of | '3_: 0
X

48x(a+24x)—24(2a® +24x?
= dar_ ( ) (2 )=0

X (a+24x)
= (24x2+2ax—2a2)=0:> 24x% +8ax—6ax—2a> =0

=  8x(3x+a)-2a(3x+a)=0 = (3x+a)(8x—2a)=0
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a a . a a
= X=—or X=——.Since X # —— we have X=—
4 3 3 4

When x:g, wegetI:g
4 2

The other extreme value of I(i.e.2a) is given by putting x=0o0r x=2ain (1). Hence the

. i . a
length of the simple equivalent pendulum lies between 5 and 2a.
Example:- A sphere of radius a is suspended by a fine wire from a fixed point at a distance | from its

2
: L t? +2 1.
centre. Show that the time a small oscillation is given by 27{5;—'61} {1+ Zsm2 (%ﬂ where
g

« represents the amplitude of the vibration.
Solution:- Suppose that the axis of rotation is passing, through O, where OC =1 . Moment of inertia

of sphere of mass M about the axis of rotation is M :(§a2+lzj. Equation of motion is
2 L .
M (ga2+lzj9:—M glsing

=

[
Integrating, we get 6° = o

[
Let when f=¢a, =0

104l
a?+5lI?

déo _10gl
= — ==l =3 «/cose COSa
dt 5a° +5I

(* Sphere is coming in the direction of & decreasing)

[
Hence (1) reduces to 6° = (cos@—cosar)

=— [ 104! Zj [1—25inZQ—1+Zsin2gj
2a* +5l 2 2
104l 0
[Za +5|2j\/_\/(sm 2—S|n2§j

It t is be the time from one extreme to the lowest point, then
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o1 (2a2+5|2} 9 do
N2\ 1091 ) (sin?(af2)-sin*(0/2))
1 [[2at4517) do
2 ( 10gl ]‘l-\/{sinz(alz)sinz(elz)}

Putting sin(6/2)=sin(a/2)sing, i.e. %cos%dezsin%acoww We get
(_ [[2a%+5P? ”f dg
59l 3 €0s(01/2)
~ [2a2+5|2j ’T dg
Sgl 0 {(1—sinzg.sin2¢j}

2 2\ 7zl2
_ [[2a+510 J’[1+Esin2gsin2¢+---}d¢
591 )L 2 2

[ (1—x)1/2 =1+=X+..... }

2 2
=(712) 28 +517 1+lsin2z neglecting higher powers of sin % since & is small,
5gl 4> 2 2

2 2
Time for one small oscillation is 4t =2 M {l+ 1sin2 ﬂ}
5¢l 4 2

Example:- There equal particles are attached to a weightless rod at equal distances a apart. The system
is suspended and is free to tum about a point of the rod distance x from the middle particle. Find the
time of a small oscillation and show that particles each of mass x =82a nearly.

Solution:- Let the three particles each of mass m, be attached to the rod at the points A, Band C such

that AB=BC=a.
Again let the system rotate about O N such that O B = x. Then M.I. of the three particles
about O N

=m(a—x)2+mx2+m(a+x)2
= 3mk2:m(a—x)2+mx2+m(a+x)2

_3x*+2a’

= k? , where K is the radius of gyration of the system about O N . Now if

| is the length of the equivalent pendulum then we have
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k? k?

I = =
Dist.of C.G.of thesystem fromO  x

A

M e
7

B

C
3x? +2a® 2a’
= =X+
3X 3X
dr_, 2’
dx 3x?
For maximum or minimum of I, we have g—l =0 i.e.
X
2
1—% =0=x= %\/6=.816a =.82a nearly.
X

d’l  4a’
Further el = el which is positive for x =.82a
X X

Hence minimum value of | is given by x =.82a

Example:- Find the time of oscillation of compounded pendulum consisting of a rod of mass m and
length a, carrying at one end a sphere of mass m, and diameter 2b, the other end of the rod being

fixed.
Solution:- Let O A=a be the rod of mass m, and a sphere of mass m, be attached toitat A.

If h is the distance of the C.G. of the system from O, then
m. % +m, (a+h)

h= (1)
m+m,

Also if k is the radius of gyration of the system about the axis through O, we have

2 a’ 2., 2
(m+m,)k =m.?+m{gb +(a+b)}

2
m2+ml[§b2 +(a+b)2}

= k? =
m+m,
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A

@

Hence length of equivalent simple pendulum
2

m613+m1[£_2)b2 +(a+b)2}

k2

h

m-+m,

m%+ml(a+b) m%+ml(a+b)

2

m2+ml[§b2 +(a+b)2}

= 3 and the time of complete oscillation is
mo+ m, (a+b)

2 1/2

22 o ma3+ml{§b2+(a+b)2}
T

_Zﬂ(ﬁj _ﬁ a

m§+ml(a+b)

Example:- A simple circular pendulum is formed of a mass M suspended from a fixed point by a
weightless wire of length |, if a mass m, very small compared with M , be knotted on to the wire at a
distance from the point of suspension, show that the time of small vibration of the pendulum is

approximately diminished by %.%(1—%) of itself.

Solution:- Let t be the period of simple pendulum before knotting the mass m, then t =2z [l)

g

Let k be the radius of gyration when mass m is attached to the wire at a distance a from the
point of suspension O.

M 12 + ma?

Then (m+M)k2 =MI?+ma®or k? =
M +m

0

a
m
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MIl+ma

M +m
If t' be period for the compound pendulum consisting of masses M and m, then

2 2 2 1/2
NP k= P I{ml®+ma® M+m
gh gl M+m Ml+ma
g MPemat 1T mat T ma ]
g(Ml+ma) g M I? MI
2

=2r l 1+ maz 1- ma neglecting higherpowersofﬂ.

g oM | 2M I M
P 1_ﬁ[1_ej _t 1_ﬁ(1_9)

g oM I oM I

—  t_p=Mafy aj
2M I |

Distance of C.G. of the system from O is h=

Example:- A weightless straight rod ABC of length 2a is movable about the end A which is fixed
and carries two particles of the same mass, one fastened to the middle point B and the other to the end
C of the rod. If the rod be held in a horizontal position and then let go, show that its angular velocity

69

1/2
CIRB Sa . . .
when vertical is (5—j and that 7 is the length of the simple equivalent pendulum.
a

Solution:- Let v,Vv' be the velocities of the masses at B and C when in vertical position. Let @ be the

angular velocity of the rod in this position.

1 1
Then we have energy equation as > mv? +§mv'2 =mg.a+mg.2a

A

B C
a

C
Also v=aw and V'=2aw

%m(a2 +4a2)a)2 =mga+2mga

1/2
(&
5a

. 2 2 2 2 5a2
Again (m+m)k*=ma®+m(2a)” = k*="—

2
Distance of C.G. from A
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a2

ol

arii-edt . 2
m-+m 2 h 3a 3
2

Example:- A rectangular plate swings in a vertical plane about one of its comers. If its period is one
second, find the length of the diagonal.
Solution:- Let k be the radius of gyration of the plane about the axis, through A and perpendicular to

. , _a’+b? ) .
its plane; then we have mk* =m + mh* [by parallel axis theorem]
2 2 2
_MhT L e 2 AT e A0
3 3 3

BG =GD . Further, distance of C.G. from A
—AG=h=1 [[a’+b?)
2

A
a
B b
D
C
2 2

Period =27 L_ =27 4n —7 h
hg 3gh 39

But period =1=4r [Lj =lorh= 39 :

39 167

3
Length of the diagonal =2h= —92 .
87

Example:- A pendulum is supported at O, and P is the centre of oscillation. Show that if an additional

weight is rigidly attached at P, the period of oscillation is unaltered.
Solution:- Let m be the mass of the body forming the compound pendulum and let h be the depth of
its C.G. below the point of suspension O. Also let K be its radius of gyration about the horizontal axis

through O ; then we easily obtain OP = (k2 / h)
k?/h

= Period of Oscillation =2 [ j:T , say
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Q
Centre of
suspension

V-G
Centre of
| Ostiliation

Let an additional weight M be knotted at P, then if k' is the radius of gyration about the
horizontal axis through O, we immediately have (M +m)k? =mk ?+M .OP?

k2Y K
=mk*+M| — | =k*| m+M — (1)
2
h h
And by well-known C.G. formula
2 2
M+m)h'=mh+M.OP=mh+M.—=h| m+M .— @)
(M +m)h'=mh+M.OP=mh+M.X =h K
h h?

12 2

(1) And (2) > F:% =T

12 ' 2
e 2 (k ’h] _2r (k /hj:T
g g

= Period of oscillation is unaltered.

Example:- Three uniform rods AB,BC,CD each of length a, are freely jointed at B and C and
suspended from the points A and D which are in the same horizontal line and a distance a apart. Prove

i . . . . oa
that when the rods move in a vertical plane, the length of simple equivalent pendulum is e

Solution:- The system from a compound pendulum horizontal AD . The figure is self-explanatory. Let

m be the mass of the each rod.
Let hbe the depth of C.G. of the system from AD and k the radius of gyration of the system

about the horizontal axis AD , then we easily obtain 3mk® = sum of the moments of inertia of
three rods about AD .
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B C

a> _a’ , 5ma’
=m—+m—+ma’=

= k? =(5a2 /9) and

m3im@ima
2 2 _2ma _2a

3m 3m 3

= (|<2/h):(saz/9)/(2a/3)=%a

h=

()

5a
= Length of simple equivalent pendulum = E :
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Example:- A thin uniform rod has one end attached to a smooth hinge and is allowed to fall a horizontal
position. Show that the horizontal strain on the hinge is greatest when the rod is inclined at an angle of

11
45° to the vertical, and that the vertical strain is then E times the weight of the rod.

Solution:- Let OA =2a, and the rod make an angle & with the horizontal after time t. Equations of
motion of G of along and perpendicularto GO are

[
ma@=Ysin@+ X cosd-mgsiné Q)
an
maé@=-Y cosd+ X sind-mgcosé 2)
a® 4,

Since k?=a’+—=—a
3 3

AY

moment equation about O is

M M
m,%azezmg.azcose :ezj—gcose (3)
- S ‘ : 30
Integrating (3), we get & =2—sm9+C when =0, =0 ..C=0, ..0 :2—5|n9
a a

:
Putting this value of 6% in (1), we get

gmgsinQ:Y sin@+ X coséd—mgsind

= YsinH+XcosH:gmgsin¢9 4)
With the help of (3), the equation (2) becomes as
—Yc030+Xsin9+mgc030:ngcose (5)

Multiplying (4) by cosé and (5) by sin @ and adding, we get

X = > 1 mgsin@cos=gmgsin¢9cosezgmgsin29
2 4 4 8

. 5., 1

Similarly, we have Y =mg Esm 0+ZCOS 0

We observe that X is maximum when sin268 =1 i.e. when 20:% or 8=

NGRS

When @ =(z/4), we have Y =mg {gsin2 (7r/4)+%cos2 (7r/4)}

=mg 51+11 =l—1mg=Etimestheweightoftherod.
22 472 8 8
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Example:- A heavy homogenous cube of weight W , can swing about an edge which is horizontal, it
starts from rest being displaced from its unstable position of equilibrium. When the perpendicular from
the centre of gravity upon the edge has tumed through an angle @, show that the components of the

1 1. .
action at the hinge along and at right angles to this perpendicular are EW (3—5005 49) and ZW sind

Solution:- Let G, be the initial position of C.G. and G be the position of C.G. when the edge has turned
through an angle 6.
0G, =0G = [(0L° + LG} ) = [(a® +a°) =2

Where 2a is the length of the edge.
Equation of motion of G along and perpendicular to GO are

[
Ma\/ 260 = mgcosd— X (1)

D
And ma«/2¢9:mgsin9—Y )
Where X,Y are the components of the reaction of the axis in this position.

+G

m
Moment equation about O is mk* & = mg a\/2sin@

g nl|
= m(2a2+§a2j0=1/2amgsin9 :H:E.Qgsine (3)
a
3 «/chose+C

4a

Initially 62 = %(1— cos6) 4)

[T
Integrating, we get 6° =

0,/ —

From (1) and (4), we have gm g(1-cos§)=mgcosd— X

= X:mg(gcosemose—gj:%(50050—3#—%(3—%059)
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:—%W (3—5c0s6) [- mg=W]
Where negative sign of X shows its opposite direction.

From (2) and (3), we have %m gsinéd=mgsing-Y

= Y:mgsine—gmgsinezimgsine.

Example:- A circular area can tum freely about a horizontal axis which passes through a point O of
its circumference and is perpendicular to its plane. If motion commences when the diameter through O
is vertically above, show that when the diameter has tumed through an angle & the components of the

1 1. .
strain at O along and perpendicular to this diameter are respectively §W (7 cosé — 4) and EW sing
Solution:- Initially when the diameter through Ois vertically above O

2
M.1. of the dis about an axis through O perpendicular to the disc= M a?+ Ma®

3M a?

3M a?

2

After time t, let the diameter OA makes an angle @with the vertical. In this position we will
2

have M kzd—g—M gh sin@ where h=distance of C.G. of the disc from O =a.

7=

= k?

If k is the radius of gyration, then M k® =

2 2 2 2
M k? :d—sz gasiné zsid—fzgasinej d—fzésine.

t 2 dt dt 3a
Multiplying by 26 on both sides and integrating it, we get (d 6/d t)2 = —:—2c030+c.
Initially 8 =0, (d@/dt):O. 0:—ﬁ+a =cC :4_g

3a 3a

Hence a6 2 —ﬁ(l—cose) (2)

dt 3a
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2
Now considering the motion of C.G., we have M a[i—f} =Mgcoséd-X (3)

2

And M ag—tf: M gsind-Y 4)
Where X,Y are the components of the reaction and perpendicularto GO .

Solving equation (3), we get X = Mg cosé — Ma:—g(l—cos 0) =X = %(7 cosd—4)

=%W (7cosf—-4) (5)
Similarly, solving equations (1) and (4), we get
. 29 . Mg . 1., .
Y =Mgsind—-Ma—=sind =—=sind =-Wsing (6)
3a 3 3

Example:- A circular disc of weight W can tum freely about a horizontal axis perpendicular to its plane
which passes through a point O on its circumference. If is starts from rest with the diameter vertically
above O, show that the resultant pressure on the axis when that diameter is horizontal and vertically

1 11
below O are respectively 5«/(17)w and ?W . Further prove that the axis must be able to bear at

11 | . .
least 3 times the weight of the disc.
Solution:- This equation is a particular case of the previous example.

When the diameter is horizontal Vviz 8= E , we have

X=W(0—4)=—M,Y=Vl (.'.sinzzlj
3 3 3 2

. 16, ., W2 W
Hence resultant pressure in thiscase = || —W* +— =—1/17
P (9 2 ] 3 ( )

When the diameter is vertically below

0=r, x=27-a)=- v _Lwsinz =0
3 3 3

2
Resultant pressure in this case = {(%j +O} = 1—31W in general, we have

- [-of o]

W2 1/2
_ {?(48cos2 9—56cos€+17)}

1/2

11
This is maximum when @ = and its value is ?W , which implies that the maximum pressure,

11
that the axis must be able to bear is at least 3times the weight of the disc.
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Example:- A right cone of angle 2« can tum freely about an axis passing through the centre of its
base and perpendicular to the axis, if the cone starts from rest with its axis horizontal, show that when

L . . L . 1 1
the axis is vertical, the thrust on the fixed axis is to the weight of the cone as 1+ ECOSZ al- écos2 a

Solution:- Let initially the cone be as shown in fig. (i) . After any time t, let the cone take the position
1
as shown in fig. (ii). If the height of the cone i.e. OV =hthen OG = Zh where G denotes the centre

of gravity of the cone.

Now since the C.G. of the cone i.e. point G is describing a circle of radius h/ 4, the equations
of motion of G are

M.%hG:X—MgsinH Q)

[
M.%hH:Mgcose—Y )
Where X and Y denote the components of reaction at O along and perpendicular to OX .

. -1
Taking moments about O, we have M k@ =M g Thcos@ (3)

Also M k% =M.1. of the cone about AB=M .%(th +3h?tan? a)

h2
2 2
= k —2—0(2+3tan a) (4)
Substituting this value of k? in (3), we gt
- 5
f=———gcosé 5
2+3tan’ o J ®)
i . > 109 :
Multiplying both sides by 26° = —————sind+C
2+3tan‘ o

[
Initially & =0, when @ =0, giving there by the constant C =0

5 10g .
Therefore, we have h0” = —————sind (6)
2+3tan” o
. . 1 10g . .
U 6 1), tM.——————sinfd =X -Mgsing
sing (6) n (1), we ge 42+3tan’a J

2
= X:Mgsine(—9+6tan aj

4+6tan’a
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2
Also using (5) in (2), we get Y =M g cos@ M
8+12tan” o

When the axis is vertical i.e. when 8= 7 /2, we have X =M g >
4+6tan” o

2
9+ 6tan a],Y _o

_ 2, v2)_yx —
Resultant pressure = (X +Y )_X_Mg[4+6tan2a 4005’ o £ 6Sin’ o

9+6tan2aJ_ Y (9cosza+6sin2aj

1.
X 6+3costq 115008 @

Mg 6-2cos’a , 1

~cos’ a
3
Note:- If 2a= /2 thenin that case, we have
1, 1
X _1+§cos (7r/4)_1+Z 3
Mg l—;cosz(nm) 1_613 2

Example:- A uniform semi-circular arc, of mass m and radius a, is fixed at its ends to two points in
the same vertical line and is rotating with constant angular velocity . Show that the horizontal thrust

g+ow'a

on the upper end is m
Vd

Solution:- Let the uniform semi-circular arc with centre at O rotate about AB with constant angular

2a
velocity @. If G isthe C.G. of the arc, then OG = — As the arc rotate, the point G will describe a
/3

2a
circle of radius — about the point O
T

Let X and Y be the horizontal and vertical components of reactions at the point A and X'
and Y ' the horizontal and vertical reactions at the lower end B . Now since the arc is rotating

. . . . 2a
with constant angular velocity @ about AB, the only effective force on it is m— o’ along
T
GO
. . 2a , 2a
Taking moments about the point B , we have m—@»“a=-mg —+ X. 2a

VA T
[~ Moment of the effective forces = moment of external forces]
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Example:- A uniform rod OA of mass M and length 2a rests on a smooth table and is free to tum
about a smooth pivot at its and O; in contact with it at distance b from O is an inelastic particle of
mass m, a horizontal blow of impulse P, is given to the rod at a distance x from O in a direction
perpendicular the impulsive action at O and on the particle.

Solution:- Let OA be the rod of length 2a and let a horizontal blow of impulse P be given ata distance
x from O. Further let S be the impulse of the action between the rod and inelastic particle of mass

4
m Then the moment equation about A is M gaz =Px-Sb.

But S=mba®. (since velocity b @ is generated in mass m by the impulse S)

S
4
bl G
0 : } A
RARRERRELEERESEEREE >
S
v
4 2 2
Mga w=P x-mb-w
= w:# andS:LbX_
—M a®+mb? §M b

Now since the change in the motion of C.G. of the rod is the same as if all the impulsive forces
were applied there, so M aw=P —S — X where X is the impulsive action at O

X =P—(Ma+mb)o= P[l—(mb+M a)x]/(M %a2+mb2)

Example:- A rod, of mass mand length 2a, which is capable of free motion about one end A falls
from a vertical position and when it is horizontal strikes a fixed inelastic obstacle at a distance b from

2a
the end A. Show that the impulse of the blow is mF (ZQa/3) and that the impulse of the reaction

at A is m/(3ga/2) {1—%} vertically upwards.

Solution:- If @ isthe angular velocity just before striking the obstacle then we have the energy equation
1 4, ,

as —m.—a’w” —0=mga
2 3

[Change of K.E. = work done] .. w=,/(39/2a)
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G

G O

A b t B
1 D

Let the rod AB strike the inelastic obstacle at O such that AO=b and the impulse of the
blow be P and the impulsive reaction at A be X . Since the rod reduces to rest after striking
the obstacle, therefore we get on taking moment about A.

m%az(O—m):—Pb

2
= P:4maa):§m. (2ga/3)
3b b

Also for G, we have m(0—aw)=-P-X = X =m (39a/2)[1—%}

Example:- A uniform beam AB can tum about itsend A is the equilibrium; find the point of its length
1
where a blow must be applied to it so that the impulses at A may be in each case ch of that of the

blow.
Solution:- Let AB be the uniform rod of mass m and length 2a. Let animpulse P and applied at a

. E g =T k
distance X from A so as to produce an impulsive action —P at A. If the angular velocity produced
n

is @, then the equation of motion are

mkzw:Px:mgaZa):Px (1)
And  maw=P+ip=tlp @)
n n
1
—P
n
G
A : + » B
mg
Eliminating P from these two equations, we get X = %(n—ﬂja
n
Note:- If the direction of the impulsive action is opposite to that as shown in the fig. then in that case
. 4(n-1
we will have X=—| — |a
3un

4(n
Example:- A rod of mass X = 5(—] as lying in a horizontal table and has one end fixed; a particle
n

of mass M is in contact with it. The rod receives a horizontal blow at its free end; find the position of
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the particle so that it may start moving with the maximum velocity. In this case show that the kinetic
energies communicated to the rod and mass are equal.

Solution:- Let AB be the rod, the end A of which is fixed. Let an impulse P be applied to the rod at
the and B so as to give an angular velocity @, if the particle of mass M isat C where AC =X then
the velocity V acquired by the particle will be V =X@. Thus we get the moment equation as

nM %azawM Xw.X+P. 2a

X @
])
2aP 2a Px
= 0= V=Xw = 7]
M—(a2n+x2) Mg(na2+x2)
—ma?+x?-2x?
For maximum V , we must have d—V:O :>2aP — |=0
dx M (4 ) Zj
gna + X
=N gnaz—xzzo = x=2a,/(n/3)
Also K.E. of the rod :lnM .ﬂnM.ﬂaza)Z:gnM a’w’ (1)
2 3 3 3

2
And K_E. of the particle :%M x> =%M i @’ :gM a’w’ (2)

From (1) and (2), we observe that kinetic energies of the rod and mass are equal.

Example:- The door of a railway carriage stands upon at right angles to the length of the train when the
latter starts to move with an acceleration f ; then door being supposed to the smoothly hinged to the

carriage and to be uniform and of breadth 2a. Show that its angular velocity when it has tumed through
an angle 4 is (ﬂsin Qj
2a

Solution:- Let ABCD be the door which can rotate about AB . If the train moves with acceleration
f , then every element of the door will have the same acceleration f parallel to the rails. Now consider

M
an elementary strip PQRS at a distance x from AB . Mass of the strip = > oX, where M is the

" 2a
mass of the door. Hence moment equation about AB give
2a

M
da20- jﬂdx fcosd.x=ma f cosd
3 ) 28

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

5 f cosB

— =31 coso
4a

0 0
Multiplying both sides by 2 @ and integrating it, we get ° = 3;—fsin 6+ A . Initially =0
a
when =0 .. 41=0

[
Hence 6= (isin 6’)
2a

Example:- Two wheels on spindles in fixed bearings suddenly engage so that their angular velocities
become inversely proportional to their radii and in opposite directions. One wheel, of radius a and

moment of inertia |, has angular velocity @ initially, the other of radius b and moment of inertia 1,

2
. lLLabaw

2 2 Y 2
I,b*+1,a b +1,a

is initially at rest. Show that their new angular velocities are

Solution:- Let A and B be the two wheels. The wheel A is of radius a and moment of inertia |, whereas
the wheel B is of radius b and moment of inertia 1,. Initially A was rotating with angular velocity @
and the wheel B at rest. Now let @, ad @, be the angular velocity of A and B after the impact. Since

the velocity of the point of contact is the same for each wheel, we have am, = b,

1)
0
°
A
1o
! = o, B
Also |, (w—a )= Rxa (for the wheel A) (2)
l,(w—0)=Rxb (for the wheel B) (3)
Where R is the impulsive force.
From the last two equations, we get |, (0—a;)b=1,aw, (4)

Now substituting the value of @, from (1) in (4), we get
l,b°

w = 2 2
ILb°+1,a
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o . I, ab
Substituting the value of @, in (1), we have ©, = —*——
ILb°+1,a

Example:- A pendulum is constructed of a solid sphere of mass M and radius a which is attached to
the end of a rod of mass m and length b . Show that there will be no strain on this axis if the pendulum

be struck at a distance {M .{%az +(a+b)2}+%mb2}+[M (a+b)+%mb} from the axis

Solution:- Let OA=b be the rod fixed at the point O. Let a sphere of radius a and mass M be
attached to the other end A of the rod.
Distance of the C.G. of the pendulum from O

he m(b/2)+M (b+a)

1)
m+M
Let k be the radius of gyration of the pendulum about O, then we have
2
(M+M)k*=M |:(b+a)2 +ga2}rﬂm(9j
5 3 2
2
= k’= M [(b+a)2+ga2}+4—m(5)
m+M 5 3(m+M)(2
A |O
QTG
G
B—a

2
Distance of centre of percussion from O = .

M [2a2+(a+b)2}+1mb2
5 3

;mb+M(a+b)
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Example:- Find the centre of percussion of a triangle ABC which is free to move about its side BC.
Solution:- To find the point where BC s a principle axis. Let us proceed like this. Draw AD, the
median and AL the perpendicular from A on BC. Let O be the mid-point of DL . Then by the
elementary knowledge of M.I. and P.I BC is a principle axis is point O. Let the mass of the A ABC

. Lo . . m
be m. The triangle of mass m is kinetically equivalent to the particles each of mass E placed at the

mid point D,E and F . Let AL=P, then
B D O L C

1 Y m(1 Y m 1 1
mkzzm_ mfl MoV =2mp? =k? == p?
3(2pj+3(2pj+ (0)=gmp =k =5P

1
But the depth of C.G. below BC =h = 3 p.
Hence depth of the centre of percussion below BC along a vertical through
1
O=(k*/h)==p.
(k*/h)=5p
Particular Case:- If the triangle ABC is an equilateral triangle, then the point D and O coincide. In
1 1
thiscase k> ==p*.h=2
6 P 3 P

2
1
Hence the depth of the centre of percussion below BC along the median bisecting BC is = Y = > p

Example:- Find how an equilateral lamina must be struck that it may commences to rotate about a side.
Solution:- refer fig. above example. The triangle ABC rotate about the side BC . The blow should
be given at the centre of percussion when BC is the axis of rotation of the lamina. Here BC is the
principle axis of triangle at its middle point (Points D, O, L will coincide)

1 1
Again k? =5 p°;h= 3P where p is the height of the triangle.

2

Depth of the centre of percussion below BC along the median bisecting BC is e i.e. > p.

Hence the blow should be given at the middle point of the median bisecting the side about
which the lamina rotates.

Example:- Find the position of the centre of percussion of a sector of a circle axis in the plane of the
sector, perpendicular to its symmetrical radius and passing through the centre of the circle.
Solution:- Consider the sector AOB of a circle of radius a. Let ZAOB =2«

Letaline OY perpendicular to the plane of the sector be the axis of rotation.
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Then M.1. of the sector AOB about OY =2 ”p r’cos’@rd@dr
00

2

4 a
=p .%j(l+c0520) do = p.%(a+sinac05a)
0

M a® ) )
=7 (a—sina cosa), since mass of the sector M =p.a @’
a
M a® . a’ .
M k? = (a+sinacosa)= k? =—(a+sinacosa)
o 4o
2a Sina

Distance of C.G. from O=h=—., ——
3 a

Hence distance of centre of percussion from O
_k* 3afa+sinacosa
h 8

sina
Y
A
rcos0
O &= : X
B
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Chapter-3: Motionin2 D

Dynamical Equations of Motion. To determine dynamical equations of motion in two dimensions
when the forces acting on the body are finite. The motion of a rigid body consists of two independent

motions viz.,

(i) the motion of centre of gravity, and
(ii) the motion about the centre of gravity.
Motion of Centre of Gravity.

Cartesian Method

Cartesian Method

Motion of C.G. states that the motion of centre of gravity is such that the total mass M of the rigid
body is allowed to act at the C.G. and all the external forces are transferred parallel to themselves to
act at the C.G. of the body.

Consider a particle m of the rigid body at point P whose coordinates referred to two axes fixed in

space of two dimensions, OX, OY are (x, y). Now the effective forces acting on the particle are mXand
my , let X, Y be the components of the external forces acting at P. By D" Alembert's principle
(X —mX), (Y —my) together with similar forces acting on all other particles of the body form a system

in statical equilibrium, thus we have

p <
p <

(X —mK) =0,5(mY —m§) =0

and XY —my)— y(X —=mX)]=0
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= IMX=XX,Zmy =Y
and y }

o (D)
MO - YX) = Z(XY —yX)

Let (xe, Y) be the co-ordinates of the centre of gravity refered to axes OX and OY and (X', y') be the
co-ordinates of the point P referred to parallel axes GX’and GY ' through G.
X=X+ X Y=Y +Y
then Mxg = Zmx, My, =X my( where Xm=M)
= XM, =ZmX and M §i; = =my.

Thus the first two equations of (1) reduces to
M%, ==X and My, =ZY
Motion Relative to Centre of gravity ...(2)
Third equation of (1) gives

Zm[(xG +X)(Vo + 5 )= (Yo + ¥) (%o + x)}

=2 (% +X)Y ~(¥s +¥) X ]
Or (X5 Vs — Ya¥s ) EM+ X MY + Y Zmx’

—YoIMX' — X Zmy’ +Im(Xy - y'K')

=XZY — Yo IX + Z(XY —y'X)
Where Im=M ...3)

By (2), first term on L.H.S. of (3) cancels the first two terms on the R.H.S. of (3).

Again 2mx and my
zm zm

give the coordinates of G with respect to axes GX' and GY'

i.e. T-mx' =0,Zmy’=0=ImX'=0,Zmy’ =0

Thus (3) reduces to

Im(Xy - yK)=Z(xY —yX) .4
%Zm(x’y’—y'x’)zz(x’Y—y'X) ...(5)
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Let GA be a line fixed on the body which makes an angle 6 with GX Let GP =r and ZPGX'=¢.
d=0+ LAGP.

Since the body turns about G, Z/AGP remains constant.

0

Again the velocity of m at point P is r¢ perpendicular the GP, its moment about G is f¢. r=r?}
~EIm(XY - yX')=Zmr?$

Or Tm(xy —yX)==mr’6=0 =mr®=Mk0

where MK? is the moment of inertia of the body about G. Hence equation (5) may be put as

%(Mkze)zE(x’Y—y'X) or Mk29 =L ...(6)

where L is the moment of the external forces about G.
Thus the equations of motion of the body are M X, =%X,M ¥, =XY and are known as equations of
motion of the centre of gravity

And  Im(xy —yx )=Z(x'Y —yX)

known as equation of motion about the centre of gravity, this can also be put as Mk*6 =L
where L is the moment of external forces about G.

This states that the sum of the moments, of the effective forces about the centre of gravity G, is equal

to the sum of the moments of the external forces about G.
Vector Method.

Let rc be the position vector of the C.G. and F the external forces acting at any particle m of the body,

2

then we have M ddtrZG =ZF.

But I; =Xl +Ygj and F = Xi+Yj

where (Xg, Yg) are the co-ordinates of C.G. and X, Y the components of the forces F parallel of the

axes.
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2

2
(1) gives; M{ddt’ie i+ 9 Yo j}:zmwj).

dt?

Equating coefficients of i and j on both sides, we get

2

2
mI%e _ sy @ ad mMIYe_sy .(3)
d

t2

These are the equations of the centre of gravity.

Let r’ be the position vector, of the particle m at P, relative to G, and F the external forces acting on

it, then we have

2.1 '
ar =L smrx I sk (4

>rix =
dt dt dt

Now let 6 be the angle that a line GA fixed in the body makes with a line GB fixed in the space, and
let ¢ be the angle which the line joining P to G makes with the line GB (fixed in the space), then as

obvious from the adjoining figure, we have ¢ =6+ ZAGP =06+ a.

e

P <

a line
fixed in
the body

> X'

i o ﬂinc fixed

in the space
» X

0 X K

¢ = @ [.. ZAGP =« is constant]
dt dt
Let Gm=r’

The velocity of m relative to G

do

= r’a in a direction perpendicular to r' in the plane AGP.

If &, €, be the unit vectors along and perpendicular to r'in the AGP plane, then we have r'=r'¢, and

d_r—r’%é

dt dt
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P
(m)
G ¢ B
:Emr’xd— =3Im(r'é)x r’%é2

208, [_.dq) d0 da de}
2|7 dt dt dt dt

de , A

= EZmr ’A where A is the unit vector normal to the plane AGP.

= ——(=mr?)A

de(Mk )n where k is the radius of gyration of the body about G =(Mk2 %)ﬁ

Also we have, moment of the forced F about G=>r'xF

=2>p'FA where p is the Iwength of the perpendicular from G upon the direction of the force F
d 2 de
Equation (4) reduces to p Mk* — m n=(Zp'F)n ..(5)

Equating coefficients of A on both sides, we get

d?e

L =20 F (7

d [Mk2 dej *p'F ...(6) = Mk> —-
dt dt

Let (x',y") be the co-ordinates of P relative to G and X, Y the components of F in the directions of the

axes, scalar moment, of the force F about G is p’'F which is equivalent to (XY —y'X)

(6th) equation may be written as %(Mkz (ilte] (XY —y'X)

d?o

=Mk =

=3(x'Y —yX). ...(8)
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Equations (2), (3) and (7) are the dynamical equations of motion of rigid body moving in two

dimensions, under finite forces.

3.02. Kinetic Energy. When a body is moving in two dimensions, then to express the kinetic energy
in terms of the motion of the centre of inertia and the motion relative to the centre of inertia.

At any time t, let rg be the position vector of the centre of gravity of G of the rigid body, referred to an
origin O; and let r be the position vector of a particle m, referred to an origin O, then we have

!
r=ry+r

where r’ is the p.v of the particle of mass m w.r.t. C. G. Now let T be the kinetic energy' of the body,

then we get

T=%Zmr’2 (1) =%Em(re+r')2
=%Zmr‘e2 +%Zmr‘2 +Zmiy - ¢
- % £,25m + %Emr"z e
zmr’

But =0,
zm

[ r'is the position vector of the centroid relative to the centroid itself.]
>mr’' =0, and soXmr’' =0,

T:%Mr'gz+%2mr"2 [- Zm=M] .2

Another form. Let v be the velocity of centre of gravity and let €, be the unit vector perpendicular

to the direction of r' then we readily obtain

drg_.

==y
G dt G

2
4
dt

>
>
o
=

N
Il

2
r,z[@j [..‘d_d):@and &=6-6 :1}
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1., 1(deY . ., Y
—EMVG +E(Ej xmr [ vG=vG]

1 1 dey
=ZMv.2 +=MKk?| — .3
2 Ve T3 (dtj ®)

where K is the radius of gyration of the body about the centre of intertia.
Hence equation (3) expresses that;

The total kinetic energy of a rigid body moving in two dimensions is equal to the kinetic energy of a
particle of mass M placed at the centre of inertia and moving with it together with the kinetic energy
of the body relative to the centre of inertia.

Equation (3) can also be put as
K.E. of the body = (K.E. due to translation) + (K.E. due to rotation) ..(4)

3.03. Moment of the Momentum. To find the moment of momentum of the body about the fixed

origin O, when the body is moving in two dimensions.

At any time t, let rg be the position vector of the centre of gravity G of the body referred the origin O,

and let r be the position vector of a particle of mass m, referred to the origin O,
then we have r =r, +r'; where r'is the position vector of the particle of mass m w.r.t. G.

Now let H be the moment of momentum (or angular momentum) of the body about O, then we have

=2rxmr
=Imxr=3m(r, +r')x(rg +1')
o ' ’ o 12 2’
=3Mr x fy +2mrg x P +2mr' xfy +Zmr'xf
=Ty X [gZM+ g xZmF' + (Emr') x 5"+ Zmr' x
=I5 X g ZM+ g xEMP'+(Zmr')x rg +Zmr' x ¢’ (D)

But Zzﬂ =0, being position vector of C.G. relative to C.G.
m

~2mr’'=0and so=mf' =0

SO=H=r xr,Im+Emrlxr
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=I; xM rg+Zr' xmr’ [ Zm=M]
=1y x Mg + =1 xmr’ (2
Another form. Let fi be the unit vector parallel to H, then we get

Iy x Mvg = Mrg x Vg

=(Mvgp)n

[using the definition of moment; p is the length of the perpendicular from the origin O on the direction
of the velocity vy of centre of gravity].

But we have Zr’xmr'z(Mkzgjﬁ [3.01]

and H=Hnh
- (2)= HA=Mv ﬁ+Mk2@ﬁ
oP dt

Equating coefficients of A on both sides, we get

000

H=Mv p+M
oP dt

213

This equation expresses that the moment of momentum (or angular momentum) of a rigid body about
a fixed point O is equal to the angular momentum about O of a single particle of mass M (equal to
mass of the body concentrated at its C.G. and moving with the centroid's. velocity), together with the

angular momentum of the body in motion relative to the C.G.
Equation (3) can also be written as.

Angular momentum of the rigid body

= Angular momentum of centre of inertia

+ angular momentum relative to the centre of inertia.
Category-1

A uniform sphere rolls down an inclined plane, rough enough to prevent any sliding; to discuss the

motion.
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Initially, the sphere was at rest with its points P in contact with O.

During the motion, after any time t, let the centre "C" of the sphere describes a distance x on the

inclined plane and 6 is the angle through which the sphere turns.

Thus CP a line fixed in the body, makes an angle 6 with the normal to the plane, a line fixed in the

space.
Let F be the frictional force and R the normal reaction at the point of contact B,

then equations of motion of C.G. of the body are

2

dx .
MF=M95|noc—F ...(1)

Since there is no motion perpendicular to the plane, we have
My=0=Mgcosaa—R or Mgcosa=R. ...(2)
Also equation of motion about the centre of gravity is

6o _

Mk?
dt?

