
 

 



 

 



 

STATICS for UPSC CSE/IFoS Mathematics Optional 

 

Common Catenary  

Stable & Unstable Equilibrium  

Principle of Virtual Work   

Exam point:  

1. For CSE: Make sure you have all formulae at one place. You have solved all examples.  

 → Mindset Making:  

 Read the question  

 Get keywords 

 Use formula based on that keyword.  

 → Required chapters are: Only Three. 

  Namely: 1. Common Catenary 

  2. Stable and Unstable Equilibrium  

  3. Principle of principle (Virtual) Work.  

 Bit understanding from centre of Gravity. 

2. For IFoS: Above three chapters + centre of Gravity and Forces in 3D also required.  

Year Common 

Catenary 

Stable/unstable 

Equilibrium 

Principle of Virtual 

work 

2010 0 0 1 

2011 0 0 1 

2012 1 1  

2013 1 1 1 

2014 0 0 2 

2015 1 0 2 

2016 1 1 1 

2017 0 1 0 

2018 0 0 0 

2019 0 1 1 

 

 

 

 



 

 
COMMON CATENARY 

 

To understand common catenary let’s have some other terms- 

Flexible String: A string which offers no resistance to bending at any point. e.g.  A chain whose 

links are quite small and perfectly smooth can be regarded as a flexible string.  

Note:  In case of flexible string, the resultant action along (across) any section of the string, 

consists of a single force action along the tangent to the curve formed by the string.  

Explanation:     Because any normal section is small and so the string may be considered as a 

curved line.    

 →  Let’s use this uniform flexible string of chain:-  

 When it hangs freely between two points (these points; 

need not be in the same vertical line) under the action of gravity, 

Then this is called a ‘common catenary’. 

(Provided that the weight per unit length of the string or chain is 

constant)  

Note that if the weight per unit length of the string is not constant; 

then the above system will be called Catenary but not the common catenary.  

 Points need not be in the same horizontal line. 

 

Mathematics behind Common Catenary 

1. Intrinsic Equation of Common Catenary 

 Base Understanding: 

 An equation involving the arc length(s) and angle of tangent  is called the intrinsic 

equation. (Differential calculus, Topic: Tangents and normal)    

 Vertical & Horizontal component of Tension T. 

Now, let’s try to find intrinsic equation for a common catenary.  

Step (i) Practice for drawing this system (multiple times )  

DC = Sag. Of catenary  

P: Some arbitrary point (x,y) of Catenary.  

We have considered the cartesian coordinate system as base for common catenary.  

Y-axis: Called the axis of common catenary.   



 

X-axis: Called the directrix.     

w: weight per unit length of string. 

‘Vertex’of catenary : C: The lowest point of catenary  

T :  Tangential (Tension) at point P  

To : Horizontal tension at C.  

‘Span’ = AB  ;  A & B   : Support point for string 

 

Figures: Just for Practice 

Step (ii) :     Consider the equilibrium of the portion of CP :  

 It is due to the horizontal tension To at the point C, the tension T at the point P and the 

weight w.s acting vertically downwards through the centre of gravity of arc CP.  

 String CP is in equilibrium under the action of there forces (all lying in one plane), the line 

of action of the weight w.s must pass through the intersection of  the line of action To and T.  

Mathematics :  cosT To   …(1) 

 sin .T w s   …(2) 

 
cos

.

To

w s sn





tan

To
s

w
    

 Intrinsic Equation of Common Catenary     & tanc   

 Hence oT
c

w
   

 c ; called the parameter of common catenary 

Extra:  Notice from (1) & (2)  

.
tan

o

w s Vertical component

T Horizontal component
    

We’ll use this in some questions.  



 

2. Cartesian Equation of Common Catenary  

  cosh
x

y c
c

  

Base understanding  

for Arc length;  

2

1
ds dy

dx dx

 
   

 
 

( calculus : Rectification  Chapter) 

cos
dx

ds
  , tan

dy

dx
       [small arc ds]   

(Differential Calculus: Tangents & Normal Chapter) 

Solving differential equation (basic)  

Step (i) We know that s = c tan  

  s = .
dy

c
dx

 

(To use 
ds

dx
)  differentiating w.r.t. x  

 
ds

dx
 = c.

2

2

d y

dx
 

2 2

2
1 .

dy d y
c

dx dx

 
  
 

 

This is just a differential equation 

let’s solve it  Let 
dy

dx
= p 

 21
dp

p c
dx

   

On integrating sin h-1 
x

p k
c

   

 k: integration constant  

 At the lowest point C of catenary; 

  x = 0  dx = 0 



 

 and  p = 
dy

dx
 = 0 

  Therefore k1 = 0, 

 1sin
x

h p
c

  sin
x

p h
c

   

  sin
dy x

h
dx c

   

  On integrating  

  1cos
x

y c h k
c

   

 at C;  x = 0 , y = c  k1 = 0 

  cos
x

y c h
c

  

 Relation between x & s.  

sin
x

s c h
c

  

3. Span of Common Catenary:  

 Half span x = c log  tansec   

Full (Total) span = 2x =  2 log sec tanc    

 How?  s = c tan  

   2sec
ds d

c
dx dx


   

Using sec
ds

dx
   , we get ; sec = 2sec

d
c

dx


  

 On integrating, we get 

  x =  log sec tanc k    

  at C;  x = 0 and  = 0 k = 0 

Therefore x =  log sec tanc    

Exam point: Whenever in the question, the keyword is span.  

 Just Target to use above formula. (Means try to find  and c from the given information).  



 

 Sometimes the relation between x and s is also used in this form.  

  x =  log sec tanc    

  2log 1 tan tanx c         and s = c tan  

 
2

2
log 1

s s
x c

c c

 
    

 
 

 

 
 2 2

log
s s c

x c
c

   
  

 
 

 

(4) Relation between y and . 

 Relation between s and y. 

 Relation between x, y and s.  

 →  s = c tan  

 2sec
ds d

c
dy dy


    

Using 
dy

ds
 = sin; (Differential Calculus), we get           cosec  = c sec2 

d

dy


 

y = c sec  

→  For common catenary;  

T cos  = To = w.c 

T = w. c sec 

    T = w.y   y = c sec  

→  For a common catenary  

  cos .cos 1
x

h
c

  ; using y = cos
x

c h
c

, secy c   

→ For a common catenary ; log
y s

x c
c

 
  

 
 

.
x

cy s c e   

For proof. 



 

 Using y = c sec ,   s = c tan  

   x =   log sec tanc    

→ 2 2 2y c s   

 Just use :  y = c. sec, s = c tan 

For IFoS exam: (Add these two) 

1. Approximation of common catenary 

 Here we consider approximation of the common catenary to the parabola and 

exponential curve, depending upon certain conditions.  

Case (i) When 
x

c
 is small.  

cos
x

y c h
c

  =  1

2

x x
c cc e e



  

  cos
2

Q Qe e
hQ


  

On using expansion for 
x

ce , 
x

ce


 

We get  

2 4
1 1

1 ....
2! 4!

x x
y c

c c

     
       

     

 

 x/c is small  Higher powers of 
x

c
 can be neglected.  

2

2

x
y c

c
   Parabola. 

Observation. The above expression shows as long as x is small and c large the catenary 

coincides very nearly with a parabola having its vertex at the point (o,c) and latus rectum equal 

to 2c or 2To/w. 

Case (ii) When x is large in this case 
x

ce


becomes very small.  


1

.
2

x
cy c e  

2. Sag of a tightly stretches wire  



 

 

 let A and B be two points in a same horizontal line between which a wire is tightly 

stretched.  

 l; length of the wire  

 w ; weight of the wire  

 To; Horizontal tension  

 k = sag DC 

 h = span AB  

 Whatever rules we have discussed earlier; we can think those here too.  

 To k = 
1 1

.
2 4

W l  approximately  

[for portion CB (taking moments about B)] 

8
o

l
T W

k
  

We now proceed to calculate the increase in the length of the wire on account of the sag in middle. 

for this let’s take  sin
x

s c h
c

 …(1) 

 radius of curvature of the catenary is 2sec c   , c will be large if   is large. 

 If the catenary is flat near the vertex. It follows that 
x

c
 will be small for tightly stretched wire.  

 

3
1

3!

x x
s c

c c

   
    

   

 

 
3

26

x
s x

c
        

 Hence s – x = CB – DB 

 
3

26

x

c
 approximately  



 

 
2 2

26 o

w x

T
    ,      oT

c
w

  

 Now putting  
1

2
x h  

 The total increase, due to sagging in a span of length h is  

 2s – h = 

2 3

2

1
.
62.

6 o

w h

T
 

 2x – h = 
2 3

224 o

w h

T
 

 

Examples (arranged in the same order as of required for concept building) 

Example.1. A uniform string of weight W is suspended from two points at the same level and a 

weight P is attached to its lowest point. If  and   are now the inclinations at the highest and the 

lowest points, prove that 
tan

1
tan

W

P


 


 

Solutions: Let’s break the question: 

 Keywords:  Uniform String ; suspended ; A & B 

 Step (i) Common Catenary 

 A & B at same level 

 W : weight of string ACB   

    



 

  

 tangent at A makes angle   

 tangent at C’ makes angle   

AC’B is the string’s position on attaching the weight P. to Point C. 