F.a ...(3)

Since there is no sliding, so we have OB = arc PB

= x=a0,x=ab and Xx=ab .4
2 2
. (3) gives M ~%%= F-a [- x=af]
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Substituting the value of F from here in (1), we get

d?x(, k? . d’x a’gsina
—|1+— |=gsSina Oof —=—07r—1+n- ...(5
dtz[ azj J dt>  a’+k’ ©®
.2 -
I.e. the sphere rolls down with a constant acceleration %
a“+
2 -
Equation (5) gives % :%t +C; and C, integration constant. as t=0 and x =0 gives C =0
a‘+

: : 1a’*gsina ,
Intergrating again, x=————
Jreing a9 2 a®+k?

because constant of intergration again vanishes as x and t vanish simultaneously.

Exam Points; Now we shall discuss various cases:

(i) If the body be a solid sphere, k? :%a2 and then equation (5) implies,

X—Egsinoc

: :
(i) If the body be hollow sphere, k? :ga2 X':ggsin o
(iii) If the body be circular disc, k* = %az 2% L2 gsino.
(iv) If the body be circular ring, k* =a® s :%gsin o

2
Pure rolling: Eliminating % from (5), and (1), we get

2
F :Mgsina—gMgsina:%Mgsina[...kz :2%}

Also from (2) R = Mg coso.

In order that there may be no sliding % must be less than p i.e. for pure rolling
. F 2
F<uRle u>—=—tanao.
TR =T

Category-1: Slipping of rods.
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A uniform rod is held in a vertical position with one end resting upon a perfectly rough table and
when released rotates about the end in contact with the table. To discuss the motion.

Let AB be the rod having length 2a and mass M.
Let the rod which is rotating about A makes an angle 6 with the vertical at any time t.

Taking A point as the origin and horizontal and vertical lines as axes, the coordinate (X, y) of centre of
mass G are given by

Xx=asin0,y=acos0o
. X=aco0s00,y =—asin00
and X =—asin06” +acosf0, y=-acos6b* —asinoo.

Let F be the frictional force and $R$ the normal reaction at A. Now the equation of motion of C.G. are

2
Md—f:M[acoseé—asineézsz 1333)
dzy .. .
M-z =M [-asin6d—acos00® | = R—Mg .(2)

Again energy of the rod =%M sz +y° +%a292ﬂ IRV SRR =%a2

1 m{(aé)2 o1 azéz} 2 a2
2 3 3

and work done by the forces = Mg(a—acos6) . Hence from energy equation, we have

2 Ma?? =Mg(a—acose):>éz:3—9(1—cose)* ..(3)

3 2a

Differentiating (3) with respect to t, we have 6= j—gsin 0 ...(4)
a

Putting the values of 6 and 6 from (3) and (4) in (1) and (2), we get
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F:%Mgsine(Bcose—Z) and Rz%Mg(l—Scose)2

L ) 1
We observe that R does not change its sign and vanishes when cosé = 3 Hence the end A does not

leave the plane.

From the value of F, we see that F changes its sign as 0 passes through the angle cos™ (éj thus its

direction is then reversed.

1 F 1
At coséd = 3 R =0, hence the ratio R becomes infinite where cos 8 = 3 hence unless the plane
be infinitely rough there will be sliding at this value of 6. In practice the end A of the rod begins to

slip for some value of O less then cosl(%j . The end A will slip backwards or forward according as
the slipping takes place before of after the cos™ (gj

we observe that R is positive for every value of o and 6. Hence the end never leaves the plane.

Category-3: A uniform straight rod slides down in a vertical plane its end being in contact with two
smooth planes, one horizontal and the other vertical. If it started from rest at an angle o with the

horizontal; to discuss the motion.

Let at any instant t, the rod makes an angle 6 with the horizontal. Let R and S be the reactions at the

ends A and B of the rod AB whose length is 2a and mass M.

With reference to point O as origin, the co-ordinates of G i.e. centre of gravity are

X=acos0,y=asino
X =—acos00? —asin0o,
y =—asin 00’ + acosoo

The equation of motion of C.G. are MX =S
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|= M (—acos66” —asin66) =S

and My = R - Mg

= M (—asin 66’ +acos66) =R —Mg
Energy equation given

%M (X + y2)+% Mk?6? = work done by the gravity.
1 272 1 22 H H
:>§M (a 0 +§a 0 jz Mga(sina —sin o)
=67 =(3—gj(sinoc—sin9)
2a

Differentiating (3) w.r.t. t, we get 6= —(Z—gjcose
a

Putting the values of 62 and 6 in (1) and (2), we have

S=M —acos@-3—g(sina—sin 0) —asin e[—?’—gcosej
2a 4a

= % Mg cos6(3sin® —2sinar)

R=Mg+M —asine-3—g(sina—sin 0) + acose(—g'—gcose
2a 4a

= % Mg| 4—6sinsina.+6sin” 0 —3cos6 |
L Mg|[1-6sin0sino.+9sin® 0 |
4
=%Mg [1-sin’ ou+sin? a.—65in Osin o +9sin” 6 |

1 ) )
=Z=Mg| (3sinO-sina)® +cos® a
2 Ml ( ) ]
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From (5), we observe that S=0 when sin0= gsin o.and S will be negative when this value of 6 is
reached. Hence the end B leaves the wall when sin6 = gsin .
Again from (6), we observe that R is always positive i.e. the end A never leaves the plane

Further when the end B leaves the plane sin0 :%sina and S = 0 thus equations of motion (1), (2), (3)

and (4) cease to hold good for further motion.

1/2
Putting sin0 = gsin o in (3), the angular velocity of the rod now becomes (%sin oc] , this will be

the initial angular velocity for the next part of the motion.
Second part of the motion.

When the end B leaves the wall, let R; be the normal reaction at A. Let the rod be inclined at angle ¢

to the horizontal.

The equations of motion are

MxX =0 ..(1)
M § =R, — Mg ()
and Ma—;diz—Rlacoal) ..3)

As y=asing, ..y=-asinod® +acosdd

B
R,
o Me

A
Hence from (2) and (3), we get
(Eﬁtcos2 ¢j % —sincl>cos<1)(%j2 ——gcos¢ 4)

3 dt? dt a

2

Integrating it, we get (% +cos’ ¢j[%) = —z?gsin o+C ...(5)
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When sin¢ = Esin a,@ = (isin ocj,
3 dt 2a

gsina 1Jrl—ﬂsinzoc =—2—g-gsina+C
2a |3 9 a 3

a 9

: 2
or CZZQSma(l_sm aj.

Hence from (5), we have

(%+cosz¢j(@j =293i”°‘[1—5i”2°‘j—%gsin¢. .(6)

dt a 9

When ¢ =0 i.e. when rod reaches the horizontal plane, let its angular velocity be €, then

. - -
241|208, SN A ge 30 SN O Gg. .(7)
3 a 9 2a 9

Category-4:When rolling and sliding are combined.

An imperfectly rough sphere moves from rest down a plane inclined at an angle a to the horizon, to
determine the motion.

Let C be the centre of sphere whose radius is a . Let in time t.the sphere have turned through an
angle 6

i.e. let CB be a radius (a line fixed in the body) which was initially normal to the plane, makes an
angle 6 with the normal CA during this period.

Let us suppose that the friction is not sufficient to produce pure rolling therefore the sphere slides as

well as turns. So the maximum friction PR acts up the plane, p being the coefficient of friction. Let x
be the distance described by the centre of gravity C parallel to the inclined plane in time t, and 6 the

angle through which the sphere turns.

As there is no motion perpendicular to the plane, so the C.G. of the sphere always moves parallel to
the plane. The equations of motion are

mX=mgsina — 1R ...(D) 0 =R -mgcos a ...(2)
2 ..

And mga 6=uRa ...(3)

Form (1) and (2), we have X=g(sina — ucosa) ..(4)

Integrating (4) w. r. t. ‘t’ we get X=g (Sina—,ucosa)t ...(5)
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2

Integrating (5) again, we get x=g(sina—y003a)% ...(6)

Constants or integration vanishas x=0,x=0 whent=0

From (2) and (3), we get ad =gyg cosa

Integrating it, we get aé =g,ugt cosa

Integrating it again, we get 9:5%%2005 a

The constants of integration varishas 6 =0, & = 0 when t=0.

The velocity of the point of contact A down the plane

= velocity of C, the centre of sphere, + velocity of A relative to C=X— ad
. 5 1 .
=g(sina—ucosa)t —Eygtcosa :Eg(zsma—hzcosa) ..(8)

Equation (8) gives rise to the following three cases:
First case. If 2 sin a>7p cos ai.e. if u < 2/7 tan o.

In this case, velocity of the point of contact is positive for all values of ti.e. it does not
vanish, hence the point of contact always slides down and the maximum friction R acts. The sphere
never rolls. The equations of motion established above govern the entire motion.

Second case. If 2 sin o =74 cos ai.e. if u = 2/7 tan a

In this case velocity of the point of contact is zero for all values of t and therefore motion of
the sphere is that of pure rolling throughout and the maximum friction uR is always exerted.

Third case. 2 sina < 7p cos ai.e. if u > 2/7 tana

In this case velocity of the point of contact is negative i.e. if the maximum. friction uR were
allowed to act, the point of contact will slide up the plane which is impossible because that amount of
friction will only act which is just sufficient to keep the point of contact at rest. Hence in this case the
motion is of pure rolling from the very start and remains the same throughout and the maximum
friction pR is not exerted. Therefore in this case the equations of motion established above do not
hold good.

Let F be the frictional force now in play, then equations of motion are

mX=mgsina — F ...(9) 0=R-mgcosa ...(10)
2 .
And mga 0 =Fa ...(11)

Because the point of contact is at rest, we have

x=a0=0=x=ad ...(12)
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From (9), (11) and (12) , we have % =ad =g gsina
. . -5 .
Integrating above, we get Xx=af =7 gtsina

Again integrating above, we get x =aéd =% gt’sina ...(14)

The constants of integration vanish as x=0,x=0 whent=0

Category-5: A uniform circular disc is projected with its plane vertical along a Tough horizontal
plane with a velocity v of translation and an velocity ) about the centre. Find the motion. angular

Case I. When v—,QJ .andv>aQ

In this case initial velocity of the point of contact P is given by v - aQ, hence its direction is —as v >
aQ, so the friction YR acts in the direction <. When the centre has moved through a distance x and 8
is the angle through which the disc has turned the equations of motion are given by

mX=—uR=—umg ie. X=-ug ..(D) /\

2

m%éz,uRaz,umga ie. ad=2ug ...(2)
v,

Integrating (1) and (2) and making use of initial conditions C
i.e. t=0,%x=vand 0= wehave Xx=—ugt+v ...(3) 0
and ad =2ugt +aQ ...(4) <

. O x p HR
Now rolling commences when x—aéd = 0. Let this happen after time t;
Then x=ad=—ugt, +v—2ugt, —aQ=0o0r t, _y-aQ

3ug
2v+aQ

Putting this value of t; in (3), we observe that at this time velocity of the centre i.e. x=

...(5)
When rolling commences equations of motion reduce to

ma’®

5 p=Fa ...(6)

mX =—F and

Since there is no sliding, X=ag or X=ag
Solving these equations, we have F = 0.

Thus we observe that no friction is required throughout the motion for pure rolling, so equations for
this motion are
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2

mx=0 ie. Xx=0 and ma?¢'=0i.e. ag=0 (7

2V+aw

Integrating (7), we get x =constant = , from (5).
2V+aw

The disc therefore continues to roll with a constant velocity 3

which is less then its initial velocity.
Case I1. when v — QJandv<aQ.

In this case initial velocity of the point of contant is v—a <0, so its direction is <, hence friction
MR acts in the direction —.

Now the equations of motion are

mX=uR=umg ie X=ug ..(1)

2

And ma?é':—,uRa:—ymga ie ad=—2ug (2

Integrating these equations and making use of initial conditions to evaluate constants, we get
X=pugt+v  ...(3) and  af=—2ugt+aQ (4
Pure rolling commences when X —aé =0, let this happen after time t; then from (3) and (4) ,

aQd—v
3u9

uot +v+2ugt —aQ=0 or t =

2v+aQ

Putting this value of t; in (3) , we get x= 3

When pure rolling begins, equations of motion are same as in case | by

which F= 0, so the disc continues rolling with constant velocity = 2v+ao

Case 1l when v—,Q 7T

In this case, initial velocity of the point of contact is v+ a€, so its direction is —, hence MR acts in the
direction «—.

Equations of motion are

mX =—uR =—umg i.e. X=—ug ...(D)

2

And m%éz—,uRaz—,umga i.e. ad=-2ug ...(2)

Integrating these equations and making use of initial conditions to determine the constants, we get

X=—ugt+v ..(3) and ad=—2ugt_aQ (%)
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They velocity of the point of contact is x+ad (xand @ are in the same direction). Pure rolling begins
when

X+ ad =0, let this happen after time t; then from (3) and (4), we get
V+aQ

3u9

—ugt +v+(—2ugt, +aQ)=0 or t =

g =af= 2%
3
If 2v > aQ the velocity of the centre is positive, so the motion is of pure rolling with uniform velocity
2v—-aQ)
3

If 2v <aQ the velocity of the centre is negative (backward). In this case we observe from equation (3)

that velocity of the centre becomes zero v when t = Y and at that time from equation (4) we observe
Hg

that

ad = —2v +aQ.which is positive since 2v <aQ. Hence when 2v <aq, the disc begins to move backward
before pure rolling begins.

In other us we say that u > aQ, the rolling will commence before the forward motion ceases.
Category 6:

When two bodies are in contact; then to determine whether the relative motion involves sliding or
rolling at the point of contact. Let P be the point of contact of a moving body placed over the other,
assume that the initial velocity of the point of contact is zero. To find whether the relative motion is
of sliding or rolling we make use of following two methods

In the first method, assume that the body rolls and suppose F is the force of friction sufficient to keep P
(the point of contact) at rest. Hence F is unknown. Again write the equations of motion along with the
geometrical equation to express the condition that the tangential velocity of the point

P is zero. Solve these equation and find F/R

In case F/R <y, the necessary friction can be called into play to keep the point P at rest. Thus the body
rolls and will remain so long as F/R < p, but when F/R >y, the point of contact will slide. When this
happens the

R equations of motion discussed before will not hold good, and we apply the following method.

In this method write the equations of motion on the supposition that the point of contact slids. i.e. the
friction is YR instead of F and there is no geometrical equations. On solving these equations we find
the tangential velocity of the point of contact P. In case this velocity is not zero and is in the direction
opposite to the direction in which YR acts (1 has a proper sign), the body will slide at P and will remain
so long as the velocity at P does not vanish, when velocity at P vanishes, we again apply the first method.

Category 7:

A sphere, of radius a whose centre of gravity G is at a distance ¢ from its centre C, placed on a rough
plane so that CG is horizontal; show that it will begin to roll or slide according as the coefficient of
friction
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axis through G; if u is equal to this value, what happens ?

When CG is inclined at an angle @ to the horizontal, let A, the point of contact have moved through a
horizontal distance x from its initial position O, and let OA = x. Assume that the sphere rolls and F be
the force of friction sufficient for pure rolling. Since the motion is of pure rolling so x=a# and the

point of contact A is at rest
sXx=af (D

The coordinates of G (the centre of gravity) with reference to O the fixed point as origin and
horizontal and vertical lines through O as coordinate axes are (x-+ccosé,a—csing).
Equations of motion of the sphere are

2 2

F=M %(x+ccos€)=M %(a9+ccose)

=M[ad—csin6 d —ccos66” | (2
d? .. .
R—Mg =mF(a—csin0)=M [—cc0569+csin992] ..(3)
And Rccos@ - F (a—-csing)=Mk?é (4

We only want the initial motion when =0 and @ is zero but is not zero.
The equations (2), (3), (4) then give

F =ma@;R=mg —Mcd;Rc— Fa=Mk?d. for the initial values

On eliminating R, and F, we get é:%, then
k®+a“+c

F ac R k®’+a’> F ac

=0 ——and =g =

M k“+a“+c M k*+a“+¢cc M k“+a

The sphere will roll or slide according as

F <or > uR or as >Eie >0r <
H H R =M k% +c?

Critical case. If u :% In this case we shall consider whether F/R is a little greater or little less
+c

than uR when @ is small but bot absolutely zero .

From equation (1), (2) and (3) on eliminating F and R, we get

(k* +a” +¢® —2acsin@)d —accosd 6° =gccosd ..(4)

Integrating it, we get (k® +a’ +c” —2acsin@) 6° =2gcsing  ...(5)
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As @ is small, sin g can be replaced by ¢ and cos @ by unity, neglecting squares and higher powers
of @ sin @ §?%is also neglected.

Thus (5) reduces to (k® +a’ +¢*)6° =2gco  ...(6)

A2
And then from (4), (k* +a’ +¢” - 2ac6)= gc(l+ a0 j
g

2act j [From (6)]

=gc|1+ =2
g( k?+a%+c’

2acd . 2acd
Or k+a?+c?)1-——— |f=qc| 1+ ———
( )[ k2+a2+c2j J ( k2+a2+c2j

. 2acé 2acé -
Or k?+a’*+c’)0=gc|1+ 1-
( ) g ( k2+a2+czj( k2+a2+c2j

—gc(1+ 2acl )(H 2aco j
k?+a®+c’ k?+a®+c’

, 23COmm approximately
k?+a’®+c?

=gc(1+

a—csing)d —ccosd 6°
From (1) and (2), we have L =( ) ! .
M  g-ccos@f+csinf 6

(a-cO)f-c o
- g-cé

neglecting 6?,6° etc. and also sin  66?

ac (3k2 —az)H . . .2
=———|1-c¢ — by putting the values of #and 6° as found above
k“+c a(k +a)

ac

k? +a?

2
If k2 >% then F/R is less than

i.e. F/R islessthan yu or F < uR and the sphere rolls.

3
If k? < then F >i2 i.e. F > g or F > R and the sphere slides.

k?+a
Category 8: One of the bodies fixed.

A solid homogeneous sphere, resting on the top of another fixed sphere is slightly displaced and
begins to roll down it. Show that it will slip when the common normal makes with the vertical an

angle given by the equation 2 sin (6 —4)=5sin A(3cosd—2) where A is the angle of friction.
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Also prove that the upper sphere will leave when @ =cos™ (10/17).

Sol.  Let O be the centre of the fixed sphere whose highest point is A. Let CB be the position at any
point t, of the radius of the upper sphere (moving sphere) which was originally vertical.

So if P is the point of contact, then arc AP = arc BP
i.e.ad=bg, then ad=hg (1)

where a and b are the radii of the lower and upper sphere respectively, and are the
angle which the common normal OC makes with the vertical and CB, a line fixed
in the moving sphere respectively. Let R and F be the normal reaction and the
friction acting on the upper sphere. Since C describe a circle of radius (a + b)

about O, its acceleration are (a+b) 6”and (a+b)é&along and perpendicular to CO.
Hence m(a+b)6” =mgcosd - F (2
And m(a+b)d=mgsing-F ..(3)
Referred the O as the origin , the coordinates of the centre C are {(a+b)sing,(a+b)coséd}.
This energy equation gives us
%m(x2 + yz)+%mk2 (4+ 9)2 =work done by gravity
=mg(a+b)(1-cos8)
or  (a+b) 9'2+2?b2(aijéz=Zg(a+b)(1—cose)(.'.¢3)=%é

7 . 29 . 10g
0 —6* =—=—(1-cos@)or §° = 1-cos@ .4
r c a+b( cos@) or 7(a+b)( cosd) “)

Differentiating w.r.t. to ‘t’ and dividing by 26 , we get

§=—>9 ing (5

7(a+b)

From (2) and (4), we get R=mg cosé — mlOTQ(l— cos 0)

:%(17005 6-10) ...(6)

From (5) and (3), we get F =mg sine—gmgsine—%mg sin@

Hence the sphere will slip if F=pR
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(17 cos®-10)mg
7

ie. if % mg sin 8 =tan 4.

or if 2sin@cosA =(17cosd—10)sin A

or if 2(sin @ cos A —cos@sin A =5(3 cosd—2)sin A

or if 2sin(6—1)=5sinA(3 cosd-2)

The upper sphere will leave the lower one when R =0, hence from (6)

(17 cos 0-10)=01i.e. #=cos™ (%j

When both the spheres are smooth. In this case F =0, so the energy equation becomes

%m(a+b)2 6> =mg(a+b)(1-cos0)

TR - (1-cos®)

(a+b)

Further equation (2) remains unchanged,

=R =mgcosd—-2mg(1-cosd)=mg(3cosd—2)

The upper sphere will leave the lower if R =0
. B Al
i.e. if mg(3 cos —-2)=0 or & =cos (gj

Category 9:

A hollow cylinder, of radius a is fixed with its axis horizontal, in side it moves a solid cylinder, of
radius b, whose velocity in its lowest position is given if the friction between the cylinders be
sufficient to prevent any sliding, find the motion.

Let C be the centre of the moving cylinder and let ¢ be the angle which a line CB fixed in the moving

cylinder makes with the vertical, a line fixed in space. Initially B coincided with A. Let a be the radius
of the fixed cylinder whose centre is O and b that of the movable cylinder.

Since there is no slipping between the two cylinders therefore arc AP = arc BP

or ad =(¢+0)

or bg=(a—b)6; ..bp=(a—b)...(1)

Let R and F be the normal reaction and friction at P. Since C describes a circle of radius (a — tf)\ about
O, the equation of motion of the cylinder are m(a+b)6'?2 =R-mgsing ...(2)

And  m(a-b)d=F -mgsin@ ...(3)
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The co-ordinates of C with respect to O as origin and the vertical and horizontal lines as axes through
Oare{(a-b)sinlOg, (a-b)cos 9}

(its velocity)? =(X* +y*)=(a—b)’ cos’ 96° +(a—b)sin® 96° = (a—b)" 6°. So kinetic energy of the
moving cylinder at any time 't' is

1 1 b, 1

2
5 mk?g’ +%m(a—b)2 0= m= ¢ +§m(a—b)2 92[.-. k2 =b_j

0’ =§m(a—b)2 0°

4

{-.bg=(a-b)o from(L)}
-.Kinetic energy at the time of projection = %m(a - b)2 o’

(.0 =0 initially)

Therefore equation gives

3 2 29 3 2 2

Zm(a—b) 0 —Zm(a—b) QO =-mg(a—b)(1-cosd)

. 2 2o 2 o, 4

i.e (a—b) 6" =(a-b)" Q —Eg(l—cose)

Differentiating (4) w.r.t. @ and dividing be 28, we get
.2

f(a—b)ez—gg sin @ ..(5)

Again from (2) R=mgcos€+m(a—b)92

=mg cosf +m(a—b)Q’ —%mg (1—cos®) from (4)
Or R:m(a—b)Qz+%(7 cos 6—4)
From (3), F =mgsiné + m(a—b)ézmgsine—gmg sin@ from (5)

Or Fzémg sin @ ..(7

Case 1.
In order that the cylinder may roll down completely, R should be zero at the highest point.
i,e. R=0 whenb=x

.'.Ozm(a—b)Qz+%mg(—7—4) or Q=\/_[&]

3(a-b)
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Case 2.

The moving cylinder will leave the fixed cylinder if
R=0ie m(a+b)Q? +%(7cos€—4):0

4 3
cosf=|—-g—(a-b)Q? |—
[39 (a-b) }79

1
0=—TJ4g-3(a-b)Q?
cos 79[g (a—b)Q*]

This gives the position when the two bodies separate.

Case 3.

If the rolling cylinder makes small oscillations about the the lowest point of the fixed cylinder, then
is always small, hence equation (5) gives on taking for sin &

, e 2
Hence time of small oscillation is —HTZ = 27{

29
3(a—h)
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Example:- A uniform solid cylinder is placed with tits axis horizontal on a plane, whose inclination to
the horizon is ¢, show that the least coefficient of function between it and the plane, so that it may

1 1
roll and not slide, is 3 tan « . If the cylinder be hollow, and of small thickness, the least value is Etan a

Solution:- At any time t, let the axis of the cylinder describe is distance x and @ be the angle turned

Arguing as in 3.04, we have X =a @ [+ there is no sliding]
2
Also the equations of a C.G. are given by M %: Mgsina—F 1)
And 0=M gcosa—R
)
Again taking moments about the axis through G, the centre of gravity of the body, we have
,d%0 k> d*x
M k _ZZan:M_'_ZZan (3)
dt a dt
o d’x .
Whence elimination of M el in between (1) and (3), we get
k2 2
—(Mgsina-F)=F xa > F=———Mgsina (4)
a a“+k
But R=M g cosa (5)
F 2
For pure rollin > —=——tana
. ST R TP
145
;- W Tl 52
But when cylinder is solid, we have k* =—a°, = u>—%=—tana
2 o Sia
2

2
In case of hollow cylinder, we have k* =a®, = u >

2

> tanazltana
2

a +a

Example:- A cylinder rolls down a smooth plane whose inclination to the horizontal is ¢ , unwrapping,
as it goes, a fine string fixed to the highest point of the plane ; fine its acceleration and the tension of
the string.

Solution:- When the cylinder has rolled down a distance X along and plane, let T be the tension in the
string and in this time (say t), let &be the angle turned by the cylinder, then as the string is tight, the
motion is of pure rolling i.e. arc BP =OB = x=ad (1)
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[ [
X=a6 and x =a@ equations of motion of the centre of gravity of the cylinder are

2
M%:M gsina-T 2)
d’y
and MFZOZMQCOSa—R (3)

I an}
Now taking moments about the centre, we have M k*8=T x ie. M .%az 6=Txa
1 1] il
Or EM x=T [+ x=a0] (4)
3., . a2
(5) and (2), gives EM X=Mgsina i.e. x:ggsma

= Tzlmx:lM zgsinoz :EMgsina
2 2 3 3

Example:- A circular cylinder, whose centre of inertia is at a distance ¢ from axis, rolls on a horizontal
plane. If it be just started from a position of unstable equilibrium. Show that the normal reaction of the
2

(a—c) +k?
k is the radius of gyration about an axis through the centre of mass.

Solution:- Initially the point of contact P of the cylinder was at O when its centre of gravity was
vertically above the centre of the figure.

plane when the centre of mass is in its lowest position is {1+ } times its weight, where

4

[ D
@] B F

At any time t let the radius through G turn through an angle &.
Referred to O as origin and horizontal and vertical line as axes, the co-ordinates (x, y) of G

fivenby x=a6@+csind, y=a +c cosé

[+ CG =c]
d?x 2
Equations of motion of C.G. are mF = mF(aH+csin 0)=F (1)
d2y 2
And m —-=m —-(a+c cosd)=R—-m 2

Also energy equations gives %meﬁ y2j+k2 6@: work done by the forces i.e.

i 2 [ \
%m[(am ccoseej +(—csin 60” +%mk2¢92 =mg(c—ccosd)
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[

Let @ be the angular velocity when G is in its lowest position i.e. @ =@ when 8 =7 ; thus
1 4

we have —m[(a—c)2 +k2] »® =2mgc = o’ :#
2 k?+(a-c)

m n}
Now (2) gives R=mg — mc(sin 06+ 003902]

=mg —mCCos 7. @°

0
(Since in the lowest position 0 =7; 0 =w)

4cg Ac?
=mg+mt=————==mg| 1+ ———
k*+(a-c) k*+(a—c)

Example:- Two equal cylinders, of mass m, are bound together by an elastic string, whose tension is
T, and roll with their axes horizontal down a rough plane of inclination ¢« . Show that their acceleration

2utl

——— |, where u is the coefficient of friction between the cylinders.
mgsina

2 .

is —gsina|1-
3

Solution:- Let R, F; be the normal reaction and friction on the upper cylinder and R,, F, be the normal

reaction and friction on the lower cylinder due to the plane. Let S be the normal reaction between the

two cylinders at P . The force ¢S acts away from the plane for upper cylinder and towards the plane

for the lower cylinder.
(for upper) LS w R,

At any time t let the cylinders move through a distance z along the plane, and & be the angle
a I
turned by them z=af =z=a=aé (1)

Equations of motion of the upper cylinder are given by m 7= mgsina+2T —F —S 2

0=R —mgcosa + uS (3)
[N
And mk?@ = F,xa — uS xa (4)
Whereas the equations of motion for the lower cylinder are given by
]
mz=mgsin a— 2T -F, +S (5)
0=R,—mgcosa— uS (6)
M
And mk®@ =F,xa— uSxa 7)
Comparing (4) and (7), we have F, =F,
Subtracting (2) from (5), we have S =2T (8)
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mk2 o

Also from (4), F, = 0+ 1S , where k* = a’

M
=%mz:mgsina+2T—(%mz+2yTj—2T ['.'S:ZT]

g sina[l—i}
mgsin«

.
Or 7=

w|N

Example:- A uniform rod is held at an inclination ¢ to the horizon with one end in contact with a
horizontal table whose coefficient of friction is g , if it be then released show that it will commence to

. 3sina cosa
slide if u<| ————
1+3sin‘“ «
Solution:- Let AB be the rod having length 2a and mass m. Let F be the force
Equation (3) can also be obtained by taking moments about G, then
2 1] I
M % 0 = Rasin @ — Facosd = Mgsin & —Ma? @ [From (1) and (2)]

[
Or 0= 3—gs.in 0
4a

]
Multiplying by 26 and integrating, we get 6° = —z—gcos 0+C
a

[ 0
When 0=0,0=0 = C:z—g o 62 zi—g(l—cos @) of friction sufficient to prevent
a a

sliding and R the normal reaction. With reference to point A as the origin, the coordinated of
point G i.e. C.G. ae (acos@, asin 6?), the coordinates of point G, before the motion begins
are (acosa, asina).

Thus the vertical distance moved by the C.G. is (asina—asin6).

R
A 5
G
mg
0 S
A - P
d?x | 0
Equations of motion of C.G. are mF = m{—acos@&—asm 09} =F Q)
d2X a

And mwzm{—asineez—acosee}:R—mg 2)

[

The equation of energy given %me% y2j+%a2 6’2} =mg (asina—asing)

a]
= %m(a202+%a2¢92j:amg (sina—sino)
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0 [
= %az ¢’ =ga(sina—sing) = ¢ :2—g(sina—sin 6) A3)
. _ -39
Differentiating (3) w.r.t. to t, we get 8 = HCOS 0 4)

O (1
Putting the value of 6° and @ from (3) and (4) in (1) and (2), we

F= m[—acose.s—g(sina—sin @)—asin H(_S—gcoseﬂ
2a 4a
3 . . 3 .
=ngcose(35m9—25|na)=ngcowzsma, when 0 = «

and R=mg + m{—asin e.z—g(sina—sin 9)+ac059(%c050ﬂ

mg [4—65in @sin o + 6sin” @ —3cos’ 9]

mg (4—3cos2 a) ,when 8 =a

Nk, DM MNP

=Zmg [1+ 3(1-cos’® a)] =%mg (1+3sin’a )

. - F . 3sina cos
The end A will commence to slide if x<— i.e. ,u<a—_2a.
R 1+3sin‘ «

Example:- The lower end of a uniform rod, inclined initially at an angle « the horizon is placed on a
smooth horizontal table. A horizontal force is applied its lower end of such a magnitude that the rod
rotates in vertical plane with constant angular velocity . Show that when the rod is inclined at an

angle @to the horizon the magnitude of the force is mg cot @ —ma @°C0os@ where m is the mass of

the rod.
Solution:- Let the horizontal force applied at the lower end A of the rod be F. Let at any time t,0 be

the angle that the rod makes with the horizontal. Since the rod rotate with a uniform angular velocity
@ .. 8 = @ (constant)

= 0=0 (2)

G B

mg

A F

The equation of motion of G along the vertical
2

[ i
R—-mg =m% (asin 9) = ma(—sin 00°+ coseej
=-masiné . o’ from (1) and (2) ©)

Since the end A is not fixed, the equation of horizontal motion of C.G. is not written .
Again taking moments about G, we have
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[
mk® @ = Fasind—-Racosd = F =Rcoté {--0=0 from (2)}
=  F=(mg-masing. o’ )cotd from (3)

=  F=mgcotfd—maw’cosd

Example:- A rough uniform rod, of length 2a, is placed on a rough table as right angles to its edge: if

its centre of gravity by initially at distance b beyond the edge, show that the rod will being to slide
2

when it has turned through an angle z’u—agbz where g is the coefficient of friction.
a”+

Solution:- Initially the rod was at right angles to the edge of the rough table, now it has turned through
an angle @. Let there be no sliding when the rod has turned through this angle. A and R be the normal
reaction and the force of friction on the rod. Acceleration of G along and perpendicular to GO are

0 [ [
respectively b #° be b . Equations of mb& = mg cosd—R (1)

[
And mb@*> =F mgsin 6 )

Taking moments about O, the point contact of the rod and table, we have
2

2 2 A%,
mk*@=mg bcosd, = m| b +? =mgbcaosé

3gb
= cos ¢ 3
= a’ +3p’ ®)
L . . L,  6gb .
Multiplying (3) by 26 and integrating , we get ° = — ™ sin@
a +

[
The constant of integrating vanishes as initially when € =0, 8 =0. Putting the values of &

.
and 6° in (1) and (2) from (3) and (4), we have

2

R=—gb. 23bg > C0s 6 +mg cosd = ana > C0s & and
a-+3b a-+3b
. 6gb . a’+9b® .
F =mgsin@+mb sind =m sind
g a’ +3b? g a’ +3b?
. . a®+9b” . mg a*
The sliding commences when F =R i.e. when m SIn@ = y=——-—Cc0S4@ or
g H ga2+3b2 H a® +3b?
2
when tan @ = 2,u a 5
a-+9b
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Example:- A uniform rod of mass m, is placed at right angle to a smooth plane of inclination « , with
one end in contact with it. The rod is then released. Show that when the inclination to the plane is ¢,

3(1-sing)’ +1
(1+3cos? ¢)2

Solution:- As there is no force acting the plane, so initially there is no motion along the plane. The C.G.
i.e. point G moves perpendicular to the plane.

Let ¢ be the angle which the rod makes with the plane after time t, Taking A as the origin, the
plane as x-axis and a line perpendicular to the plane as y-axis, the co-ordinates of G are
X=acos¢, y=asing

the reaction of the plane will mg Cos &

R

mg

0

I 0
Equation of motion of point G are my = m(acos¢¢—asin ¢¢2] =R-mgcosa (1)

2

And m%qﬁ:—R, acos ¢ @)
\ ==~ SR 13 % A .
Also from energy equation, we have —ma“ cos” ¢ ¢ +§ 3 =¢° = work done by gravity
_ 5, 6g(1-sing)
=mg a cosa (1-sing) or ¢p* =—————"~_cosa (3)
J ( #)or é a(1+3cos’ ¢)

Differentiating (3) w.r.t. t, we get

%5:3900505 —C0oS ¢ +6cos¢sin¢(1—sin¢)
a | (1+3cos’¢) (1+3cos’ )

1+3(1-sin ¢)’
(1+3cos® ¢)2

. 2
_ 3_gc08a[3(1sm ¢) +1

[ 3g
COS¢h. ¢ OF p=—"=COSPCOSr
a (1+3cos’ ) } $-9 o g=-=rcoss

3(1-sing)" +1

Putting the value of ¢ in (2), we get R =mg 5
(1+3cos’ ¢)

COSa

Example:- A uniform rod is held nearly vertically with one end resting on an imperfectly rough plane.
It is released from rest and falls forward. The inclination to the vertical at any instant is &. Prove that

() If the coefficient of friction is less than a certain finite amount, the lower end of the rod will
slip backwards before sin? (0/2) = (%j

(i) However great the coefficient of friction may be, the lower end will being to slip forward

] 1 1
at a value of S|n2(6’/2) between E and 3
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Solution:- (i) Proceeding in the same way as in 3.05, we get F =%Mg sin@(3cosf—-2) and

R :%mg(1—3cost9)2 . Obviously F =0 if sin@=0 or 3cosf—-2=0 i.e.if §=0 or cos@:%

i.e.if @=0mor 1—25in2(0/2):§ or sin2(0/2)=g.

(i)

1

The value of F is positive when @ takes all intermediate value between @=0and

0= coslé and is continuous function of &, hence between these two values of & where F
vanishes, F has a maximum value for some &. Let F, be the maximum value. We observe
that for 0 < 6 < Coslé the value of R< Mg .

Thus there is a finite value of x for which F > xR and therefore for this value of x, sliding

2 . 1
will take place before Cosflg i.e. before Slnzgzg. Since F is positive (in the forward

direction) hence the slipping will start in the backward direction.
We observe from the value of F that if cos@ > 3/2, F changes its sign. i.e. the direction of

the friction is reversed if F'=—-F = % mg(2-3cosd)

Now the slipping may start when F'> yR
i.e. when 3sin6(2—-3cos @) > ,u(1—3c056?)2 (1)

. 42 . bl . .
As @ increases from COS 15 to cos 1§ , the term on the left hand side increases while the
. . 12
right hand side term decreases from 1 to 0. Therefore, for some value of & between C0S 5

1 . 1 1
and COS_lg i.e. for sin? (0/2) between Eand Ethe condition (1) is satisfied and the slipping

will then start in the forward direction.

Example:- A uniform rod is placed with one end in contact with a horizontal table, and is then at an
inclination ¢ to the horizon and is allowed to fall, when it becomes horizontal, show that its angular

3 - 1/2
velocity is (z—gsm a] whether the plane is perfectly smooth or perfectly rough. Show also that the

end of the rod will not leave the plane in either case.
Solution:- Let at any instant t the rod makes an angle @ with the horizontal. Let R and F be the
normal reaction and friction at the instant with O as origin the co-ordinates of C.G. are X =acosé,

y=asing.

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

mg

o F
Case I:- When plane is perfectly rough and O is fixed.

Then energy equation given %m[x% yzj +%m k? 8% = work done by gravity
%m(az 02+%a2 sz =mga(sina —sin )

;;2 =§—2(sina—sin0) (1)

When the rod becomes horizontal i.e. when @ =0, the angular velocity & =@ (say) is given

, 30 . (39 . Jﬂz
by " +—=sSIna or =| —SIna
2a 2a
. . =39
Differentiating (1) w.r.t 't" we get 9=4—cos€ (2)
a

2 O [T
The equation of motion of C.G>is R—mg = m%(asin 49) + ma(—sin 06°+ COS@)

= R=mg+ma —sin<9.3—g(sina—sin0)+cos€(—3—gcoseJ
2a 4a

[l
[Substituting use values of §° and @ from (1) and (2)]
:%mg (4—63in asin @+ 6sin® @ —3cos® 6’)

:%mg _(1—33in asin 0)2 —9sin® azsin® @ +9sin? 0}
1 r . . 2 . .
=M _(1—35|n asing)” +9sin’ 9(1—sm2 a)}

=-mg _(1—35in asin 9)2 +9sin® @ cos? a}
This is show that R is always positive, therefore the end O of the rod never leaves the plane.