Step (iii) Mathematics 

   We know that  

    tan = 
vertical componet of tension

Horizontal component of tension
 

  at a point at which tension (tangent) makes an angle  with the x – axis 

  
 

1

2

o

P W

tan
T




 ; At the point A 

   (Weight of strings half portion CA and half of attached weight) 

  

1

2

o

P

tan
T

  ; At the point C’ 

 Therefore 
1tan W

tan P






   

Ex. 2 A uniform chain of length is suspended from two points A, B in the same horizontal 

line. If the tension at A is n times that at the lowest point, show that the span AB is 

  2

2
1

1
log n n

n
 



. 

Sol.  Common catenary,  Length of chain =  A & B are in same horizontal line 

 

  

   Given, TA = nTo, ….(1)   Where T is tension at A, To   is at the point C. 



 

 Keyword: Span 

  Click   x clog sec tan     

     

   We need c,  

 Target (i): Finding   

  ∵ On resolving tensions horizontal and vertical components; then for 

equilibrium  

   T cos = To 

   Using (1); nTo cos =To 

   sec = n       …(2) 

   tan  = 2 1n        …(3) 

 Target (ii) Findig c; 

  We know that for a common catenary   

    s = c tan 

   
2

ctan  length of arc 
2

CA                        

   
22 1

c
n




      …(4) 

   Using (2), (3), (4), we have 

        2

2
1

2 1
x n n

n
  



 

    Required Span = 2x   2

2
1

1
n n

n
  



 

Ex. 3 The end links of a uniform chain slide along a fixed rough horizontal rod. Prove that the 

ratio of the maximum span to the length of the maximum span to the length of the chain is 

 
3 2

21 1
/

log





 
  

 
 
 

. 

Sol. Keywords: Common Catenary 

 Slide, rough   friction  



 

 Span (maximum) 

       

 For the maximum span, the points A and B of the chain must be in equilibrium. 

            

         Under three forces: 

       Normal Reaction R, force of friction R, Tension T 

 

Target (i) : finding : 

 On resolving forces vertically and horizontally, 

 T cos  = R          …(1) 

 T sin   = R          …(2)  

 tan  = 
1


  sec  = 

2

1
1


  

 Target (ii) : Finding c (Somewhere talked about length) 

 ∵  s = c tan  

  at A  
2

= c tan   c = 
1

2
  

  Maximum span AB = 2 × 
2

1 1 1
1

2
log



  
  

  

 

       x clog sec tan      



 

  

  Required ratio = 
Maximumspan

lengthof chain
  

    = 
 

1 2
21 1

/

log





 
  

 
 
 

  

Example4:- A heavy chain of length 2l  has one end tied at A and other is attached to a small 
heavy ring which can slide on a rough horizontal rod, which passes through A. If the weight of 
ring is n  times the weight of the chain, show that its greatest possible distance from A is 

  22
log 1

l
 


  , where  

1
2 1n


    

Solution:- Let W  be the weight of the chain go that the weight of the ring is nW . 
 
 For the greatest possible distance of B from the fixed point A, the point B must be in 
equilibrium  now the point B is in equilibrium under the action of the following forces: 

(i) Normal reaction R   
(ii) Force of friction R  

(iii) Weight of the ring nW  

(iv) Tension T  

 
Resolving the forces horizontal and vertically, we have cosT R    

 (1) 
And  sinnW T R          (2) 

Where   is the angle made by the tangent at B with the x-axis. 

Using the value of R from (2) in (1), we have  

  cos sinT nW T           (3) 

 .2n lw wl  , where  / 2w W l  is the weight per unit length of the chain and 

sinT wl   

 Since 0cos ,T T wc    (3) reduces to  2 1wc n lw  , which gives  2 1c n l   



 

 But we are given that  
1

2 1n

  .  Therefore, /c l      (4) 

 Now using the relation tans c   at B , we have  

 tanl c   i.e. tan
l

l 


  using (4) 

 i.e. tan   so that  2sec 1    

 Hence the greatest possible distance of B from A  

      22
2 log sec tan log 1

l
c    


      

  
 
Example5:- Show that the length of an endless chain which will hang over a circular pulley of 
radius ' 'a so as to be in contact with two-third of the circumference of the pulley is 

 
3 4

3log 2 3
a


 
 

 
  

 

Solution:- Let AFBEA  be a circular pulley of radius a . An endless chain AFBCA  is hanging on 
this pulley so as to be in contact with two-third of the circumference of the pulley.  
 

  

 Therefore, chain  
2 4

2
3 3

AFB a         (1) 

Since AEB  forms one-third circumference of the pulley, the angle 'AO B subtended by 

this part at the centre 'O  of the pulley is equal to 
1

2
3

 , i.e. 120 . Therefore,  

   
1

' ' 60
2

AO D AO B      

And hence  ' 90 60 30O AD     

 Now 90 ' 90 30 60AGO BAG O AD        
 In the right-angled 'O AD , we have  



 

  
1

'sin 60 3
2

AD AO a         (2) 

 But  log sec tanAD c     

     log sec60 tan 60 log 2 3c c         (3) 

 Equating the two values of AD  obtained in (2) and (3), we find that  

   1
3 log 2 3

2
a c  , which gives 

 
3

2log 2 3

a
c 


 

 Now using the formula tans c  , we find  that  the length of chain 2 tan 60ACB c

    
3 3

2 3
2log 2 3 log 2 3

a a
   

 
 

    chain ACB  chain AFB  

  
 
3 4

3log 2 3

a
a 


  

  
 

3 4

3log 2 3
a


 
 

  
  

 

Example6:- If the normal at any point P  of a common catenary meets the directrix at Q , then 

prove that PQ  (radius of curvature). 

Solution:- Let PM  be the tangent at any point  ,P x y  of a common catenary and let the normal 

at P  meet the directrix at the point Q . Also let  be the angle made by PM  with the directrix 

and PN be the perpendicular from P  on the directrix. 

      

 We see that 90QPN NPM    

  90 90     

   

 Now in the right-angled PNQ , we find that cos
PN

PQ
  



 

 i.e. cos
y

PQ
  i.e. secPQ y   

 Since secy c  , it follows that 2secPQ c       (1) 

But we know that tans c  . Differentiating with respect to  , this gives 2sec
ds

c
d






, i.e. 2secc           

 (2) 
Since /ds d   

Comparing (1) and (2), we conclude that PQ  . 

 
Example7:- A heavy uniform chain AB  hangs freely under gravity with A fixed and B attracted by 
a string BD to a fixed point D at the same level as A. The lengths of the string and chain are such 

that the ends of the chain at A and B make angle of 60  and 30  respectively with the horizontal. 

Prove that the ratio of these lengths is  3 1 : 1 . 

Solution:- Clearly, heavy chain AB will form a part of the catenary as shown in the figure below. 

     
 Let C be the lowest point of this catenary and c be its parameter. 

The point B is in equilibrium due to the tension in the string BD in the direction of BD and 
the tension in the chain in the direction of BF. 

It is given that 60AEF   and 30BFO  . Since DA  is parallel to the x-axis, we find 

that 30MDB  . Now chain AB  chain AC   chain CB  

 tan 60 tan 30c c   using secy c   

 
 2 3 12

2
3 3

c
c

 
   

 
 

Now in the right-angled BMD  ,we have 

   2 3 1 4 3 1
cos 30 2

3 3

c c
BD BM ec

 
     

Hence 
 4 3 1 3

. 3 1
43

clengthof the string BD

lengthof thechain AB c


    

Thus the ratio of string BD  and chain AB  is  3 1 : 1  



 

 
Example8:- The end links of a uniform chain of length l can slide on two smooth rods in the same 
vertical plane which are inclined in opposite directions at equal angles   to the vertical. Prove 

that the sag in the middle is tan
2 2

l 
. 

Solution:- Let EBF  and EAG  be two smooth rods, which are inclined in opposite directions at 
an angle   to the vertical EO . 

ACB  is a uniform chain of length l , whose end links slide on these rods. The ends of the 
chain are in equilibrium due to the tension T  and normal reaction R .  

    
Now,  90 90 90AQx BAQ DAE           

Therefore,    

Now using the relation tans c  , we have 
1

tan
2

l  , which gives 
1

cot
2

c l   (1) 

Hence sag CD DO CO y c     

  sec sec 1c c c      

  
1

cot sec 1
2

l    , using (1) 

 

2 1
2sin

1 cos 2.
1 12 sin 2

2sin cos
2 2

l l




  

 
 

 
 

 tan
2 2

l 
. 

 
Example9:- if    and   be the inclinations to the horizon of the tangent of the extremities of a 

portion of common catenary and l  is the length of the portion, show that  the height of one 

extremity above the other is sin / cos
2 2

l
       
   
   

, the two extremities being on one side 

of the vertex of the catenary. 
 



 

Solution:- Let PQ be a portion of a catenary such that arc  length PQ l . Also, let   and   be 

the inclinations to the horizon of the tangents at the extremities P  and Q  of this portion. 

 With C  as the lowest point of the catenary, let s be arc length CQ . 

Let  1 1,x y  and  2 2,x y be the Cartesian co-ordinates of the points P  and Q , 

respectively. Then using the formula secy c   we have 

  
1 secy c   (at P)     (1) 

And  2 secy c   (at Q)     (2) 

 
 Subtracting (2) from (1), we obtain  

   1 2 sec secy y c           (3) 

 Which represents the height of one extremity  P  above the other  Q . 