Case I1:- When the plane is perfectly smooth.
In this case there is no horizontal forces, hence C.G. descends in a vertical line i.e. the only

0 O
velocity of G being along the vertical direction y=asiné, y=a cos@6

The energy equation give %my2+%mk292: work done by gravity i.e.

] a
%m(az cos’ 4902+%a2 6?2): mg (asina —asing) or
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0
6? (cos2 0+ %j = (z—gj(sin a —sin @), when the rod becomes horizontal i.e. when 6=0,
a

[
the angular velocity €@ =@ (say) is given by

1/2
®* [1+1J:2—gsina =’ :3—gsina = a):(s—gsin aj
3 a 2a 2a

This gives the required result in the case of plane being smooth.
Differentiating (1), we have

m 1 U g
H(cos2 6+§j—¢92 sin@cosd = —[gjcose

i 2g/a)(sina—-sin@
= 49(00520+1j—sin0c050 (29/2)( al ) :—(gjcose
3 cos249+5 a

0 1V (g . !

= 0(c0329+—J :—(—jcose{smz0—25masm9+—}

3 a 3
=—(g/a)cos¢9{(sin¢9—sina)2+%+cosza} (3)

2m 1 \
Again taking moments about G, we have m%ﬁz—Racosﬁ or R =—§asec(9. mé

(sin@—sina)’ +Licosta

[
= R= % 5 from (2) by putting the value of 6
(cos2 0+ 1)
3
1+3cos’ a +3(sin @ —sin a)2
= R=mg 5
(1+3cos0)
We observe that R is positive for every value of & and &. Hence the end never leaves the
plane.

Example:- A heavy rod, of length 2a is placed in a vertical plane with its ends in contact with a rough
vertical wall and an equality rough horizontal plane, the coefficient of friction being tan & . Show that
it will being to slip down if its initial inclination to the vertical is grater that 2¢. Prove also that the
inclination @ of the rod to the vertical at any time is given by

a 0

0(k* +a’cos’ &) —a’ 6” sin2e=agsin (0 2¢)

Solution:- Let AB be the rod of length 2aand mass m. When AB makes an angle & with the vertical
and let R and S be the resultant reactions at B and A respectively

Writing equation of motion of centre of mass G, we have
2

m%(asin 0)=-Ssine +Rcose (1)

2
And m%(acos@):Rsing+Sc055—mg ()
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1]
Taking moments about G, we have mk” & =Sa sin(6—¢)—Racos(6—¢)  (3)

ani

From (2), we have ma(cos@@ sin eezj =Rcos¢—-Ssing 4)
From (2), we have ma(sm 06+ cos:%?zj =mg —Rsing—Scose& (5)
On solving equations (4) and (5), we have

[T [
R=mgsine+macos(6+&)0-masin(6+¢)6” (6)

| [
S =mg cose—masin(6+&)d—macos(6+¢)6” 7)

Putting the values of R and S in (3), we have

0
mk? g - asin(e—g){mg cow—masin(@—a)g— macos(¢9+g)02}
m 0
—acos(e—g){mg sine+macos(6+¢) 60— masin(9+5)02}

[I [
=mgasin(6-2&)-ma’fcos2e+ma’ 6 sin 2¢]

[ ]
or 0(k* +a’ cos2¢)—a” 0 sin 2 = agsin (6 - 2¢), which gives 6.

ul
If 8 >2¢, itisobvious that @ is positive and hence the rod start slipping if € >2¢.

Example:- A hoop is projected with velocity V down on inclined plane of inclination ¢, the coefficient
of friction being y(>tan a). It has initially such a backward spin € that after a time t, it starts

moving uphill and continues to do so for a time t, after which it once more descends. The motion being

in a vertical at right angles to the given inclined plane, show that ('[1 +1, ) gsina=aQ)-V.

Solution:- Let C be the centre of the hoop and CB its radius (a line fixed in the body) makes an angle
@ with CA which is normal to the plane (CA is a line fixed in space), after time t. Initially CB was
normal to the plane. Initially the velocity of the point of contact A down the plane = velocity of centre
C + velocity of A relativeto C =V +aQ, which is a positive quantity

Hence the point of contact slides down and friction R acts up the plane.

O
The equations of motion are mx=mg sina — uR )

0=R-mgcos« (2)
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N
And ma®é = — uRa ©)
m a
From (1) and (2), we have x =g (sina — zCcos« ), integrating it, we get

x=g(sina—ucosa)t+constant when x =V, t=0. . constant =V

0
Therefore x=g(sina—ucosa)t+V (4)

a
From (1) and (3), we get af =—uQg CoOSa, integrating it, we get af =—ugt cosa +

constant; when t =6, 8 = Q Constant =aQ
Therefore aé =—ugtcosa + aQl (5)
The hope will cease to move downwards, when )D( =0i.e. from (4),
V
tl:g(,uCOSa—Sina) 8]

] 0 ]
Obviously the velocity of the point of contact is X+aé, even when x=0, for the hoop to

0
move uphill a @ should be positive. It follows that throughout the downwards motion X+aé&

is always positive. Therefore when moving downwards pure rolling does not take place. Thus
the equations established above are true throughout the downwards motion.

Putting the value of t; from (6) in (5), we get

MV cosa .

afd=aQ— - since a @ is positive, the hoop beings to move uphill.
(ucosa—sina)

0
When the hoop starts moving uphill. The initial velocity of the centre is zero and aé is

positive with the sense of the directionas 6.

0
Initial velocity of the point of contact =0—aé which is negative

Thus initially the velocity of the point of contact is in the downwards direction
I

my=-mgsina + uR (1)

0=R-mgcos« (2)
[

ma’ ¢ =— uRa (3)
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M I
On eliminating R, weget y =(ucosa—sina)gand a¢=— ugcosa integrating these two

equations, with the initial condition, we get

;:g( pcosa—sina)t 4)
And a q;:—,ugtCOSOH- aQ—LOS_a 5)
HCOSa—SIna
MV cosa
HUCOSa —Sina
Rolling commences when the wvelocity of the point of contact is zero i.e.

y=ag=0 = y=ag

[* when t=0, y=0, aé: aQ—

1V cosa

= g(ucosa—sina)t'=ugt'cosa+aQd —————
1COSa —Sina

w1V cosa

= ot'(2ucosa—sina)=aQ————————
£1COSa —Sina

This gives value of t'

At this time y = gt'(ucosa—sinca) from (4)

[l

When Rolling commences:- Equations of motion are mz = F —mgsin« )
I
ma’y =—Fa 2)
0 O
And z—ay =0 (3)

1 i
Solving these equations, we get F = > mg Sine..

Since x>tana = uR >tanamgcosa = uR >mgsina

We observe that F < ¢R, so the condition of pure rolling is satisfied, and hence the equation

of motion holds good for the motion.
‘ . 1 . . ‘ 1 .
From (1), we have mz=F —mgsma:Emgsma—mgsma ie. Z :—Egsma ;

. 1 . S .
integrating it, we get Z=—Egtsma+K when t=0, Z:y:gt'(uCOSa—SIna),
]

. 1 . .
- K=gt'(ucosa—sina). Therefore z = > gtsina +gt'(ucosa —sina)

[
The hoop ceases to move up the hill if z=0. Let this happen after timet"
0=—%gt"sina+ gt'(ucosa—sina)

(ucosa—sina)t’
sinoLz

(,uCOSa—Sina)t,_(Z,ucosa—sinajt,

Ort"=2

t,=t'+t"+t'+2 - -
sina sina
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Z(Zycosa—sma)( 1 )(aQ— 1V cosa j
g

sina 2ucosa —sina UCoSa —Sina
1 20— uV cosa
gsina HCOSa—Sina

Hence the total time is t, -1,

_ Vv _ N 1 20— ,uVCOS(-Z
g(ucosa—sina) gsina 1COSa —Sina

1 aQ_,uVCOSa—VSina_ 1 (aQ-V)
gtano UCOSa—Sina gsina

Or (t,+t,)gsina =aQ-V .

Example:- A sphere, of radius a is projected up an inclined plane with a velocity V and angular velocity

2
Q in the sense which would cause it to roll up V >aQ, and the coefficient of friction 7tan a ; show

that the sphere will cease to ascend at the end of a time

SV +2aQ
5gsina

Solution:- Let C be the centre of the sphere and CB a radius which is a line fixed in the body makes
an angle @after time twith CA normal to the plane CAis a line fixed in space. Initial CB was normal
to the plane. Initial velocity of the point of contact A up the plane

= Velocity of the centre C + velocity of A relative to C.
=V -aQ>0asV>aQ

Hence the friction xR acts down the plane, implying that the sphere slides as well as turns.
M

Equation of motion are mx=mgsina — uR )
0=R-mgcos« (2)
2]
And m,%@: uRa @)
[mN]

Eliminating R from (1) and (2), we have X =—@ (sin a + 11 cos a) integrating it, we get
0
x=—g(sina+ucosa)t+K
0
Now when t=0, x=V, ..K=V

0
Therefore, x=—g(sinacosa)t+V (4)

Download books https://mindsetmakers.in/upsc-study-material/

where ¢ is the inclination of the


https://mindsetmakers.in/upsc-study-material/

[
Similarly, we have aH:g,u gtcosa, integrating it with initial conditions i.e. when

[T ui

t=0,9=Q,wegeta9=gygtc05a +aQ (5)

] ]
The velocity of the point contact = X—a@ . Rolling commences, say after time t, when

i 0
x—a@ =0 or —g(sina—pcosa)t, +V —%lgtlcosa—aQ:O

2V —2aQ
Ort = -
g(7ucosa+2sina)
Putting this value of t=tin (4), we get

;:V—g(sina+ cosa) 2V — 230
H g(7ucosa+2sina)

_ 5V cosa+2aQ(sina + ucosa)
7 pcosa+2sina
When rolling beings i.e. when the point of contact has been brought to rest, let F be the

friction which is sufficient for pure rolling. Because the point of contact is at rest, so friction

will try to keep it at rest if possible, hence the friction F acts upwards.
M

=V, (say)

Equations of motion are my =-mgsina + F )
2m
And m.z%gﬁ:—Fa @)

[ [
Since throughout the motion the point of contact is at rest so y—a¢g=0 or y=ag

0 I
= y=a¢g

2 .
Solving equations (1) and (2), we get F = 7 mg sin o

2 2 .
Again 4R =u. mg cosa>7tana .mgcosa i.e. >7mg sina

Therefore the condition F < xR is satisfied.

Putting the value of F in (1), weget y= 2 gsina

Integrating it with initial conditions i.e. when t=0, y=V,, we get y = —; gtsina+V,.

[
The sphere will ceases to ascend when y =0, let this happen after time t, .
7Vl
5gsina

Oz—ggt2 sina+V, or t, =

The total time of ascent =t +t,

2V —-2aQ LT 54V cosa+2aQ(sina + ucosa)
= X
g(7ucosa+2sina) 5gsina 7 ucosa+2sina
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10(V —aQ)sina +35 4V cosa +14aQ(sina + 1 cosa)
- 5gsina(7ucosa +2sina)

5V (7ucosa+2sina)+2aQ(7ucosa +2sina)
- 5gsina(7ucosa +2sina)

5V +2aQ

~ 5gsina

1
Example:- If a sphere be projected up an inclined plane, for which u = 7tan a , which velocity V

and an initial angular velocity € (in the direction in which it would roll up), and if V >a€2 show that
friction acts downward at first and upwards afterword’s, and prove that the whole time during which

.1V +4aQ
the sphere rises is ———
18gsina

Solution:- Let C be the centre of the sphere and CB a radius which is a line fixed in the body makes
an angle @ after time twith CA, the normal to the plane (CA s a line fixed in the space). Initially CB

was normal to the plane.

Initial velocity of the point of contact A up the plane
= Velocity of the centre C + velocity of A relative of C
=V -aQ>0,since V >aQ.

Hence the velocity of the point of contact A is up the plane, thus the friction xR acts down the

plane. The sphere therefore slides as well as turns.
M

Equations of motion are mXx =-mgsina — uR
0=R-mgcos«

21

And m% 0= uRa
Eliminating R from (1) and (2), we get
[
mx =—mgsina — (Mg cos ) =—-mg sina—%tana. mg cos a

8 . 1 0 .
=——magSsin =——tan or X=——0gSsIn
7™ a(” 7 aj 7 98Ine

1 1 . ‘ .
Similarly, we have m?aez LR =7tanamg cosa=7mg sina or aH:%gsma (5)

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

[ [
Integrating (4) and (5) with initial conditions i.e. when t=0, X=V and 6=, we get
]

X:—ggtsinoH—V (6)

And aezigtsinaJraQ (7)
14
0 0
Let the velocity of the point of contact i.e. X—a @ be zero after time t, (then the point of contact

0

0 0 0
is brought to rest) i.e. x—ad=0 = x=ad

0
= —g gt sina+V = % gtsina +aQ (Putting the values of x and 8)
2(V —aQ) : : :
= t=—m—7—-—=. Putting this value of t, in (6), we get
3gsina

ST 5V +16a0)
x=V -2y _gq0) =20 T0a o
71 ) 21 1 (5aY)

When the point of contact has been brought to rest, the pure rolling will commence if there is

enough friction to keep the point of contact at rest. Let F be the force of friction sufficient for
. . . : : 2a° | :
pure rolling. Equation of motionare my =—-mgsina + F, m?¢ =—Fa.Also y-a¢=0

2 .
Solving these equations, we get F= 7 mg Sina while

1 1 .
,uR:7tanamg COSa=7mgSIna.

Hence we observe that F > uR

From this we conclude that the friction required for pure rolling is more than the maximum
friction that can be exerted by the plane, so the pure rolling is impossible.
Inspite of exerting the maximum friction 4R upwards, the friction cannot keep the point of

contact at rest. Hence the sphere as well as turns.
I
The equations of motion we my =-mgsina + xR (1)

2

0=R-mgcosa (i) and m%¢:—yRa (iii)
- . 1 6 .
i.e. my=-mg sma+7tana.mg Ccosa :—7mg sina

y:—ggtsinowv1

The sphere will cease to ascend when Yy =0, let this happen after times t, .

0= —g gt,sina+V, or t, =(7V,/6gsina)

Hence the whole time of ascent=t, +1t, =

2(v—aQ)+ 7 _(5V+16a§2j
3gsina  6gsina 21
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_12(V—aQ)+5V +16aQ2 17V +4aQ
- 18gsina ~ 18gsina

Example:- An inclined plane of mass M is capable of moving freely on a smooth horizontal plane. A
perfectly rough sphere of mass m is placed on its inclined face and rolls down under the action of
gravity. If y be the horizontal distance advanced by the inclined plane and x the part of the plane over

7 1 . .
by the sphere, prove that (M +m)y =mxcose, and gx— ycosa =Egt2 sina m, where « is the

inclination of the plane to the horizon.
[l I
Solution:- There are two accelerations of the centre C, one X down the plane and other y in a

horizontal direction.
] i}
The actual acceleration of C parallel to the plane = X—Yy COS«

il M
Equations of motion of the sphere are m(x— yCOSaj =mgsin a—F 1)
M
mysina=mgcosa —R )
2.
And m% 0=Fa (3)
[ 0
Since it is a case of pure rolling Xx=a68 = x=a6 4)
[
Equations of motion of the plane is given by M y=Rsina — F cos« (5)
From (1) and (3) on adding, we have

0 m 0 0 a I
%x—ycow:gsina {from (4) x=a6 = x=ab}

7 .
Integrating above, we get T X—Yycosa =gtsina
. 7 1 .,
Integrating again s X—ycosSa= > gt°sina
0o o
The constants of integrating vanish initially all X, y, X and y are zero. Equations (5) is

[
My=Rsinag—-Fcosa

:[mg cosa—m ysinajsina+(m X—mMm Yy CcoSa —mg sin ajcos(z

[Putting the values of F and R from (1) and (2)]
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il nl [
OorMy=-m y(cosza+sin2a)+mx005a

(I [
=—-mYy + MX COS«

M i
= (M+m)y=mxcosa

0 0
Integrating, we get (M +m)y =mxcosa

Again integrating, we get (M +m)y =mxcosa .

o o
The contants of integrating vanish as initially X, y,x and y are all zero.

Example:- A uniform sphere, of radius a, is rotating about a horizontal diameter with angular velocity
Q) and is gently on a rough plane which is inclined at an angle ¢« to the horizontal, the sense of rotation
being such as to tend to cause the sphere to move up the plane along the line of greatest slope. Show
that, if the coefficient of friction be tana, the centre of the sphere will remain at rest for a time

. . .5 . o
Za—.Q and will then move downwards with acceleration 7S|n o . Ifthe body be a thin circular hoop

5¢gsina

. L 1.
instead of sphere, show that the time is and the acceleration > gsina .

gsina

Solution:- The sphere before being placed gently on the inclined plane rotating with an angular velocity
Q) about the horizontal diameter. Hence initially the velocity of the centre is zero.
The sense of rotation at the time of placing the sphere on inclined plane is such that it tends to
cause the sphere to move up the plane, that means sense of € is as shown in the figure. The
initial velocity of the point of contact A down the plane
= Velocity of the centre C + velocity of A relative to C.
=0+aQ, which is a positive quantity.

Hence the initial velocity of the point of contact is down the plane, so the friction xR acts up

the plane.
g
Equation of motion are mx =mgsina — xR )
0=R-mgcos« (2)
M
And mk® @ =—uR ?3)

Where y=tana
Eliminating R from (1) and (2), we get

N} [1
mx=mgsina—tana, mgcosa =0 = x=0=x=0 4)

0
From (2) and (3), we get (Initially when t =0, x=0)
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i [
mk® @ =—tana(mgcosa)a=-mgasina or k? 6 =—gasina

0
Integrating it, we get k> @ = —gatsina +k*Q
From equation (4) and (5), we observe that the centre of the sphere does not move at all, but
the sphere goes on revolving.

0
The sphere will cease to rotate when 6 =0
k?Q

From (5), we get 0 =—gatsina+k*Q or t =——
gasina

2 . . .
For sphere k* = : a®, and for the hoop k? = a?, hence the sphere will remain at rest for a time

2_8Q o ndfor the hoop this time will be —

ggsina gsina

: o
Now when X and aé become zero, the velocity of the point of contact (X—i— a@j becomes

zero, therefore pure rolling may commence provided the friction is sufficient for pure rolling.

Let F be the value of friction sufficient for pure rolling.
M
The equation of motionare my =mgsina —F ()

mkzg}ﬁzFa ... (ii) and §—a¢=0 (iii)

0
As y-ag=0 = y=ag=>y=a¢
mg sin o

1+(a® /K?)
mgsina .

When F < xR, the rolling continuous and the equations (i), (ii) and (iii) hold good.

Solving (i) and (ii) with the help of (iii) we get F = which obviously less than

i 2 qi M
From (ii) we get k? g = —9om & _ oy 92 SN cag=

. 2 . . 9.
Putting k* =ga2, y i.e. acceleration in case of sphere is 7gsma

I 1 .
Putting d® =a?,y i.e. acceleration in case of hoop is S gsina.

Example:- A homogenous sphere of radius a, rotating with angular velocity @ about horizontal
diameter is gently placed on a table whose coefficient of friction is x . Show that there will be slipping

at the point of contact for a time ? and that then the sphere will roll with angular velocity (2a)/ 7)
Mg

Solution:- Since the sphere is gently placed on the table, the initial velocity of the centre of the sphere
is zero, while angular velocity is @.
Initial velocity of the point contact = initial velocity of the centre C + Initial velocity of the
point of contact with respect to C.
= 0+aw indirection <
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Hence the point of contact will slip in the direction (<—) , therefore full friction xR acts in the
direction (—).

Let xe the distance advanced by the centre C in the horizontal direction and & be the angle
through which the sphere turns, then at any time t equations of motion are,

[
mx = uR 1)

2m

(Here R =mg) and m%ez—yRa @)

Q

%

o * 4 WR

[
Therefore, from (1) X = xg and from (2) %a@ =—ug

0
Integrating these equations, we get X = ugQt (3)

0
And aez—g,ugwaa) 4)

0 0
Since initially when t =0, x=0, 0 =w

0 O
Velocity of the point contact = x—a @

0 0
Hence the point of contact will come to rest when x—aé =0i.e. when

,ugt—(—E,ugtJraa)j:O or when t:@.
2 Tug

Therefore, after time sﬂ the shipping will stop and pure rolling will commence.
H9

2
Putting this value of t in (4), we get 8 = 70) when rolling commences, the equations

of motionsare mx=F 0]

[
m—~0=-Fa (i)and x—a@ =0 (iii)
[
From (i) and (ii) with the help of (iii), we get maé@ =F and %maG:—F
[
(x=a9 :x:aej

7 il M ] 2
Adding these two equations, we get E maéd =0 or #=0 = O = const. = 70) :
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Example:- Three uniform spheres, each of radius a and of mass m attract one another according to the
law of the inverse square of the distance. Initially they are placed on a perfectly rough horizontal plane
with their centres forming a triangle whose sides are each of length 4a. Show that the velocity of their

. ( smY"” . "
centres when they collide is (7/@) where y is the constant of gravitation.

Solution:- Let A, B and C be the points of contact of the spheres with the horizontal plane, when they

are initially at rest. ABC is an equilateral triangle of side 4a. Let O be the centre of the triangle
ABC
Due to the symmetry of the attraction, the spheres will move in the way that their points of
contact with the horizontal plane always form equilateral triangle.

Let L, M, N be the new positions of the points of contact with the horizontal plane after time

Let OL =X

By geometry, we observe that OL = xm ( %M = COS 30°j

3 X

Therefore, initially X = (ﬂj because initially the side of the triangle is 4a.

N

Now when the spheres collide X = (%) because in this case the sides of the triangle will
become 2a (As radius of each sphere is a, so the distance between their centres will be 2a)
Let L be the point of contact of the first sphere with horizontal plane at time t.

. . . ym? . ym? .
Force of attraction on this sphere due to other two spheres is = YE cos 30" + N? cos30

in the direction LO

ym? 3 ym? B

=8 N X2 (LM = LN = x/3

3x? 2+3x2 2( \/_)
2

m° . N . .
e in the direction LO i.e. towards X decreasing.

\3x?

¥
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As the plane is perfectly rough, there is pure rolling thus the force of friction at the point of
contact is F and acts opposite to the tendency of the motion of the point of contact, i.e. F acts
towards X decreasing.

. ) . - m
The equations of motion of the first sphere are mx = —( 72\/_] (1)
2
m( 22| 6= _Fa @)
5
Since there is no slipping, the velocity of the point of contact X+a@ is zero i.e.
0 ] il [
X=—-a0 = x=-ad 3)

I al
o ym
From (1), (2) and (3) on eliminating F and a @, we have x =—
7X2\/§

Integrating, we get (;(jz _10ym +K
’ 7/3x
Now, when x_— = :_mﬂ_ﬁ
\/_ 73 4a

Uty riJ

- 2a . L
When the spheres collide i.e. when x=—; from (4), the velocity at that time is

J3
() -2 £ (20"

Example:- A thin napkin rings, of radius a is projected up a plane inclined at angle ¢ to the horizontal
with velocity v, and an initial angular velocity € in the sense which would cause the ring to move

1
down the plane. If v>5aQ and u =Ztana, show that the ring will never roll and will cease no

4(2v-a
ascend at the end of a time % and will slide back to the point of projection.
gsina

Solution:- Initial velocity of the point of contact is V+a€, which is up the plane, hence the friction

4R acts down the plane.
I
The equation of motion are mx—mgsina — xR

M
=-mgsSina —umgCcosSa or X=—(Q (sina+yCOSa)

. 1 ‘ S
=—g 5|na+ztana005a orx:—zgsma (1)
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LR
o

[
And mazez—yRaz—%tana . mg cosa .az—%mg asina

4 1 .
afd=—-=gsina 2)
4
[
Integrating (1) and (2) and applying initial conditions that at t =0, x=Vv and & = Q2 we get
[
x:—%gsin a, t+v @)
‘ 1 .
And Hz—zgsma.t+aQ (4)
From (3), we observe that velocity of the centre is zero after time 4Y .
5gsina
]
The velocity of the point of contact at any time x+aé
B . 10
=—ngma+v—zgsma .t+aQ {From (3) and (4)}
3 ]
:v+aQ—§gtsma
_ : . 2(v+aQ) flessis 0
Hence the point of contact will come to rest after time ————=  x+afd=0
3gsina

2(v+aQ)< 4y
3gsina 5gsina

Pure rolling may begin before the upward motion ceases if the friction is sufficient for pure
rolling.

It can be seen that as vV >5aQ

5aQ-v

0 [
At this time X = which is positive and € =

which is —ve(-. v>5aQ) or

I v-5aQ
0= 6a in clockwise direction

When pure rolling commences, and rotation is in the, clockwise direction, the equations of
[N

motionare my =-mg sina + F
ma’¢=-Fa, y=a¢ and y=ag.

. . 1 .
Solving these equation, we get F = > mg Sinax
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1 1 .
But uR = Ztan a.mg Ccosa = Z m g Sin « ; hence friction is not sufficient for pure rolling.

Hence the sliding persists and pure rolling is not possible. The above equations of motion now
- . . 1
become my =-mgsina + xR =—-mg sma+ztana. mg cos &

3 I
=—7mg sine or yz—zgsina (i)

1 1 : 5 :
And ma2¢=—yRa:—Ztana . mgcose. a:—zmg asina or a¢:—zgsma (ii)

v-5aQ)
6

and

Integrating (i) and (ii) and applying the initial conditions when t=0, y =

. 5aQ-v ‘ 3 . v—-5aQ
ag= ,wegetyz—zgsma.t+

(iii)
5aQd—v

0
And a¢:—%gsina.t+

2(v-5aQ)

9gsina
o o - 2(5aQ-v)
Putting this value of time (iv), we get a¢ = —9

! : (v—aQ) 2(v-5aQ) 4(2v-aQ)
Therefore, total time of upwards motion = 2 - + - = :
3gsina  9gsina 99 sinx

We observe that y = 0 after time

0 2
Again, when the upwards motion ceases, we have a¢ = 5(5a§2—v) which is negative since

v >5aQ), hence the ring returns.
The velocity of the point of contact.
= Velocity of the centre + velocity relative to the centre

0 ) 2 2
:y—a¢=O—§(5aQ):§(v—5aQ)

=a positive quantity as v>5aQ) i.e. the velocity of the point of contact is up the plane ;

therefore friction wR acts downwards ; hence the equations of motion are
‘ . . 1
mz =mg S|na+yR:mgsma+Ztana .Mg. cosa

5
i.e. z=7gsina (1)

. 1 ‘ 1 .
and may/:—uRa:—Ztanamg cosc. a i.e. al//z—zg sina 2)
0
Integrating (1) and (2) and applying the initial condition that when t=0, z=0 and
| 0
aw:§(5aQ—v),we getZ:% gt sing, ay/:%gtsina+§(5aQ—v)

[ 0
Hence the velocity of the point of contact down the plane = z—ay
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5 . 1 . 2
=—gtsina—| ——gtsina+—(5aQ2—v
g Iemne { 5 Ot sina+ o )}

=§(v—5a§2)+ggtsina

Which is positive (v > 5aQ) ; hence the ring slides back to the point of projection.

Example:- A napkin ring, of radius a, is projected forward on a rough horizontal table with a linear

u
velocity u and a backward spin Q which is > —. Find the motion and show that the ring will return
a

(,u+ aQ)2

to the point of projection in time
P Prel 4pug(aQ—u)

where u is the coefficient of friction. What happens

if 4>aQ?
Solution:- Initially u—, yT and U <aC2. This initial velocity of the point of contact is U+a€2 and
is in the direction (—)) . Hence the friction xR acts in the direction (—)) . For this forward motion,

a

equations of motion are mxXx =—uR =—umg i.e. ‘x =-ug (1)
And mazgz—yRa:—ymg i.e. agz—,ug )
Integrating (1) and (2) and applying the initial conditions that when t =0, ;(: u and ézQ ,
we get )U(:—,ugt+u ©)
And aéL?:—,ugHaQ 4)

O P WR
0
The ring ceases to move forward if & =0, let this happen after time t,, then from (3) t, = A
Again integrating (4) and applying the condition that when x=0,t=0, we get

x=—%,ugt2+ut (5)
Thus the distance traversed by the ring in time t = L is found by putting t = L In (6) i.e.
H3 H9

x——lﬂg(i}tu[i} u* (6)
2" 7\ 1’9’ #9) 2ug

And then a@ = aQ) —u which is in the direction T( u <aQ)
Hence the ring returns.
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When the ring returns
Initial velocity of the point of contact is in the direction (—)) hence the friction xR will act

in the direction («).
g M ]
For this motion equations are my = 4R = umg i.e. y= xg and ma® ¢ =—uRa =—umga
[

ie. ag=—ug (i)
]
Integrating (i) and (ii) and applying the initial condition i.e. when t=0,y=0 and
[ [ [
ag=aQ-u,get y=ugt (iii)and ag=—pgt+aQQ—u (iv)

This equations hold good unit pure rolling commence i.e. unit y =a¢ (the velocity of the point

of contact) is zero. Let this occur after time t,then from (iii) and (iv), we have

ugt, +ugt, —aQ+u=0ie t, = a2-u
2pg
[ -
Hence from (iii) y = an u V)
- - - 1 2
Integrating (iii) again, we get yzz,ugt (vatt=0, y=0)
2 2
_ _ Q-
Puttingt:a u,weget yzl/ylg[aQ uj :(a u) (vi)
2 2 g 819

M m
When rolling begins, equations of motion are mz = F and ma® v =-Fa.

0 ] M M
Since there is not sliding, hence z=ay = z=ay .

I [
On solving these equations, we get F =0, hence no friction is required then z=0 ie. z=

aQ—u
constant = { att=0, z=

from (v)} i.e. when pure rolling commences (in return

motion) the ring continues to move with its initial constant velocity

Again the point where pure rolling commences is from the point of projection at distance
u? (aQ—u)z )

= - {from (6) and (vi)}
2ug 8ug

2 aQ—u) -
Therefore, the time taken to traverse this distance is t, = u —( ) _(aQ uj
2pg  8ug 2

u, aQ-u
ort; = - :
ug(aQ-u)  4ug
Hence the total time when the ring returns to the point of projection s
aQ-u u’ _aQ—u}

L+t +t,=—+ +
7 ug o 2ug {ﬂg(aQ—U) 4ug
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pg  4ug  pg(aQ-u) 4ug(aQ-u)’

u  aQ-u. u, ~ (aq-u)’

Second Part:- What happens when u>af€2?
To know this we should consider the motion in the forward direction already discussed in the
beginning.
] |

In that case velocity of the point of contact is X +a6 = (—xgt —u)+(—ugt+aQ) [From (3)
and (4)] =-2ugt+aQ+u

. . ’ . u+aQ

Rolling will commences when a+a& =0i.e. when t = .
219

o . . u

Again it is proved that the ring ceases to move forward after a time — for the moment of
H9
projection.
. . ... u+aQ u .
Hence the rolling commences before the forward motion has ceased i.e. if > <— e
H9 M9

u >aq). In other words we say that U >a €2, the rolling will commence before the forward
motion ceases.

Example:- A homogeneous solid hemisphere, of mass M and radius a, rests with its vertex in contact
with a rough horizontal plane and a particle, of mass m, is placed on its base; which is smooth, at a
distance cfrom the centre. Show that the hemisphere will commence to roll or slide according as the

25mac
26(M +m)a* +40mc?
Solution:- Let C be the centre of the base and G the centre of gravity of the hemisphere. At point P

, distant ¢ from the centre, a particle of mass m is placed. What CG is inclined at an angle & to the
vertical, let A the point of contact have moved through a horizontal distance X from its initial position

O, i.e. OA=X. Assume that the hemisphere rolls, and the point of contact A is at rest, so Xx=aé@,

coefficient of friction is greater or less than

[ (I [
hence X =a@ and X =ad.

S

Mg s r

»
»

The co-ordinates of G, referred to O as origin are(a@—gasin o, a—%asin Hj

2
The equations of motion of the hemisphere are F —Ssing =M %(a@—g—;sin 0)

“ 3a . )
=M {a@—g[cosee—sm 00 H (1)
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2
R-—Mg-Scosé=M d—z(a—g—acosej
dt 8

. .
=M(3§sin90+5§c05092j )

Taking moments about G,
[N}

Sc—F(a—%’icosej—R%sinezM92¢9 (3)

The co-ordinates of particle P re (a@+ccosé, a—csing), where GP =c

The equation of motion of the particle is
2

I
Scos@—mg=m%(a—csin@):m(—ccos¢99+csin002j (4)

0 0
As the initial motion is required i.e. when =0, 8 =0 but € =0 we have from (1), (2), (3)
and (4)
5 [
F :gMaQ, R=Mg+S

5 o | for the initial values.
SC—§F =Mk?@ and S =mg—-mcé

Eliminating F and S from first, third and fourth of the late for above equations, we get

MszréMa%mc2 é?:mgc (5)
64

2
But Mk? :éMaz—M (B—aj L Ma?

8 320

: Ko 2
Hence (5) reduces to (ﬁ Ma’ + 25 Ma’ + mczjﬁ =mgc or = (2)mgc = . Then
320 64 13Ma“ +20mc
F= § Ma. 2(2)mgc > and
8 13Ma“ +20mc
13Ma* (M +m)+20Mmc?

R=Mg+mg-mc. 28mgc == ( er )* -

13Ma“ +20mc 13Ma“ +20mc

F_ 25mac
R 26(M +m)a’+40mc?
The hemisphere will commence to roll or slide

F
If F<or >uRie If u>or <E

25mac

Or u> or<
# 26(M +m)a* +40mc?

Example:- If a uniform semi-circular wire be placed in a vertical plane with one extremity on a rough
horizontal plane, and the diameter through that extremity vertical, show that the semi-circle will begin

to roll or slide according as £ be greater or less than — . If u has this value, prove that the wire
7[ —

will roll.
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Solution:- Let C be the centre of the base of the semi-circular wire and G be its centre of gravity, then

CG:@,
T

Let as assume that the wire rolls. When CG is inclined at an angle @ to the horizontal, let the
point of contact A have moved through a distance x from its initial position O, i.e. OA=X.
Since the motion is assumed to be of pure rolling, therefore x =aé

0 0 [N} M
X=ad and x=ad.

The co-ordinates of the centre of gravity G with reference to O as origin are
(x+2—ac05¢9 ,a—gsin 49)
T T
Equations of motion of the wire are:
d? 2a d? 2a
F= mW(X-I-—COSlgj = md—(a49+—cosej

t2

T T
M [0 0
=m[a0—§sin09—§coseezJ (1)
T v
2 m U
R-mg =md—2(a—§sin QJ:m(—@cosemz—?e@zj 2)
dt T V4 rsin
M
And RECOSQ—F(a—Z—aSin 6j=mk20 (3)
T T
0
Since we want only initial motion, when =0 ; 8 =0, but & = 0. The equations (1), (2) and
[ [N} [
(3) giveus F=mad,R=mg —mQG ; R2_a_ Fa =mk? @& For the initial values.
T T
On eliminating F and R between these equations, we get
43° T 2a
[k2+—2+azJ 0="4g (4)
Vs T
2 2
But mk? =ma? —m(QJ or k? =a? —412
T T

2 2 m I
Thus (4) gives us, (a2—4iz+4iz+a2j6=@g or =39
T T T wa
O
Then F:maé?:ma.i:m
wa T
2_
R=mg—m§0=mg—m@.i=mg(1—%)=mg” 22
T T ma T T
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F_mg_ = 7

R =7« 'mg(ﬂz—Z)_ﬁz—Z
Hence the wire will roll or slide according as

F T
F<or>uR or,u>or<Eory>or< 5

7z' f—
If w1 has this value then the wire will commence to roll
2 2 2 2 2
as . 4a° a° . . 2a° _ 4da
Ifk?>—ielfa’——>— ieif —>—
3 T 3 3 /4

i.e. if 7° > 6, which is true.

T .
Hence for y=— , the wire rolls.
=2

Example:- A heavy uniform sphere, of mass M , is resting on a perfectly rough horizontal plane, and
a particle, of mass m, is gently placed on it at an angular distance ¢ from its highest point. Show

sina {7TM +5m(1+cosa )} _
5 , Where u is the

that the particle will at once slip on the sphere if x <
7M cosa +5m(1+cosa)

coefficient of friction between the sphere and the particle.

Solution:- Let C be the centre of the sphere. The horizontal plane is perfectly rough. So if the sphere
rolls on the plane, the particle of mass m remains at rest placed at point P, such that CP is inclined
at an angle (a+9) to the vertical. Let the distance of the point of contact A be x from the initial

[ 0
position O i.e. OA = X. Since the sphererolls, X =a 6 and the point of contact is at rest hence x =aé

O X
Let Rand F be the reaction and friction at the point P
With point O as the origin and the horizontal and vertical lines through O as co-ordinates axes,

I
the co-ordinates of point P are given by x=a@+asin(a+0)6,y =a+acos(a+0)

[ il
x=af+acos(a+0)6-asin(a+6)6’
I T 0
y =-asin(a+6)6-acos(a+6)6
Equations of motion of the particle mare
mgsin(a+0)—F :;](mcos(a+9)—m3]/sin(a+6')
[

=m{a-+acos(a+6)}0 (1)

[ I
R-mg cos(a+¢9):mxsin(a+¢9)+m‘y cos(a+0)

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

m J
=masin(a +6)6—-mab-mao’ )

The energy equation gives

2
%{M 2%0% Ma’® 6+ m[x2+ y? ﬂ = work done by gravity
=mga{cosa —cos(a +6)}

a]
ie. % Ma? 6+ ma’ {1+ cos(a + )} 6° = mga{cos o —cos(a +6)} of

[7Ma2 +10ma’* {1+cos(a + 9)}]62 =10mga{cosa —cos(a +0)|
Differentiating w.r.t to 't" and dividing by Zé , we have
[7Ma2 +10ma’ {1+ cos(a + 6’)}} 0—5ma’sin (a+0)6?

=5mga sin(a +6) 3)
As we only want initial, when =0, 5 =0 but @ # 0 equations (1), (2) and (3) reduce to
F =mgsina—ma(1+ COSa)g?

m

R=mgcosa+masinad these equations give the initial values of F,R

m
[ 7Ma’ +10ma* (1+cos ) |0 =5mg asina

M
and 6.
On solving these equations, we get
5mgasin &

7Ma?* +10ma’ (1+cosa)

F =mgsina —ma(l+cosa)

7M +5m(1+cosa)

7M +10m(1+cosa)
5mgasin &

7Ma* +10ma’* (1+cosa)

and

=gsina

R =mg cos « +masin

7M cosa +5m(1+cosa)’
7M +10m(1+cosa)

7M +5m(1+cosa)
7M cosa +5m(1+ cosa)2

Fo.
—=sihaa
R

F
The particle will slip on the sphere if F >uR orif p< R

sin a{?M +5m(1+ cosa)}
7M cos a +5m(1+cos a)2

e if <

Example:- A homogeneous sphere, of mass M , is placed on an imperfectly rough table, and a particle,
of mass m, is attached to the end of a horizontal diameters. Show that the sphere will begin to roll slide
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5(M +m)m
7M? +17Mm+5m?

the sphere will begin to roll if 5m? < M? +11Mm.
Solution:- Let the radius of the sphere be a and mass M .B is the point at which a particle of mass m
is attached. Let in time t the sphere have turned through an angle @ and the point contact have moved
through a distance x from its initial position O. i.e. OA=X.
Let G be the common centre of gravity of two masses, such that CG =c, then
ma aM

.BG=a-c=
M +m M +m

. If u be equal to this value. Show that

according as u is greater or less than

Mc=m(a—b)=c(M+m)=maie Cc-

K ‘?
o~ 4 LM (m g ) 1=

Assume that the sphere rolls and F be the force of friction sufficient for pure rolling. Since
the motion is of pure rolling.

2
x=aé:and ;(:aé.Also (M+m)k* =M, 2%+ Mcz+m(a—c)2

Ma® Mm?a? ma*M? 2Ma? Mma?

+ -+ s = + >
5 (M+m)" (M+m) 5 (M+m)
B Ma?*(2M +7m)

1

5(M +m)’ )
Referred to O as origin the co-ordinates of C.G. are (Xx+ccosé, a—c sind).
The equations of motions are

2 2
F(M +m)%(x+cc039):(M +m)%(a€+c coso) (2)
. i
=(M +m){(a—csin H)H—CCOSHHZ} (3)
dZ
And R—(M +m)g=(M +m)F[(a—csin0)]
. .
=(M +m){—ccos€6’+csin 902} (4)
(I
And Rccosd—F (a—csing)=(M +m)k* 6 (5)

0 0
As we discuss only and the initial motion when @=0, and & is zero but 6 =0,
equations (3), (4) (5) ; become
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F

(M+m)aé
R=(M+m)g—(M +m)cé | For the initial values of F,R and 2’

Rc—Fa=Mmk?é

[ c il
Solving these equations, we get € = m, putting for € in above equations,
+a°+
k’+a’  F gca

h = X =
e have (M+m) k*+a”+c? g (M+m) k*+c*+a’

The sphere will commence to slide or roll according as F > or <uR
e if L> or <,uﬂ—
k?+a®+c? k*+c*+a’
ac
(k*+a?)
5m(M +m)
7M?+17mM +5m?
5m(M +m)
7M?+17mM +5m’
a’Mm (7M +2M)
5(M +m)
a’M (7m+2M)
5(M +m)
2IMm +6M? >5(M? +2Mm+m?) i.e. 5m* <M?+11Mm.

e if u<or<

e if u<or<

(putting the value of c)

Critical Case:- Suppose u =

We have prove k* = in (2) and the sphere will roll if k? > (a2 /3) proved

in 310 ie if >(a’/8) or 3M(7m+2M)>5(M +m)° or

Example:- A solid sphere, resting on the top of another fixed sphere is slightly displaced and begins to
roll down. If the plane through their axes makes an angle « with the vertical when first cylinder is at
rest, show that it will slip when the common normal makes with the vertical an angle given by

k*sin@ :,u(k2 + 3b)2 cos @ — 2b* cos a} where b is radius of the moving sphere and K is the radius
2b% cosa
k* +3b°
Solution:- Let CB a radius fixed in the moving sphere makes an angle ¢ with the vertical, initially B
coincided with A. Let R and F be the reaction and friction respectively. Since there is no slipping

of gyration. The upper sphere will leave the fixed sphere if & = cos‘l[

between the two spheres, therefore, arc AP =arcBP, ie. a(0—a)=b(¢#=0) or ad=bg or

bg=(a+h)o
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Referring to O as the origin and horizontal and vertical lines through O as co-ordinates axes,

the co-ordinates of C are x=(a+b)sing and y=(a+b)cosé (2)
The energy equation gives
%m{kzqﬁ%(xﬁ yzﬂ=mg(a+b)(c05a+cose) ©)

or %{k2¢2+(a+b)2 91=(a+b)(c05a—c039)

2 0
or 2116 ) 07+ 0° | g (a ) cosar-cos0)
—2b%g

2 _
ore ~ (k*+b?)(a+b)

(cosa —cosf) (4)

gb?sin @

Differentiating (3) and dividing by 20 , We get 6 =
(a+b)(Kk*+b°)

()

As C describes a circle of radius (a+b) about O, its acceleration are (a+b)6’72 and

[
(a+ b)@ along and perpendicular to O. Therefore the equations of motion of the sphere are

m(a+b)6? = mgcosd-R (6)
(I
And m(a+b)@=mgcosd—F )
2
Hence from (6) and (4), we have R =| mg Cosg—a)zf—n;%)(cow —cosé’)
+
- kznlgbz [(kZ +3b2)c039—2b2 cos a} and from (7) and (5), we have

2 2 i
F-mgsing - r?gbzsiné?mg'”( sing
b? +k (k*+b?)

F k?sin®

R (k2 +3b2)c0549—2b2 cosa

The sphere will slip when F = uR i.e. if k? sinezy[(kz —3b2)0036?—2b2 COSOC:|

The upper sphere will leave the fixed sphere if R=0 i.e. if (k2 + 3b2)c030 =2b*cosa i.e.

0 = cos-! 2b% cosa
k*+30% )
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Example:- A homogenous sphere rolls down on imperfectly rough fixed sphere starting from rest at
the highest point. If the spheres separate when the line joining their centres makes an angle @with the
vertical, prove that cos @+ 2sin @ = Ae**’ where A is the function of z only.

Solution:- As the fixed sphere is imperfectly rough so the moving sphere rolls as well as slide on it thus
friction xR acts upwards. Let a be radius of moving sphere.

dv .
Equations of motion are mvd— =mgsind - uR (1)
S

mv?

And =mgcosé—R 2

2 V2

Eliminating R from (1) and (2), we get %ddl —u—=g(sin@— pcoso)
s a

dv? dé V2 .
Oor — .— —2u —=29g(sin@— ucos@
d@ ds A a g( e )
dv? : ds
Or — —2uv?® =2ag(sin@— ucosé rs=afd >—=a
dp 2+ —2a0(sing—pcos6) ( a6 ]

Above is linear differential equations, its solution is
vZe?"’ =C +2ag J‘e’w (sin6—cosd)d 6

=C+2619—W[(—2ysin0—C0$<9)—y(—2yC0$49+sin49)]
1+44°
or Ve’ =C +2nge‘2*‘9 | -3usin6—(1-2u)cosd |
1+4u
. 2ag
Again when €=0, v=0 L C=—=_(1-24°
: 1+4y2( )
2,20 280 o . 2
Therefore, Ve *’ = —==_ ¢ -3usin 0 — (1~ 2u” ) cos |
1+4u
2ag 2
+ 1-2
1+4/12( )
2 2ag . 2 2ag 2\ n2u0
Oor v "o [ —3usin6—(1-2u )cose]+1+4ﬂ2 (1-24)e
The sphere separates where R =0, thus from (2), we have Ve = agcosé or
2ag . 2 2ag 2\ . 2u0
Tea | —3usin6—(1-2u*)cos 0 | Hra (1-24)e* = agcosd
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Oor 2[—3/,¢sin0—(1—2y2)c036}+2(l_2ﬂ2) & — (1+ 44 ) cos 0
Or 6 usin 0+30039=4(1—2ﬂ2)ezw

Or cos@+2usin 6 =%(1— 2,uz)e2”"

Or cos@+2usind = Ae*’ where Azg(l—Z,uz)

Example:- A rough solid circular cylinder rolls down a second rough cylinder which is fixed with its
axis horizontal. If the plane through their axes make an angle « with the vertical when first cylinder is

4c03aj

at rest, show that the bodies will separate when this angle of friction is cosl( -

Solution:- Refer figure of Ex. 1
Let CB aradius fixed in the moving cylinder make an angle ¢ with the vertical, initially B

coincided with A. Let ¢ and b be the radii of fixed and moving cylinder respectively. As
there is no slipping between the two cylinders, therefore arc AP =arcBP ie.

a(0-a)=b(p—0)
a@:b((p—ej or bg=(a+b)e

Referring to O as the origin and horizontal and vertical lines through O as co-ordinates axes
the co-ordinates of C are {(a+ b)sing,(a+b)cos H}

a
The energy equations gives %m{kz ézﬁ‘+(a+ b)Hz} =mg(a+b)(cosa —cosd)
[
Oor %(ajtb)2 492+(a+b)2 0” =2g(a+b)(cosa—cosb)

{ b= (a+b)}

or (a+b)4924?g(003a—c039) (1)
The centre C describes the circle of radius (a+b) about O

m(a+b)é2:mgcose—R 2)
From (1) and (2),

R=mg cose—%(cow—cow) = %(7cose—4c03a)

The bodies will separate when R=0

i.e. when 7cos@—4cosa =0 or cosezgcow

or @=cos™ G cos aj
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Example:- A uniform sphere of radius a is gently placed on the top of a thin vertical pole of height
h(> a) and then allowed to fall over. Show that however rough the pole may be the sphere will slip

on the pole before it finally falls off it.
Solution:- Let OP be a fixed vertical pole of height h and a sphere is gently placed at top P and
then displaced. Let us assume that friction is sufficient to keep the point of contact at rest, so the sphere
turns about P without slipping.

Let at any time t the angle turned by the sphere be @ and F be the force sufficient to keep the

point of contact at rest.
N}

Equations of motion of C.G. of the sphere arc ma@ =mgsin 6 —F 1)

[
And maé® =mgcos 6—R )

0
1 (28, L,
Energy equation gives Em ?9 +a’0° |=mg(a—acosd)

[
Or ad’ = g g(1-cosd) (3)
.5
Differentiating (3), we get af = - gsinég (4)
[mg|
From 1) and (4), we have F=mgsind=-—mad or

F :mgsine—gmgsinezgmgsine

:
From (2) and (3), we have R =mgcosd—maé® or

R=mg cos@—gmg (1-cos0) =%mg (17cos6-10)
. . 10
The sphere finally fall of when R =0 i.e. when 17cos@—-10=0 or cosé = 17

F
Also the sphere will slip when F > xR or < R

2sin@

<—————  weobserve that if x is not negative, then =0 when =0
H 17cosf-10 # J H

(i.e. when motion
just begins)

10
And g =00 when C0s@ = T (i.e. when particle falls off)
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Thus sphere will slip between =0 and 8 = cos‘lg if 4 lies between 0 and oo.

Thus we observe that however rough the pole may be, the sphere will slip on the pole before it
finally falls over.

Example:- A uniform beam of mass M and length | stands upright on perfectly rough ground; on the
top of it which is flat rests a weights of mass m, the coefficient of friction between the beam and the
weight being « . If the beam is allowed to fall to the ground, its inclination @to the vertical when the

weight slips is given by (% M +3mjcos¢9—(M /6 1)sin@=M +2m
Solution:- Let at any time t, the rod AB make an angle @ with the vertical with m resting on the top

B . Now, taking moments about A for the beam, we get M .%Iz =M 1I sind—F.|

[

Further equations of motion for mass m are ml @ =mgsin6+ F )
[
M16* =mgcosd—R 3)
Vertical K g:am

Whence eliminating F between (1) and (2), we obtain
[
(M +3m)|9:§(M +2m)gsiné (4)
0
Again Multiplying both sides by 26 and integrating, we get
(M +3m)1 6> =-3(M +2m)gcosd+c

When =0, é:O = c=3g(M +2m)

0
= (M +3m)l6” =3g(M +2m)(1-cosb) (5)
[
= F=ml&-mgsiné [using (2)]
_ 3m(M +2m)gsm0_mgsin0 by (@)
2(M +3m)
mMGsiné
F = - 6
- 2(M +3m) ©)

[
Further R=mgcosé—16°, using (3)
3mg (M +2m)(1—-coso)

=mgcosé —
M +3m

by (5)
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mg (4M +9m)cos&—3(M +2m)

= R=
M +3m

F 1 M siné
= @ —==

R 2(4M +9m)cos&—3(M +2m)

But F =uR = u=F /R when the weight slips
- 21 Msiné

#7 2 (aM +9m)coso—3(M +2m)

= (EM +3mjcos6’— M sin@=M +2m.
3 6u

Example:- A circular plate rolls down the inner circumference of a rough circle under the action of
gravity, the planes of both the plate and the circle being vertical. When the line joining their centres is

inclined at an angle @ to the vertical, show that the friction between the bodies as gsm 6 times the

weight of the plate.
Solution:- Let O be the centre of the fixed circle whose radius is a and C be the centre of circular
plate that rolls down and its radius is b .
Let at any instant the radius CB (a line fixed in the body) make an angle ¢ with the vertical a
line fixed in space. Initially, B coincided with A, a fixed point on fixed circle. OA is inclined

at an angle « to the vertical OC.
As there is no slipping between the bodies
Arc AP =arc BP

[upper side in the figure]
0 0 0
ie. a(a—0)=b{27—(0+¢)} or —ad= —b(<9+ ¢)

0 [ an

or bg=(a-b) -.bg=(a-b)o )

il
Equations of motion of the plate are m(a—b)&=F —mgsing (2)

2

And mb?gz):—F.b ©)

i [ i
On eliminating @ and ¢ from (1), (2) and (3), we get i.e. F :¥ :(mg

the weight).
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Example:- A circular cylinder of radius a and radius of gyration k rolls without slipping inside a fixed
hollow cylinder of radius b. Show that the plane through their axes moves in a circular pendulum of

k2
length (b— a)(1+ ¥]

Solution:- Let @be the angle through which the plane of axes turn and let ¢ be the angle which CB a

line fixed in the moving cylinder makes with the vertical.

The outer cylinder is fixed. Equations of motion of the inner cylinder are
[uE|

m(b—-a)@=F —-mgsin@ (1)

|
And mk* ¢=—Fa )

Again there is no slipping

al I
arc AP =arc BP or bd=a(0+¢) or ag=(h-a)é 3)

[
Eliminating F and ¢ between (1), (2) and (3), we get
m 2m 2 m

m(b—-a)f=- ¢—mgsin¢9:—mk (b—a)@—mgsing or

a.2

a

2

(a—b)(1+k2

(b SR 749 g :
-a) 1+¥ @=-gsin@ or 0= as @ is small.
3

2
Therefore, length of the simple equivalent pendulum is (b - a) (1+ k—zJ .
a

Example:- A disc rolls on the inside of a fixed hollow circular cylinder whose axis is horizontal, the
plane of the disc being vertical and perpendicular to the axis of cylinder ; if when in the lowest position,

89

3(a—h)

1/2
3(a—b
angle ¢ about the centre of the cylinder in time {%} Jlog tan (% + %j .
g

1/2
its centre is moving with a velocity { } , show that the centre of the disc will describe and

Solution:- Let C be the centre of the disc and O be the centre of the fixed hollow cylinder whose radius
is a. Let aline CB (fixed in the body) which was initially in a vertical position and coincided with
OA makes an angle @ with the vertical.

Assume that the disc rolls, so that the arc AP =arcBP or ag=b(6+¢) or bd(a—b)¢

or bé:(a—b);ﬁ. (1)
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Referring to O as the origin and vertical and horizontal lines through O as axes, the co-
ordinates of centre C are {(a—b)sing,(a—b)cosg}

Kinetic energy of the disc at any time t is

1 [2 2 1 2 2 1 2 b2 2
=—m| X+ +=mk“8°==m|(a-b)g°+—@
2 [ yJ 2 2 ( )¢ 2

=%m{(a—b)2¢2+b—;(a;—2b)2¢2} {'-'é:(aT_quj}

3 2
==m(a-b) ¢
n(ab)'s
_ . 3 8
It follows that the initial K.E. of the disc =Zm§ g(a—b)=2mg(a-b)

O
Sinceat t=0 ¢ :{3(:g—b)}

Therefore, the energy equations gives % m (a - b)2 #*—2mg (a - b) = the work done
by gravity =—mg(a—b)(1—cos¢)

Or %m(a—b)2 g)ﬁz = g(a—b)(1+cos¢):2mg(a—b)coszg

Example:- A solid homogenous sphere is rolling on the inside of a fixed hollow sphere, the two centres
being always in the same vertical plane. Show that the smaller will make complete revaluation if, when

L - - 34 :
it is in its lowest position, the pressure on It IS greater that 7 times Its own WelghtS.

Solution:- Let O be the centre of the fixed hollow sphere whose radius is a and C the centre of the
moving solid sphere whose radius is b. Let CP be a radius (a line fixed in the body) makes an angle
¢ with the vertical (a line fixed in space) initially B coincided with A.
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Let @be the angle that the line of centres make with the vertical at any time t.

As there is not slipping between the two bodies, therefore, arc AP=arcBP or
a

af=b(¢+6) or bp=(a—h)o (1)

C describes a circle of radius (a—b) about O.

0
Equation of motion of the sphere is m(a—b)&” =R—mgcosé )
Taking the horizontal and vertical lines through O as coordinates axes. Coordinates of the
centre C are {(a—b)sin®, (a—b)cos6}

2
[
So at any time t, the (velocity)> of the centre C:{(a—b)coseﬁ}

+{—(a—b)sin 6?[9}2 =(a-b)’ &

2
At any time t, kinetic energy of the sphere = % m %¢2+ % m(a- b)2 6°

:%m,ém(a—bz)t92+%m(a—b)2 6° from (1)
m 2

=M a by e

o @b)

m
Initially K. E. of the sphere =E(a—b)2 Q? where Q is the initial angular velocity.

Hence energy equations gives,

[
= 71—r(?(a—b)2 492—71—rcr;(a—b)2 Q7 = work done by the gravity
=-mg[(a—b)—(a-b)cosd |

ie. (a—b)6? =(a—b)¥’ -1079(1—@39) ©)

Again from (2), R =mgcosé+ m(a—b)é2

=mg cos¢9+m(a—b)QZ—10$(

1-cosd)

The sphere will make complete revolutions if R=0 when 8 =r
20m
2N e o2 = 279
7 7(a—b)
This gives least value of €2 for making complete revolution.

ie. 0=—mg+m(a-b)Q*-
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0
Again to know the value of R in the lowest position put #=0 and € =Q in equation (2);
then R (in lowest position) =mg cos0+m(a—b)Q?

27mg 2 279
=mg+—— v Q =———
9Ty { 7(a—b)}
34

——mg—?’—7 times the weight
7 7 o

Example:- A cylinder of radius a, lies within a rough fixed cylindrical cavity of radius 2a. The centre
of gravity of the cylinder is at a distance ¢ from the axis, and the initial state is that of stable equilibrium
at the lowest point of the cavity. Show that the smallest angular velocity with which the cylinder must

: : Lo 2 4(a+c)’
be started that it may roll right round the cavity is given by Q°(a+c¢)=g<1+————— where
(a—c) +k?
k is the radius of gyration about the centre of gravity.

Find also the normal reaction between the cylinder at any position.

Solution:- Let O be the centre of fixed cylindrical cavity whose radius is given 2a, C the centre of
the moving cylinder whose radius is given as a. At time t let CB (a line fixed in the moving body)
makes an angle @ with the vertical (a line fixed in space). By geometry each of the other angles are
also equal to @ as marked. Initially B coincided with A ; it can be easily derived that B lies on the
vertical line OA. Taking the horizontal and vertical lines through the fixed point O as co-ordinates
axes, the coordinates of the gravity G are.

x=(a—c)sing, y=(a+c)cosd ,where CG=c

0
So that ;<=(a—c)cos6"é, y=—(a+c)singo”?
[ 0
x=(a—c)cos#6—(a—c)sing6?
I T 0
y=—(a+c)sing6-(a+c)cosg s

X2+ y? :(a—c)2 cos® 6?6?2+(a+c)2 sin” 0 6

0
=(a’ +¢* —2accos26) 6’
So at any time t, (velocity)? of C = (a—c)2 Q°
[
(when =0, 6=Q)

Hence energy equation gives
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1 2 2 2 ‘2 1 2 2 2
Em[k +a’ +¢* —2accos 20 |0 —Em[k +(a—c) ]Q
=-mg[(a+c)-(a+c)cosd| (1)
[N} [N}

Equations of motion of the cylinder is R—mg cos@ =-mx sind—mycosé

. i
= —m(a—c)[cos@@—sin Hezjsin 6
m 0
+m(a+c)(sin 66+ cos@@stin 2]

m 0O
=m{csin200+(a+c0320)92}

m 0
Or R—mg cosezm{csin 2049+(a+cc0329)02} )
The cylinder will roll round the cavity if R=0 when & =r;
0
Then from (2), g(a+c)6? 3
2 2 ﬂ2 2 2 2
And from (1) [k +(a—c) }0 —[k +(a—c) }Q =—4g(a+c) (4)

[
Eliminating 6 between (3) and (4), we have

[kz +(a—c)2}i—[k2 +(a—c)2}Q2 =-4g(a+c)

or [kz +(a—c)2}(a+c)Q= g[k2 +(a—c)2+4(a+c)2]

S 4(a+c)’
Or (a+c)Q _g{l —k2+(a—c)2}

Which is the required result.

Example:- A solid spherical ball rests in limiting equilibrium at the bottom of a fixed spherical globe
whose inner surface is perfectly ough. The ball is struck a horizontal blow of such a magnitude that he

initial speed of its centre is V; prove that is v lies between {(? gd j} and {(27—7 gd ]}the ball

would leave the globe, d being the difference of the radii of the ball and the globe.

[
Solution:- Refer Ex. 4 and with the same figure, we have d @=b(6+¢) or bg=(a-b)o=d@

where d =a—b. 1)
Initial velocity of the centre is given by

:
d? 6% =v? For initial value. 2)

2 0 0
At any time t, the K.E. of the ball is given by T, :%m(%¢2+d2 sz
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[ 0 0
Lol2egidre? |- My g
2" 5 10

mg

1 7
At the time of projection. K. E. of the ball will be =5m. gv2 using (2)

2
Again, energy equation gives %mzd 2 92—% m% =-mg (d —dcos)

] 2
= dez—Eg(l...cose)Jrv—
7 d
Again centre C describes a circle of [radius a about O, so we obtain]
[
md #* =R—mgcosv (4)
Eliminating de? between 3) and (4), we readily get

2
R=mg cose—gmg(l—coseﬁmvg

2
—  R=21mg|17coso-|10-"L
7 gd

Now, the ball would leave the globe when R =0

2
- 17cose—[10—7ldj=o

g
- Cosé’:1Ogd 7v :_7v 10gd @
27gd 17qgd
But cos@ is to be numerically less than 1 . 7Tv? —=10gd <17 gd .

- w2

Again when @ is obtuse, we have C0S# = —ive
i.e. 7v? —10+ positive i.e. v—>,/(10gd /17)

() =)

Example:- A thin hollow cylinder of radius a and mass M s free to turn about its axis which is
horizontal and a smaller cylinder of radius b and mass m rolls inside it without slipping, the axes of
the two cylinders being parallel. Show that when the plane of the two axes is inclined at an angle & to
the vertical angular velocity of the large cylinder is given by
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a’(M +m)(2M +m)Q* =2gm* (a—b)(cos&—cos ) provided both the cylinder are at rest when
O=a.
Solution:- Let O be the centre of the outer cylinder and C the centre of the inner cylinder. The figure
is the vertical section of the system through O and C.
Let CB be the line fixed in the inner cylinder and ON be the line fixed in the outer cylinder.
Initially ON and CB coincided with OA i.e. initially B coincided with N .
After time t when the line OC makes an angle & with the vertical, let ON and CB make
angels y and ¢ with the vertical.
Since there is no slipping, .. ArcNP = arc BP

ie. a(y—6)=b(4—0) .bg=ay—(a-b)o
or bp=ay—(a-b)é (1)
Considering the motion of the cylinders and taking moments about their centres of gravity, we
M
get mb? @ = FB (for smaller) 2)
[
And Ma’y = —Fa (for largest) (3)

From (2) and (3) we have mb¢! = —Mal/‘/

Integrating, we get mb ¢ =—-May (4)
(initially ; and y are both zero)

From (1) and (4) on eliminating ;¢ we get Mal/‘/ = mal/;—m(a—b)é or

a(M +m)y‘/=m(a—b)5 or (a—b)H:@yx (5)

The coordinates of the centre of gravity C of the smaller cylinder with reference to O which
is at rest are {(a—b)sin 0.(a—b)cos 6} .
Hence energy equation gives

[ ] 0
%Ma2 y/2+%m{b2 #*+(a-b)’ «92} =mg(a—b)(cosf—cosa) (6)

[
In (6) putting the values of b ¢ and (a—b)0 from (4) and (5) respectively we get

2 0 0
e’ WZH{%&IZ WZJFW& 1//2} =2mg(a—b)(cosé—cosa)
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0
M+—+ }//Z:ng(a—b)(cose—cow)

0

M)(2M +m)y? =2m’g(a—b)(cosd—cosc)
M

Or a’ [M (m+M)+(M er)z]z//2 =2m’g(a—b)(cosd—cosa)
(
( )(2M +m)Q* =2m*g (a—b)(cos&—cosar) which is the required result. If

Example:- A uniform circular cylinder of mass M is free to rotate about its axis which is smooth and
horizontal and about which its radius of gyration is equal to its radius. A uniform solid sphere of mass
m is placed with its lowest point in contact with the highest generator of the cylinder, both sphere and
cylinder being initially at rest. The sphere is then slightly disturbed and rolls down the cylinder. Show
that the slipping takes place before, the sphere leaves the cylinder, and begins when

2M sin49=,u{(17M +6m)cos&—(10M +4m)}where 6 is the inclination to the vertical of the
plane through their axes and  the coefficient of friction.

Solution:- Let O be the centre of the cylinder whose radius is a and C the centre of the sphere whose
radius is b .
Let the cylinder have turned through an angle w to the vertical and CB a line fixed in the

sphere make an angle ¢ with the vertical, a line fixed in space.

Initially B coincided with Aand OAand CB were vertical.
Since there is no slipping, hence arc AP =arcBP .

ie.a(0—y)=a(¢p—06)or b(/3+az/i=(a+b)5 (1)

Considering the motion of the cylinder and the sphere respectively and taking moments
m 2
about their centres, we get Ma? w = Fa (for the cylinder) ; and mﬁqﬁ =Fb (for
m

the sphere)

[ m [
Mat//zz—r:b¢ ie b¢:%aw

- 5M
Integrating, we get b¢ = E ay {Initially ¢ and w zero so constant vanishe}  (2)

Putting the value of ¢ from (2), we get
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[
M ay+ay =(a+h)o

2m

. S5M+2m_ ' S 2m

ie. Tayx—(a+b)0 or ay/——sM o =(a+h)o
‘ 5M

then hp=——= b)o

en bg 5M +2m (a+)

the coordinates of C, the centre of the sphere with reference to O the origin and vertical and
horizontal through Oas axes are {(a+b)siné,(a+b)cos6}

2
(Velocity)? of C = {(a+ b)cos&@}

[

+{—(a+b)sin 496?}2 = (a+b)2 =6’

Therefore energy equations gives

1., 5, 1[20% ] 2
EMa i+ =, ?qﬁ +(a+b) 6* |=mg{(a+b)—(a+b)coss} or

2
2
I (arby e
2 (5M +2m)
1 2 25M 2 2 - 2 -
+=m|=.——— (a+b) @*+(a+b) #* |=mg(a+b)(1-cos®d
2 L, s g 2 0 (a0) } a(a+b)(1-cos0)

+=|(a+b) 6% =g(1-cosd

3 {M(SM +2m) 1} 7

Or (LJrlj(aer)ejz =g(1-cos8)

5M +2m 2
™ +2m ‘
or —— b)6? =2g(1-
r5M+2m(a+ )0? =2g(1-cos0)
10M +4m
@) byg? =———— =g (1—cosé
r(a+h) =M 2 2rm g(1-cosd)

Differentiating above and dividing by 26, we get

[
(a+b)¢9=mgsin9
7™M +2m

‘ i
Equations of motion are m(a+b)#* =mgcosd—Rand m(a+b)&=mgsind—F

10M +4m

[
R=mgcos@—-m(a+b)&* =mgcosé—
g ( ) g M +2m

mg (1—-cos0)

10M +4m ) 10M +4m
=mgcosé| 1+ —

m
™ +2m ™M +2m

mg _ [
=m[(l7M +6m)cos&—(10M +4m)] and F =mgsin@—m(a+b)o
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. 5M +2m i 2M mgsin @
=mgsind —-———mgsinf =———
™ +2m ™ +2m

F 2M sin @

R (17M +6m)cos@—(10M +4m)
Slipping begins when F =uR ie. 2M sinH:y[(ﬂM +6m)cosd—(10M +4m)]

Above equation gives the value of @, when slipping begins where 8 <7z

Now R = F = M which is obviously positive for all values of & lying between 0
Y7, ,u(?M +2m)

and 7.
Hence the slipping begins before the sphere leaves the cylinder.

1 . L
Example:- The mass of a sphere is c of that of another sphere of the same material which is free to

move about its centre as a fixed point, the first sphere rolls down the second from rest at the highest
point, the coefficient of friction being x . Prove that sliding will begin when the angle € which the line
of centre makes with the vertical is gives by sin@ = 2y(50059—3)

Solution:- Let the mass of the lower and upper sphere be M and m respectively so that M =5m.
The lower sphere is free to move. Let of upper sphere.
Let the lower sphere have turned through and angle y such that OA, a line fixed in the lower

sphere make an angle w with the vertical and the line CB (a line fixed in the upper sphere) an
angle ¢ with the vertical. Initially OA and CB were vertical and B coincided with A, OC

the line joining the centres makes an angle @ with the vertical.
Since there is no slipping between the sphere, so arc=AP=arcBP e

a(0—y)=b(¢—-0)

Or al)/+b¢:(a+b)0=09 [Here c=(a+b)] (1)

(For Lower

sphere)
vymg
2 m
The equation of motion for the lower sphere is M ?1// =Fa 2
[
Equations of motion for the upper sphere are and mc 8> =mgcosé—R (3)
N}
mcd=mgsind—F 4)

Since C describe a circle about O of radius (a+b) =cC.

Hence F is the friction sufficient for pure rolling.
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27
Also m%¢ _Fb 5)

]
ay bg a_yxzb_¢=ay/+b¢= co

From (2) and (5), we have —=— or
m m M m+M m+M

: m ‘ M
ay = cO and bg = co

v m+M ¢ m+ M

2 10 2 0 al
Energy equations gives %M 2%1//2+%m(%¢2+ c? 92} =mg (c—ccosd)
2 0 2 0 0

orim 2™ gty E.M—zczé?2+026?2 =mg(1-cosd)

2 5(m+M) 2 |5 (m+M)

0
F Mm m}c202=2mgc(1—c039)
5 M+m
5 2 ﬂz
Or|=—.—+m|cH =2mg(l-cosf) (*~M =5m
2 S Joor ~2mg(a-cos0) (4 =5
0 3
Or c&? :Eg(l—cose) (6)
1] [

Differentiating (6) w.r.t. 't' and dividing by 268, we get c& :%gsin 0 (7

From (3), we have R =mgcos&—mc 8 =mg cose—g mg (1-cosa)

[from (6)]

5c0s6-3
=mg T

From (4), we have

1T
F:mgsin@—mcezmgsinH—%sinH:%mgsine [from (7)]
F 1 . 2 sin@
—==-mgsindg. =
R 4 mg (5cosd-3) 2(5cos6-3)
- T F . sin@
Sliding will being when F =R or — = ie.when ———— =4 or
i d # R~ 2(5co0s0-3) H

sin@=2u(5co0s0-3)

Example:- A rough cylinder, of mass M , is capable of motion about its axis which is horizontal; a
particle of mass mis placed on it vertically above the axis and the system is slightly disturbed. Show

that the ‘particle will slip on the cylinder when it has moved through an angle & given by
(M +6m)cosd—M sin @ =4my, where u is the coefficient of friction.

Solution:- Assume that F is the force of friction which keeps the particle at rest the radius OP makes
an angle & with the vertical. Referred to O as the origin, the co-ordinates of particle are
(asin®,acos )
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Energy of the particle %m(x% yzj = % ma’ 6

F  (on particle)

2

Energy of the cylinder = % M %02 due to rotation

2
The energy equation gives % M % 02+% ma® 6% = work done by gravity =mga(1-cos®)

0
Or a(M +2m)6* = 4mg (1-cos6) (1)
[uE|

Differentiating above the dividing by 26, we get a(M+2m)6=2mgsind (2

[
The particle m describes a circle about O, therefore, mag” =mgcoséd—R  (3)

And ma@d=mgsind—F 5
- 4m’g
Hence R =mg cosé—maé” =mg cosd — - m(1—cos 0) [From (1)]
_|_
mg
= M +2m)cos6—4m(1-cosd
M +2m ( ) ( )]
il 2 -
__ Mg (|v| +6m)cos@—4m] and F:mgsine—maezmgsine—w
M +2m o
From ()] =91 (M + 2m—2m) - THITRE @
+ +

M sin@
(M +6m)cosd—4m

F
From (3), and (4) R

The particle slips from the cylinder when F = xR i.e. when % =u

Msiné _
(M +6m)cos€—4m_

or when £(M +6m)cos&—4m u=Msing

i.e. when Y7,

or when z(M +6m)cos&—M sin & —4m x, which is the required result.

Example:- A circular cylinder of radius a and of radius of gyration k rolls without slipping inside a
hollow cylinder of radius b which is free to move about its axis. Show that the plane through their axis
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(k*1a%)

2 2
1,2 T

a® mK

and K are the radii of gyration, of the inner and outer cylinders respectively, about their axes; and m
and M their masses.
Solution:- Adjoining figure is the vertical section through the centres of gravity of the two cylinders.
The centre O remains fixed and the outer cylinder turns about it, let y be the angle turned by it when
the plane of the axis makes an angle @ with the vertical. Let CB a line fixed in the inner cylinder makes
an angle ¢ with the vertical a line fixed in space. Since there is no slipping so Arc AP = Arc =PB ]

will move like a simple circular pendulum of length (b—a)(1+n) where n= where k

[

ie. b(0—w)=a(g+0) or b¢+aé=(b—a)9 1)

Equations of motion are Mk? = —Fh (2)
M
For outer cylinder Mk? ¢ = —Fa (3)
1
And m(b—a)0=F-mgsiné (4)  for inner cylinder
[ |
2 2
From (2) and (3), we have —F = Mkb V _ ml; ¢ or
[
e by _ ag _ by+ag
(b>/MK?)  (a*/mk®) (b*/MK?)+(a/mk?)
m
= (b-2) (By virtue of (1))
- (0®/MK?)+(a® /mk?)’ 4
[T
— k*/a®) «
Therefore, F =— (b=2)0 =-m(b-a). ( - )2
(b>/MK?)+(a’ / mk?) L, D mk
+ 2" 2
a®~ MK
m (kzlaz)
=—m(b—a)n9 ,where n—w
1+72 . 72
a- MK

nl

[
Putting this value of F in (4), weget ~ m(b—a)¢=-m(b—a)n 6—mgsing

Or (b—a)(1+n)b:—gsin¢9 or é:—me

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

(@ is small taking @ for sin @)
Thus length of simple equivalent pendulum is (b—a)(1+n).

Example:- Two unequal smooth spheres, one placed on the top of the other are in unstable equilibrium,
the lower sphere resting on a smooth table. The system is slightly disturbed, show that sphere will
separate when the lines joining their centres make an angle @ with the vertical given by the equation

mcos® @ =(M +m)(3cos&—2), where M is the mass of the lower, and m that of the upper spere.

Solution:- Let C and C' be the centres a and b the radius of the lower and upper sphere respectively
and their masses are M and m respectively. Let after time t the lower sphere have moved through a
distance X on the table when CC' the line joining their centre makes an angle @ with vertical.