 We need to eliminate c from (3). For this using the formula tans c  , we get 

  tans l c     (at P)      (4) 

 And tans c    (at Q)      (5) 

 Subtracting (5) from (4), we obtain 

   tan tanl c           (6) 

 Now dividing (3) by (6), we finally have  

  1 2 sec sec

tan tan

y y

l

 

 

 



 

  

1 1

cos coscos cos

sin sin sin cos cos sin

cos cos

  

     

 




 




 

  
 

2sin sin
cos cos 2 2

sin
2sin cos

2 2

   

 

    

    
        

     
   
   

 

 This gives 1 2 sin / cos
2 2

y y l
       

     
   

, the desired result. 

 



 

Example10:-  A heavy uniform string hangs over two smooth pegs in the same horizontal line. If 
the length of each portion which hangs freely is n  times the length between the pegs, probe that 
the ratio of the whole length of string is to the distance between the pegs as : logk k  where 

1/2
2 1

2 1

n
k

n

 
  

 
 

Solution:- Let 2l  be the length of the portion of the string ACB  which forms a catenary between 
the smooth pegs A and B. it is given that the length of each of the portions BF  and AE  which 
hang freely is n  times the length between the pegs. So 2BF nl  and 2AE nl    
 (1) 

  
For equilibrium, we see that the tension at .A w AE , where w  is the weight per unit 

length of the string. 
But we know that T wy  

Therefore, .w AE wy  i.e. AE y       (2) 

This shows that the end directrix of the catenary as shown in the adjacent figure. 
Now equating the two values of AE  from (1) and (2), we get 2y nl , i.e. 

sec 2 . tanc n c  , since at , secA y c   and tanl c   (using tans c  ) 

i.e. 
2 sec

1 tan

n 


         (note) 

Applying the componendo and dividend, it gives 
2 1 sec tan

2 1 sec tan

n

n

 

 

 


 
, 

i.e. 2 sec tan sec tan

sec tan sec tan
k

   

   

 
 

 
, since 

1/2
2 1

2 1

n
k

n

 
  

 
 

 
 

 
2

2

2 2

sec tan
sec tan

sec tan

 
 

 


  


 

Therefore, sec tank           (3) 

Now 
2 2wholelengthof the string y l

distancebetweenthe pegs AB


  

 
 

2. sec 2. tan

2 log sec tan

c c

c

 

 





, since span  2 log sec tanAB c     



 

 
 

sec tan

log sec tan log

k

k

 

 


 


, using (3) 

Hence the ratio of the whole length of string is to the distance between the pegs as
:logk k . 

 
Example11:- A given length 2s  of a uniform chain has to  be hung between two points in the 
same horizontal level and the tension has not to exceed the weight of the length b  of the chain. 

Show that the greatest span is  
1/2

2 2 log
b s

b s
b s

 
  

 
 

Solution:- Let w  be the weight per unit length of the  string. If T  denote the tension at the point 
A , we are given that maxT wb         (1) 

 
  But we know that T wy .       (2) 

From (1) and (2), we get that y b  when the tension at A  is maximum so that the 

span AB  is the greatest. 

Now putting y b  in the relation 2 2 2y c s  , we obtain 2 2 2b c s  , which gives 

 
1/2

2 2c b s  . 

Since are CA s  (given), from the relation tans c  , we have  

 
1/2

2 2
tan

s s

c b s
 


, using (1)      (2) 

Also, using the relation secy c   at the point A, we have secb c   i.e. 

 
1/2

2 2
sec

b b

c b s
  


       (3) 

Using (1), (2) and (3), we finally see that: 

The greatest span  2 log sec tanAB c     

 
   

1/2
2 2

1/2 1/2
2 2 2

2 log
b s

b s
b s b s

 
 

   
   

 

  
 

1/2
2 2

1/2
2 2

2 log
b s

b s
b s

 
 

   
  

 



 

  
 

 
 

1/2
1/2 1/2

2 2 2 2

1/2
2 log log

b s b s
b s b s

b sb s

     
      

   

 

 
Example12:- A uniform chain of length 2l  and weight 2W  is suspended from two points in the 
same horizontal line. A load W is now suspended from the middle point of the chain and the 

depth of the point below the horizontal line is h . Show that the terminal tension is: 
2 22

2

W h l

hl

 
 
 

 

Solution:- Let AEB  be the catenary formed by the chain of length 2l  and LD h  

       
 Let the co-ordinates of the point L be  ,x y . This is the new position of the point E . 

When a load W  is suspended from E , two catenaries are formed. Let one of them be 

ALC , where  CL s  and AL l  

At the point L , we have 2 2 2y c s        (1) 

Whereas at the point A , we have    
2 22y h c s l       (2) 

Subtracting (1) from (2), we have 2 22 2h hy l sl    

This gives 
2 2 2

2

l h sl
y

h

 
  

If w  be the weight per unit length, then the tension T  at the point A  is given by 

 T w y h   

 
2 2 2 22 2

2 2

l h sl w sl h l
w h

h h h

     
      

   
 

 
2 21 2

.
2

wsl W h l

h l h

 
  

 
 , since 

W
w

l
  

But 2 sin 2W T ws  , at the point L . Therefore 
2 21

2

Wl W h l
T

h l h

 
   

 
 

 
2 2 2 22

2 2

W l h l W h l

h hl hl

    
     

   
 

 



 

Example13:- A string of length l  is attached to a fixed point A  and other end B  is pulled with a 
force ' 'wa  inclined at an angle   to the horizon, w  being the weight peer unit length of the 

string. Show that the vertical distance of A , above B  is  2 2 2 sinl a la a    

 
Solution:- Let AB  be a string of length l  and w be its weight per unit length. The end A  of the 
string is fixed whereas the end B  is pulled with a force wa  inclined at an angle   to the horizon 
(i.e. the x-axis). Clearly, the curved chain AB  forms a part of a catenary with C as its lowest point. 

 
 Let  1 1,x y  and  2 2,x y  be the co-ordinates of the points A  and B , respectively. 

 If T  denote the tension at B , we have  
  T wa       (1) 
 Also, using the relation T wy  at B , we have  

  2T wy       (2) 

 Comparing (1) and (2), we find that  

  2y a        (3) 

Now using the formula secy c   at B , we obtain 2 csecy   i.e. seca c  which 

gives secc a         (4) 
Further, using the for the formula tans c   at B , we have cos . tans a    i.e. 

sins a   
Thus arc sinCB a   so that arc sinCA a l  . 

We now use the formula 2 2 2y c s   at A to get    
2 22

1 cos siny a a l     using (4) 

  2 2 2 2 2cos sin 2 sina a l al       

  2 2 2cos sin 2 sina l al       

 2 2 2 sina l al       

Whence  2 2

1 2 siny a l al    .    (5) 

Finally, subtracting (3) from (5), the required vertical distance of A  above B . 

  2 2

1 2 2 siny y a l al a     . 

 



 

Example14:- A uniform measuring chain of length l  is tightly stretched over a river, the middle 
point just touching the surface of water, while each of the extremities has an elevation k  above 

of surface. Show that the breadth of the river is nearly 
28

3

k
l

l

 
 

 
 

Solution:- Chain is tightly stretched over the river of breadth AB . Also ACB  is the measuring 
chain of length l  The sag CE k . 

 

 Let the co-ordinates of the point A be  ,x y . 

 Therefore, sin
2

l x
c h

c
 at the point A, (since sin

x
s c h

c
 ) 

 Expanding  sin /h x c  in the ascending powers of /x c , we get 
3

1
...

2 3!

l x x
c

c c

  
    

   

 

 Neglecting higher powers of /x c , we have 
3

22 6

l x
x

c
  , or 

3

2

2

2 6

l x x

c


 , or 

3

2
2

3

x
l x

c
   

 Sag cosh cosh 1
x x

EC k y c c c c
c c

 
       

 
 

 On expanding cosh
x

c
 in ascending powers of 

x

c
, we have  

 
2 4

1 1
1 .... 1

2! 4!

x x
k c

c c

      
         

       

 

 Neglecting higher powers of /x c  other than  
2

/x c , we get 
2

2

x
k

c
  so that 

2

2

x
c

k
 . 

 On putting this value of c  in (1), we have 
2 2 24 4 8

3 3
3.

2

k k k
l AB

lx l
    . 

 Since chain is tightly stretched, we have taken / 2x l . 

 Therefore, 
28

3

k
AB l

l
  , i.e. width of the river 

28

3

k
l

l
  . 

 



 

Example15:- A telegraph wire stretched between two poles at distance a ft  apart sags n  ft  in 

the middle. Prove that the tension at the end is approximately 
2 7

8 6

a n
w

n

 
 

 
, where w  is the 

weight per unit length of wire. 
 

Solution:- We have cosh 1
x

n sag y c c
c

 
     

 
 

 Expanding cosh
x

c
 in ascending, powers of 

x

c
, we have  

2 4
1 1

1 ... 1
2! 4!

x x
n c

c c

     
                

 

 
2 4

32 24

x x

c c
  , neglecting higher powers of 

x

c
 

We have 
2 4

38 21.16

a a
n

c c
  , since 

2

a
x       (1) 

Taking first approximation 
2

8

a
n

c
  or 

2

8

a
c

n
  

Putting this value of c  in the second term of R.H.S of equation (1) we get 

 
2 3

2

4
...

8 3

a n
n

c a
    

Therefore, 
2 3

2

4

8 3

a n
n

c a
   nearly, which gives  

 
3 2

2 2

4 4
1

8 3 3

a n n
n n

c a a

  
    

 
 

So, 

1
2 2

2 2 2

8 1 4 1 4
1 1

3 3

c n n

a n a r a



   
      

   
 nearly 

Hence 
2 2 2

2

4
1

8 3 8 6

a n a n
c

n a n

 
    

 
 

Thus tension at the point of support  

  
2 2 7

8 6 8 6

a n a n
w n c w n w

n n

   
         

   
, on putting the value of c . 

Therefore, tension at the pole is 
2 7

8 6

a n
w

n

 
 

 
. 

 



 

Example16:- A telegraph wire is made of given material and such a length l  is stretched between 
two posts, distance d  apart and of the same height, as will produce the least possible tension at 

the posts. Show that sinh
d

l 


 , where   is given by the equation tan h 1    

Solution:- We know that T wy  

  cosh
2

d
wc

c
 , since / 2x d  at A 

 Therefore, cosh
2

d
T wc

c
 . 

 Differentiating it with respect to c , we have  

  cosh sinh
2 2 2

dT d d d
w

dc c c c

 
  

 
      (1) 

 Differentiating again with respect to c , we have  
2 2

2 2 2 3
sinh sinh cosh

2 2 2 2 4 2

d T d d d d d d
w

dc c c c c c c

 
    

 
 

  Therefore, 
2 2

2 3
cosh 0

4 2

d T d d
w

dc c c
   

Hence the tension at the point of support is minimum. For minimum tension / 0dT dc  , 

which gives cosh sinh 0
2 2 2

d d d
w

c c c

 
  

 
, from (1) 

Therefore, tanh 1
2 2

d d

c c
  

On putting / 2d c  , we have tanh 1   . Here / 2c d     (2) 

We have sinh
2 2

l d
c

c
 , since sinh

x
s c

c
  

On putting the value of c  from (2) we have sinh
d

l 


 . 

  
 
  
 
   
 

 
 
  

  

 

  

  



 

PREVIOUS YEARS QUESTIONS: IAS/IFoS (2008-2023)  

SOLUTIONS HINT: Beauty of learning systematically this topic statics- No matter what book 
you follow, UPSC PYQs are always directly examples from book itself. As to avoid the 
documents to be lengthy and unnecessary repetition we have just put hints and mentioned 
the references in front of PYQs.  

1.COMMON CATANORY 

Q6(a) A cable of weight w per unit length and length 2l  hands from two points P and Q in the 

same horizontal line. Show that the span of the cable is 
2

2

2
2 1

3

h
l

l

 
 

 
, where h is the sag in the 

middle of the tightly stretched position. 

 UPSC CSE 2022 

Q1. Derive intrinsic equation 

 log sec tanx c     

of the common category, where symbols have usual meanings. 

Prove that the length of an endless chain, which will hang over a circular pulley of radius 'a' so as 

to be in contact with 
2

3
 of the circumference of the pulley, is   

 
4 3

3 log 2 3
a


 
 

 
  

. [7a 2020 IFoS] 

Solution Reference: part-1 Article 3 span of common catenary in theory part of this chapter. Part-

2 Example 5 

Q2. The end links of a uniform chain slide along a fixed rough horizontal rod. Prove that the ratio 

of the maximum span to the length of the chain is  

 
1

2 21 1
log






 
 

where  is the coefficient of friction. [7a 2018 IFoS]. Solution Ref.  Example 3 

Q3. Find the length of an endless chain which will hang over a circular pulley of radius 'a' so as to 

be in contact with the two-thirds of the circumference of the pulley. [8a UPSC CSE 2015]. Solution 

Reference: Example 5 



 

Q4. Determine the length of an endless chain which will hang over a circular pulley of radius a so 

as to be in contact with two-thirds of the circumference of the pulley. [7a 2015 IFoS]. Solution 

Reference: Example 5 

Q5. The end links of a uniform chain slide along a fixed rough horizontal rod. Prove that the radio 

of the maximum span to the length of the chain is 
21 1

log





  
 
  

 where  is the coefficient 

of friction. [7c UPSC CSE 2012]. Solution Reference: Example 3 

Q6. A cable of length 160 meters and weighing 2 kg per meter is suspended from two points in 

the same horizontal plane. The tension at the points of support is 200 kg. Show that the span of 

the cable is 1 5
120cosh

3

  
 
 

 and also find the sag. [5d 2011 IFoS]. 

Q7. A uniform chain of length 2l  and weight W, is suspended from two points A and B in the 

same horizontal line. A load P is now hung from the middle point D of the chain and the depth of 

this point below AB is found to be h. Show that each terminal tension is  

2 21 1

2 2

h l
P W

h hl

 
   

 
. [7a 2010 IFoS]. Solution Reference: Example 12 

 

 

 

 

 

 

 

 

 

 

 



 

STABLE AND UNSTABLE EQUILIBRIUM 

 

 Step (i): Let’s try to understand basic terms first and then the mathematics behind 

it. 

 Equilibrium : 

 Stable: After slight displacement, it comes into it’s original position. 

 Unstable: After slight displacement, it does not return to it’s original position. 

 Keywords: slight displacement from it’s original position of equilibrium. 

 

 It can be seen that if body 1 is slightly displaced from it’s position of equilibrium, the 

body may come to it’s actual position but it is also possible that a further displacement it does 

not come back to it’s position of equilibrium. The same we can think of body 2 too. 

 In case: body 1; body 1 is in unstable equilibrium. 

 Body 2 is in stable equilibrium. 

 The above story indicates that. 

 If height of centre of gravity of the body from the fixed (base); then it’s position of 

equilibrium is unstable and if this height is minimum, then position of equilibrium is stable; Let’s 

try to extend this understanding through mathematical ways. 

 Case (1): A body rests in equilibrium upon another body (which is fixed), the portions of 

two bodies in contact being spheres of radii r and R respectively, and the straight line joining the 

centres of the spheres being vertical; if the first body be slightly displaced; finding whether the 

equilibrium is stable or unstable, the bodies being rough enough to present sliding. 



 

 

 O; centre of spherical surface of lower body. 

 O’; centre of spherical surface of upper body. 

 G1; centre of gravity of upper body (actual position). 

 G2; centre of gravity of upper body after displacing. 

 Let’s have the displacement ast DF(Arc length)  = EF (Arc lenght) 

 OD = R, O’D = r  

 EG2 = h,  G2B  CH 

 Let DOF =   = OCH,     ECO =  

   ECH =  +  

 ∵ Arc DF = Arc EF  R  = r      …(1) 

 Let z be the height of G2 above ox line. 

  z = CH –  CB as G2Bǁ ox= OC cos – CG2 cos( + )  

                                  = (R +r)cos + (r – h)cos( + ) …(2) 

 ∵ G2C = r – h= (R +r)cos + (r – h)cos
R r

r


 
 
 

     …(3) 

  Using (1) 

 Differentiating (3) w.r.t , we get 

    
dz R r R r

R r sin r h sin
d r r

 


    
        

   
 

 For equilibrium i.e. for maxima or minima of z, 



 

 Putting 0
dz

d
  

  –     0
R r R r

R r sin r h sin
r r

 
    

      
   

 

 We can observe that  = 0º satisfies above equation. 

 Now    
2

2
2

d z R r R r
R r cos r h cos

r rd
 



    
        

   
   …(4) 

    
2

2
02

d z R r
R r r h

rd





 
      

 
 

    = 
 

2 2R r r
r h

r R r

   
        

= 
 

2

2

R r rR
h

R rr

  
 

 
 

 Clearly: 

 

2
2

0
d z r R

if h
R rd

Minima




 

      
1 1 1

h R r
   

 And  

 

2
2

0
d z r R

if h
R rd

Maxima




 

  
1 1 1

h R r
   

 Thus the equilibrium is 

 Stable when 
1 1 1

h R r
   

 Unstable when  
1 1 1

h R r
   

 

 Now for 2
02

0
d z rR

i.e. h
R rd




  


 

 So Let’s check the sign of 3

3

d z

d
 at  = 0 

    
3

3

3

d z R r R r
R r sin r h sin

r rd
 



    
       

   
 

 And 3
03

0
d z

d



     

4
4

4

d z R r R r
R r cos r h cos

r rd
 



    
        

   
 



 

     
2

4
04 2

1
d z R r R r

R r r h
rd r






     
      

    

 

  =  
2

2
1

R r
R r

r

   
   

   

 ∵ 
rR

h
r R




 

  =  
2

1 1
R

R r
r

   
    

   

 

  = a negative quantity 

  z is maximum so equilibrium is unstable. 

 Therefore, the equilibrium is – 

  

1 1 1

1 1 1

Stanble when
h r R

Unstable when
h r R

 

 

 

 Deductions: If the upper body has a plane surface in contact with the lower body i.e. r  

the equilibrium is stable or unstable according as  h  or  R.  