As both the sphere are given to be smooth there are no forces acting on them to turn either
sphere about its centre i.e. there is no rotation.

o X
The co-ordinates of centres of gravity of both sphere with reference to O as origin are (x, a)

(for the lower sphere) and X =x+(a+b)sing,Y =(a+b)cos@ (for the upper sphere)
There is no horizontal force on the system, since the sphere and the planes are smooth. Thus

%{M x+m{x+(a+b)cos¢90}}=0

[
Integrating above we get (M +m)x+m(a+b)cos#0=0 (2)
[
(Initially x =0= 4, so that constant = Q)

0
Or x=-—

a
M+m(a+b)cos¢99 (3)

Energy equations gives

%M x2+%m(X2+Y2]=mg {(a+b)—(a+b)cos¢9)}

[
or %M xﬂt%m{x2+(a+b)2 92+2(a+b)¢9xcose}

=mg(a+b) (1-cos®)

\ 2 0 O
Putting for x? from (3) we get 1 M(am)z cos® 0 0%+ m(a+b)2 6’
2| (M +m)

2

(M +m)

.
-2(a+b)’ coszeez}:mg(a+b)(l—cose)
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.
—Mcos2 6(a+b)|6” =2g(1-cosd)

(M+M)
0
or (M +msin? 9)92 = (asz)(M +m)(1-cos @) (4)
Differentiating (4) with respect to t, we have
[
(M +msin’ ) 0+ mcosOsingo? = M M gsing (5)
a+b

Let R be the reaction between the two spheres.
Considering the horizontal motion of the lower sphere, we have

m 0O
(a+ b)}(cosee— sin eazJ

M
—Rsind =M x=M{—

M +m
. m o,
Or Rsiné = (a+b)| cos@H—-singo (6)
M +m
M 0
By (6), R vanishes i.e. sphere separate, when cos@8 = sin 8 6° (7)
Y O M4+m .
On eliminating 6° from (5) and (7), we get (M +m)0:( b) gsin@ or
a+
o
0= Lsin@
a+b
Thus from (7) cos@(LJsinezsin 00° or 62 NS
a+b (a+b)

0
Putting this values of 8% in (4), we get

(M +msin? 0) geosd _ 29 .\, +m)(1-cos)

(a+b) (a+b)(

Or {M +m(1-cos’ 0)} cos ¢ = 2(M +m)(1-cos0)
Or mcos® & =(M +m)(3cosd—2) which is the required result.
Example:- A hemisphere of mass M s free to slide with its base on a smooth horizontal table. A

particle of mass m is placed on the hemisphere at an angular distance o from the vertex, show that
the radius to the point of contact at which the particle leaves the surface, makes with the vertical an

angle @ given by equation mcos® @ —(M +m)(3cosd—2cosar) =0
Solution:- Let in time t the centre of the hemisphere have moved through distance X on the placed

0
and its velocity be X while CC' make an angle @with the vertical where C in the centre of the

0 0
hemisphere and C"' is point where particle is placed. Let X and aé be the horizontal and tangential
velocities of the particle.
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With reference to O as the origin, the coordinates of centre of gravity of particle are
X =x+a+asind, Y =acosd

R

o X C

As there in no horizontal force on the system, so %{M X+ m(x+ acosH&j}:O.

0 0 O 0 0
Integrating above equation we get M X+ m(x+ cos&@j =0 (since x=0=4@ initially, so

constant =0)
]
. macosé

Or x= (M+m) 1)

[ ]
Kinetic energy of the hemisphere is %M x* and that of the particle is %m(x 2+Y2] . Since

there are no-forces to turn the hemisphere, so there is no rotational energy. Hence the energy
. . 1M ‘
equation gives E M x°+ m(x2+ a’ 0>+ 2a 0 xcos 0) =mga(cosa —cosd) (2)

0
Putting for x from (1) and (2), we get
0
m(M +m)a’ cos? 66 5, 2a’mcos’d

+a?P-————" " —9* =2ga(cosa —cosd
(M +m) (M+m) i )

0
Or (1— M cos? 0)&2 0” = 2ga(cosa —cosf)
M +m

or {(M +m)—mcos” H}aHJZ =2g(M +m)(cosa —cos ) ?3)

[N
Considering horizontal motion of the hemisphere, we have M Xx=-Rsin@d or

[
M i(xj =—Rsin@ or —('\Aﬁg(@cosej =—-Rsinég.

dt M +m) dt
The particle leaves the hemisphere of R =0 [from (1)]
| M
i.e. if %(0c059)=00r @cosf = 6°sind (4)

equation (3) may be written as
a(M +m)sin® 0)” = 2g(M +m)(cosa —coso)
Differentiating it with regard to 't" and dividing by 28, we get
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m ‘ M +m
(M +msin? 9)9+ msin & cos 8 6° :Qsine (5)

Thus from (4) and (5), we get 0= %sin 0 S0 = gcos@

a
0
Putting this value of 6% in (3), we get
{(M +m)—mcos’ x}a(%cos@j =2g(M +m)(cosa —coso)

Or mcos® & —(M +m)(3cos&—2cos e ) = 0 which is the required result.

Example:- Two homogenous sphere of equal radii and masses m and m' rest on a smooth horizontal
plane with m" on the highest point of m. If the system be disturbed show that the inclination @ of

their common normal to the vertical is given by aéz (7m +5m'sin? 9) =5g(m+m')(1-cosd)
Solution:- Let C and C' be the centres of the two spheres whose masses are m and m' respectively
CA and C'B of are the redii (line fixed in the bodies) which were initially vertical. Let in time (t)
the lower sphere have moved through distance X on the table while the line of their centres CC"' make
an angle @ with the vertical and the bodies have turned through angle ¢ and y in space. As there is
no sliding, hence Arc AP = ArcBPie. a(6—-g)=a(y—0) or 0—¢g=y =0 or y+¢=20.

‘(upon upper)

B

(upon lower)

0 x
Considering the motion of the spheres and taking moments about their centre C and C', we
2 1 2
have m'%l/l = Fa (for the upper sphere); m'%¢ = Fa (for the lower sphere)

I [
: y_ ¢
m'y=m or —=—
y=m¢ ey
0 0 0 0 0
Integratingit,wegetzziz v+ ¢ = 20
m m' (m+m’) (m+m’)
(by componendo and dividend)
0 0
[ ! [
yo—2MO 4 2MO itially g =0=y)
(m+m’) (m+m’)

The coordinates of C and C' with respect to O as origin, are (x,a) and

(x+2asin@,a+ 2acos @) respectively.

. . ) d 0 0
Since there is no horizontal force on the system, we have a{m X+m '(x+ acoseej} =0

Download books https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

] [ [
Integrating it, we get mx+m '(x+ 2a 005496?) =0
0 0
(initially x =0 = @, so constant = 0)

N , 2 —2am’ p
Or (m+m')x=—2am'cos@Gor x = -c0s 66 2)
m+m

The energy equation gives
0 2 0 0 O 00 2 0
L x+2i¢2 Lo x2+4a26?2+4a(:036?6’x+Zix//2
2 5 2 5
=2am'g(1—cosd) (3)

0 [
Putting for X, ¢ andin w (3), we get

.2C052‘99+ — :
(m+m’) 5 (m+m’) (m+m’)

4a’mm* © 23’ 4mm” |, 4m®°a? g
{ AL 2 ~C0s 66

0 ]
8a’m”?cos’06*> 2a° 4m’*m'H?

]
e (mem) 5 (m+m)’ ~femalieod)
‘m(m+m' 2m(m+m' 2m'cos 6 | |
- <n5:m-)2)c°52‘9+ﬁ”‘m]a92_g(l_cosg)
2 m m'cos’@ | |
£ 1— 6°> =g (1l-cosd
or_s(m+m')+ (m+m?) | Y

]
or (2m+5m+5m'-5m'cos *0)ad® =5(m+m') g (1-cos )
[
or (7m+5m'sin” #)a®” =5(m+m") g (1-cos@) which is the required result.

Example:- A uniform solid cylinder rests on a smooth horizontal plane and on it placed a second equal
cylinder touching it along its highest generator, if there is no slipping between the cylinders and system
moves from rest, show that the cylinder separate when the plane of either axes makes an angle & with
the vertical given by the equation 2c0s®@+4cos’@—35c0s6+20=0. Also show that until the

cylinder separate the same generators remain in contact.
Solution:- The adjoining figure is the vertical section of the system through the centre of gravity of the

cylinder. Let C and C' be the centres of two cylinders, CA and C'B the lines fixed in the cylinder
making angle w and ¢ with the vertical at time t, Initally CA and C'B were vertical and B
coincided with A.
Since there is no slipping, between the two cylinder, hence arc AG = arcBG where G is
their point of contact. The cylinder being equal (gives)
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(for upper)

(¥
A

E(for lower)

ZACG= £ZBC'G

Considering motion of the two cylinder and taking moments about C and C', we have
2 2

ma?t// = Fa (for the lower cylinder) ; and m%¢ = Fa (for the upper cylinder)
[

Integrating we get ¢ =y

Again integrating ¢ =y

The constants vanish when initially y,¢, y and ¢ are all zero.

Again ZACG =/BC'G ie. -y =¢—-0Oie y—-p=20ic. the same generators

remain in contact until the cylinder separate.

Since there is no horizontal force on the two cylinder considered combined together therefore,
the common centre for gravity G (which is the point of contact) will descend vertically. Let the
vertical through G cut the horizontal plane in O, then 0 is a fixed point. With O as origin and

horizontal and are (asin@a+2acos@), then (—asind,a) respectively.
1 | a® 5 B Solmnlosiiales oy _Loumg 2 o 2
—m|—@°+a“cos 86° |+—m| —E°+| a°cos 6 +4a°sinb
2 2 2 2
=mg[2a—2acosd] (Here we have taken ¢ =6)
or a(3+2sin’ 0)6” = 4g(1-cos o)
or a(5-2cos’ 0)6” = 4g(1-cos o) (L)

Differentiating and dividing by 2 0 we get

I 0
a(5-2cos” 0) 0+ 2asin fcos 6° = 2gsin )
Now consider the horizontal motion of the upper cylinder
2 m 0
Rsin6’—Fcos6?=m%(asiné’)zma{cosé?—siné'ﬁ2 0] (3)
a2 0
And also m?gb =Fa 4) (taking moment about C")

Eliminating F between (3) and (4), we get

m

un] [N
Rsing = ma[cosee—sin 902j+%9cos«9
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. ,
ie. Rsin 6’=%(3c0306’—23in eazj

The cylinders will separate if R=0, i.e. if 3cosf8=2sin@6

2

0

(I
Now we eliminate @ and 6 between (1), (2) and (5)
(1]

Putting the value of @ from (5) in (2), we get
a(5-2cos’ Q)MQZ-F 2asincos 6 =2gsin
3cosé

or a(5+cos’ 0)é2 =3gsing

0
Putting this value of 8° in (1), we have

(5-2cos® H)M
S+c0s” 0

ie. 3(5— 2cos? 0)cos€ =4(1-cos 0)(5+cos2 6)
i.e. 15c059—6c0s® 0 =20—20c0s8+4cos* §—4cos’ 0
i.e. 2c0os® @ +4cos*@—35c0s6+20=0, which is the required result.

=4g(1-cosb)

Example:- A uniform rough ball is at rest within a hollow cylindrical garden roller, and the roller is
22
then drown along a level-path with uniform velocity V . If V? > - g (b = a) , show that the ball will

not completely round the inside of the roller; a,b, being the radii of the ball and roller.

Solution:- Let O be the centre of the roller and C the centre of the spherical ball moving inside the
cylindrical roller. Let CN be the radius of the ball was vertical when it was in-its lowest position. When
the roller has moved through a distance X, let CN have turned through an angle &. The line joining
the cetnre ¢ with the vertical and the ball has turned through an angle @. As there is no sliding.

arc BM =arc BN
i.e. b(¢+l//)=a(0+¢)
or (b—a)g=ad—by @

0 O
Again the velocity of the roller is constant i.e. Xx=by =V

il |
Then Xx=by =0 )
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Let R and F be the normal reaction and friction. As C describes a circle of radius (b— a) about

m

[
0] so accelerations along CO and perpendicular to CO are (b—a)¢52 and (b—a)¢

respectively.
0

Thus equation of motion are m(b—a)¢* = Rmg cos ¢ (3)
1

m(b-a)¢=F —mgsing @)
2

and m%ez—F .a (5)

Eliminating F between (4), and (5) we get
(I [
(b—a)¢=—2—;¢9—gsin¢ or (b—a)¢+§(b—a)¢—gsin¢

1N 1 (1] i
[since (b—a)¢=abd—ay =ad by virtue of (2)]
[0

Or %(b—a)¢:—gsin¢ (6)
[
Integrating it, we get %(b —a)¢’ =2gcosg+ A @)

Initially the velocity of the C.G. is 5(+(b—a)é5 =0

0 0 7V 2
ie. (b—a)p=—x=-V KEBES -
(b-2)¢ S[T2a) #
Hence the equation (7)gives

%(b—a)(;ﬁuz =-29g(1-cos¢g)+

7\/2
5(b—a)
Substituting for ¢72 from (8) in (3), we get

2 2
v E(—cos;zﬁ) =%(17g cos¢—10g + b7V ]

(8)

E—gcos;zﬁJr —
m b-a 7

The necessary condition that the ball should roll completely round the fixed cylinder is that R
is positive when ¢ =7, and if R is positive in this position.

2
Hence {bN —-10+17gcos ¢} >0
_ .

2 27g(b-
Or bN > 279 orV2>M

Revision at a Glance

M i i
0] M X, ==X, My, =2Y, Mk? @ = L where L is the moment of external forces about G.

1
(i)  K.E.ofthebody = K.E. due to translation (E Mvezj + K. E. due to rotation (% Mk? 192)

0
(i)  Moment of momentum about the fixed origin O = Mv,, + Mk* 8.
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PREVIOUS YEARS QUESTIONS
CHAPTER 2. EQUATION OF MOTION IN 2D / D'ALEMBERT PRINCIPLE

Q1. Arod of length 2a revolves with uniform angular velocity o about a vertical axis through
a smooth joint at one extremity of the rod so that it describes a cone of semi-vertical angle « .
Prove that the direction of reaction at the hinge makes with the vertical, an angle

tan™ E tan a] [1d IFoS 2022]

Q2. A particle is constrained to move along a circle lying in the vertical xy-plane. With the help
of the D'Alembert’s principle, show that its equation of motion is Xy — yx—gx =0, where g is

the acceleration due to gravity. [5d UPSC CSE 2021]

Q1. Auniformrod OA, of length 2a, free to turn about its end O, revolves with angular velocity
® about the vertical OZ through O, and is inclined at a constant angle « to OZ; find the value
of a.

[5¢c UPSC CSE 2019]

Q2. A circular cylinder of radius a and radius of gyration k rolls without slipping inside a fixed

hollow cylinder of radius b. Show that the plane through axes moves in a circular pendulum of
2

length (b—a)[1+ k—zj . [6c UPSC CSE 2019]
a

Q3. A uniform rod OA of length 2a is free to turn about its end O, revolves with uniform
angular velocity o about a vertical axis OZ through O and is inclined at a constant angle « to
OZ. Show that the value of « is either zero or

cos™ ( 429 . j . [7c 2014 IF0S]
(0}

Q4. A weightless rod ABC of length 2a is movable about the end A which is fixed and carries
two particles of mass m each one attached to the mid-point B of the rod and the other attached
to the end C of the rod. If the rod is held in the horizontal position and released from rest and

allowed to move, show that the angular velocity of the rod when it is vertical is /g_g .
a
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[8b 2012 IF0S]

Q5. The ends of a heavy rod of length 2a are rigidly attached to two light rings which can
respectively slides on the thin smooth fixed horizontal and vertical wires Oy and Oy. The rod

starts at an angle o to the horizon with an angular velocity \/[39 (1—sin a)/Za] and moves

downwards. Show that it will strike the horizontal wire at the end of time

—2.Ja/(30) log| tan| Z—£ |cotZ |. [8a UPSC CSE 2011
a/(3g) og{an(8 4}00 8} [8a ]

CHAPTER 3. LAGRANGE'S EQUATION OF MOTION
Q1. A particle at a distance r from the centre of force moves under the influence of the central

K . u : . ]
force F =z where k is a constant. Obtain the Lagrangian and derive the equations of

motion. [5d UPSC CSE 2022]

Q2. Derive the Lagrange's equation for a spherical problem. [8a IFoS 2021]

Q3. Obtain the Lagrangian equation for the motion of a system of two particles of unequal
masses connected by an inextensible string passing over a small smooth pulley. [6C UPSC
CSE 2021]

QL. A particle is attached to a center by a force which varies inversely as the cube of its distance
from the center. Identify the generalized coordinates and write down the Lagrangian of the
system. Derive then the equations of motion and solve them for the orbits. Discuss how the
nature of orbits depends on the parameters of the system. [8a 2020 IFoS]

Q2. For a dynamical system

1 2 g
T =§{(1+2k)6’2+29(p+(p2},
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2

Vv :n?{(l+ k)6 +go2} ,

where @, ¢ are coordinates and n, k are positive constants, write down the Lagrange's
equations of motion and deduce that

(é—¢)+n2(¥j(9—¢)=o.
Further show that if 8 =¢,0=¢ at t =0, then 6 =¢ for all t. [6c 2019 IF0S]

Q3. Suppose the Lagrangian of a mechanical system is given by
_ 1 .2 .. .2 1 2 2
L _Em(ax +2bxy +cy )—Ek(ax +2bxy +cy?),

where a,b,c,m(>0),k(>0) are constants and b® = ac. Write down the Lagrangian equations
of motion and identify the system. [6c UPSC CSE 2018]
Q4. A particle of mass m is constrained to move on the inner surface of a cone of semi-angle

o under the action of gravity. Write the equation of constraint and mention the generalized
coordinates. Write down the equation of motion. [8c 2018 IFo0S]

Q5. Two uniform AB, AC, each of mass m and length 2a, are smoothly hinged together at A
and move on horizontal plane. At time t, the mass centre of the rods is at the point (&,7)

referred to fixed perpendicular axes O,,0O, in the plane, and the rods make angles &+ ¢ with
Ox. Prove that the kinetic energy of the system is

m{éz +7? +(%+sin2 ¢j a’0? +(%+cos2 415) azqﬁz]

Also derive Lagrange's equations of motion for the system if an external force with components
[X,Y] along axes acts at A. [6c UPSC CSE 2017]

Q6. Consider a mass m on the end of a spring of natural length | and spring constant k. Let y be
the vertical coordinate of the mass as measured from the top of the spring. Assume that the
mass can only move up and down in the vertical direction. Show that

L:%my'z—%k(y—l)2+mgy

Also determine and solve the corresponding Euler-Lagrange equations of motion.
[8a 2017 IF0S]

Q7. A hoop with radius r is rolling, without slipping, down an inclined plane of length | and
with angle of inclination ¢. Assign appropriate generalized coordinates to the system.
Determine the constraints, if any. Write down the Lagrangian equations for the system. Hence
or otherwise determine the velocity of the hoop at the bottom of the inclined plane. [8b UPSC
CSE 2016]
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Q8. A bead slides on a wire in the shape of a cycloid described by the equations
x=a(f-sind)

y=2a(1l+cosf)

where 0<@<2x and the friction between the bead and the wire is negligible. Deduce
Lagrange's equation of motion. [8b 2016 I1FoS]

Q9. Two equal rods AB and BC, each of length I, smoothly joined at B, are suspended from A
and oscillate in a vertical plane through A. Show that the periods of normal oscillations are

2% \where n? =[3iiJg. [8a UPSC CSE 2013]
n J7 )1
Q10. Find the Lagrangian for a simple pendulum and obtain the equation describing its motion.

[5d 2011 IFoS]
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Motion in Two Dimensions
(under impulsive forces)

Example:- Two rods AB and BC of length 2a and 2b and of masses proportional to their lengths, are
freely joined at B are laying in a straight line. A blow is communicated to the end A, show that the
resulting kinetic energy when the system is free is to the energy when C s fixed as

(4a+3b)(3a+4b):12(a+b)’.

Solution:- Case I:- When the system is free. Let the mass of the unit length be m, then length of the rod
AB =2a = massof AB=2ma;length of the rod BC =2b = mass of BC =2mb. Further let G, be
the C.G. of therod AB and G, that of BC.

Let P be the impulse applied at A at right angles to AB then there will be an impulsive action
between the two rods at B . Let the impulse be Q, in opposite directions on the two rods AB

and BC respectively.

2 C
b,
NP

Just after the impulse, let U, be the velocity of the centre of gravity of AB and @, its angular

velocity U, and @, similar quantities for BC . Since the rods AB,BC are started fro rest, the

equations of motion of the rod AB are

2mau, =P +Q (motion of G,) (1)
2
And 2ma%a)l :(P—Q)a (taking moment about G, ) (2)
Similarly for the motion of BC, 2mbu, =Q  (motion of G,) (3)
2
And 2mb . bEa)2 =Qb [taking moment about G, ] (4)

The rods are connected at B, so the velocity of the point B of the rod AB = velocity of the
point B referred to BC
ie. U —aw=-U,-ba, (5)
substituting the values for @;,U,; U,,®, in (5), we get
3(P—Q)_P+Q:g+£ pb
2a 2a 2b 2b 2(a+b)

Velocity of the point A at which the below has been given

=0=
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P+Q_3(P-Q) P(4a+3)

—U +a =
! Y 2am 2am 2am(a+b)

Now substituting the value of Q in (1), (2), (3) and (4), we get

1 {P+2(bp }_(2a+3b)P 3 {Z(bp }_3(b+2a)P

% oma a+b) _4ma(a+b)'aa)l_2ma a+b)| 4ma(a+b)’

1 bp P 3 bp 3P
u, = = ,and bw, = =
2mb | 2(a+b)| 4ma(a+h) 2mb | 2(a+b)| 4m(a+h)
So in this case total kinetic energy.
=K.E. of therod AB+K.E. of therod BC.

2 2 2 2

~1oma u12+a AL omp| w2+ 22

2 3 2 3
(2a+3b)° P 3(b+2a)’ P?

=ma S o+ .
16m*a*(a+b) 16m?a*(a+b)

)l
16m2(a+b)2 16m2(a+b)2

- (2a+3b)° P? N 3(b+2a)’ P?
16m’a’(a+b)’ 16m’a*(a+b)’

p2 3pP?
+mb 5>+ 5
16m?(a+b)” 16m*(a+b)
p*(4a+3b)(a+b) _ (4a+3n) p? B

= = =E,. Say
4ma(a+b)’ 4ma(a+b)
Case IIl:- When C is kept fixed.
In this case, for the motion of AB, we get
2mau, =P +Q (1)

2

And 2ma%a)l =(P-Q)a

2
For the motion of BC, we also have 2mb%a)1 =2bQ

[taking moments about C ] (2)
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Now velocity of B referred to AB = velocity of B referred to BC
= -U+am=2bw, (4)
1
From (1) and (2), we get U, —a®, = (—2P +4Q) L —
2ma
Substituting from this and from (3) and (4) we readily get

_ 1 _,Q . _ (2P)
( 2P+4Q)Zma_ 32mb OIrQ_(3a+4b)

Substituting this value of Q in (1), (2) and (3), we get

1 [ 2bP j (3a+6b)P

u, = P+ = , and
2ma 3a+4b) 2ma(3a+4b)
3 ( 2bP j 3 (3a+2b).P

am = P- = )

2ma 3a+4b) 2ma (3a+4b)
Also, b, = i i

2ma\ 3a+4b

Total K. E. of AB+ K_.E. of BC

=% 2ma(u +:1)>a % +— 2mb(4b2 j

3
1 (3a+6bj pz, 1 9 [3a+2b] 4 9 b?P?
=ma 2.2 P a2 +mb| —. 2 2 2
4m“a“\ 3a+4b 34 3a+4b 3 4m°b (3a+4b)
(3a2 +7ab+4b2) o7 3(a+b)
4mab(3a+4b?)  ma(3a+4b)

. k- {(;:;(ibj E)} / {ﬁi?gabj Zb)}

o B {300} {2

2

=E, say

Example:- AB, BC are two equal similar rods freely hinged at B and lie in a straight line on a smooth

1
table. The end A is struck by a below perpendicularto  AB ; show that resulting of A is 35 times of B
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Solution:- Let P be the impulsive force applied at A. Just after the blow let U, @, and U,, @, be the linear
and angular velocities of the rods AB and BC respectively. When the blow is struck, there will be an
impulsive action between the two rods at B . Let Q be the impulsive actin at the joint B in opposite

directions on two rods. Also let 2abe the length of each rod and m be the mass, then equations of
motion for the rods AB and BC are

m(u,~0)=P+Q (1)

1, for the rod AB
m1§a a)lZ(F’—Q)a (2)

mu2:Q (3)
And 1, for the rod BC
and mza w,=Qa (4)
0
G,
B ( l Ic
i TOR)
Q 2

But the rods are connected at B so the velocity of B, as deduced from each rod must be equal,

. 5P op
e U —aw =—(U,+aw,) = ulzm, aa)lzm (5)
5P 9P

Velocity of A_ul+awl_m+m__z__31
Velocity of B u,—aw, 5P 9P 2 2

4mm

1
= Velocity of A= 35 times the velocity of B.

Example:- A rectangular lamina, whose sides are of lengths 2a and 2b, is at rest when one corner is

caught and suddenly made to move with prescribed speed V in the plane of the lamina; show that the

greatest angular velocity which can thus be imparted to be lamina is ——MMM—
4/(a® +b?)
Solution:- the corner A is suddenly made to move with prescribed velocity V in plane of the lamina, such

thatV makesin angle @ (say) with BA, just after the impulse, let U,V be the velocities of the centre of

gravity G parallel and perpendicularto AB, and let @, be the angular velocity of the lamina.
Now DG = (a2+b2);
b

So COSﬂ:m
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sin g =
(a2+b2)
p— B
2 PR ST
7 fu PRELSOSEN 2
4
D = c
T
(4Gow) G
Equations of motion are mu = X (1)
mv=Y (2)
2 2
a‘+b
And m w=Xb+Ta (3)

Now velocity of A parallel BA = velocity of G parallel to BA + velocity of A parallel to BA relative
toG

Vcosfd =u+b w (4)
And velocity of A perpendicular to AB = velocity of G perpendicular to AB+ velocity of A

perpendicularto AB relative to G.

Vsind=c+ (a1+b2ja)sin,b’:v+ (a2+b2)a)%
(a +b )
Vsind=v+aw (5)
Substituting the values of X and Y [using (1) and (2)]in (3), we have
2 2
a ;b a):ab+a[(v cos@—ba))b+(Vsin9—aa))a] [using (4) and (5)]
4(a*+b’) _
— w=V (bcosd+asing) (6)
. - . " 4, , Hdo .
Differentiating (6), with respect to 0", we get g(a +b )E:V(_bsm 6?+aCOSt9)

. do
For wto be maximum, we must have @ =0

cosd sing 1

b a \/(a2+b2)

i.e. —bsin@+acosd =0 (7)

(6) and (7) give
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%(a2+b2):v b a or o= __.

\/(a2+b2) \/(a2+b2) 4,/(a* +b*)

Example:- A square lamina ABCD rest on a smooth horizontal plane. If the corner A is made to move
with velocity U along the 3A produced then determine the initial angular velocity of the lamina.
Solution:- For a square let us choose b=a. The corner A is made to move with velocity U along BA
therefore, V =U and @ = 7. Hence angular velocity U along BA is obtained by puttingV =U,8 =7 in
result (6) of Ex. 3, we get.
ﬂ(a2 +a’)w=u(cosz+asinr) or 8 w=—auto w=—N
3 3 8a
Above relation gives the required angular velocity.

Example:- Two equal uniform rods AB and BC are freely joined at B and turn about a smooth joint at
A . When the rods, are in a straight line @ being angular velocity of AB and U the velocity of the centre

of mass BC; BC impinges on a fixed inelastic obstacle at a point D; show that the rods are

) ) 2Uu—aw _ :
instantaneously brought to rest if BD =28 ————— where 2a is the length of the either rod.
3u+2amw

Solution:- Let @, be the angular velocity of BC before the impulse P is given at D . Here BD =X say
sothat G,D = X—a. Obviously there will be an impulsive action between the two rods at B and let it be

X, in opposite directions on the two rods. Now further if the rods are instantaneously brought to rest,

4
then the equation of motion of rod AB is m, gaz @ =X.2a (taking moments aboutB) (1)

S

7/ .
C ty G A DC
(’01
Also equations of motion of BC are mu=P—-X (2)
1
mgaza):P(X—a)+Xa [-G,C=x-a] (3)

But the rods are connected at B so the motion of B as deduced from each rod must be the
same.

= 2aw = vel. Of G, + vel. Rel. to G, =u—am,

Putting the value of P and @, from (2) and (4) in (3), we obtain

m,%a(u—Zaa)):(mu+X)(x—a)+ Xa=mu(x—a)+ X X
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m%a(u—Zaw)=mu(x—a)+m éaa).x

%a(u—Zaa)+3u)—§x(3u+2wa) = x=BD=2a

Example:- There particles of equal masses are attached to the ends A

[putting for X from (1)]

2U—aw
3u+2aw

and C and the middle point B of

al light rod ABC and the system is at rest on a smooth table. The particle C is struck a blow at right
angles to the rod. Energy communicated when the system is free as 24 : 25

Solution:- Let P be the impulse of the blow imparted at B and mass of each particle at A,B,C be m

where AC =2a.
1% case. Let A be no fixed. i.e. system is free.

The C.G. of the three particle is at B and the system is at rest before the action of the impulse.
Let U be the velocity of the point B . When total mass 3m is supposed to be placed at B, let
@ be the angular velocity of the rod after the action of the impulse, then the equations of motion

are 3mu=P
[motion of C.G. i.e. B] (1)
U 3(1)
1! m m
A B TC
I)
3mk? @ = Pa [taking moments about B] (2)
And 3mk? = ma® + ma?
2a
Sothat k? =—
Now K.E. = Lamuesl amie o
2 2
2 2.2 2 2
= [K.E.] _3m P ~+k? Pza . :P_(1+§j:5P
L2 |9m 9m* k 6m 2) 12m

2" Case. Let A be fixed:- Here the mass m attached at A does not move, so the rod turns about A say

with angular velocity @, . Hence the particle m and B describes a circle of radius a about the fixed point

A and the particle m at C describes a circle of radius 2a about the point A, so that their linear velocities

are a@,, 2am, respectively.

Then taking moments about A, we obtain

()] 1

}?’IC

. )

“~fixed
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2P
ma’ w, + mda’e, =P. 2a = o, = ——
oma

Also, (K.E.), :%ma2 % +%m At :gmazwf

5 4P 2P (KE)

2 ‘2m5 5m (KE) 5

1

Example:- Three equal uniform rods AB, BC,CD are freely jointed and placed in a straight line on a
smooth table. The rod AB isstruck atits end A by a by a blow which is perpendicular to its length, find
the resulting motion and show that the velocity of the centre of AB is 19 times that of CD and its
angular velocity 11 times that of CD
Sol:- Let each rod be of length 2a and mass m and P be the impulse of the blow at A . Hence there will
be impulsive action at B and C in opposite directions, which also takenas X and Y respectively.

Just before the blow, the three rods are at rest and after the blow let U, @, ; U,,®, ;U; @;be

the velocities of C.G.’s and the angular velocities of the rods AB, BC and CA respectively. Then
2

we have. For AB. mu, =P - X, m% w, =Pa+ Xa (A)
O, 5 41 Xo,,, o, s

, < o) Y

2 T g gt

* G, l B NG l v

I) X 2 Y !3

aZ
For, BC. muZ:X—Y,m?a)2:Xa+Ya (B)
a.2

For CD.muS:Y,m? w,=Ya (Q)

Now velocity of B should be the same as deduced from motion of AB and BC and similarly

velocity of C should be the same as deduced from the motion of BC and CD respectively.

For Bu,—am =u,+aw, (1)
For CU,—aw, =U, +awm, (2)
P-X 3(P-X) -2P-4X
= Ul—aa)lz — =
m m m
X-Y 3(X-Y) 4x+2y
From (B), we have U, +a®, = + =
m m
(1) = 2P—-4X =4X+2Y or4X+Y =-P (3)
. . X-Y 3(X-Y) -—2Xx -4y
Again from (B), we obtain U, —a®, = + =
m m m
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Y 3Y 4Y .
And U;taw,=—+—=— [using C]
m m m
= —2X —4Y =4Y or X+4Y =0 [using (2)] (4)
Solving (3) and (4) e X =P gy =L
olvin and (4), we ge =———and Y =—
& g 15 15

1( 4Pj 19P 3( 4P 11P
j—t Ul=— P+_ =_’a)l=_ P—— =
m 15 15m ma 15 S5ma

uolf 4P _PY_ P _3(_4P_P)_-5P
2 m\ 15 15 3m’ % 3al 15 15) 5ma

1 3(P P
u3=—, a)3=— _ = —_—
15m mall5/) 5Sma
19P P
= ul;u3:9—;—:19;1i.e. u, =19 u,
15m  15m
i.e. velocity of centre of AB is 19 times that of CD
11P P
Further @, ; @, =——:——=11;1ie. @ =1lw,
Sma 5ma

i.e. the angular velocity of AB is 11 times that of CD.

Example:- The uniform rods, AB and BC, of the same material are smoothly joined to B and placed in
a horizontal line; the rod BCis struck at G by a blow at right angles to it, find the position of G so that
the angular velocities of AB and BC may be equal in magnitude.

Solution:- Let AB =2a and BC =2b and let m be mass of each rod per unitlength. Also let G, be the
centre of gravity of the rod BC and G, that of the rod AB.

Let P be impulse applied at a point G of the rod BC such that GG, = X.

®

o /G " 5 12 pot"

N\l G NG,
P o

After the application of the blow, let U, be the velocity of G, the centre of gravity of BC, and

A

@, it angular velocity, U, and @, similar quantities for the rod AB, in the direction as shown

in the above figure.

When the blow is struck, let the impulsive action at B between the two rods be Q, in opposite
directions on the two rods.

Initially the rods BC and AB were at rest

m 2bu, =P-Q (motion of G;,) (1)

2

m2bb€a)1 =Px+Qb (motion of G,) (2)
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m.2au, =Q; (motion of G,) (3)

a2
And mZa? @, +Qa ; (motion about G,) (4)

Further the rods are connected at B, so the velocity of B, from each rod, must be the same i.e.

u,—ba =u, +aw, (5)
Now we have two cases:
Case (i):- If @, = @, (equal in magnitude and same in direction)
, aw, am
Equations (3) and (4) = Uu,= =— (6)
3 3
. bo = aw, . 4a+3b
And equation (5) =>UuU-bo = T+ aw,,i.e. U = 3 o)
b? 2mb?®
= [using (3)]

Also (2), = XPzZmE o, —Qb= 3 @, —2mabu,

2mb® 2ma’b (. am ) 2mb,,
e e

P =2mbu, +Q [using (1)] =2mbu, +2mau, [using (3)]

4a+3b  2ma’
=2mb 3 o+ 3 “ [after substituting for U, and U, ]

:2_m(a2+4ab+3b2)w1:%m(a+b)(a+sb)wl

2m(b* -a*) 3 b—a
=  X= . =
3 2m(a+b)(a+3b) a+3b

Case (ii):- If @, =—m, (magnitude equal but opposite in direction)

_ am, ao,
Inthiscase (3)and (4) = U, = =——>=
3 3
aw, 3b-4a
And (5), :>ul—ba)1:u2+aa)2:—7—0ml, => U = %
3 3
XP = 2r2b @, —Qb= 2mb @, —2mabu, [using (2)]
2mb®  2ma’b aa)lj 2mb
= + U, =——> === (b*-2a°
3 At wl( == =5 (0" -2)a
Now P =2mbu, +Q [from (1)]
2mb(3b -4 2
_m ( 3 a) o — Zn;a [0} [substituting for U, and U, ]
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:Z?m(sz —4ab-a* )

2mb(b2+a2) 3 ~ b(b2+a2)
3 2m(3b2—4ab—a2)_3b2—4ab—a2

= X=

Example:- Two uniform rods AB and BC are freely joined at B and laid on a horizontal table. AB is
struck by a horizontal blow of impulse P in a direction perpendicular to AB at a distance ¢ from its
centre ; the lengths of AB,BC being 2a and 2b and their masses M , find the motion immediately,
after the blow.

Solution:- Let U,,U,be the velocity of G, and G,, the centres of gravity of the rods AB and BC

respectively, and @, @, be the angular velocities of the rod just after blow. Let D be a pointin AB where

the impulse P isimparted, and DG, =cC.

Before the impulse, the rods are at rest.
There will be an impulsive action at B between the two rods AB and BC when the blow is
struck. Let this action Q in opposite directions on the two rods, then for the motion of AB, we

have M (u,—0)=P-Q (1)
a2
And M = Pc—Qa (2)

U

o © o
y N"p g TB ™2 .
G 7’ l G,’
e

And for motion of BC we have M '(u2 —0) =Q (3)

2

And M '%wz - Qb (4)

Now as the rods are connected at B, the velocity of the point of the rods AB is the same as that
of the some point B of rod BC

U, +am =u,—baw, (5)

Substituting the value of U,, @;; U,, @, from (1), (2), (3), (4), in (5), we have

Qe 9 1 | g P M%)
M

aM M' M’ 4 M+M'\U a
ulzﬂ 1 1 M8 wlzﬁ c 1 M [, 3
MI© aM+M'U a Mala 4M+M'\ a

1 P 3c 3 P 3
U=————1+—|and @,=————| 1+ —
aM+M' T a 4b(M+M" a

Hence the four quantities which determine the motion have been obtained.
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Example:- Two uniform rods, AB. AC are freely joined at A and laid on a smooth horizontal table so

that the angle BAC isarightangle. Therod BAC is struck by ablow P at B in adirection perpendicular

2P
to AB, show that the initial velocity of A is mem where m,m' are the masses of AB , AC
m+m

respectively.
Solution:- The initial motion of A isto be perpendicularto AB, hence the action at A (say X ) must be

along AC.

Let U, be the linear velocity of G, and @, the angular velocity of AB . Then since impulse on
AC is along CA, the rod AC will only move in the direction CA say with linear velocity U,.

Now for equation of motion, we have

X 4 G,
>—>r7€ C
90° «—
l!'z
G t [umss of AB=m
\—/00 {massof AC =m'
P 1 AB =20
— B
mu, =P+ X (l)
1, motion of AB
mia'e =(P-X)a,.(2)
m'u, = X motion of AC (3)

But the rods the connected at A, so the motion of A as deduced form the motion of AB
and AC must be the same
= u=aae=-U, (4)

Now putting the values of U,@ and U, [from (1), (2), (3) in (4) we have

P+X) 3(P-X '
(PrX) 8(P-X)__ X _ _ 2Pm’

m m m' dm'+m

L . 2P .
Whence substitution in (3) provides us U, =— =————— i.e. velocity of the rods
m' 4m'+m
2P 2P
AC =——— of velocity of A=
4m'+m 4m'+m

Example:- AB,BC and CD are there equal uniform rods lying in a straight line an a smooth plane, and

they are freely jointed at B and C. A blow is applied at the centre of BC in a direction perpendicular to
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BC. If @ be the initial angular velocity of AB or CD, and @ the angle they make with BC any time,

show that the angular velocity is

4/(1+ sin® 0) .

Solution:- Let P be the impulse of the blow applied at Gz, the centre of BC, and X the impulsive

actionat B or C.

U

U

Just after the impulse, let U be the velocity of the centre of BC, and V be the velocity of centre
of AB and CD, the angular velocities being .