(∵ 
1 1 1

,
h R
 


 
1 1 1

h R
 


) 

 Similarly we can think of if lower body has plane surface in contact the R   

 Exam Suggestion: In the exam, Proofs are not being asked. Only; we need to remember 

above  formula. For three cases. (See examples, how) 

 

 Case (ii): 

 

 A body rests in equilibrium inside another  concave fixed body, the portions of two 

bodies in contact being spheres of radii r and R respectively, and the straight line joining the 

centres of the spheres being vertical. If the first body be slightly displaced. Discuss the stability 

of equilibrium the bodies being rough enough to prevent sliding. 

 Proof: Similar way as for case (ii); 

 The equilibrium is 



 

 Stabel when 
1 1 1

,
h r R
   

 Unstable when 
1 1 1

,
h r R
   

 If 
1 1 1

h r R
  then the equilibrium is stable when R > 2r and unstable when R < 2r 

 Case (iii): A body rests in equilibrium upon another body (which is fixed) and the 

portions of two bodies in contact have radii of curvature 1  and  2  respectively. The C.G. of 

the first body is at height h above the point of contact and the common normal makes an angle  

with the vertical, then equilibrium is- 

 Stabel if 1 2

1 2

h cos
 


 




 

 Unstable if 1 2

1 2

h cos
 


 




 

 In case 
1 2

1 1 1
,

h  
  the equilibrium is neutral. 

 Note: Now; In questions, we need to observe. 

 Contact surfaces 

 Height of C.G. ( For this we need to remember C.G. for some bodies in particular.) 

 Example: 

 1. Hemisphere OG = 
3

8

a
  

 

  Where ‘a’ is radius:OA 

 2.  Cone; OG = 
4

 



 

 

  Where OA =  

 3. Square; NG = 
2

a
 

 

 4. Calculating C.G. of a system of two bodies. 

 

 Let y2 is height of C.G. of upper body with C.G.G2  

       y1 is height of C.G. of lower body with C.G.G2 

 Then C.G. of the system of two bodies 

  1 1 2 2

1 2

w y w y
z h y

w w


  


 

 Where w1: weight of lower body. 

             w2: weight of upper body. 

 Use: 



 

  w1 = mg = 34

3
r g 

 
  
 

for sphere 

 Homogeneous body/bodies of same substance means the density   is same. 

              For cone       and     hemisphere 

   

2 3

2 3

1 2 3

2 4 3 8

2

3 3

r
r r r r

y

r r





 

   
     

   




 

 For 

 

 Here  NG1 = 
4

 

  NG2 = 
3

8

r
 

 Radius of hemisphere : r 

 Note: We have to deal different types of problems: 

 Type(i) :  Curved surfaces related problems Hemisphere, sphere, cone, elliptical  

   (The lower body is a curved surface or the upper) 

 Type (ii):  Problems related to rods 

 Type (iii): Problems related to rectangular laminas 

 Type (iv): Miscellaneous problems. 

 

 



 

      Revision for exam hall (Recalling : geometry applied in questions) 

 A hemisphere rests on sphere : When curved surface on the sphere. When the flat surface 

on the sphere. 

 A lamina in the form of an isosceles triangle whose vertical angle is , placed on sphere. 

Is flat surface on sphere.  

 

 
2

3
BG BD  

 Square on sphere; maximum till : 
4


 

 Hemisphere has a solid right cone on its base and hemisphere rests on the convex side of a 

fixed sphere; the axis of cone being vertical. 

 

  

 1 1 2 2

1 2

w y w y
y

w w





 

 quadratic equation in ;  cannot be negative. 

 Hemisphere lying in a fixed spherical shell. Particle is attached to the upper end. 

 

 



 

 A thin hemispherical bowl; on the highest point of fixed sphere, Inside the bowl, a small 

sphere. Keyword. Using ‘moment’ 

 A rod; string: Slung over a peg considering ellipse. 

 The focal distance of any point P on the ellipse is constant and is equal to the length of 

its major axis. 

 

 Using 
r

 = 1 + cos; equation of ellipse. Where b2 = a2(1 – e2) 

                                                   
 Paraboloid frustum 

 

 Rods  

 
 Sine rule 

 sin( + ) 



 

 sin(– ) 

   sin      

  Depth of C.G. ; max depth stable,  

   Min. depth unstable. 

 String and rod :    2 2 24 4r a i acos    

 

 

 Square lamina ;    Properties of squares (diagonals) rectangles, 

rhombus. 

 Miscellaneous; 

 Isosceles triangular lamina in contact with two smooth pegs. 

 Sine rule 
PG AQ

sin A sin APQ
  

 Solid circular cone 

 

 

 Four uniform rods 

 Three equal spheres on a smooth table, elastic band. 

 String, pulley, weight. 

 

 

 
 

 

 

 

 

 

 

 

 

 



 

Example1:- A hemisphere rests in equilibrium on a sphere of equal radius: show that  the 

equilibrium is unstable when the curved surface rest on the sphere and stable when the flat 

surface of hemisphere rests on the sphere. 

Solution:- Case : 1:-  When the curved surface rests on sphere. Suppose that radius of the sphere 

is a, C.G. is at the point G; N, the point of contact. We know that 3 /8OG a  

          
    h   height of C.G above N  

  ON OG   

  
3 5

8 8

a a
a    

 Also radius of lower body R a   radius of upper body r a  . 

 Applying Art. 39 the equilibrium is unstable if   

  
1 1 1

h r R
   

 i.e. 
8 1 1 2

5
a

a a a
    

 i.e. 
8

2
5
  , which is true. 

 Hence the equilibrium is unstable. 

 

Case: 2:- When the flat surface rests on the sphere.  

In this case of plane face of the upper body is in contact with the lower sphere, so r  , 

R a   3 /8h NG a   

The equilibrium is stable if  

 
1 1 1

h r R
   

i.e. 
8 1 1 1

3a a a
  


 

i.e. 
8

1
3
   which is true. 

So, the equilibrium is stable. 

 



 

Example2:- A lamina in the form of an isosceles triangle whose vertical angle is  , is placed on a 

sphere of radius r so what its plane is vertical and one of the equal sides is in contact with the 

sphere. Show that if triangle be slightly displaced in its own plane, the equilibrium is stable if 

sin 3 /r a  , where a is one of the equal sides. 

Solution:- ABC  is the triangular lamina with equal sides BA  and BC  such that  

         
 ,BA BC a ABC     . 

 BD  is the bisector of ABC , 90ADB   

 So, 
1

, 90
2

ABD BNG     

G being the C.G. of the lamina, then  
2 2

cos / 2
3 3

BG DB a    as AB a  and 

sin / 2h GN BG     

  
2

cos / 2sin / 2
333

a    

 sin
3

a
  

 R   radius of the lower body r  (given) 

 r   radius of the upper body (Flat surface)   

 The equilibrium is stable if  

 
1 1 1

h r R
   

 If 
3 1 1

sina r
 


 

 

Example3:- A heavy cube balances on the highest point of a sphere whose radius is r . If the 
sphere is rough enough to presents sliding and if the side of the cube is / 2r , show that the 
cube can rock through a right angle without falling. 



 

Solution:- As shown in the fig. 1 ABCD is a uniform cube, O is the centre of the given sphere 
/ 2AB r , G is the C.G. of the cube, so / 4h GN r  , R   radius of the lower surface r . 

 The surface of cube in contact with the sphere is plane AB . 
 So, r  , the radius of the lower body (sphere) r . 

 Applying Art. 39, the equilibrium is stable if  

  
1 1 1

h r R
  ,  i.e. 

4 1 1

r r
 


 

     
  4  , which is true since 22 / 7  i.e.  

 Hence, the equilibrium is stable. 
As the cube rocks clockwise, the C.G. of the cube will move towards right hand side. When 
the point A comes in contact with the surface of the sphere, in this position as shown in 
fig.2, the line GA  becomes vertical. If the cube tilts further slightly the cube will fall down. 
Hence the cube will not fall down till the point A comes in contact with the surface of the 
sphere.  

The arc 
4

r
NA r


   as 

1

2 2 4

r r
NA

 
   

  
4


   

It follow that the angle through which the cube can turn on one side is / 4 . Similarly on 
the other side it can also turn through / 4 . Therefore, the total angle through which the 
cube can rock (turn) without sliding is / 4 / 4 / 2    . 

 
Example4:- A solid homogenous hemisphere of radius r has a solid right cone of the same 
substance constricted on its base, the hemisphere rest on the convex side of a fixed sphere of 
radius R, the axis of the cone being vertical. Show that the greatest height of the cone consistent 

with stability for a small rolling displacement, is   3 2
r

R r R r r
r R

   
 

 

Solution:- As shown in the figure, suppose that 1G  and 2G  are the C.G. of the hemisphere and 

the cone respectively and that G , the C.G. of these combined bodies. Suppose that NB l , 
h CG . Given that ,CN r AC R   



 

     

 Regarding C  as origin and CG  as y-axis and applying the formula 1 1 2 2

1 2

w y w y
y

w w





 we get 

  

2

2 3

2 3

3 4 3 8

2

3 3

l r r
r l r r

h

r l r

 




   
     

   



 

  2 / 4NG l , 1 3 / 8NG r  

  

21 5

4 4

2

l r r

l r

 
  

 


 

 The equilibrium is stable if  

  
1 1 1

h r R
   

 Or if 
2

2

5

4 4

l r R r

l Rr
l r r

 


 
  

 

 

 Or if  2 2 3 24 5 3 0l r R r l r r R          (1) 

 If 1l  and 2l  are the roots of the equation 

   2 2 3 24 5 3 0l r R r l r r R     , then  

  
   

1/22

1

2 3r r r R R r
l

r R

   



 

  
   

1/22

2

2 3r r r r R r
l

r R

   



 

 In order to satisfy the inequality (1), l  should be such that 1 2l l l  . 