4 X . X oy
AL T $ B _ | . C o)
\:D G, B i, G, *1 i, c— <o 7P
AB=BC=CD=2a
Now, we have : mU=P=2X (1) for the rod BC
2
mV = X (2) and m%a): Xa fortherod AB or CD
AB and BC are connected at B, so the velocity at B as deduced from BC and AB must be
the samei.e. U =V +aw (4)
am 4aw
(2) and (3) = = 3 (5)and U = e (6)

After the action of the impulse, the rods are set in motion and move in the horizontal plane under
finite forces. The rod BC retains is horizontal position where as AB, and DC turn about B
and C.

At any time t, let AB or DC make an angle @ with BC and further let U be the velocity of
BC . Now co-ordinates of G, relative to BC (with B as origin) are X =aco0sé, y=asiné.

0 0 0 1]

Xx=-asindf , y=acosd6o

actual velocity of G, along CB and the right angles to CB is given by
0 0

(—asin 00) and (u —acos@@j

1 1 : e a’
Now K.E. of the system:Emuz +§ . Zm{(u—acosecowj +a’ 925|n20+§02
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m 2
=1m 3u2—4au6?cosé?+8i6’2
2 3
When =0, u=U;and O=w
2
initial K.E. of the system :%m{BUZ—4aU a)+8%a)2}

Now there is no displacement, in the points of application of (reactions and weights), at right
angles to the horizontal plane, so no work is done by these forces, and thus implying that there
should be no change in the K.E. of systemi.e.

a 2 0 2
=%m{3u2 —4bu«9cos«9+8%02} =%m(3u2 —4aU a)+8%a)2j or

2
3u? —4aud cosf + 8%492 = (8a2a)2 /3) (7)

[Substituting the value of U ]
Again after the action of the impulse, the motion is under finite forces hence there are no forces
on the system in the horizontal plane. The horizontal momentum of the system remains constant

viz.

mu :Zm(u—ae cosé?j:mu +2m(U -aw)

[
Or 3u—2adcosd=3U -2aw

0
Or 3u—2a6dcosf =2aw [Putting the value of U] (8)

J(1+sin®0)

Example:- Four equal uniform rods, AB,BC and DE are freely joined at B, C and D and lieon a

(7) and (8) = é: (eliminating U )

smooth table in the form of a square. The rod AB is struck by a blow at A at right angles to AB from
the inside of the square, show that the initial velocity of A is 79 times that of E .

Solution:- Let the impulse applied at A be P from inside, so that U;,U,,U; and U, are the velocities of
G,,G,,G; and G, in the direction of blow. Further let @, and @, be the angular velocities of AB and

CD respectively. The angular velocities of BC and DE are zero, because the impulsive reactions upon

these two rods are along the rods themselves.
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I)

mass of each rod

=m say T
[ Te
” G,

1 e +“1 15
EYANNE

®U

Tus
X,
D \ 2a ok

Then we have
mu =P+X, ... (1)
a2 (for the rod AB)
and m—aw, =Pa-Xa..(2)
3

Where AB =2a and X, is the impulsive action at B,

mu, = X, — X, (for therod BC)
Where X, is the impulsive action at C (3)
= (X, £ X,) e (4)
a2 (for the rod CD)
and m—> @ = X,a=Xaa e, (5)

Where X, is the impulsive action at D. mu, = X, (for the rod DE) (6)

Now the velocity of the point B as deduced from AB must be equal to the velocity as deduced

from BC.

u—aw =u, (7)
Similarly, for the point C U, =U,—aw, (8)
And for the point D. u, +aw, =U, (9)

Whence substituting the values of U;, @, and U,, in (70, in readily obtain

P+Xl—3(P—Xl):X2—X1 ie. 5X, - X, =2P (10)
Also substituting the value of U,,U; and @, in (8), we obtain
X2—X1:—(X2+X3)—3(X2—X3) ie. 5X, =2X, =X, (112)
Finally substituting the value of U;, @, and U, in (9), we obtain
—(X,—X;3)+3(X, - X;) =X, i.e. 2X,-5X;=0 (12)
Soling (11) and (12), we get

5 2 5 21P

Xzzﬂxl and stle S (10) = 5Xl—£X1:2P i.e. Xlzﬁ
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=)
Hence X, =10 and X, =26
21P 71P

Putting these value in (1), (2) and (6), we get MU, = P +——i.e. U, =—— and
50 50m

3 21P 87P P
am, = P-———lieea®w,=——and MU, =— ie. U, =——
m 50 50m 25 25m

) 5

velocityof A u, +aem, _ \50m S0m) 79

velocityofE ~ u, P 1
()

Example:- A uniform flat rod, of length 2a rests on a rough horizontal plane with its weight uniformly
distributed. A horizontal force P large enough to produce motion is applied suddenly at the end
perpendicular to the length of the rod. Show that initially point, where X is given by the positive root of

the equation X —[}—EJaZX———a =0

3 uWw 3 W
W being the weight of the rod and u the coefficient of friction.
Solution:- Let the impulse P be given at the end A and let O' be the point about which the rod begins
to turn where GO' = X. Just after the application of the impulse, let @ be the angular velocity of the rod.
Hence velocity of the centre of gravity G just after the impulse is X @ as shown in the figure.

ROUGH HORIZONTAL PLANE

Due to the impulse P, there is an impulsive friction at each point of the rod.
Now consider an element Oy of the rod to the right and also to the left of the point O' where

0'Q=y.
- W
Friction on each of these elements = ,u2—5y
d

Now taking moments about the point O"' we have

2 a+x a+x
a

w W
M[€+XZJ w="P(a+Xx) I,u—ydy jy—ydy
[The moments of implusive frictions are negative because they tend to decrease @]

_p(asx) AWV A
2a | 2 |, 2a | a |
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M (%Zerzja): P(a+x)—2ﬂ(a2+x2)

a
a+x

LW LW
Also moments of centre of gravity G, gives M X@o =P — I Sa +dy+ I Z_dy
a a
0 0

[The friction on the right hand of O is opposite to P, while on the left is in direction of P]

= MXa)=P—M(a+x)+%(a—x):>MXw:P—%x (2)

Whence eliminating @ between (1) and (2), we readily obtain

[a—2+x2J[E—ﬂj:P(a+x)—2ﬂ(a2+x2)

3 X 2a a
- s_[l_ﬁj 2y 2 P 3 g
3 uW

Example:- A lamina in the from of an equilateral triangle ABC lies on a smooth horizontal plane.
Suddenly it receives a blow at A in a direction parallel to BC, which causes A to move the velocity V .
Determine the instantaneous velocity of B and C and describe the subsequent motion of the lamina.

Solution:- As the impulse is parallel to BC, the velocity of G, , the centre of gravity of the triangular lamina.

ABC must also be parallel to BC. Let this velocity be U, and @ be the angular velocity of AABC

Equations of motion of the C.G. of the lamina are: mu=P (1)
2 2 2
m(a a a 2
And —| —+Z-+= |w=P=a\3 (2)
3 ( 3 3 3 j 3

(taking moments about G)

(’.-GDetc. :a/\/§)

impulse P
i A V
Impam.,_,_,‘ _______ >

Velocity of the point A =(velocity of G+ velocity of A relative to G)

OrV:U+§ax/§a).Now(1)and(2) :>aa)=2\/§.u
= V =u+4u=>5u i.e.U=%V and aa):%V.

Velocity of B =velocity of G+ velocity of B relative to G
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:u+§a@w

= Velocity of B parallel of BC

= (Velocity of B parallel of BC + velocity of B relative to G parallel to BC)
2 . 1 2 V
=u —ga\/ga)cos 60° = gv —EV = —E and velocity of B at right angles to BC

= (velocity of G at right angles to BC)
+ (velocity of B, relatives to G) to BC

23
SV

= —%a\@a)sin 60° = —am=———

Vv 3
Finally proceeding in the same manner, the velocities of C are _E and ?V along and

perpendicular to BC

Example:- A square plate, of side 2a, is falling with velocity U, a diagonal being vertical, when an inelastic
string attached to the middle point of an upper edge becomes tight in vertical position. Show that the

4
impulsive tension of the string is 7 Mu, where M is the mass of the plate.

Solution:- When the string becomes tight, a jerk experienced by the string resulting an impulsive tension
in the string say T.
Just after the impulse let u'be the vertical velocity of G, and @ be the angular velocity of the
square, while just before the jerk, the velocity of Gis U and there no angular velocity. It is to note
that there will be no velocity in the horizontal direction, as there is no horizontal impulse.

o A JK is the
s ' mid point

BL = e D
AB =2a
: GK =a
C a
oM -
Equations of motion of the square plate ABCD are:
M(u'-u)=-T (1)
2a’

And M— o= (2)

a
T2

3 J2
Also, the velocity of K relative to G is a@ at right angles to GK . Hence its resolved part is

, 1
awcos45’ i.e. aw—= in vertical upward direction.

N7
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But just after the impulse, the point K is reduced to rest.

aw
= vertical velocity of the point K=0=>u'-—==0 (3)

et

Example:- A light string is wound round the circumference of a uniform reel of radius a and radius of
gyration k about its axis. The free end of the string being tied to a fixed point, the reel is lifted up and let
fall so that at the moment when the string becomes tight, the velocity of the centre of reel is U and the

2
string is vertical. Find the change in the motion and show that the impulsive tension is mu (z—kzj
a +
Solution:- When the string becomes tight, a jerk is experienced by the string resulting an impulsive tension
in the sting,say T .
Just after the jerk let Vv be the velocity of the centre of gravity G and w the angular velocity while
just before the jerk the velocity of G is U and there is no angular velocity.

Equations of motion of the reel are m(v—u) =T (1)
And mk* o =Ta (2)
Just after the impulse, the velocity of the point contact K is zero.
= v—aw=0 (3)
1 Ta’ k?
Uu-—T |-—=0 = T=mu 5—
m mk a“+k

Example:- A uniform inelastic rod falls without rotation, being inclined at an angle f to the horizon and
hits a smooth fixed peg at a distance from its upper end equal to one third of its length. Show that the

lower end begins to descend vertically.
Solution:- Let AB be the rod which strikes the fixed smooth peg at C, the inclination of the rod, say f

at that time. Let S be the impulse at the peg C. Perpendicular to the rod. Just before the impact, the

rod was falling without rotation under gravity. Hence it must have then only the vertical velocityV . Just
after impact, let U,V be the horizontal and vertical velocities of the C.G.
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Now equations of motion of the rod AB are as follows:

a a
And m? w=S § (3) (taking moments about C.G)

Substituting the value of S from (3)in (1) and (2), we readily getu =—a®sin #, v=—awcos
Now velocity of the end A relativeto G =aw (perpendicular to AB)
And horizontal velocity at A= horizontal velocity of G+ horizontal velocity of A relative to G
=U+awsin f=—awsin f+awsin (Substituting value of U )
And vertical velocity of A = vertical velocity of G

+ Vertical velocity of A relative of G

=v+awcos B =(V —awcos B)+awcos =V (Substituting forv)

Implies that after the impact the lower end A being to descend vertically.

Example:- Four equal rods, each of mass mand length 2a are freely joined at their ends so as to from a

rhombus. The rhombus falls with a diagonal vertical, and is moving with velocity V' when it hits a fixed

horizontal inelastic plane. Find the motion of the rods immediately after the impact, and show that their
3Vsina

2a(l+3sin2a

angular velocities are equal to ) , Where ¢ is the angle each rod makes with the vertical.

3sina

———— | of the kinetic energy just before the impact.
1+3sin“ «

Show also that the impact destroys a fraction (

Solution:- Let PQRS be the rhombus formed of four equal rods each of length 2a and mass m, fall with
the diagonal RP vertical. By symmetry, the motion of the rod RS is the same as the motion of RQ while
the motion of the rod PS is the same that of PQ . Hence we need only to consider the motion of PQ
and QR alone.
Just after impact at P with the horizontal plane, the rod PQ turns about P, say with angular
velocity @,, while the rod QR turns about Q, say with angular velocity @, , with the direction

as shown in the figure.
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U

U

Horizontal
P Inelastic plane

Due to symmetry, the impulsive action at R will be only horizontal, let it be equal to H . Further
let X,,Y, be the horizontal and vertical impulses at Q in opposite directions on the rods PQ,QR

respectively. As after impact, R moves in vertical direction so horizontal velocity of the point R
relative to Q =0 = horizontal velocity of Q + horizontal velocity of R relativeto Q =0

2aw, Cosa +2aw,cosa =0

W, =—0,

Now we have horizontal velocity of G, = a®, CoS«, and vertical velocity of G, =aa, sina
Horizontal velocity of G, =horizontal velocity of Q + horizontal velocity of G, relative to Q .
=2a®, COSa +am, COS o = am, COS & (o, =-)

And vertical velocity of G, =2a @, Sina —aw, sina = 3aw, sina
Now considering the combined motion of PQ and QR and taking moments about P, we get
a’ a’
mTa)ﬁm ?a)laﬂol cosa.3acosa +3aw; sina.asina

—2mVasina =4acosa H
Vsinag 2Hcosa
20 = +
a ma

1
Again considering motion of the rod QR alone and taking moments about Q , we have

(2)

2
a : : .
{m{za)z +aa)lcosa.acosa—3aa)lsma.asma—m(—v)asmaH =H.2acosa

2 . Vsina 2Hcosa
0} §—4sm a|=- 2 + o (3)

(2) and (3)give
4 - 2Vsina Vsina
0} §+4sm a4 |l=—>=> 0=

a : 2a(1+3sin2a)
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1
Now K.E. just before the impulse :E4mV2 =2mV?= E, (say) and K.E. just after the impulse

=2[K.E.of PQ+K.E. of QR] =E, (say)

2
orE,=2| = L 4a 2+lm a—a)22+aa)fcosza+9a2a)fsin2a
2 3 2 3

8 .
:gma2 (1+3SII’120£)6012 ( @, Z_a’l)

3sin’ « , _3sin’aE
1+3sin’« 1+3sin’«

Example:- An equilateral triangle, formed by inform rods freely hinged at their ends, is falling freely with
one side horizontal and upper-most. If the middle point of this side be suddenly stopped, show that the

impulsive actions at the upper and lower hinges are in the ration (13) 1.
Solution:- The middle point O of the rod QR is suddenly stopped, so the impulse is imparted at O.

Hence an impulsive actin between the two rods at Q is generated. A similar impulse is generated at R

as there at symmetry about O. The action at P will be horizontal due to symmetry. Let it be X in
opposite direction on the two rods PQ and PR.

T Yl T Yl
< 0 e <<
Xl a Xl Xl
Y\
¥ 0N G I
' a
: 60;
e -
M X I X

Just before the blow there was only vertical velocity for every rod. As the system has been
stopped, there are no linear velocities and no angular velocities for any rod after the blow. Now

considering the motion of the rod PQ, or (PR), weget X, —X =0 (1)
[* There is no horizontal velocity of G before and after the impulse]
Taking moments about G, we get

X,LQ-Y,GL+ X,LM =0 = X,asin60" —Y,acos60° + Xasin60" =0

*/_ Xi—YE:O (2)

[+ Thereis no angular velocity of PQ before and after the impulse]

reaction at Q _ \/(Xf +Y7) ~ \/(XZ +12X?) J(®3)
reaction atP X B X o
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Example:- An inelastic sphere of radius a rolls down a flight of perfectly rough steps, show that if the
velocity of the centre on the first step exceeds /(ga) its velocity will be the same on every step, the step

being such that , in its flight, the sphere never impinges on an edge.
Solution:- Let E be the edge of the first step and let Vv be its velocity at E . Now the sphere has a
tendency to turn about the edge E and let @be the angle through which it turnsintime t.

Now equations of motion of the sphere are given
=R

41 R 5 /v\

First 6
step ma
H—_

Second step

Fourih siep
By ma@i2 =macosd—R (1)
And m[%az+a2}g=mga sin@ (2)
(taking moments about E)
(2) > a’6* = —m%coséwc

When 6 =0, a¢9 V, =>C= v+1oga

10ga 2
—(

a’ e’ = 1-c0s8)+V* or a0” - 107ga(1—cose)+

2
(1) gives 10_9(1 cosf)+—=g cosH—E

2 2
or Rzm{gcose—mTQ(l—cose)JrVg} .'.(R)a_ozm(g—v—j
Obviously (R)0:0 will not remain positive, if
via>gie v>,/(ga)

Which implies that the sphere leaves the step at once if the velocity V> (ga) . After traveling

the distance on the first step, the sphere strikes the second step say at the point K. But the step
is inelastic so the sphere will not rebound and will roll on the second step with the velocity v.
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When it has rolled a distance X on the second step, let S be the force of friction, sufficient for

pure rolling, then equations of motion are given by mx =S (3)
2a2 m
m—@6 =-Sa (4)
5
| [
But the motion is of pure rolling, so we have X=a6 = x=a6 (5)

M ]
From above, we have X=0 = X = constant =V

Which implies that the sphere rolls on the scorned step with the uniform velocity v. Hence
velocity at every step is the same.

Example:- A sphere of mass m falls with velocity \V on a perfectly rough inclined plane of mass M and
angle a which rests on a smooth horizontal plane. Show that the vertical velocity of the centre of the

5(M +m)V sin®«
7M +2m+5msin a

sphere immediately after the impact is the bodies being all supposed perfectly

inelastic.
Solution:- Just before the impact velocity of the sphere is V in vertical direction (»l«) there being no

angular velocity then. Just after the impact let U and Vv be the velocities and @ the angular velocity of
the sphere as shown in the figure.

S impulsive &2
friction ES)

%

velocity |
of the
plane
=V’ say

just after the impact, the inclined plane also begins to move in the horizontal direction.
Now equation of motion are

m(-u)=R sina—Scosa (1)
m(v-u)=-Rcosa-Ssina (2)
2
And mZ%a):Sa @)
Also, the motion of the inclined plane is given by MV '=Rsina —S cosa (4)

Now horizontal velocity of the point K of the sphere = horizontal velocity of the point K of the
inclined plane.

U+awcosa =V ' andvertical velocity of the point K of the sphere = vertical velocity of the point

K of the inclined plane.
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v—awsina=0 = v=awsina

mu

M

Now multiplying (2) by Sina and (1) by coS«¢, and then adding these to (3), we obtain

From (1) and (4) it is easy to see that MV '=—mu, i.e. V'=—

—muc05a+m(v—V)sina+m2‘%{):O
Mawcos? a ) 2aw Mawcos® o
= —————+(v-V)sinuy+—=0 | u=——"—"—
M+m 5 M +m

+=|——+(v-V)sina=0 [-v=awsina]
M +m 5]sina

= [SM cos® & +2(M +m)+5(M +m)sin2a]v

{Maa)cos2 a 2} v
- —_

=(M+m)Vsin’a

= [7M +2m+5msin2a]v:5(M +m)V sin’ «

5(M +m)V sina
= V= .
7M +2m+5msin’® «

Example:- Of two inelastic circular discs with milled edged each of mass m and radius a, one is rotating
with angular velocity @ round its centre O, which is fixed on a smooth plane, and the order is moving
with spin in the plane with velocity v directed towards O. Find the motion immediately afterwards, and

5

Solution:- The disc P is rotating about its centre O with angular velocity w (say) while disc Q is moving

_ 1 , a‘w’
show that the energy lost by the impact is E mfv°+ 3

with linear velocity v towards O as shown in the figure. Further let F be the impulsive friction at the
point of contact, K. But the discs are inelastic, so they will not rebound, and hence after the impact, then
velocity of the disc Q will be along O,Q .

Disk Q

Further let the velocity of Q be U, along the common tangent. Also let @, and @, be angular

velocities of P and Q after the impact, then equations of motion are:
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ma?

2

(0, —w)=—-Fa (1) (for the disc P)

2

mu=F (2) and ma ®* = Fa (3) [for the disc P]

But the discs P and Q touch each other at K, so the velocity of the point of contact K as
deduced from disc must be equal.
ie. aw =U+aw,

2F F 2F
Now putting the value of U, @, from(2), (1) and (3) in (4), we easily obtain ——+aw =—+—
m m m
ma w
ie. F=——
5
2aw 3aw am 2am
aw =———+aw=—;and U=—:Also aw, =——
5 5 5 5

Total K.E. after the impact =K.E. of the disc P + K_.E. of the disc Q

—lma—2 . uza—za)2
2 %S p

9a’w’ a’w® 4a*w? | 3a*mo’
=2m + + = =E, (say)
50 25 50 20

. ¥ LT
But K.E. before the impact = —m—@" +—mV* = E, (say)

HencelossinK.E. =E —E,

Example:- If a hollow lawn tennis ball of elasticity € has on striking the ground supposed perfectly rough,
a vertical velocity vV and angular velocity @ about a horizontal axis, find its angular velocity after impact

and that the range of the rebound will be

daw

59

ev

Solution:- Just before the impact Vv is vertical velocity and @ the angular velocity while just after impact

let U',V' be the horizontal and vertical velocities and @' the angular velocity ( ), the equations of

motion are

mu'=—-F (1) and m(v'+v)=R (2)

And m%az(a)'—a)): Fa (3)
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The point of contact P is reduced to rest instantaneously, there being no sliding,
= U'—-aw'=0 also v'=ev
Now eliminating from (1), (3) we get

%a(a)'—a))z—u'

2, ., 2
or =(u—aw)=-u' = Zu'==aw
3 3

, 2
Ooru'=—aw (4)
5

2(horizonal velo.)(vert.velo.)
g

Range after rebound =

2,a. w.ev
2u'vt ¢ 4aw
== E— = eV.
8 g 50

Example:- An imperfectly elastic sphere descending vertically comes in contact with a fixed rough point,
the impact taking place taking place at apoint distant ¢ from the lowest point, and the coefficient of
elasticity being e. Find the motion, and show that the sphere will start moving horizontal after the impact

if ¢ =tan (EJ
5

Solution:- Before the impact the sphere is descending vertically say with velocity V ; implies that it has
then no horizontal velocity and no angular velocity. Just after the impact let U; and V, be the velocities of

the sphere along and perpendicular to PG and @ its angular velocity as marked in the above figure.

Then the equation of motion are
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m(v, -V sina)=—F (1)

m(v, +V cosa) =R (2)

2
And m% o=Fa (3)

After impact then is no sliding velocity i.e. velocity of the point P along tangent at P is zero.
v-aw=0 =>Vv,=aw

Also U, =eV, CoOsx (by Newton’s Law)

From (1) and (3), we get (V, -V sina) = —%a)
, 2 5., ..
= vl—Vsma:—gv1:>v1:7Vsma

vlzaco:ngina

Then sphere will start moving horizontally after impact if the vertical velocity of sphere =0 i.e. if
u,cosa—v;sina =0

u, eV cosa
Or tana=— ortanag=——

Vi =V sina
7

Or tanzazze = ag=tan™ Ej
5 5

Example:- A rough imperfectly elastic ball is dropped vertically and when its velocity is V , a man suddenly
moves his racket forward in its own plane with velocity U , and thus subjects the ball to pure cut in a
downward direction making an angle o with the horizon. Show that, on striking the rough ground, the

ball will not proceed beyond the point of impact, provided
2

(U-Vsina)(1-cosa)>(1+ e)[1+%j V sin @ cosa

Solution:- Let P be a point on the ball such that it is hit by the man. Obviously the plane of the racket is
tangential to the ball. Since the man moves the racket in its own plane with velocity U , the velocity of
the point of contact P will also be U along the tangent at P
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Just before the impact the velocity of the ball is given to be V , there being no horizontal velocity
and no angular velocity.
Just after the impact, let U,V be the horizontal and vertical velocities and @ the angular velocity

as marked in the figure. Then we have for the motion of ball.
Just before the impact, the moment of momentum about P

=mV asina [** moment of momentum = mk? O+ mv pl
After impact, moment of momentum about P

= mk®®—muacos + mvasin o
change in moment of momentum

- (mkza)— Mua.cos o + mvasin a)— mVasin «

But the impulse is applied at P, hence moment of the impulse at P is zero.
Now mK2@—muacos« +mvasina —mvasin e =0 (1)

(.. Change in moment of momentum = moment of the impulse)
But velocity of the point P of the racket = velocity of the point of the ball.
= U =vcosa—Vvsina+a o

Again multiplying (1) by cosa and (3) by Sina and adding, we get

Also by Newton’s experimental law, we have

usina +vcosa =€V cosa (3)
a(U-Vsina)

Now (2) and (1) = w = e —

a“+k

Uk? cosa +V sinazcosoc{a2 +e(k2 +a2)}
U=

a’+k°
Now after striking the ground, let U,,V,,®, be horizontal, vertical and angular velocities. Then
taking moments about the point of contact of the ball with ground, we have
(mk®e, —mu,a) - (mk*e—mua)=0 (4)
(.. Change in moment of momentum = moment of the impulse)
Also the point of contact has no horizontal velocity so we get
u+aw =0 (5)

k? k?
(4)and (5) = u1(1+¥]:u—;a) (6)

2

From (6), it is clear that U; will be negative if U < —®
a
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2

Thus we can say that the ball will not proceed beyond the point of contact, if U<—a®, or
a

Uk?cos a +V sinacosw{az+e(k2+a2)} k’a(U -V sine)
<

a? +k? a(a2+k2)

or if

k?(U -V sine)Uk? cos e +V sin occosw{a2 +e(k2 +a’ )}
=Uk?cosa —Vk?sina cosa

+VkZsinacosa +V sinacom{az +e(k2 +a2)}

k?(U -V sina)cosa +V sinacow{(az +k2)+e(k2 +a2)}

k?(U -Vsin a)cosa+(1+e)(k2 +a? )V sina cosa

2

e If (U-Vsina)(1-cosa)>(1+ e)(1+ %)V sin o cos &

Example:- A tennis ball of hallow spherical space is given by underground cut, and hits the ground at the
other side of the net at a distance Cfrom it, if U and Vits horizontal and vertical velocities and @ its
angular velocity when it hits the perfect rough ground, show that the ball will return back towards the net

2ev(2am—3u)
59

if 22w > 3U . Further show that it will rebound over the net if C <

and will touch the net

overhead if K < e .2ev(2aa>—3u);Sgc
(2aw—3u)

, Where ¢ is the coefficient of restitution and h is the height

of the net.
Solution:- After the impact let U; and V, be the velocities of the centre of gravity G of the ball and @,
its angular velocity.

Let F be the impulsive friction and R the impulsive normal reactions of motion if the ball are

m(u,+u)=F (1)
m(v,+v)=R (2)
And m%az(a)l—a))=—Fa (3)
Where eV =V,

Just after the impact there is no horizontal velocity of the point of contact, so U, —a @, =0 (4)

From (1) and (3), we obtain
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N Before N After
impact impact

Net
! Net
W

u, =u+§a(a)1—a)):0 i.e. am, =—§(u1+u)+aa>

u1+g(u1+u)—aa):0

2aw—3u
5
Hence the ball will return back toward the net if U, is positive when 2a®—3U >0 or when

= 5u, =2aw-3Uu = U =

2am>3U.
Second part:- After rebounding from the ground, the ball moves in a parabolic path. Now considering the

C
horizontal motion of the ball, we have t =— where t is time taken by the ball to reach the net or

ul

5C
t=——
2am—3u
Now t, must be less than the time of reaching the ground.
5¢c 2ev 2ev(2am—3u)

< or c<
2aw—-3u ¢ SJs|

Third part:- Let the vertical height to which the ball rises be h then have h'= Vlt—%gt2 = eV_E gt?
(o v, =ev)
2ev(2aw—3u)-5gc
(2aw—3u)’
Clearly the ball will touch the net of the height h overhead if h<h' ie. if
5¢ 2ev(2aw—3u)—5gc

2 (2aa)—3u)2

5
=—e
2

Example:- Three particles of equal masses are attached to the ends, A and C and the middle point B of
light rod ABC, and the system is at rest on a smooth table. The particle C is struck by a blow at right angles
to the rod; show that the energy communicated to the system when A is fixed is to the energy
communicated when the system is free as 24 : 25.
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Solution:- Let A, B, C be the three points of a rod. Where the three particles each of mass m,be the
placed. Now let the end A be free, and an impales P be applied at C, such that the rod begins to rotate
about the point B . Then if the velocity of mass at is U,, the velocities of the masses A and C are U, —a®,
, U +am, respecitvley.
Case I:- When the end A is free.

We have mu, +m(u, —aw )+ (U, +aw, )

=P :>u1:3£m (1)

Taking moments about C, we have

mu, +am(u, —ae; )2a=0 =3u—2aw, =0 (2)

= am, = % [using (1)]

=

o
m a m a\m C

4 B J P

Q

P P
Velocity of the mass at C =U, +a®, = —+—+—— and the K.E. communicated to the rod

3m 2m 6m
:% impulse at Cx

(velocity of C)

2
! P oP —ii: E, (say)

2 '6m 12 m

Case Il:- When A is fixed.
In this case the rod will begin to rotate about A, with an angular velocity @ and an impulsive

thrust (=X say) will be generated at A.

2 2P
Now the moment about A gives m(2a) o+ma’w=p.2a = mbaw=2P = an= B
m

Velocity communicated to C =2aw

(- Cdescribes a circle, about A, of radius 2a)

4P
Hence its velocity perpendicular to AC = 2aw = B
m

1 1_ 4P 2P?
E, =—P (Velocityof C) ==P — = =E, (sa
2 =5 Welodtyof € = P o = m — 2 )
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E, (5P/12m) 25 E, 24

—1 _ == —2 -
El (2P?/5m) 24:>E1 25

Example:- Three equal rods, AB,BC,CD are freely jointed and placed in a straight line on a smooth

table. The rod AB isstruck at its end A by a blow which is perpendicular to the length; find the resulting
motion and show that the velocity of the centre of AB is 19 times that of CD, and its angular velocity
11 times that of CD.

Solution:- Let P be the impulse of the blow applied at A and let (ul, a)l)(u2 NN )(US, a)g) be the velocities
angular velocities of the rods AB, BC,CD respectively just after the blow.

Again let Q and R be the impulsive reaction at B and C respectively, then we have

mu, =P+Q (1)
2
ma?a)l =(P-Q)a (2) [for the rod A,B]
y O, au, &g G R, T”s
2 .
\ (;1 B $ %D‘ (w l G.; D
P Q0 u, K
mu, =—R+Q (3)
2
m%a)z =(Q+R)a (4) [for the rod BC]
2
mu, =R (5); —m% @, =—Ra (6) [for the rod CD]

As the rods are connected at B and C, the velocity of B as considered from AB =then velocity of
A as considered from BC.

= Velocity of G, + velocity of B relative to G,
= Velocity of G, + velocity of B of relative to G,
=  -U+ae =U,+aw, (7)
Similarly for C, we have a®, —U, = aw, +U, (8)
Now from (7) and [(1) to (4), we easily obtain 3(P—Q)(—(P +Q)) = 3(R +Q)+(Q— R)
= 2P=8Q+2R = P=4Q+R
Also from (8) and [(3) to (6)], we get 3(Q+ R)—(—R +Q) =3R+R
= Q=-4R
From (9) to (10), we get easily P =—15Rand Q =-4R
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. velocityof G, u; 15R+4R 19 and angular velocityofAB _ @, _ 3(15R-4R)

s =—= =11.
velocityof G, u, R angular velocityof CD @, 3R

Example:- Two equal uniform rods. AB and BC, are freely jointed at B and turn about a smooth joint at A.
When the rods are in a straight line, @ being the angular velocity of AB and U the velocity of the centre
of mass of BC, BC impinges on a fixed inelastic obstacle at point D, show that rods instaneously brought
torestif BC = ZaM where 2a is the length of either rod.

3U+2aw
Solution:- When the rods AB and BC are in a straight line, @ is the angular velocity of AB and u the
velocity of G, the centre of gravity of BC, and let @, be the angular velocity of BC about G, before

impinging on an inelastic obstacle at D, such that BC = x.
)
o 0
( _ B G, bp C

A
\ G, l
Q u P

There will be an impulsive reaction between the two rods at B denoted by Q acting on opposite
directions as marked in the above figure.

Now the velocity of B as deduced from AB =the velocity of B as deduced from BC.

= 2aw = velocity of G, + velocity of B relative of G, = (u —aa)l).

Take moments about A to remove the unknown reaction at A, we get

m.ia:—Qza}:—Q.Za :>m2a_a) (1)
33
For the rod BC, we get mu=—(P—Q) (2)
a2
And Mm@ =—{P(x- 3
nd Mo {P(x—a)+Qa} (3)
(2)and (3) = m(u +Ewlj=—P—PM:—ﬁ (@)
3 X a

With this substitution in equation (4), we readily obtain

R

. x(3u+2amj_(4u—2awj_2(2u—aa))

a 3 3 3
2a(2u—aw)
= X=—"
(3u+2am)
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Example:- A disc of any form moving in its plane without rotation with velocity V at right angles to a fixed
plane strikes the plane so that the distances of its centre of gravity from the point of impact and from the
plane are I and p . Assuming the plane to the be elastic and sufficiently rough to prevent sliding, show

m(L+e)V (p®+k?)

r? +k?

that the impulsive pressure and friction are respectively and

m(Ll+e)V p(r2 - pz)ﬂ2

where K is the radius of gyration. Also show that loss of kinetic energy is

r’ +k?
1 m(1-€®)(k*+ p*)v?
2 (r2+k2)

Solution:- Let the disc strike the horizontal plane at K. Before the impact, V is the vertical velocity of G.
After theimpact let (u Vv, W) be the velocities and angular velocity of the disc. Angular velocity of K relative

to Gis r w perpendicularto GK where GK =r

Now equations of motion are

m[v—(-V)R] (1)
mu=F 2)
mk’w=—Fp+Rrsing or mk?> w=—-Fp+R (rz—pz) (3)

p being the perpendicular from G on the tangent at K .

1{ r 3

r

Also since there is no sliding.
tangential velocity of the point K = velocity of G + Velocity of K relative to G.

—u-2(0r)=0 = u-pw=0 @)
Also Newton'’s rule (V =ev) = V+ (rz— pz)a)=eV (5)

Now eliminating U, @ from (4) with the help of (2) and (3), we readily obtain

Fo | m RY(P-P7) | F( o p?) Rey(r-pY)
E_p _mszr mk 2 Z w7 mk?
= F(K*+p*)=Rpy(r’-p?) (6)
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Fp R (r*-p°)

R
Now E_VJF (r*-ph2) - — =eV
[Putting the values of V, @ in (5) from (1)]
2 2] Rp.J(r?-p?
This gives, %{lJrr kzp }— P (mkz P ):V(1+e)
R , , , sz(rz_ pz)
= W[k +r°—p ]_—(k2+p2)mk2 =V (1+e)
mV (1+e).(k* + p?
= R= ( 2) (2 P )
K“+r
Rp,/(r?—=p?) mV (1+e)/(r’ - p?
Second Part:- .. F= i k(2+r2p )= ( k2)+l(’2 P ) P [using (6)]

1
Loss of K.E. = E R (velocity of the point K in the direction of impulse before impact + the velocity

after impact)

:%R[V—tV]zg(l—e)RV — E say

[* Velocity in the direction of F is zero, hence loss of K.E. in that direction is zero]

2 2
= E= % mv? (1—(32 )iz_'_—pz [putting the value of R]
+r

Example:- Four freely jointed rods, of the same material and thickness, form a rectangle of sides 2a a 2b
and of mass M '. When lying in this form on a horizontal plane, an inelastic particle of mass M moving
with velocity V in a direction perpendicular to the rod of length 2a impinges on it at a distance

1 1 1 + 2
¢ from its centre. Show that the K.E. lost in the impact is EVZ + {M+—(l+ 3a+3b ¢ ﬂ

M’ a+3b a’
Solution:- Let AB be a rod length 2b and mass M, and BC of length 2a and mass M, . Let U be the linear
velocity of G,, the C.G. of BC, and @ the angular velocity just after the action of the imulse (i.e. when the

particle of mass M strikes at E such that (G,E =c).

Let | be theimpulse applied. Obviously the rods AB and CD will not rotate and remain parallel.

2b
Alg B
L~ ®
'—< —G
e GE=C, sayE L
D C
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Now velocity of AB= velocity of B= velocity of G, + velocity of B rel. to G, =U—a® velocity of
CD = velocity of G, + velocity of Crel. to G, =U+a® and the velocity of the point E just after

the blow = velocity of G, + velocity of Erel. to G, =U+a®
(Since the a.v of BC is in opposite direction to the AD)

m m +m M M
We also have e = Mo _ M+ M, _ TmAm, =—
2a 2b 2(a+b) 4(a-b) 2
Now equation of motion for the system (all the four rods) is
M'u=1I (1)
And for the particle, of mass M, we have M (V —-u —Ca)) =1 (2)

Taking moment of momentum about G, the centre for all the rods, we have
a’ a?
b+ml?a)—mlub+ml?a)—m2(u—aa))a+m2a(u+cw):Ic

2 2
= 2[ml%co+2m2a2a)J=Ic = Zasw[m+3m2]=lc

2 [ 1
a w{M a+3M b}sz (V—ca)—u)

=
3 (a+h)
[Putting the value of | and m;,m, ]
= 2 230 B (V—-caw-u)
3 a+b
Using (1) and (2), we get M'u=|\/|(V—Ca)—u) (3)

= (M+M)u=MV-Mco

Now putting the value of in (3) from (4), we obtain

2 2 _
M'a—a).a+3bC|\/|(V—Ca))—CM (V Ca))
3 a+b M+M'
— oM (V —ca)(M +M M) /(M + )= MMV —co)
(M+M")
M a® a+3b VM
= Cw +—. -
M+M' 3* a+b | M+M'
MV K 3¢ a+b
= Co= where K =—-
M(1+K)+M" a® (a+3b)
(M+M)u=M|V - MV K _(M+M)MV
|V|(1+K)+M' |\/|(1+K)+M'
MV
= U=
M(1+K)+M'
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Now loss of K.E. = loss of the energy of the four rods + loss of energy of the particle.
1 1

—l.|V+(Uu+cw)|-=1.(u+cw)=E (say)

S [V (urca)]-3 1 (u+co)

[.. Impulse on the particle and rod is equal and opposite]

1 1
E=Z1.V=2V. M[V-(u+co)]

1 MMV? V2

_EM(1+K)+M'=2{1+ 1 {“?’CZMH

M M a’ (a+3b)

Example:- AB,BC,CD three equal uniform rods hinged freely at B and C are lying on a smooth
horizontal table, so that ABC and BCD are at right angles on opposite sides of BC . A blow is given to

7
Ain the direction AC . Prove that D begins to move in a direction tanl(ﬂ with CD.

Solution:- Let P be the impulse applied at A in the direction of AC . Before impulse the system is at rest.

After impulse, let the velocity of G,, the centre of gravity of AB, be (ul,vl) and the angular velocity of

this rod AB be @,. Similarly the angular velocities of the other rods BC and CDare @, and @,

P, O
\Aﬂ%—"i B
M AT,

respectively.

1
€\ G
.~ . Za' N 2
|C . \ D
2a (13
(D3
Hence, we obtain velocity of B along AB =U, (1)

Velocity if B perpendicular to AB = velocity of G, + velocity of B rel. to G,

=V, +am (2)

Velocity of G,along AB =velocity of B + velocity of G, relativeto B=U, —a®, (3)
Velocity of G, perpendicularto AB = the same as that of G, +V, +a (4)
Velocity of C along AB = velocity of B + velocity of C relative to B=U, —2a®, (5)
Velocity of C perpendicularto AB = the same asthatof G, or G, =V, +a®, (6)
Velocity of G, along AB =the same as that of C =U, —2a®, (7)

Velocity of G, perpendicular to AB= velocity of G, +velocity of G, relative to
G, =V, +aw +aw, (8)

Velocity of D along AB = the same as C =U, —2a w, (9)
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Velocity of D perpendicular to AB = velocity of C+ velocity of D relative to

C=v,+am +2am, (10)
Taking moments about C for the rod CD, we have
1
§a2w2+a(v1+aa>1+aa)3)=0 = 3v, +3aw, +4am, =0 (11)
Again taking moments about B for the rods BC and CD, we get
1 1
gaza)3 +§a2a)2 —2a(u, —2aw,)+a(v, +aw, +am,)-a(u, —aw,)=0 (12)
a2

= 3 —2a(u, —2aw,)—-a(u,—aw,)=0 [using (11)]

= 9u, —16aw, =0 (13)

For all the rods, taking moments about A, we get

1

gaz (o, +, + @,)—2a(u, - 2aw, ) +3a(Vv, + aw, +aw,)
—(u,—am,)+2a(v, +am )+av, =0 (14)

o,

(14)-(13) = +2a(v, +am +am,)+2a(v, +am )+av, =0
= 15v, +13aw, +6aw, =0 (15)
Now resolving all the velocities perpendicular to AB, we have

(u1 c0s 45° -V, cos 45° ) +(u, —am, )cos 45" — (v, + am, ) cos 45°

+(u, —2am, ) cos 45" —(V, +am, +aw, )cos45° =0

or 3(u,—v,)—2aw —3aw, —am, =0 (16)
If the direction of motion of D makes an angle @ with DC, then obtain
2aw,
Vv, +aw, +2a
tang=2 TG 3 _ 3% [using (11) and(13)]
u, —3am, _2am, o,
9
_ v, aw, aow, 172w, .
From equations (11) and (15), we get = = = V= ; A, = —[aw,
-17 21 -3
Putting these values in (16 and making use of (13), we have
16a
Y2 _17am, +14am, — 380, —aw, =0
7a 3 7 3 7
= w2:4aw3 = 2% _L Ltang=-2-_°L
w, 4 @, 4
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Example:- AB and CD are two equal similar rods connected by a string BC, AB, BC and CD form three sides
of the square. The point A of the rod AB is struck by a blow in a direction perpendicular to the rod, show
that the initial velocity of A is seven times that of D.
Solution:- Let U, be the velocity of G, then C.G. of AB and @, the angular velocity of AB and U,, o,
those of CD.
As a matter of fact, the initial motion of B must be perpendicular to AB, so that the tension in
the string at B must be along BC.
Let P be the impulse applied at A perpendicular to AB, then we have .

mu, =P+T (1)
a2
m?a)l:(P—T)a (2)
mu, =T (3)
a2
m?a)3 =T .a (4) [motion of CD]
B I  2a I C
2a
24P
AB =cd
Gl—" «—1G, =2a
Lo,
4 D
As ABand CD are connected by a string, the velocity of B =the velocity of
C=aw-u=u+am, (5)

Substituting the values of U;,@,,U,, @, [From (1) to (4) in (5), we have
3(P—T)—(P+T):T +3T =T :(P/4)
5T N 9T
Initial velocity of A u,+a®, m m
Initial velocity of D am,+u, 3T T
m m

_!
1

Example:- A light rod ABC has three particles each of mass m attached to it at A,B,C . The rod is

struck by a blow P at right angles to it is a point distant from A equal to BC . Prove that the K.E. set up
1 P*(a*—ab+b?)

Y 2 2
2 m(a®+ab+b?)

where AB=a, BC =b.

Solution:- Let the three particles each of mass m be placed at A, B,C of a light rod ABC, and let the
impulse P be applied at O such that AO=BC =b, where AB=a, BC =D
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Let U be the velocity of C and @), the angular velocity of the rod just after the blow, then the
velocity of B is U+b®, the velocity of A is u+(a+b)a) and the velocity of the point O at

which the impulse is applied is U+a® . Since the system was at rest initially, the velocity of O

just before the impact is zero.
U 4

A (@] Ban

C

«— b —>|e—a b—re——Db—»

P
Now equation the total momentum perpendicular to rod, the impulse, we have

mu+m(u+ba))+m{u+(a+b)w}=P = 3u+a)(a+2b):%

Also taking moments about O, we easily obtain

{u+(a+b)jb—m(u+bw)(a—b)-mua=0=u(a-b)=b’w

u @ 3u+(a+2b)e (P/m)
—_— = - =
b* a-b " 3b’+(a+2b)(a-b) (a’+ab+b’)
b> P CIAICERS
= Uso————.,and o=———"v —
a’+ab+b?m (a +ab+b ) m
Hence the velocity of point O is given by
P 1 a’+b’—-ab. P
=— b? —-b) 293710500
Hrao mm(az—b2+ab)[ +a(a )} a’+b*+ab m

P*(a’+b’* —ab)
m

1 1
K.E.setup =—P (velocity of the point O) ==
2 2 (a2 +b% + ab)

Alter. K.E. :%m{u(a+b)a)}2 +(u +ba))2 +u?]

1 P? a’ a’h® +b*
T 5 | (a2 T 2
2 m|(a’+ab+b?) (a2 +b? +ab)
a’ P ab P
But U+(a+b)a):m.a and U+ba):m.a
2| (a2 +b?) —a’h? 2 (@®+b*—ab
g 1P| (ebT) a1 p2 (al+b-ab)
2m (a2+b2+ab) 2m (a2+b2+ab)
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Generalised Co-ordinates.
Suppose that a particle or a system of N- particles moves subject to possible constraints, as for
example a particle moving along a circular wire or a rigid body moving along an inclined plane,
then there will be necessarily a minimum number of independent co-ordinates then needed to
specify the motion. These co-ordinates denoted by qi, Qz, ...... , On, are called generalized co-
ordinates. These co-ordinates may be distances, angles or quantities relating to them.
Degrees of freedom.
The number of independent co-ordinates required to specify he position of a system of one or
more particles is called the number of degrees of freedom of the system.
Ex. 1. A particle moving freely in space require 3 co-ordinates, e.g. (X, ¥, 2), to specify its position.
Thus the number of degrees of freedom is 3.
Ex. 2. A system containing of N-particles moving freely in space require 3N co-ordinates to
specify the position. The number of degrees of freedom is 3N.
A rigid body which can move freely in space has 6 degrees of freedom i.e., 6 co-ordinates
are required to specify the position.
Let 3 non-collinear points of a rigid body be fixed in space, then the rigid body also fixed in
space. Let these points have co-ordinates (X1, Y1, Z1) ; (X2, Y2, Z2) ; (X3, Y3, Z3) respectively, a total
of 9. Since the body is rigid, we must have
(X1 — X2)? + (Y1 — Y2)? + (21— 22)* = constant.
(X2 — Xa)? + (Y2 — Y3)> + (22 — z3)* = constant.
(X — X1)? + (Y3 — y1)* + (zs — 1)? = constant.
Hence 3 co-ordinates can be expressed in terms of the remaining six. Thus six independent co-
ordiantes are needed to describe the motion i.e., there exit six degrees of freedom.
Transformation equation.
Let ry = x i +yyj + 2y k be the position vector of v-th particle with respect to xyz co-ordinate
system. The relationships of the generalized co-ordinates g1, gz, ...... , On the position co-ordinates
are given by the transformation equations.

Xy =Xy (G, 02, eeees O t)
Yo = Yy (01,0 ,eeeenr O t) (1)
2, =2, (0,0, G t)
Where t denotes the time. In vector (1) can be written as
rv=ry(Qu 9z,..... 00 ) ... 2)
Where the functions in (1) or (2) are continuous and have continuous derivatives.
Classification of Mechanical systems.
(1) Scleronomic system.

The mechanical system in which t, the time, does not enter explicity in equation (1) or (2) is
called a scleronomic system.

(2) Rheonomic system.
The mechanical system in which the moving constraints are involved and the time t does enter
explicitly is called a Rheonomic system.

(3) Holonomic system and Non Holonomic system.

Download study materials https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

Let g1, Q2,....., On, denote the generalized co-ordinates describing a system and let t denote the
time. If all the constraints of the system can be expressed as equations having the form (qz,
0z,...... , On ; t) = 0 or their equivalent, then the system is said to be Holonomic otherwise it is be
Non-Holonomic system.

(4) Conservative and non-conservative system.

If the forces acting on the system are derivable from a potential function [or potential energy] V,
then the system is called conservative, otherwise it is non-conservative.

Kinetic energy and generalized velocities.

1y,
The K.E of the system is T =§Zm\,r\, .

v=1
The K.E of the system can be written as a quadratic form in the generalized co-ordinates. g.. .
If the system is independent of time explicitly i.e., Scleronomic then the quadratic form has only terms
of the type a.; 4a 4y . In case the system is Rhenomic, linear terms in g, are also present.
TOTAL AND PARTIAL DIFFERENTIAL COEFFICIENTS (Required further)

Ifu=f (x, y), where x and y are function of a single variable t, we have

du=a—udx+a—udy.
OX oy

But du = OI—udt, dx = %dt and dy = %dt . Therefore
dt dt dt

du_audx  audy
dt  oxdt oy dt’
This value of du/dt is called the total differential coefficient.

In general, if u=f (x, y), where x and y are functions of t, we can show that

du_oud oud, | dudx

dt  ox dt  ox, dt T ox, dt
Similarly, if u= f(x,y), where x and y are functions of two other variables t, and t,, then we
have

u_udx gy

= (D)
, oxay oy
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qou_ouox oudy (2)
o, oxat, oy at,

These results can be extended to any number of variables.

Generalised Forces.
If W is the total work done on a system of particles by forces F, acting on the v-th particle, then

dw = Zqﬁadqa where ¢, = ZF
a=1 aqa
is called the generalized force associated with generalized co-ordinates gx.

Suppose that a system undergoes increments dqz, dgz,..., dgs, of the generalized co-ordinates gz,
02,....., On, then the v-th particles undergoes a displacement.

or,
dr, = z o0 dg, ... 4)

a=1

.. Total work done is given by

oW =3 R, _z{zp ®)

v=1 Tlea Mo
Now, let ¢, = ZF o
o,
Then (5) dW = Z[ZF U—}da Z¢ada o (6)
Tl 9 a=1
oW
We have dW = So—= (7
Zi 2, ", [ (7

Note. (i) « varies from (1) to n, the number of degree of freedom.
(ii) v aries from 1 to N, the number of particles in the system.
Lagrange’s equations.
Let F be the net external force acting on the v-th particle of a system, then by Newton’s second

law
N
m,r=F
= m,rye o, =F e on o ®)
aq, aq,
= m,rye oy =F\,06i ...... ®)
Uy 8%
N [
= va rvo F ...... 9)
v=1 a V aqa

v=1 v=1 a

=1
digh © O | R s a0 ) S 0N
—| >m,r,e— |- >»mr e—| —|=>F
jdt{vz_lvvaquvvdt(aqa Z“"6q

Download study materials https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

But ry = rv (O, qz,....., On; t) w...(10)

or, . arv .or,

b, =—2 — O + e — (g, +— (11
ry 20, G + 6q2 0 + aqz O+ (11)
o, or, .

——=——[Cancellation law of the dots] —(12)
a, A
0 o | or, or, or, o,
Also, — (1, )=—| =Yg, +—~ + VG 4
2, ) 6qaf(8q1ql 20, % g, % 8t}
2 2 2

= % 0 + oty Gy +.t ot Gy + 0 [aij
aqa aql aqa aql aqa aq n aqa ot

_6(6r] a[ar] a(arj a(arJ

0 + Gp +.... + Gn +
aql aqa an aqa 6qa aqn ot aqa
or i(der dion | df 2 Eﬂ(ij (13)
aq, \ dt dt aqa dt{ oq, ) oq, \dt
[interchange law of the order of operators]
Now, %{varU—} Zm ru— ZF ...(14)
qa a
1 2 1
and T :EZm\,r\, =§Zm\,(r‘v[rv) .....(15)
= .....(16)

; Vv V aqa

and a—_Zm rD— > m, rD— [using (12)] S dod

M, 7 a0, 0y

df oT

ey = _(f]__
dt\ g, ) A9, ;;

d( or oT oW

r—| — |-——=¢, =—— using (7 (18

dt(aan 2 Pu . g(7) (18)

Note. The quantity P, :air is called the generalized momentum associated with the general co-

o
ordinates qq.

Lagrangian function.
If the forces are derivable from a potential function V, then

oW oV
¢a -

0, o,
Since the potential, or potential energy is a function of q’s only (and possibly the name t) then,
we have

d( or oT oV 0 or oV
—| = |- =— = —(T-V)|-| —-—=—
dt{ oq, ) oq, o9, oq,, aq, 8qa
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Ao ) b o hereL=T_vV .(19)
dat 24, ) 7,

The function L defined by L =T — V is said to be Lagragian function.
Generalised momentum.

We defined P, = aa—T to be the generalized momentum associated with generalized co-ordinates
q

o
Jo, OF the conjugate momentum.

In case the system is conservative, we have

T=L+V =(aT/oq,)=(0T /o4, )+(T /oq,)=(oT /64d,)
Because V, he P. E. of the system does not depend upon g,

S pg=(0L/dgy,)

Kinetic energy as a Quadratic function of velocities.

If at time t, the position of the V" particle (mass m), of a holonomic system is defined by ry,
then K.E. is given by

18
T =EZmVrV2, where r, =1, (Gy.....0n; t) (D)
v=1
So, that , _qla—r+q2 ,_,,+qnai+6i
o0 a9 g, ot

4
L _or, . or _or, o
—Eva(qla—V+q2—V....+qn—V+—VJ

v=1 Oy

0 aq, ot

= E[(allqlz + a22q22 +.t annqn2 +287,G1 Gy + 28¢,Gi G+ + 2(a1ql +ayQ, +.+a,0, ))+ a}
...2)

N
Where a,s = > 'm, (or, /&g, ).(6r, / &gs ) (s =)

v=1

ay va or,lor)",a Zm\, ar, lat ,a, _va or, /aqr)(aartj

v=1 v=1 v=1
From (2), we see that T is a quadratic function of the generalized velocities.
The case t is not explicitly involves, is of considerable importance. Hence,

We have % 0 and therefore (2) implies that

1 ) ) 3 % . .
T =§(anof 8y, + ot B G + 280,02 + 280,00 +) n(3)
I3, .
= —ZzamqrqS where a,s = a, . N )]
25:1r:1

Now using Euler’s theorem for homogeneous functions, we get
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LI B
Vo e, M,

= 2T = ana Zpaqa
)

|e, 2T = plql+ plqz +. + pnqn
To deduce the principle of energy from The Lagrange’s equations (Conservative field)

Lagrange’s equations are:

dfor) o __ v, @=1,2,....n) (1)
dt\ oq, ) oq, aq,

we know that

1 . . . .
T :§(a11q12 + 8y + . Bl + 280,60, + )

That is, T can be expressed as a quadratic expression in generalized velocities. Hence applying
Euler’s theorem. We get

an aq = ()

D LIPS ()

ozzla [o4 a laqa
Now multiplying the n equations of (1) by ¢;,ds,.....,d, respectively and then adding we get

dtlag | dt| oy 15(11 naQn

dT dv. dT dVv
= Sn)- S-S S
dt dt dt dt dt

(T+V)=0=T +V = constant.

Hamilton's form of the equations of Motion.

Here we shall obtain the differential equations of motion of a conservative holonomic dynamical
system in a form which constitutes the basis of most of the advanced theory of dynamics.

Let (01, G2 ...., gn) be the generalised co-ordinates and let L (q1, Gz ..., Gn ; Gy, -0, ;b),

the kinetic potential of the system, so that the equations of motion in the Lagrangian form are
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%[GL / aqi)— @L/6g)=0;(i=1,2,..,n)

()
writing pi= oL/ dq; we get p,=(dL/oq,) (i=1,2,...,n)
(1))
hence from the former of these sets of equations we can regard either of the sets of quantities (qz, g2 ....,
an)

or (p1, pz2 ,....,Pn) as functions of the other set.
Now, let 6 denote the increment in any function of the variables (qz, 92 ...., On; P1, P2, ..., Pn) OF

(ql,qz....,qn ;q'l,q'z,....,q'nj (91, 92, ...., On, 01, 92, ..., On); then we get

1| o og;  0q

dL = Z[idql i a_quJ (th‘(whenLcontamstexphutly)

oL
d d < dt
Z(pl g +P |0j+at

=1

- (ZpI Ij+z pldqI pdplj+%dt
us d{i(pi qij—L}zi(qi dp, — p, dqij—(aL/at)dt.

i=1 i=1

Thus if the quantity Z( P, q,— L) when expressed in terms of (Qi, 02 ..., On ; P1, P2 ..., Pn; 1)

i=1

be denoted by H, we have

5 . oL
dH ZZ(qi dpi - P dqi)_adt
i=l
1, oH oH 4 oL
= _dql _dpl +_dt = q| dpl p fq| __dt
;aqi ;api g ot
oH oH oH oL
= qi:_,pi:__,_:__
op; ag, - ot ot

If H does not contain t explicity (i.e. does not contain t explicitly) we have

P, =— [GHJ and ¢, = (aH]. (4
ql apl

These equations are called as Hamilton’s equation or Hamilton’s canoncial equation and the function
H is called Hamiltonian.

The total order of Hamilton equation is the same as the total order of Lagrange’s equations, names 2n.
But whereas Lagrange’s equations present us with n equation each of the second order. Hamilton’s
present us with n equation each of the second order.
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Hamilton’s equations are 2n equations. Each of the first order. Hamilton’s equation can also be written

as dp,___do =dt.

&) &)

Physical significance of the Hamiltonian.

If the Hamiltonian H is independent of t explicity prove that it is
(a) constant and (b) equal to the total energy of the system.
dH _oH dg  <-~0H op;

Proof. (a) Wehave — =% — T ¢
dt  ='og, dt  45'op, dt

0 n oH oH
ZI (B Zlq p.[ b= & 8pij

= H = constant, say E.

(b) By Eulre’s theorem on homogeneous function, we have

! 2—T = 2T, where T is the K.E. of the system.
q;
o(T -V
But L=T-V, .. L =¥ =£(V does not depend on g;)
aq; o aq;

oL oL
or G—=2T=)>qp=2T|..p=—

qu aql qu pl [ pl 5q,J

L H=)pg-L=2T—(T-V)=T+V=E
Passage from the Hamiltonian to the Lagrangian.

Suppose that we are given a function “H (q, p,t) and are told that the-motion of the system satisfies the
canoncial equations

y ——| M = H
P, = (aqu and ¢ (89] ~..(1)

Then we want to find a function L( PPy Py GGy qn;t),i.e.L( p,q,t)

Such that the motion also satisfies the equations

(ij i (& =0 ...(2)
dt )\ oq, g
Solve the first set of equation in (1) for the p’s in terms of the g’s the § ’s and t.

Then write L = Zqi P, —H and express L as a function of the q’s, the § ’s and t. This is the required

Lagangian.

R EARTANEY
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d(aL oL . oH
= —| || = [=h+| = |=0
dt [aqi ] (aqi j [aqi J

i.e. L satisfies (2) assuming (1).

Principle of Least Action.

Principle of least action states that if T is kinetic energy, at time t, of a conservative, holonomic
t

dynamical system specified by the generalized co-ordinates, then the integral | = j 2Tdt has necessary
b

an extreme value, minimum or maximum, on actual path as compared with varied path as the systems
passed from one configuration at time toto another configuration at time t.

We know that L =T —V, i.e. Lagrangian = k.E. — P.E.
and T +V = E (const), since system is conservative.
But by Hamilton’s principle, we know that

tjéLdt =0:>T5(T ~V)dt=0 Ta(zT —E)dt-0

t t t
t, t,

= [s(2T)dt=0 =s[(2T)dt=0. (1)
t t

[SE =0as E, the total energy is const.]
Result (1), is know as Principle of least action.

1%
Equation (1) can also be written as 0A=0,where A= IZT dt and is defined by action as follws:

)

This implies that principal of least action states that the action in the actual path is minimum compared
with the varied path, as the system passes from one configuration to another.

EXAMPLES TO SUBSTANTIATE.
Ex. 1. (i) Set up the Lagrangian for a simple pendulum, and
(ii) obtain an equation describing its motion.

sol. (i)
O
Reference level
0 1
B
C
A mg

Choose as generalized coordinates,
the angle 6 made by the string OB of the pendulum and the vertical OA. Let I be the length of OA,
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then K.E., is given by
N2 .
712 =Em(h9) ~Lg?
2 2 2

Where m is the mass of the bob.
The potential energy of mass m is given by

V =mg(OA-0OC)=mg (I —Icos@)=mgl(1-cos8)
S L=T-V =%ml2¢9'2 —mgl (1-cos8)

(ii) Hence Lagrange’s 6 equation gives
g(ij —a—L. =0=> g(mlzé) —(—mglsin#)=0
dt\o6g) o0 dt

= 10=—g sinH:ézf%sinH

Which is the required equation of motion.
Ex. 2. A particle of mass m moves in a conservative force field. Find
(a) the Lagrangian function, (b) the equations of motion in cylindrical co-ordinates (p, ¢, z).

Y
Py (P $,2)
zZ
0 >Y
B (b p‘_."A
TP OA = psind
OB = pcos¢

Sol. we have OP =OR, + PyP = OA + AR ++PyP = p(say)
o p=psingj +pcosoi +zk wherei, j, k

are the unit vector along OX, OY and OZ respectively.
Hence the unit vector along the direction of p increasing is

Given by ﬁlza—p/ % =sin ¢j + cos ¢i
op |Op
. - Op,|op
Similarl =—/|—
y & 20 ‘54)
= peosé] —psingl = —sin ¢i + cos j
p
dp d - .
Now v=—-=—(psin¢j +pcosdi + zk
it Olt(p ¢j +pcos di + zk )

= pcosddj + psindj — psin i + pcos i + kz
= pcosdj — psinj + pd(cos¢j —sin i) + 2k
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Ex. 3.

= ppy +pddy + 2k
~T :%m{pz +p7p% + 22} and V =V (p,$,2)
@

Hence the Lagrangian function is

L=T-V =%m[p2 +p°4° +2% |-V (p.0,2)

(b) Lagrange’s equations are
d(oL) oL . d d, . o 0V
—| —|-—=0ie, — —(mp)—| mpp*— |=0
dt(@p) op dt dt( P) [ P 8pj
. . 2\_ oV
i.e., m(pqu) )_8p
draoby g ie., i(mp2<i>)+ﬁ=0
dt\ op ) oo dt fol)
d/ o oV
or — =——
dt(p 0) 20
d g(%j%zo ie., i(mz‘)+6—V=0 or m‘z‘=—a—V
dt\oz) oz dt 0z oz

A particle Q moves on a smooth horizontal circular wire of radius. A which is free to rotate
about a vertical axis through a point O, distance ¢ from the centre C. If the ZQCO =6, show

that
ab+d(a—ccos0) = cw? sin®.
Where o is the angular velocity of the wire.

Sol. Let OQ =r, and ZAOQ = «a

2 2

= r?=a%+c?—2accos0

(1)

..(2)
The particle Q moves on circle of radius a, so its velocity along the tangent QT will be a6 but
Q revolves about O with angular velocity o, which causes a velocity aw at the right angles to

0Q.

= Wé = (velocity)? of the particle at Q

rcos(a—6)=a—ccos®
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= a%0% +r?w? + 2arfcos(o — 0)

ZA0Q =0,2CQO0=0—-0
1 2 1 242 2 2 :
NowT_Eva _Em[a 0% +rw +2arwecos(a—e)J

/NQT =0~ 0,0Q =r1

HQ=a-ccos6
NOTE:-

If r is the position vector of the particle at any time t. the or/ or is the vector tangent to the curve 6 =
constant i.e., a vector in the direction of r (increasing r), A unit vector in this direction is thus

given by _ﬂ/ o
Yoo o]

Similarly, or /o0 is the vector tangant to the curve r = constant, A unit vector in the direction
L = or |or
isgivenby 6, =—/|—

IVENEY P1=%0" |2
= %m[azez +(az +c? 72aCcose)(o2 +2a0)9(achose)J = rcos(o.—0)
and work function =0 (- weight does no work)

! d(orT) oT
=L ’s O equation = —| — |—-—=0
o dt(@Gj 20

= %[a29+ ao(a+ Ccos@)} —acw? sin0—acofsinO =0

= a%0+ a®(a—Cccos0)+amchHsin O — acw’ sin0 — acwdsin 0 =0
= a%0+ @(a—ccosh) = cw?sind

EX. 4. Use Lagrange’s equations to find the differential equation for a compound pendulum which
oscillates in a vertical plane about a fixed horizontal axis.

Sol.
y

| Mg

O X
Let the plane of oscillation be represented by xy — plane, where N is its intersection with the
axis of rotation and G is the centre of gravity.
Let the mass of the pendulum be M and let its moment of interia about the axis of rotation be
MK?,

Then potential energy relative to the horizontal plane through N is V = —Mgh cos6.
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Also, T = % Mk 262

L:TV=%Mk92+Mghcose (D)

— L _ Mk20 and a—l.'z—MghsinG
0 o0

Now Lagrange’s 6 equation gives
d(foL) oL d

_(_j__o:—(Mk29)+ Mghsin0 =0
dt\ o0 o0 dt

i.e., Mk20+ Mghsin@zO:éz—i—?sin@

gh

When 0 is small, we have D20 = —k—ze (sind = 0)
or (DZ +g—2j9=0
k

This is the differential equation of the pendulum.

Ex.5. A uniform rod, of mass 3m and length 21, has its middle point fixed and a mass m attached at
one extremity. The rod when in horizontal position is set rotating about a vertical axis through

its centre with an angular velocity equal to (2%] show that the heavy end of the rod will

fall till the inclination of the rod to the vertical is cosl[ (n2 + 1) - n} and will then rise again.

Sol. The mass m is attached at L. On the rod ML, take a point p such that
OP =&, the element PQ=d¢.

L op-¢
+ 0Q=¢+dg
: ML =21

Ly

Z
Further at any time t,
let the plane through it and the vertical have turned through an angle ¢ from its initial position and let
the rod be inclined at an angle 6 to the rod be inclined at an angle 6 to the vertical.
Taking O, the mid point of the rod, as the origin and OX, OY (a line perpendicular to the plane of the
paper) and OZ as axes of refrence,

then co-ordinates of the point P on the rod are:
x=EsinOcos¢,y =Esin6,z=EcosO

Download study materials https://mindsetmakers.in/upsc-study-material/



https://mindsetmakers.in/upsc-study-material/

. X=EcosOcosO—Esinphsin O

y =& cos Osin ¢0 + Esin Ocos p, 2 = —EsinOO. Thus, Vg = (velocity)? of.
P=x%+y%+2 =§2(62 +ci>zsin29).

LvE=1? (62 +¢?sin? e) = (velocity)? of mass m,

Now mass of the element PQ = ?)Z—Td& =dm, say.

.. Its kinetic energy

=%dm.v§ =%.3;—Tdé(62 +¢2sin? e)gz

_3myo o .
= Z(92 +¢25|n26)§2d§

and K.E. of the rod = 3—m(62 +¢2sin? 6) J' g2dg
41 )

Em(é2 +¢2sin? e)l2

2

Again, (velocity)? of the particle m =12 (92 +¢2 sin? e).

~. Kinetic energy of the particle of mass m :%ml2 (62 +¢2sin? 6).

.. Total K.E. = T = K.E. of the rod + K.E. of the particle

_1 2062 2.2 1 02082, i2cin2

= Eml (6 +¢“sin e)+§ml (6 +¢“sin 9)

T= mlz(é2 +¢?sin? O)

Also the work function is given by W =mglcos6+C

Lagrange’s ¢-equation is i ar)_ ot _ oW
s a dtl 6 ) op o

Which gives a(2m| osin 6)_0

Integrating it, we get <]>sin2 0 =K (constant).

Initially, 0== and ¢= [2&]
2 |
[
- gsin®0= (2%] (1)
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Ex. 6.

, ... dfaT) or oW
and Lagrange’s 0-equation is —| — |-—=——
dt\od6) o0 00

i.e., %(Zmlzé) —2ml?$? sinBcos O = mgl sin O

or 216 —21$?sinOcosO = —gsin O 2)
Substituting value of ¢ from (1) in (2), we have

216 — 4ng cot Ocosec?0 = —gsin O (22
Integration provides us 2162 +4ng cot? 6 =29 cos0 +k .

Initially e:g,e:o, - k=0

. 216 + 4ng cot® 0 = 29 cos O (3
The red will fall till 6=0
i.e., 4ngcot?0=2gcosO or 2ncos? O — cosOsin? O =0

.. either cos6=0=0 =g which gives initial position.

as 2ncos®—sin®0=0=>cos>0+2ncosd—1=0.

| 2
Solving it, cosf = " (24n +4) {—n+ (n2+1)}

[the other value being inadmissible because 6 can not be obtuse]
or 0=cos | [—n + (n2 + 1)} . This proves the required result. If we substitute this value of 6 in

equation (2’), then we find that © comes out to be positive. Hence at that time the rod begins to
rise.

A mass m hangs from a fixed point by a light string of length | and a mass m’ hangs from m by
a second string of length ”. For oscillations in a vertical plane, show that the periods of the

principal oscillations are the values of 2n where n is given by the equation
n

4 >m+m }+£ +gzm+m _0
(I ml'l

Sol. A any time t, let the strings be inclined at angle 6 and ¢ to the vertical. Co-ordinates of m

are (Isin®,1cos0).
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0 (fixed pt)
t0A=1

: : Y
~. (velocity)? of m=126? while co-ordinates of m’ are
xg =1.5in0+1'sing. = Xz =1cos00+1'cos
yg =1c0s06 +1'cos dp¢
. (velocity)? of
m'= X3 + yxg =126 + 122 + 2116¢
[~ 6and ¢ are small]
Now let T, be the Kinetic energy and, W the work function, of the system, then we have
W =mglcos®+m'g(lcosd+1'cosd)

=gl(m-+m')cos6+m'gl'cosd
and T = miZ02 + > m{ 1267 +120 + 211°69
2 2

:%[(m+m')lzé2 +m'l'2§? +2m'éd>}

00

d (8Tj aT oW
6 00

Lagrange’s 6-equation is given by pm

= %[(m+m')l26+m'll'd>]=gl(m+m')e (1)
While Lagrange’s ¢-equation gives

i[m'l'2<i>+ m'II'é}:—m'gl'q)

dt

= 1'¢p+10=—gd (2)
Equation (1) and (2) again give

(m+m)(ID?+g)o+m'1'D’9=0 ceen(3)
ID26+(I'D2+g)¢=O ()

Eliminating ¢, we get [(erm')(ID2 + g)(l 'D? + g)—m'II'D“}ezo
ie., [mII'D4 +(m+m")(1+1")gD? +(m+m')gz]e=0 n(5)

Now let 6= Acos(nt+B); -.DO=-nAsin(nt + B)
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D?0=-n?Acos(nt+B)=-n’0 and D*6=n"0 ()
- (5)and (6) give mIl’ n* —(m+m")(1+1")gn® +(m+m')g?=0

or n4—m+Tm'G+%jgn2+(m+—m)=O (7)

Ex. 7. (a) A mas M hangs from a fixed point at the end of a very long string whose length | is a, to M
is suspended a mas m by a string whose length | is small compound with a; prove that the tiem of a

small oscillation of mis 2x ( M lJ
M+m g

Sol. Here, we havem=M, m’ =m, [ =aq, [’ =1
M+m
@M +m(l_+%jgn2+g

a

M Mal

2
ie., n4—M+m[l+1jﬂn2+w L (8)

M I MIZ  a
But a is larger compared to | ... l—>0
a

Hence the equation (8), gives

47M+mgn2=0ie n2=M+mg
= ¥

M M

n

.. Time of a small oscillation = EF 2n { i I—}
n M+m g
Ex.8. (b) At the lowest point of a smooth circular tube, of mass M and radius a, is placed a particle of
mass M’, the tube hangs in a vertical plane from its highest point, which is fixed, and can tum freely
in tis own plane about this point. If the system be slightly displaced, show that the periods of the two
independent oscillations of the system are

-1
21 2 and 2rn Mag
g M+M
And that for one principal mode of oscillations, the particle remains at rest relative to the tube
nd for the other, the centre of gravity of the particle and the tube remain at rest.

Sol. Let C be the centre of the tube and A the position of the particle M at time t when OC and
CA make angle 36 and ¢ with the vertical

X 0
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. Xp=asinf+asing,
. yp=acos0+acos¢

and
(velocity)? of A=%34 + V4
= (acos 00+ acos (I)(i))2 + (—asin 00 — asin ¢d))2
[neglecting small quantities of the higher order]
Also C =(asin8,acos6)
(velocity)? of C =(acos 69)2 +(-asin 69)2 =a%0?

Now let T, be the kinetic energy and W the work function of the system then we readily obtain
W =Mgacosf+M 'g(acosd+acosd)+ K

=(M +M")gacosd+ M 'gacos¢+ K

T = K.E. of circular tube + K.E. of particle

=M (2267 +2207 )+ M (2202 + %% +2a%66)
2 2

_2M+M
2

.. Lagrange’s 0-equation gives.

a26? +%M 'a%p? + M 'a20d ),

E[M ‘% +M'a%0]=-M'gap=>¢+0=—2¢

dt a

= (2M +M)b+M'G=—(M +M") Lo, ce3)
a

Also Lagrange’s ¢-equation gives

E[M 'a%p+M'a%) |=—M 'gah = p+6=—I¢ ()

dt a

Equations (3) and (4) can be re-written as

[(2M+M")D?+(M +M )¢ [0+ M D=0 oen(5)

and D29+(D2+c)¢:0 wherec=2. (6)
a

Eliminating ¢ between these two equations, we get
(M +M)D?+(M+M")c)(D? +c)-M'D* [o=0
i, [2MD* +¢(3M +2M")D? +¢? (M + M) |0 =0.

To sole (7). (D)
Let 6= Acos(pt+B);D6=—pAsin(pt+B)

D20 =—p2acos( pt + B)=—p?0 and D*0=p*e e a(8)
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. (7) and (8) give [2Mp4 —¢(3M +2M ") p? +c2(M +M ﬂe:o
ie, 2Mp* —c(3M +2M ) p+c*(M+M")=0 [+ 0=0]

which again gives (2 p? —c)[Mp2 —c¢(M+M ')] =0

, C » ¢(M+MY)
" =—and p;=———=
P 5 P2 M
o 2 0 2 _M+M'g [ g]
i.e., =— and = = o c=2
P 2a P2 M a a
Hence periods of oscillations are given by
2n and — i.e., by 27@/ 2a/g and 21:
Py Py M+ M
Multiplying (6) by A and adding to (5), we have
D*((2M +M+2)0+(M+1)¢)=—{(M +M")}0+1¢ )

Now choose A such that
2ZM+M'+A M +M'
M4+ A
Taking A =M "', equation (9) reduces to

=Ai=M"and A=—(M+M").

D*{(M+M")0+M 'q)}:%c (M+M'0+M'¢}

and when A =—(M + M ")equation (9) reduces to
M+M'
02(0-6)=-"M'g(og)

<. Principal co-ordinates are 6—¢ and {(M +M")6+M '} 0.

For the first mode, 6—¢=0. i.e., 6=¢. This shows that the particle is at rest relative to the
tube. For the second mode we have (M +M")8+M'¢p=0.
Further, the x-coordinates of C.G. of the particle and the tube

_ Masin6+M '(asin®+asin¢)

M+M'
a . . .
= MO+ M'(0+ since 0 and ¢ are small ... sin@ = 0 and sing =
IR (0+0)} ( 0 ¢ =9)
a .
= M+MY)0+M'$p}=0 using above results
YIRVEL ) o} [using ]

= The common C.G. of the particle and the tube remains at rest.

HAMILTONIAN

Ex. 9. A particle moves in the xy-plane under the influence of a central force depending only on its
distance from the origin.
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(&) Set up the Hamiltonian for the system.
(b) Write Hamilton's equations of motion.
Sol. (a) Let the potential due the central force be V (r). Then, we

have

1 1
T= > mv? = > m [(radial velocity)]2 + (transverse velocity?)
= %m (r’ +r%6%)

L=T-V :%m(r2+r202)—V(r)

p, = (L /éor)mr, p, = (6L /or) —mr?6
= r=(p,/m),0=(p,/mr?)

Thus H ZZ P:g; — L= P, + Pp0y — L

=pr+ pgé—%m(r‘2 +r20°)\V(r)

= 0, (p, /m) + p,(p, +mr) —%m{(pf/mz)ﬂz,(p; I mEr)}-V (1)}

=(p?/2m)+(p; / 2m?)+V(r) = total energy of the system
(b) Hamilton's equations are
p, =—(oH / aqi), ¢, = (6H / op;)
= ft=(H/p,)=(p, /m),0=(H /p,)=(p,/ mr?)
B, =—(H /or)=(pZ Imr®)=V(r), p, =—(0H / 56) =0
Ex. 10. A particle of mass m moves in a force field of potential V. Write
(@) the Hamiltonian and

(b) Hamilton's equations in spherical polar co-ordinates.