 But 1l is a negative value and l  cannot be negative, so 20 l l  . 

 i.e. 
   

1/222 3r r r R R r
l

r R

   



 



 

     
1/2

3 2
r

r R R r r
r R

    
 

 

 Hence for stability,    
1/2

3 2
r

l r R R r r
r R

    
 

 

 So, the greatest value of l  consistent with stability of the equilibrium is  

   3 2
r

R r R r r
r R

   
  

. 

 
Example5:- A sphere of weight W and radius a lies within a fixed spherical shell of radius b and a  
particle of weight w  is fixed to the upper end of the  vertical diameter. Prove that equilibrium is 

stable if 
2W b a

w a


  and  that if 

2W b a

w a


 , then the equilibrium is essentially stable. 

Solution:- As shown in the fig. there is a spherical shell ABC  within which there is a sphere with 

vertical diameter BD . A weight w  is put at D , W  is the weight of the sphere. 
 

        
 Radius of the shell b , radius of the sphere OB a  . 
 Suppose that G is the C.G. of the system containing weight w  at D  and the sphere. 

  
2 2wBD WBO aw aW w W

h BG a
w W w W w W

   
     

   
 

 Applying Art. 40, the equilibrium is stable 

  If 
1 1 1

h r R
   

 Or if 
 

1 1

2

w W

w W a a b


 


 

 Or if     2w W b b a w W     

 Or if 
2W b a

w a


  

 Thus the equilibrium is stable if  

  
2W b a

w a


  

 If 
2W b a

w a


  the equilibrium is stable if (Art. 40) 

  2b a   2 0b a    



 

Concluding that 
W

w
 is positive, which is true, therefore, if 

2W b a

w a


  then the 

equilibrium is essentially stable. 
Example6:- A body consisting of a cone and a hemisphere on the same base, rests on a rough 
horizontal table, the hemisphere being in contact with the table; show that the greatest height of 

the cone, so that the equilibrium may be stable, is 3  times the radius of the hemisphere. 

Solution:- Suppose that the height of the cone l ; radius of the hemisphere r . 

     
The C.G.s of the hemisphere and cone are 1G  and 2G  respectively, and G ,  the C.G. of the 

combined system. 

1 2

3
,

8 4

r l
HG HG   If h HG  then using the formula  

   1 1 2 2

1 2

w y w y
y

w w





 

 

2 3

2 3

1 1 2 3

3 4 3 8

1 2

3 3

r
r l r r r

h

r l r

 

 

   
     

   



 

 

21 5

4 4

1 2

l r r

r

 
  

 


 

Here ,r r R   the equilibrium is stable if 
1 1 1

h r R
   

  
2

2 1

1 5

4 4

l r

r
l r r




 
  

 

 

    21 5
2

4 4
r l r l r r

 
    

 
 

  3l r  

Hence the greatest height of the cone. For stable equilibrium is 3  times the radius of 

the hemisphere. 



 

Example7:-  A solid sphere rests inside a fixed rough hemisphere bowl of twice its radius. Show 
that however large a weight is attached to the highest point of the sphere, the equilibrium is 
stable. 
 
Solution:-  Suppose that B and C are the centre of the sphere and the hemispherical bowl 
respectively. W   weight of the sphere; w  weight attached to C 

      
 2 2AC AB r   (say) , so 2R r  

 If h  is the C.G. of the system above the point of contact A , 

  
2 2Wr w r W w

h r
W w W w

  
   

  
. 

 The equilibrium will be stable (using Theorem 3) 

 If 
1 1 1 1 1 1

2 2h r R r r r
         (In usual notation) 

  
 

1
0

2 2

W w
W

W w r r


  


, which is true  

 Hence the equilibrium is stable. 
 
Example8:- A thin hemispherical bowl of radius b  and weight W  rests in equilibrium on the 
highest point of a  fixed sphere of radius a , which is rough enough to prevent any sliding. Inside 
the bowl is placed a small smooth sphere of weight w , show that the equilibrium is not unstable 

unless 
2

a b
w W

b

 
  

 
 

Solution:- The equilibrium position of the system is shown in the fig. A and B are the centres of 
the lower sphere and bowl respectively. Here bowl is slightly displaced. Initially, points C and F 
were coinciding. In the tilted position the weight w  moves (slides) from C to its lowest position 
in which BE must be a vertical line. 

        



 

 If FAD   , CBD   , / 2BG b . 

 Since are FD arc CD  

  a b    

The equilibrium will be stable if the moment of W  acting at G  about D  the moment of 

w  about D . 

i.e.  sin sin sin
2

b
W b wb   

 
   

 
 

   
1

sin 1 / sin sin
2

W a b w  
 

   
 

 

Since   is very small, so using the property sin  . 

  
1

2
W a b b wb  

 
   

 
 

  
2

a b
w W

b

 
  

 
 

 
Example9:-  A rod SH, of length 2c  and whose centre of gravity G is at a distance d  from its 
centre, has a string, of length 2 secc  , tied to its two ends and the string is then slung over a 

small smooth peg. P ; find the position of equilibrium and show that the position which is not 
vertical is unstable. 
 
Solution:- Given that 2 secPS PH c   . Here B is the middle point of the rod SH  and G , it 

. .C G  such that BG d , BS BH c   (given) 

     
We know that the sum of the focal distances of any point P  on the ellipse is constant and 

is equal to the lengths of its major axis. So the peg P will be on the ellipse whose foci are 

S  and H . Regarding 'AA  as major axis with centre (origin) B , if the ellipse be 

 
2 2

2 2
1

x y

a b
          (1) 

  Then 2 2 seca PS PH c     

   seca c  and ac BH c ae c     

  But  2 2 2 2 2 2 2 21 sec tanb a e c c c       

    tanb c   

 Using these values of a  and b , the equation (1) becomes 
2 2

2 2 2 2
1

sec tan

x y

c c 
   



 

   2 2 2 2 2sin tanx y c   referred to B  as origin and 'A A  as x-axis 

 Shifting the origin to the point  ,0G d  we get 

   
2 2 2 2 2sin tanx d y c     

Changing to polar coordinates,  
2 2 2 2 2 2cos sin sin tanr d r c      , where G  is the 

pole and GH  is initial line and GP r , PGH    

  2 2 2 2cos cos 2 sin cosr rd     

     2 2 2 2 2tan sin 0c r d        (2) 

If we find the value of   for which r is a maximum or minimum, and take the 

corresponding point P  of the ellipse for the position of the peg. And set the rod to make 

PG  vertical, we shall have the slant position of equilibrium. 
 The equation (2) is quadratic in cos . 

 
 

1/2
2 2 2 4 2 2 2 2 2 2 2

2 2

2 sin 4 sin 4 cos tan sin
cos

2 cos

rd r d r c r d

r

    




    
   

  
 

1/2
2 2 4 2 2 2 2 2 2

2

sin sin cos sin tan

cos

d d d r c

r

    



    
   

 But   2 2 2 2 2 2 2sin cos sin tand d r c       

   2 2 2 2 2 2sin sin cos cos sind r c         

  2 2 2 2 2 2sin cos sind r c      

   2 2 2 2 2cos sinr d c    

 So,  
 2 2 2 2 2 2

2

sin cos sin
cos

cos

d r d c

r

  




  
  

  The value of   is real if  2 2 2 2 2cos sin 0r d c     

    2 2 2 2tanr c d    

 Since r cannot be negative, so 

   2 2 2 tanr c d    

Therefore, the least value of r is 2 2 tanc d   and when 2 2 tanr c d   , then 

2 2

tan
cos

d

c d


 


 

Since in this case r  is minimum the C.G. of the rod is at its minimum depth below the peg. 
(Vertically) and therefore, the C.G. is at the maximum height above the horizontal, and so 
the equilibrium is unstable. 
The order two positions of equilibrium are when P  is at A  or 'A  and the rod SH is then 
clearly adjusted to vertical. 

 



 

Example10:- A smooth ellipse is fixed with its axis vertical and in it is placed a beam with its ends 
resting on the arc of the ellipse, if the length of the beam be not less than the lotus rectum of the 
ellipse, show that when it is in stable equilibrium, it will pass through the focus. 
Solution:- Suppose that S  is the focus and MN , the directrix of the ellipse, AB  is the beam. 

Referring to S  as pole, the equation to the ellipse is 1 cos
l

e
r

   where, sz  is the initial line. 

By the definition of the ellipse. 

 
  ,As eAM BS eBN   

   Hence, 
  z  height of C.G. of rod AB  above MN  

   
1

2
AM BN   

   
1

2
AS BS

e
   

 The equilibrium is stable if z  is minimum  
  AS BS  is minimum  
  Point , ,A B S  all lie on the same straight line 

  Beam AB  must pass through the focus. 
 Thus when beam AB  passes through the focus, the equilibrium is stable. 
 If AB AS BS   

  
 1 cos 1 cos

l l

e e  
 

  
 

  
1 cos 1 cos

l l

e e 
 

 
 

  
2 2

2

1 cos

l

e 



 

AB is minimum when cos 0  , i.e. / 2   so when / 2  , AB   length of the 

latus rectum 2l  
 Hence, the minimum length of the rode   length of latus rectum of the ellipse. 
 



 

Example11:- A lamina in the form of a cycloid whose generating circle is of radius a , rests on the 
top of another cycloid whose generating circle is of radius b , their vertices being in contact and 
their axes vertical. If h  be the height of C.G. of upper cycloid above its vertex, show that the 

equilibrium is stable only if 
4ab

h
a b




, and is unstable if 
4ab

h
a b




 

Solution:- Cycloid 4 sinS a   (upper) 

  4 cos
ds

a
d

 


   

 At vertex A (point of common contact) 

 10, 4a    at A . 

 Similarly, for lower cycloid 2  at A is 4b  

 Using Art. 41 deductions, the equilibrium is stable if  

 

 
1 1 1

4 4h a b
   or 

4ab
h

a b



 ,and unstable if 

4ab
h

a b



. 

 Now, 1 2

2 2

1 2 1 2

1 1 1 1
..

d dd d

ds ds ds p ds

 

  

     
       

     
 

2 2

1 2

1 1
.4 sin .4 sina b 

 
   

   
2 2

1 2

4 sin
a b


 

 
  

 
 

   0 , where 0  , which gives no information. 

 Further, 
2 2

1 2

2 2 2 2 2

1 2 1 2

1 1 1 1d dd d d d

ds ds ds ds ds ds

 

   

       
           

       
 

  
2 2

1 2

4 4
sin sin

d a d b

ds ds
 

 

   
    

   
 

  1

3 2

1 1

4 4
2 sin cos

da a d

ds ds

 
 

 
     

   2

3 2

2 2

2 1
4 sin cos

d d
a

ds ds

 
 

 

 
   

 
 



 

  2 2

3 2 3 2

1 1 2 2

8 4 4 sec 8 cos 1
sin cos 4 sin .

4 4 cos

a a a b
b

a b

 
  

    

 
    

 
 

  
2 2

2 2

3 2 3 2

1 1 2 2

32 1 32 1
sin sin

a b
 

   
      

 So,  
  2 2

1 2 2 1

2 2 2 3

1 2 1 2

21 1d d

ds ds

   

   

    
    

   
 

  
  2 2

1 2 2 12 2

3 2 3 2 2 3

1 1 2 2 1 2

232 1 32 1
sin sin

ra a   
 

     

 
      

  
   

  

   
2 2 2 2

4 2 41 1

4 4

a b b a

a ab a ab

 
    when 0 0   . 

 Showing that the equilibrium is unstable. 

 Therefore, the equilibrium is unstable when 
4ab

h
a b




, stable when 
4ab

h
a b




 

 
Example12:- An elliptic cylinder is placed with its axis horizontal on a rough plane inclined to the 
horizontal at an angle less than the angle of friction. Prove that the cylinder can not rest if the 

inclination of the plane exceeds 
2 2

1

2 2
sin

a b

a b

  
 

 
 and if the inclination is equal to 

2 2
1

2 2
sin

a b

a b

  
 

 
 

the equilibrium is natural to first approximation. 
Solution:- In the fig. the vertical cross-section of the inclined plane and the elliptical cylinder have 
been shown. OA  is the inclined plane, ox  is horizontal. Aox   , the axis of cylinder is 

perpendicular to the plane of the paper. CP  is vertical and NP  is normal P  is the point of 
contact. Regarding EF  as the major axis and C  as centre, the equation of the ellipse is 

2 2

2 2
1

x y

a b
  . 

 
 Let the coordinate of P  be  cos , sina b  . Equation of the normal NP  is  

 2 2sec cosax by ec a b      

 Slope of 1 tan
a

NP m
b

   



 

Slope of 
2 tan

b
CP m

a
  ,   is the angle between PC  and PN , so 

1 2

1 2

tan tan

tan
1

1 tan tan

a b
m m b c

a bm m

b a

 


 




 




   

 
2 2 2 2

2

tan
sin 2

1 tan 2

a b a b

ab ab






 
 


 

  
2 2

2
sin 2 tan

ab

a b
 


 

 Since, the value of   is real so, sin 2 1   

  
2 2

2 tan
1

ab

a b





 as 

2 2

tanab

a b




 is a  ve  quantity  

  
2 2 2 2

2 2
tan sin

2

a b a b

ab a b
 

 
  


 

  
2 2

1

2 2
sin

a b

a b
   
  

 
, which is the condition under which is the cylinder rests, Or. In other 

words, the cylinder cannot rest if 
2 2

1

2 2
sin

a b

a b
   
  

 
 

 Now consider the case when 
2 2

2 2
sin

a b

a b






  

 So that sin 2 1 / 4      

  
1/2

2 2 2 2cos sinh CP a b     

  

1/2
2 2

2

a b 
  
 

as 45        (1) 

 The parameter equation of the ellipse is  
 cos , sinx a y b    

  cot
dy b

dx a
   

  
2

2

2
cos

d y b d
ec

dx a dx


  

  2 3

2

1
cos cos

sin

b b
ec ec

a a a
 


     

 At 45   



 

2 2

2
, 2 2

dy b d ydx b

dx a a
    . None 

    
 

 
3/2

2 3/2 3/2
2 2 2 2

2 2 2

1 / 1 /

/ 2 2 / 2 2

dy dx b a a b

d y dx b a ab


  
      

 The equilibrium is natural if  

  
1 2

1 1 1
sec

h


 

 
  
 

 

Here 
1   radius of curvature of the inclined plane   and 2  . Hence 

1 1
sec cosh

h
  


    

  
 

3/2 1/22 2 2 2

2 2

2

22 2

a b ab a b
h

a bab

  
   

  
 

 Which is true by the virtue of (1)  
 Hence, the equilibrium is natural. 
 
Example13:- A solid hemisphere rests on a plane inclined to the horizon at an angle, 

 1sin 3/ 8   and the plane is rough enough to prevent any sliding. Find the position of 

equilibrium and show that it is stable. 
Solution:- CD  is horizon CE  is the inclined plane, ECD OEG   . As shown in the figure. 

O I s the centre of the hemisphere, E is the point of contact, OE  is normal to the inclined plane, 
G  is the C.G. of the solid hemisphere such that 3 / 8OG r , where r   radius ,OE GE  is 

vertical.  
 

 
 Let GE h . In OEG , EGF    

  
sin sin sin

EG OG OE

EOG OEG OGE
   

    
 

3 / 8

sin sin sin

h r r

   
 


 

   
 3 sin

8sin

r
h

 




       (1) 



 

 For stable equilibrium, 1 2

1 2

cos
h

  

 



 or 

1 2

1 1 1
sec

h


 

 
  
 

 

 Here 
1 2,r   , so cosh r   

 Putting the value of h  we have 
 3 sin

, cos
8sin

r
r

 





 

    3sin 8sin cos      

    3 sin cos cos sin 8sin cos          (2) 

 From (1) 

  
1/2

28 64
sin sin ,cos 1 sin

3 9
   

 
   

 
   (3) 

 Putting these value of sin  and cos  in inequality (2), we  have  

  

1/2
8 64

3 sin cos 1 sin sin 8sin cos
3 9

     
   

    
   

 

   
1/2

264
1 sin sin 0

9
 

 
  

 
 

 Since sin 0  , so 264 3
1 sin 0 sin

9 8
      

   1sin 3/ 8          (4) 

 For its truth, we see in equation (3)   
8

sin sin
3

   

For real value of  , sin 1   

   
8 8

sin 1 sin
3 3

     

 So, result in inequality (4) is true. Therefore, the equilibrium is stable. 
 
Example14:- A solid frustum of paraboloid of revolution, of height and latus rectum 4a  rests with 
its vertex on the vertex of paraboloid of revolution whose latus rectum is 4b . Show that the 

equilibrium is stable if 
 

3ab
h

a b



 

Solution:- Regarding A as the origin the equation of the generating parabola of the paraboloid 
ACB  is  

  2 4y ax  

  
2dy a

dx y
  

  
2 2

2 2 2 3

2 2 2 4
.

d y a dy a a a

dx y dx y y y
       



 

  
    

3/2
2 3/2

2 2

2 2 2 3

1 / 1 4 /

/ 4 /

dy dx a y

d y dx a y


 
 


 

  
   

3/2 1/3
2 2 2

2 2

4 4 4

4 4

y a ax a

a a

 
     

 

   
 The value of   at  0,0A , 

  
 

3/2
2

2

0 4
2

4

a
a

a


     

 So, 1 2a  , since  (  radius of curvature) remains ve  

 Similarly, 2 2b  , 

 Suppose that G  is the C.G. of upper body, then  

  
 2

0

2

0

h

b

x y dxx dm
AG x

dm y dx

 

 
  



 
 

  

2

0
1

2

3

b

x dx h
h

x dx
  



 (say) 

 The equilibrium is stable if 1 2
1

1 2

cosh
 


 




 

  
2 2 2 cos 0

3 2 2

h a b

a b



, here 0   

  
3ab

h
a b




 

 
Example15:- A uniform beam of length 2a  rests with its ends on two smooth planes which 
intersect in a horizontal line, if the inclinations of the planes to the horizontal are   and 

    , show that the inclination   of the beam to the horizontal in one of the equilibrium 

positions is given by  
1

tan cot cot
2

     and show that the beam is unstable in this position. 