Sol. (a) K.E. is given by
T =%m(r2+r292+rzsin26¢2) (1)
L=T—V:%(r2+r292+rzsin29¢2)—v (2
We have p, =(AL/ar) =mr, pd= (oL /) = mr?6,

p, = (0L / 8p) =mr’sin’ ¢
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= t=(p, /m),0=(p,)/ mr?),¢=p, / (mr?sin®6) ..(3)
Now Hamiltonian is given by

H=Xpdg-L=pr+ peé"' pq)d)_l—

:p_r2+ Py + pg_ +V (r,0,¢)
2m  2mr?  2mr®sin®0

= total energy of the system
(b) Hamilton's equations are given by

qi = (6H /api)! pi =—(8H /aqi)

2 2
ie. r‘:ﬁzE prz_ﬁ: p93+ 3p<_|>2 _V
op, m o mr’ mr’sin“d or
p=2H _ P, o = OH_ PiCosO v
op, mr? 80 wmrisin®0 80
»_ oH Py . _OH oV
e=a—=—2 - Po == ==~
p, mrosin“o op o

Ex. 11. A particle of mass m moves in a force field of potential V.
(@  Write the Hamiltonian and
(b) Hamilton's equations in cartesian co-ordinates.

Sol. (a) We have

T=%m(>‘<2+y2+zz)

= L=%m(>’<2+y2+z‘2)—V(x,y,z) (1)
wop,=(0L/ox)=mx, p, =(6L/oy)=my;p, =(oL/0oz)=m2
= X=(p,/m),y=(p,/m),2=(p,/m)

Thus H=Xp,gx—L=px+p, + pzz—%m(x2 +Y2 +23)+V (X, Y,2)

=p,(p, /m)+p,(p, /m)+p,(p,/ m) —%m[(pf Im?)+(p; /m*)+(p2 I m)+V(x,Y,2)]

=(p%/2m)+(p:/2m)+(p;/2m)+V(x,Y,2)

= total energy of the system.

(b) Hamilton's equations are:

P, =—(oH 1 x); p, =—(cH / dy); p, =—(6H / &z) and
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x=(0H /op,);y=(ceH /p,);z=(cH /op,)
= p,=—(0V 10x),p,=—(0V 1 dy), p, =—(V I 6z)

x=(p, /m),y=(p,/m),2=(p,/m)

Ex.12. A sphere rolls down a rough included plane; if x be the distance of the point of contact of the
sphere from a fixed point on the plane, find the acceleration.

Sol. Wehave T =im(>‘<2 +k262)=1m 2+ 20207 =2
2 2 5 5
1 o 2., 7 . .
=—m| X“+—=X° |=—mX~; (1 V=mgxsina ..(2
: [ Z j = (1) gxsina .2
. [ :
. L:T—V:me +mgxsing ..(3)

Now p, :(8L/6>’<)=£m>‘<:>>’<=(5pxl7m)

Thus H=-L+ pxxz—%mX—mgxsina+ p.-(5p, / 7m)

_5

14(pf/m)—mgxsina .(4)

.. One of Hamilton's equations gives

p, =—(coH /8x)=mgsina:émﬁ:mgsina:X:?gsina

Ex. 13. If the Hamiltonian H is independent of time explicitly, prove that it is.
(@ aconstant, and

(b) equal to the total energy of the system.

Sol. (a) (dH /dt) = %(GH Iap)p, + é(aH 169,)6

6,0 +(-p)G =0 [ (H/0p)=0,(eH/a6)=-p]

= H = constant = E say.

(b) By Euler's theorem on homogeneous functions, we have
36,(5T 1 66,) = 2T o)
i=1
Put p;=(0L/aq)={o(T -V)/oa}= (T / 6¢;) — (oV 1 oq;) = (T / &6;)

{. (0V 10q,)=0 as V is independent of oq.}
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Ex.

L@ > zlq p. = 2T

Thus H=3¢ p,—~L=2T —L=2T —(T—V)=T +V =E
i=1

14. Write the Hamiltonian function and equation of motion for a compound pendulum.

Sol. We have Lzélé2 +mghcos® = p, = (AL /30) =10
where | = mk?

" szpiqi_szeé—Lzléé—%éz—mgh cos0
1 .
ZEIO —mghcosé

= %H=(pellz)—mgh cos0=(pZ /21)—mgh cos6 {-6=(p, /1)

s (OH 10py)=(p, /1), (6H / 66) =mgh sin 6

Thus the Hamilton's equations for § and p, are given by

0=(0H /0p,). p, =—(oH / 80)

ie.  0=(p,/I) and p,=-mghsing. But p,=10=p,=16
. 10=-mgh sine:>é+nghsin9=0.

This is exactly the same as obtained previously using Lagrange's equations.

Ex. 15.Obtain Euler's equations from Hamilton's equations.

Sol. We know that 2T = (Aa +Ba? +C2),

- L=T—V=%(Awf+Bw§+Ca)§) (1)
Also Euler's geometrical relations give

@, =0siny —sind cosy

w, =0cosy —sind siny; and

@, =y +$cosd

NowH=T+V =%(Aa);+Ba)22+Ca)32)+V

%_i@_@u oL 6a)z+ oL O,
0 0w 00 O, B Ow, B
=A siny+Bw,cosy +Caw,.0 (1)

Again, Pp=

Pq):Z—g =—Aw sinBcosy+ B w, sin6 siny + Cw, cosO ...(2)

and P, =(0L/oy)=Cuw,
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Solving the three equations for @,,®,,®, we have

cosy

sind
sm\p
sind

1
a)lzZ Py Siny +(p, cosO - p,

_1 0 1
=5 P, cosy —(p, cos6—p, :and w3:E'p”’

. . H . oH
Also, Hamilton's equations are p,, = _H and y=—-
oy ap,

H
Now p‘l’ Zg—w

o {GH owy  oH oo,  oH 80)3}_6V

+ —_
Ow, Oy Ow, Oy Ow, Oy | Oy
- Aa)l.iBa)2+Ba)2(éa)lj+Ca)3.O N
A B oy

~ (A= By, - 2

da) ov
dtl (A-B)ow, = {"—a—d)—Nj

This is Euler's third Familiar dynamical equation
O0H 0w, OJH Ow, I OH Ow,

Also, =(0H/op, )=——=+
v=(eHiop)=50 o, 0w, op,  Oa, op,

= (m, Cosy — , Siny) cotO + w, = —¢sinBcot + o,
ie Y =—$C0SO+m, = w, =y +$coso
This is Euler's third geometrical equation.

On the same lines, we can deduce Euler's other equations (dynamical and geometrical).
Ex.16 Prove that

(aH j (6(: j where H is the Hamilton's function.

dt
Sol. Let g1, g2 ...., gn be the generalised co-ordinates then Hamilton's equation are given by
oH oH .
), =—and g =—(=1,2, ..., n (1
Py 2 G o ( ) 1)

But Hamiltonian H is a function of g's and ps'

JOH _oH poH, 0
ot dt+§aq E p;
-2 S eparsan -2 [using (1)]

Ex.17 Use Hamilton's equatlons to find the equations of motion of a projectile in space.
Sol. Let (x, v, z) be the co-ordinates of the projectile in space at time t, then we have

T :%m()‘(z +y°+7%),V =mgz
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L L=T-V =%m(>‘<2+y2+z‘2)=mgz

oL . oL . oL
=>p=—=mXp,=—=my,pi=—=

y =—=mz
X oy oz

But L does not involve t explicity therefore Hamiltonian H is givenby H=T +V = %

(X* +y*+2%)+mgz

1 pf p>2/ pzz 1 5 2 2
=-m| 2+ 2L+ imgz=—(p>+ p?+ p2)+ Mgz
2 (mz me o m? 9 om (p + Py +p;)+mg

Now Hamilton’s equations are given by

_oH_

0, = 0 (1),
Pe=—"7 6]
x=dH_P Q).
op, m
oH
p,=——=0 ...(3),
Yy
. OH P
V= ..(4),
p, m
oH
 =———=—m ...(5),
P === g ()
oH p
I=—— =12 ...(6
» o m (6)
Using (1) and (2), we have X =0 ..(7)
Using (3) and (4), we have § =0 ...(8)

Again making use of (6) and (5), we have
mZ=p,=-mg or Z=-g.

These (7, 8, 9) are the equations of motion of the projectile in space.
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ASSIGNMENT TO IMPROVE

Q. 1. A bead, of mass M, slides on a smooth fixed wire, whose inclination to the vertical is o and has
hinged to it a rod, of mass m and length 21, which can move freely in the vertical plane through
the wire. IF the system starts from rest with the rod hanging vertically, show that

{4M + m(1+3cos2 9)};62 =6(M +m)gsina(sin®—sinc) where 0 is the angle between the

rod and the lower part of the wire.

Sol. Let OL be the fixed wire. At any time t. let the bead of mass M bet at A where OA = x, also
let © be the angle which the rod AB makes with the lower part of the fixed wire.

Take O as origin and the fixed wire OL as x axis and a lien through O and prep. To OL asy
axis; the co-ordinates of G, the C.G. of the rod AB, are {x +1cos6,lsin 6}

i.e., Xg =(x+1cos@) and yg =Isin®
X :()'(flsineé) : Yo =1cos00
. (velocity)? of G =v§ =x§ +y§ =(x—I sin66)2 +(1 coseé)z.

Now let T be the kinetic energy and W the work function of the system
Then we easily get

Total energy = T = K.E. of the bead + K.E., of the rod
2
=EMX2 +£m I—GZ +(>’(f I sin@é)2 +(| coseé)2
2 2 |3

=%(M +m)x mI>'(ésin9+§mI292

Also, the work function is given by
W = Mchosaerg[XcosoH | cos(G—oc)]
= (M +m)gxcoso +mglcoscos(0—a)

. Lagrange’s x-equation gives E(GTJ_E_%
e " dt X ox

OoX
. d . -
ie., a[(M +m)xfm|951n9J=(M +m)gcosa

or (M +m)%—mlBsin6—mldsin®—ml6*cosd=(M +m)gcosa. D)
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E(ﬂ)_ﬂ_%

dt\od) 00 00

. d . 4 5. »

ie., —t[mlxsm9+§ml 0]+ miIx0coso

=-mglsin(0—a).

or X'mlsineXémlcos6+gmlé+)'(9ml cosO

=-mglsin(6—a)

or 7X31n6+§|97951n(670c) ...(ih)
Eliminating X between (i) and (ii), we get

9{—m| sin® 9+%(M + m)l}— ml6? sin Ocos O
=(M +m)g[cosocsin6—sin(9—oc)]
or Ié[3M +m+3mcos? 6] —3ml6? sinOcos O
= 3(M +m)gcosBsina.

Whence on integrating, we get

162 [4M +m+3mcos? e} =6(M +m)gsinasin@+C ......(iii)
When 0=a,0=0, .C=-6(M +m)gsin®a.

Putting the value of C in (iii), we get

162 (4M +m+3mcos? 6) =6(M +m)gsino(sin@—sina)

Q.2. A uniform rod, of length 2a, which has one end attached to a fixed point by a light inextensible
string, of length %a, performing small oscillations in a vertical plane about its position of
equilibrium. Find the position at any time, and show that the period of its principal oscallations
are Zn\/@ and n\/@

Sol. Figure is self explanatory. At any time t, let the string and the rod by inclined at 6 and ¢ to
the vertical OY.
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Co-ordinates of G are given by

5 . .
=-—asinf+asin

X =15 ¢

y —iacose+acos¢

¢ 12 '

' Ba . .

Xg =——acos00+acosdd .
12

Vo :—[i—gasineé+asin¢d))

. %G + y& = (velocity)® of G
2

_ 25a 92
144

2
_ 258 52, 22322324
144 6

2 53.2

)
+a - —
¢ 6

0hcos(0+¢)

[~ 6and ¢ are small so cos(0+¢)=1]

2
T =Ll 242 4 222202 + 222 + 2 a2
2 3 144 2

2
ma -5 .9 ..
E[ZSG +192¢ +1209¢]

and W =mg {%acos(ﬂ acos¢}

.. Lagrange’s 0-equation gives

2
dfor) or _aw _.d 22507 + 604) __5mga
dt\o6) o6 o0 dt|144 12

{sin6=0as 6 is small}
= 5é+12<’1;=—12—ge. (1)
a

and Lagrange’s ¢ -equation gives
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2
d {ﬂ(19z¢+6oé)}=mga¢:>5é+165|3=12% """ @

dt | 144
Equation (1) and (2) = (5D2 +120)9+12D2¢:0 en(3)
and 5D26+(6D2 +12C)¢=0 where (g/a) = c. n(®

Now elimination ¢ between these two equations, we get

[(SD2 +12¢)(16D? +120)—60D4J9=0

or (5D4 +63cD? +3602)O =0 ()
Let 8= Acos(pt+B) .. DB=—pAsin(pt+B),

D20 =—p?Acos(pt+B)=2p®0 and D*0=-p”*0.
Substituting these values in (5), we get

(5p“—63c2 —3602)9=0:>(5p4—630p2 +36c2)=0 (- 6%0)

The periods of oscillations are 8 and =

P

Q. 3. A uniform rod, of mass 5m and length 2a, turns freely about one end which is fixed, to its other
extremity is attached one end of a light string of length 2a, which carries at its other end a
particle of mass m, show that the periods of the small oscillations in a vertical plane are the

same as those of simple pendulums of length 2—; and @

Sol. Let the string BC and the rod AB make angle ¢ a 6 with the vertical at any time t. The
particle of mass m is tied to the end C of the string.

(m) Y
Now x. =2asin+ 2asin¢
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% = 2a(cos00+cos )
Ye =2ac0s0+ 2acosd
Yo = f2a(sin 00 +sin ¢¢)
~. (velocity)? of m=x2 + y?
= 4a° (92 +¢% + 264}) :
Again co-ordinates of G are (asin8,acos0).

~. (velocity)? of G =a26?
Now let T be the kinetic energy, and W the work function of the system, then we have
Total K.E. = K.E. of rod + K.E. of particle of mass m.

2
T=25m| 267 +a% |+ 2 maa? (67 + 47 + 6§)
2 3 2
 ma? g 0+ 22 + 494,)
and W =5mgacos6 + mg.2a(cos(9+cos¢)
02 0
=7mgacos 0+ 2mgacos¢$ = 7mag 1—7 +2mag l—?

.. Lagrange’s 0 equation is given by

E(ﬂj_ﬂ_%
dt\od) 00 00

- i(§6+4<i>)=—7—9’933294124;:—21&@ (1)
dt\ 3 a a

Lagrange’s ¢ equation is given by

i(4<j>+4é)=72—9’q> —ie,204+26=-2¢ 2
dt a a

- (1)and (2) = (32D2 + 21c)9+12D2¢=0 n(3)
and 2D29+(2D2 +c)e=0 where 3 —¢.

a

Now eliminating ‘9’ between (3) and (4), we get

[(32D2 +21c)(2D? +c)—24D2}9=0

or [ 40D* +74cD? +21¢” |6 =0

Now let 6= Acos( pt+B)=> D6 =—pAsin( pt+B) (5)

D20 =—p®Acos(pt+B)=-p2?0 and D*0=p“0.
Substituting these in (5), we get
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(40p4—74cp2+21c2)e=0 i.e., 40p* —74cp? +21c3 =0 as 00

or (2 p? —2c)(20 p? —70) =0

ie., (2 p —%gj(zo p2 —7%) =0

39 2 19
== and =—
2a P2 = 20a

Hence length of equivalent pendulums are

% and % i.e., @ and Qa.
P ) !

Q. 4. A uniform rod, of length 2a, can tum freely about one end, which is fixed. Initially it is inclined
at an angle o, to the down-ward drawn vertical and its is et rotating about a vertical axis
through its fixed end with angular velocity ®. Show that, during the motion, the rod is always

2

inclined to the vertical at an angle which is > or < a.. According as ®? > or < and that

4acoso
in each case its motion is inclined between the inclination o and

aw’sin’a

39
If it be slightly disrobed when revolving steadily at a constant angle o, show that the time of a
small oscillation is

cos ! [—n+\/(l—2ncosa+ nz)} ,when n=

4acoso

. 3g (1+ 3cos? oc)

Sol. The rod OA is turning about the end O. Take a point P on the rod such that OP =& . And
the element PQ=d§.

K~

.. mass of element PQ =2md§,
a

Where m is the mass of the rod Further at any time t, let the rod be inclined at an angle 6 to the
vertical and let the plane through the rod and the vertical have turned through and ¢ from its
initial position OX, then co-ordinates of the point P are

Xp =&sinOcosg, y, =&sinOsing,z=EcosO

- v& =(velocity)? of P =53 +y3 + 23 =¢&2 (92 +¢?sin? 9)
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And kinetic energy of the element PQ = %Zﬂvé
a

=§2—d§( +§Psin0)e?

Now, let T, be the K.E. of the rod OA, then we have

2ma? (

T= 22 (92+¢ sin e)jg de="2 (92 4 ¢Zsin e)

_2ma 22 2 .92
orT_T(e + ¢ sin 9)
Also the work function, W =mgacos0+C

Lagrange’s ¢ - equation gives

d [ 4ma? . oodr, .

a[ 3 sin GJ 0ie, a[(l)sm2 ero (D)
— $sin?0 =K (constant), n(2)
Initially 0=a,¢ =0, s K=osin?a

Thus (2) gives ¢sin?0=wsin’a oK)
and Lagrange’s 0-equation is di(%j % =

When 6= A( pt+ B), the period of motion is given by T = E If | is the length of the simple
p
equivalent pendulum, we have

T=2n (I/g):>|=%

2 2
= i 4ma 0 _2ma 92.25in900s9=7mgasin9
del 3 3
= éfd)zsinecosﬁzfgsine R 3]
4a

Eliminating ¢ between (4) and (3), we have

2 4
éf&gacosé:f:g—gsin& (5)
sin® o 4a
" 2.2 39
Initially 6=0,0=0, A= sin oc—z—cosoc.
a

Substituting this value of A in (6), we get

w? sm o Sg
sin?9  2a

2.2 39

0% + —co0s0+m sin“ o ——cosa
a
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. 2
or 62 = w?sin? o lislnza +3—g(cos€)fcosoc)
sinc0 ) 2a

.2 2.2
_ 39 3@ +3—g(cosefcosoc) spo e sin o
a sin2o ] 2a 39

_3ng cosa—cos0

[2n(cosa +cos0)— sin® 6}

a  sin?e
ie., 62 =3—g.w[(cosz9+2ncose+2ncosa71)} )]
2a  sin“0

From (7), we see that 6 =0, when
(cosocfcose)[(cosz9+2ncos6+2ncosa71ﬂ=0

i.e., if either cosa—cosO i.e., 6 =a (theinitial position)
or cos?0+2ncosH+2ncoso.—1=0

-2n+ \/[4n2 +4(1-2cos cx)}
2

i.e., c0sO=

or c056=7n+\/(173ncosa+n2) (8

(the other value being inadmissible because that gives value of cos® numerically greater than
unity.)
Hence the motion is included between 6 = o and 6 = 6; where

cosel(\/(12ncosoc+n2) nj

The rod will move above or below its initial position, if 6: > or < o or if cos6; <or >cosa

. . 2
i.e., if 1-2ncoso +n? <or>(n+cosa)

... 3n ..

ie., if —%<or>4ncosoc i.e., if o sor<—39
am 4accoso

2nd part.

Small oscillations about the steady motion: The motion will be steady if the rod goes round, inclined
at the same angle o with the vertically or mathematically if 6 = a (throughout the motion), then
0=0.

Making these substitutions in (5), we get,

2 a4
_®Sin o 0s9:—3—gsin9 i.e., o’ = 39

sin®o 4a 4acosa

When ? has this value and there are small oscillation about the position
0 =, then putting 6 =0+ inequation (5) we get
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39 sina

V= 4acoso sin3(a+\y)

cos(oc+\|f)—j—gsin(a +vy)

39 sin* a(cosocosy —sinasiny)

= - : —(sinoicos y + cosasiny)
4a| cosa(sino.cosy +cosasiny)

_3_g_sin4a(cosoc—\|/sinoc)

= —(sino.+ycosa) |, approximately
4a| cosa(sina +ycosa)

:—392::a[(1—wtana)(l+\|/cotoc)_3 —(l+\ycotoc)}, approx.
3gsino —3g(1+3c0s2 OL)
:—T(4cota+tana)\u , app. = Jacosa Y =—uy say
4acosa

) . 21
.. time of small oscillation =—= =2n —— |
\/ﬁ 39 (1+ 3cos a)

Q. 5. A uniform bar of length 2a is hung from a fixed point by a string of length b fastened to one end
of the bar. Show that when the system makes small normal oscillations in a vertical plane, the
length | of the equivalent simple pendulum is a root of the quadratic,

IZ—(fa+bjl+a_b=o
3 3

Sol. Figure is self explanatory.

mg Y
At any time t, let the string OA and the rod AB make angles 6 and ¢ with the vertical.
Xg =bsinO+asing
Yo =bcos6+acos¢
. %G + Y& = (velocity)? of G
=b20? + a%$? + 2abd cos(6—9)
=b?0? + a%$? + 2abb [- ©and ¢ are small]
Now let T be the kinetic energy and W the work function of the system, then we easily obtain

W =mg[bcos6+acos¢]
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2
And T =%m|:%d)2 0202 + 222 + 2abéd>}

2

= Zim| 247 762 + 220

2] 3
. Lagrange’s 6—equation is dfar) ar _ow
) dtl66) 00 06

d 2p o
:a{m(b 6-+abj)| = -mgbo £ sin0=0}
= bO+ap=-go (1)

Lagrange’s ¢—equation is given by %{m%a% + abé} =—magd

= 4ad+3bd=-39¢ c(2)
Equations (1) and (2) again can be written as

(bD2+g)e+aD2¢=0 n(3)
and 3bD29+(4aD2+3g)¢:0 (@)

Eliminating ¢ between these equations, we obtain

[(sz +g)(4aD? +39)73abD4}9=0

i, [abD* +(4a+30)gD* +3g° [0=0 e

Now let 6= Acos{ (%)t + B}

Where | is the length of the simple equivalent pendulum.

e [Tl T

2
Dze):ffJ Aco{ (%}HB}:?@ and D4q=?—29,

g’ g’
.'.(5):>|:ab|—2(4a+3b)T+3gz}6=0

= 3I2—(4a+3b)l+ab=0 {- 020}

- |2—(fa+bjl+a—b=o
3 3
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Q. 6. A uniform straight rod of length 2a, is freely movable about its centre and a particle of mass
one-third that of the rod is attached by a light inextensible string, of length a, to one end of the

rod ; show that one period of principle oscillation is (\/5+1)n {%}

Sol. Figure is self explanatory.

At time t, let 6 and ¢ be the inclinations of the rod and the string to the vertical. Co-ordinates of
Care

Xc =asin@+asing and yc =acos+acos¢d

. Xc =acosfd+acosdp and Y =—asinO+asindd

= 3& + Y2 =a6% +a%)? +2a° cos(0—¢)0

=a%0? + a%$p% + 2a%0¢

[neglecting higher powers of mall quantities]

. (velocity)? of the particle C =v3 =a?0? +a%$? +2a%0¢ ..
And velocity of the C.G. of the rod i.e., of O, is zero.

Now let T, be the Kinetic energy and W, the work function of the system then we easily get

W =%(acose+ acos¢)+C

1 a?. 1(m\2:2 . .2:2 244
and T=—m—0°+=| — || a“0“ +a“9p“ +2a°0
23 (3j[ ¢ q

2
A 062 1 47+ 204]
6
.. Lagrange’s 0-equation is given by
%Lzrgazmmgz ¢]=mgae:>2é+q;=%e )

3

ma® . ma? } mga
3

While Lagrange’s ¢-equation gives %{qu—e =

ieqé+$=—%¢ (2)
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Equation (1) and (2) again give
(2D2+c)6+ D2$=0 n(3)

and D29+(D2+c)¢=0 (@)
where ¢ =

Eliminating ¢ in between (3) and (4), we get

{(D2 +c)(2D% +¢)- D4}e=o ie, [D*+3cD? +c? |0=0 (5)
To solve (5), let ©6=Acos(pt+B) .. D6=—pAsin(pt+B)

D20 =—p?Acos( pt+B)=—p®0 and D*0=p”0

With these substitutions, (5) gives

(p“—.%cp2 +02)9=0

= p*—3cp?+c?=0 (- 820)
2

. |Dz3°i (967 -4 ) J_ (3£45) ¢

' 2 22

: 2: J_g 2

- P 5 a2 dp;=  —

.. one period of principal oscillations corresponding to ps, is given by

Rl s
- (J§+1)n@ |

Q.7. A smoother circular wire, of mass 8 m and radius a swings in a vertical plane, being
suspended by an inxtensible string of length a attached to one point of it, a particle of
mass m can slide on the wire, Prove that the periods of small oscillations are

2n 8—a,2n i,2n S—a.
39 39 9g

Sol. At any time t, let the string OA, and the radius AC be inclined at angle 6 and ¢ with the
vertical and further let the radius of the particle (m) be inclined at an angle y with the vertical.

Now co-ordinates of C are
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(asin+asin¢,acos0+acose).
« (velocity)®of C =a’0" +a’$” +2a°0¢.cos(0—¢)
=a%0® +ap* +2a0d approximately .

X. =acosed+acosdd

Ve = —a(sin 00.+sin ¢¢)}

Also co-ordinates of the particle m (i.e.
of the pt. P) are

Xp =a(sin®+sing+siny),

Y =a(cos6+cosd+cosy).

[(iD)]
Rest position displaced position

(velocity)® of m=a’ (67 +§ +* + 20¢ + 2y + 2y ) app,

(D]

Let T, be the kinetic energy and W, the work function of the system, then we readily get

W =8mg (acos®+acosd)+mg(acos®+acosd+acosy)
=m ga[9cosB +9cosd+cosy] .1
and T = 2am[ 2% + (a0 +2%° +2a°00) |+ Zmal[§F 4+ 42 + 206 + 29 + 200

i

e T =§m[962+17ci>2+\j/2+189(i)+ 26y + 20 | e
Lagrange’s 0, and y equations give
9é+9£1;+q1=—9%e .(3)
9é+17£1;+\'p=—9%¢ (@)
and é+if)+\]‘/:%\y, ..(5)
which can be rewritten as
(9D +9¢)0+9D°¢+ D’y =0 ...(6)
9D’0+ (17D +9c)¢+ D’y =0 )
and  D’0+D’¢+(D’+c)y=0 ..(8)
Eliminating ¢ and v in (6), (7) and (8), we get
9D*+9c  9D? D?
9D*> 17D*+9c D? |6=0
D? D? D?+c

ie. (802+9c)[9c(2D2+c)+D2(8D2+9c)]e=o
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i.e. (8D2 +9c)[8D4 +27cD? +9c2]e =0
ie. [(BD2 +9c)(8D? +3c)(D* +3c)]e=o

Now let 6 = A cos (pt + B), then
D6 =—pAsin( pt+B),D?6=—p*Acos(pt +B)=—p”0...(10)

= (9) gives (8p® —9c)(8p” —3c)(p* -3c)=0 [+ 06]

- ot 22

_39 »_39
8a''°’ a

Thus periods of small oscillations are E,Z—n,ﬁ

Pp Py Ps
ie. 2n 8—a,2n 8—a,2n a
99 39 99

Q. 8. Four uniform rods; each of length 2a, are hinged at their ends so as to form a rhombus
ABCD. The angles B and D are connected by an elastic string and the lowest end A rests on a
horizontal plane while the end C slides on a smooth vertical wire passing through A; in the
position of equlibrium the string is strected to twice its natural length and the angle BAD is 2a.
Show that the time of a small oscillation about this position is

I 12

2a(1+ 3sin? cx)

2nd— — Jcosa
3g cos2a

Sol. In the position of equilibrium, rods are making angles o with the vertical.

When the system is slightly displaced from the position of equilibrium, let the rods make
angle (a + 0) with the vertical 6 being a small displacement.

Now assuming the fixed end A as origin and the horizontal and vertical lines through it
as co-ordinate axes, the co-ordinates of G, are {asin(o.+6),3acos(a.+6)}

Ay

. . C
- (velocity)’ of G, = {acos(a.+0)6} +{-3asin(c+0)6}

. G,
=a’[(1+8sin®(o.+0]6°.
Co-ordinates of G; are {asin(oc+9),acos(oc+9)} D
«. (velocity)®of G, =a%6°.
G1 a4 o

= Kinetic energy of the four rods taken together is )

1 a’ o _opo 1 (a%., .2 A2
T=2-m|=-0"+2%0° |+2.2m| =6 +a’ {1+8sin’ (a+0)} 67 |.
2 3 2 |3

_ 8ma’

3 [1+5in? (o +0) 6 (- vg, =Vg,and vg, =V, )
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The work function W is given by W = 2 {—mgacos(owe)}
+2{-mg 3acos(a.+6)} - stasm(M) k(%jdy

2

=-8mga cos(a+9)—%{2asin(a+e)—c}

Lagrange’s 0 equation gives

d 16ma?
dt

{1+ 3sin® (au+ 9)}6 —16ma’sin (o +0)cos (o + 9)92}

=8m gasin(o.+0) —%acos(a +0){2asin(o.+0)—c}

16ma’
=

(1+3sin®(a.+0)}0

=8m gasin(a+9)—%cos(a+9){2asin(a+9)—0} (D

Initially when 8 =0, 6=0, =0, c =asina, hence (1) gives

_2mgc
acosa

A

Putting this value of A in equation (1), we get

2
ol {1+ 3sin? (o + e)}é

8mg cos (o + 9){

=m ga8sin(a+6)— p—
a

2asin(a.+0)-c}

*The force mw’lsinOalso contributes to W. The distance of the point of application at O'of this
force from the vertical OZ is equal to 1sin@, hence the contribution mw?l®sin®® to W is as given
in (2).

** |f W is the work function of the system, then P.E. = C — W.

16ma®

i.e. {1+3sin®a}6=8m ga(sina.+0cosa)

—Sﬂ(cosa —8sina){2a(sina.+0coso) —asina}

cosa

=_8mgac052aeapp':é:_ 30 cos2a

cosa 2acos<x(l+ 3sin? oc)

app.

=~ Time of a small oscillation about the position of equilibrium is given by

2acos<x(1+3sin2a)
2n
3g cos2a

HAMILTONIAN
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Q.9. Using cylindrical coordinates (,0, @, Z) write the Hamiltonian and Hamilton'’s equations for a
particle of mass m moving in a force field of potential V (p, $,2).

Sol. In cylinderical coordinates, co-ordinates of any points are

X=pCOS@,y=psSing,z=z2 (1)
.'.T:%m(f(z+y2+z‘2):%m(p2+p2¢2+22) -(2)

=L=T-V =%m(p2 +p°¢" +2°)-V (p, $,2) ..(3)

oL oL oL

= =—m and =mz
p,= 8p mp, p, o pd p, = >

P

Evidently, L does not involve t explicity, therefore Hamiltonian H is given by

H=T=V =%m (p°+p°# +2°)+V

1P P P 1 Py
=—m|—%+ —Z |+V=— +—=+
2 [mz mzp2 m? 2m P, P P.

Hence, Hamilton’s are given by:

2

op mp’ 8p"0 8p m

P

Q. 10. Using cylindrical coordinates, write the Hamiltonian and Hamilton’s equations for a
particle of mass moving on the inside of a frictionless cone x* + y? =z°tan’ .

Sol.

Like previous example, we have
T =1m(>'<2 +y? +22):lm(p2 +p*¢? +p’ cot’ )
2 2
[~ x=pcos¢, y=psiny,z=pcota]...(1)

=m(p’cosec’a +p*¢?) (1)

and V =-W =-mgz =mg pcota,
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[+ the particle is above the vertex origin)].
= L=T-V =%m(p2C03eC2a +p°¢?)—mg pcota ...(2)
L oL oL :
This gives, p. =— =mpcosec’a, p, = — = mp?d ...(3
g P, > P Py =3 3 P9 ...(3)

Again, L does not involve t explicitly, therefore Hamiltonian H is given by

H=T+V =%m(pzcoseczoc+pzd>2)+ mg pcota

2 2 2 2
= S Py —+ 5‘*’2 +mg peota+ — ppz +p—“2’ +mg pcoto
2 | m°cosec’aa M°p 2m| cosec’a p

Thus Hamilton’s equations are given by:

2
pp:—a—H: p‘bz—mgcota;p:a—H:Lz.
op mp op, Mmcosec o
ﬁ’q::_ﬁ:(); d,:ﬁ: p¢2'
% ap, mp

Q.11. Write the Hamiltonian and equation of motion for a simple pendulum.

Sol. We have T =%=m|262 and V =mgl(1-cos0),
. 1 272
. L=T—V=Eml 06° —mgl (1—cos0) ...(1)
= H=Ypg —L=p,06—L=ml*§ —{%mlze2 —mgl(l—cose)}

=%m|2(§2 +mgl(Ll—cosd) =T +V = totalenergy
Now p, = (6L /86) =ml*d? =(p, / ml?)

. H =%m|2(pe / ml*)? + mgl (1-cos @) = (p; / 2ml?) + mgl (L — cos 6)

= (0H /p,) =(p, / mI*),(6H / 60) = mglsin®
Now Hamilton's equation of motion of 6 and po are
0=(H /p,), p,=—(OH 1060) =6=(p,/ml*) and p, =-mlgsine,
These represent Hamilton's equations for a simple pendulum.
From above, we have p, =ml*6,ie, p, =ml*d
. m?0=-mglsin0=06+(g/1)sin6=0

This gives the equation of motion of the simple pendulum.
Q.12 . If H is the Hamiltonian, prove that if f is any function depending on position, momento 1 time then
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(df/dt) = (2ff ... + [H, f])
Sol. We have
(df /dt) =(of /ot)+2{(of /oq,)(da, / dt) + (of /op,)(dp, / dt)}

— (df /dt) =(of /t)+ S{(of /q,)(0H / ap,) — (of / ap,)(EH )}

{- By Hamilton's equation ¢, =oH /dp,, p, =—(cH / oq;)}

= (df /dt)=(of /ot) +[H, f] where, [H, f] is the Poisson Bracket)
PREVIOUS YEARS QUESTIONS

CHAPTER 4. HAMILTON'S EQUATION OF MOTION

Q1. By writing down the Hamiltonian, find the equations of motion of a particle of mass m
constrained to move on the surface of a cylinder defined by x* + y* = R?, R is a constant. The
particle is subject to a force directed towards the origin and proportional to the distance r of
the particle from the origin given by F = —kF , k is a constant. [6c UPSC CSE 2020]

Q2. Find the condition on a, b, ¢ (real numbers) such that the dynamical system with equations
p=agq—qg° g=bp+cq is Hamiltonian. Compute also the Hamiltonian of the system.

[5d 2020 IFoS]

Q3. Using Hamilton's equation, find the acceleration for a sphere rolling down a rough inclined
plane, if x be the distance of the point of contact of the sphere from a fixed point on the plane.

[7a UPSC CSE 2019]

Q4. Consider a mass-spring system consisting of a mass m and a linear spring of stiffness k
hanging from a fixed point. Find the equation of motion using the Hamiltonian method,
assuming that the displacement x is measured from the unscratched position of the string.

[7b 2019 IFoS]

Q5. The Hamiltonian of a mechanical system is given by,
H = p,q, —ag’ +bq? — p,q, , where a, b are the constants. Solve the Hamiltonian equations and

show that 22=P% — constant. [7c UPSC CSE 2018]

O

Q6. For a particle having charge g and moving in an electromagnetic field, the potential energy
is U =q(¢—\7-ﬂ), where ¢ and A are, respectively, known as the scalar and vector

potentials. Derive expression for Hamiltonian for the particle in the electromagnetic field.

[6¢ 2018 IF0S]
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Q7. Consider a single free particle of mass m, moving in space under no forces. If the particle
starts from the origin at t =0 and reaches the position (x, Y, z) at time ¢, find the Hamilton's

characteristic function S as a function of x,y,z,7. [5c UPSC CSE 2016]

Q8. Solve the plane pendulum problem using the Hamiltonian approach and show that H is a
constant of motion. [6b UPSC CSE 2015]

Q9. A Hamiltonian of a system with one degree of freedom has the form

p2 —at ba 2 —at —at k
H=—-bgpe ™ +—q°e +be™ )+ —
5., ~bap 5 d (a ) >4

2

where «,b,k are constants, q is the generalized coordinate and p is the corresponding
generalized momentum.

(1) Find a Lagrangian corresponding to this Hamiltonian.
(i) Find an equivalent Lagrangian that is not explicitly dependent on time.
[7c UPSC CSE 2015]
Q10. Derive the Hamiltonian and equation of motion for a simple pendulum.
[5c 2015 IF0S]
Q11. Find the equation of motion of a compound pendulum using Hamilton's equations.
[5e UPSC CSE 2014]
Q12. Derive the Hamiltonian and equation of motion for a simple pendulum.
[5c 2013 IF0S]

Q13. Obtain the equations governing the motion of a spherical pendulum. [5d UPSC CSE
2012]

Q14. Derive the differential equation of motion for a spherical pendulum. [6b 2012 1FoS]

Q15. A sphere of radius a and mass m rolls down a rough plane inclined at an angle « to the
horizontal. If x be the distance of the point of contact of the sphere from a fixed point on the
plane, find the acceleration by using Hamilton's equations. [8a UPSC CSE 2010]

CHAPTER 5. Work & Energy (Equilibrium/Centre of Mass)

Q1. A plank of mass M is initially at rest along a straight line of greatest slope of a smooth
plane inclined at an angle o to the horizon and a man of mass M’ starting from the upper end
walks down the plank so that it does not move. Show that he gets to the other end in time

2M'a
(M+M")gsina
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where a is the length of the plank. [8b 2014 IFoS]

Work & Energy (Statics)

Q2. A mass m,, having at the end of a string, draws a mass m, along the surface of a smooth
table. If the mass on the table be doubled, the tension of the string

is increased by one-half. Show that m, :m, =2:1. [(8a) 2010 IFoS]
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