Solution:- As shown in the figure. Suppose that OA  and OB  are two inclined planes intersecting 
in a horizontal line through O  and perpendicular to the plane of the paper. Let AB  be the 



 

uniform rod resting on the planes and making   with the horizontal line MC  so that 
AOM   m BOC    BCM   . G  is C.G. of the rod 2AB a . 

 

 
 Applying sine formula in OAB , 

  
sin sin sin

OA OB AB

OBA OAB AOB
   

  
        

2 2

sin sin sinsin

OA OV a a

       
  

   
 

  
 

 

sin
2 ,

sin
OA a

 

 





 

 

 

sin
2

sin
OB a

 

 





 

    
1 1

sin sin
2 2

z GL AM Bn OA OB       

 
 

 

 

 

sin sin2
sin sin

2 sin sin

a    
 

   

   
  

   
 

 
 

    cos sin sin sin
sin

a
     

 
   


 

 
 

    cos sin cos sin
sin

dz a

d
     

  
   


   (1) 

 0
dz

d
  gives the position of equilibrium. 

 So,    cos sin cos sin 0          

     cos cos sin sin sin cos cos sin sin sin 0              

   2sin sin sin sin cos cos sin cos          

   
1

tan cot cot
2

           (2) 

 Which gives the position of equilibrium. 
 Differentiable (1) w.r.t   

  
 

   
2

2
sin sin sin sin

sin

d z a

d
     

  
      

 



 

  
 

   sin sin sin sin
sin

a
     

 
      

 

  
 

sin cos sin cos sin sin
sin

a
     

 
   


 

    sin cos sin cos sin sin       

  
 

 2sin sin cos sin cos cos sin cos
sin

a
       

 
     

 

  
 

 
2 sin sin cos 1

1 cot cot tan
sin 2

a   
  

 

 
      

 

  
 

 22 sin sin cos
1 tan

sin

a   


 
  


  using (2) 

  
 

22 sin sin sec

sin

a   

 
 


 

  a  negative quantity.  
 Since , ,    all are the acute angle and     . 

 So, z  is maximum, therefore the equilibrium is unstable. 
 
Example16:- A heavy uniform rod rests with one end against a smooth vertical wall and with a 
point in its length resting on a smooth peg; find the position of equilibrium and show that it is 
unstable. 
Solution:- Suppose that AC  is the wall and AB , the smooth rod with G  as its C.G. and P s a 
peg whose distance from the wall is b . Let the rod resting on P  make an angle   with the vertical 
wall.  Here the peg P  is fixed and MPN  is a horizontal fixed line.  2AB a , AG a . Let z  be 

the height of C.G. of the rod above line MPN . So  | |GN CA  

      
 
  z GN AE AM   ,as | |EG MN   

  cos cota b    

  2sin cosa b ec     



 

  
2

2

2
cos 2 cos cot

d z
a b ec

dx
      

   2cos 2 cos cota b es      

  0
dz

d
  will give the position of equilibrium. 

 So, 2sin cos 0a b ec      

    
1/3

sin /b a   

 Which gives the position of equilibrium. 

 Now 
   

1/2 1/2
2/3 2/3 2/3 2/32/32

2 1/3 1/3
2

a b a bd z a
a b

dx a b b

    
    

   

 

   
1/2

2/3 2/3 2/33a a b    

 Since a b , so 2 2/d z d  is a negative quantity. 

 Hence z  is maxim   the equilibrium is unstable for  
1/3

sin /b a   

 
 
Example17:- A uniform heavy bar AB can move freely in a vertical plane about a hinges at A , 
and has a string attached to its end B  which after passing over a small pulley at a point C  
vertically above A  is attached to a weight. Show that the position of equilibrium in which AB  is 
inclined to the vertical is an unstable one. 
 
Solution:- Here AB  is the uniform rod of weight W  with G  as its C.G. such that AG GB a  , 

BCP  is a string of length l  such that BC r  and CP l r  , Also suppose that a weight P is 
suspended from the string at P in equilibrium, let AC s , BC r , BAC   . In ABC . 

      
  2 2 24 4 cosr a c ac          (1) 

 z   height of C.G. of weights P  and W  above A which is fixed. 

  
 cosWa P s l r

W P

   



 

 Here r  and   are variables,  
1

sin
dz dr

Wa
d W P d


 

 
     

   (2) 



 

 Differentiating I  w.r.t  , 2 sin
dr

r ac
d



  

 So, 
1 2

sin sin
dz ac

Wa P
d W P r

 


 
     

     (3) 

 0
dz

d
  gives the position of equilibrium, 

  
2

sin 0
c

W P
r


 
   
 

 

  sin 0   or 
2Pc

r
W

  

 If sin 0, 0     the rod is in vertical position 

 Or 
2Pc

r
W

 , in this position of equilibrium, the rod is inclined. 

 Differentiating (3) w.r.t.  , we have  

 
2

2 2

1 1 1
cos 2 sin cos

d z dr
Wa acP

d W P r d r
  

 

  
         

 

 2

2

1 2 1
cos 2 sin cos

ac
Wa acP

W P r r r
  

   
         

 

 2 2 2

3

1
cos 4 sin 2 cos

2

P W
Wa a c acP

W P r Pc
  

 
      

 

 Putting the value of r  

 
2 2 2

3

4 sina c P

W P r


 


 

 a  negative quantity as sin 0  for    

 So z  is maximum when 2 /r Pc W , indicating that the equilibrium is unstable. 
 
Example18:- A uniform rod of length 2l , is attached by smooth rings at both ends of a parabolic 
wire, fixed with its axis vertical and vertex down words, and of latus rectum 4a . Show that the 
angle   which the rod makes with the horizontal in a slanting position of equilibrium 

2cos 2 /bv a l   and that, if these positions exist they are also stable. Show also that the 

positions in which the rod is horizontal are stable or rod is below or above the focus: 
 

Solution:- Let AOB  be a parabola whose equation is 2 4x ay , AB  is the rod of tength 2l  with 

its C.G. at G  so that  AG l , ,AL GN , BC are parallel to y-axis and AM is parallel to x-axis 

BAM   . Suppose that the coordinates of A and B are 2

1 12 ,at at , and  2

1 22 ,at at respectively. 



 

   
 Here, z   height of G  above ox  

   
1

2
AL BC   

   2 2

1 2
2

a
t t          (1) 

 In ABM , 

  
 
 

 
2 2

2 1

2 1

2 1

1
tan

2 2

a t tBM
t t

AM a t t



   


 

  2 1 2 tant t           (2) 

 And 
 2 1

2 1cos 2 cos
2

t tAM l
a t t

AB l a
 


         (3) 

 Squaring and adding (2) and (3) 

   
2

2 2 2 2

1 2 2
2 4 tan cos

l
t t

a
         (4) 

 So, 
2

2 2

2
4 tan cos

2 2

a l
z

a
 

 
  

  
 

  2 2 2 21
4 tan cos

4
a l

a
       

   2 2 21
4 .2 tan sec 2cos sin

4

dz
a l

d a
   


      

  2 2 21
4 tan sec sin cos

2
a l

a
        

 For the equilibrium, / 0dz d   

  2 2 24 tan sec sin cos 0a l      

   2 3 2sin 4 sec cos 0a l      

 Either sin 0   or 2cos 2 /a l   

 sin 0 0     gives the horizontal position. 

 But 2cos 2 /a l  gives the inclined position of equilibrium 

     
2

2 4 2 2 2

2

1
4 sec 2 tan sec sec tan cos sin

2

d z
a l

d a
      


    
 

 



 

   2 2 2 2 2 2 21
4 sec sec 2 tan 2 cos

2
a l l

a
        

 
  (5) 

  
 2 2 2

2 21 1 2
4 2

2 2 2 2

l al a
a l l

a a a a l

  
     

   

 

  
2 2

22 2 2
1 sin

l a l

a l a


 
   

 
 

  a  Positive quantity 

 So, z  is minimum when 2cos 2 /a l   

 Therefore, the equilibrium is stable 
 Now consider the case when 0  , so putting 0   in (5). 

  
2

2 2 2

02

1
4 2

2

d z
a l l

d a





       

   2 21
4

2
a l

a
   

    
1

2 2
2

a l a l
a

    

  
2

02
0

d z

d



   or 0  

 According as, 2 0a l   or 2 0a l   
 According as semi-latus rectum l or l  
 According as, the rod is below or above the focus in horizontal position. 

Therefore, the equilibrium is stable or unstable according as the rod is below or above the 
focus when it is in horizontal position. 
 

Example19:- A uniform smooth rod passes through a ring at the focus of a fixed parabola whose 
axis is vertical and vertex below the focus, and rests with one end on the parabola. Prove that the 
rod will be in equilibrium if it makes with the vertical an angle   given by the equation. 

4cos
2 2

a

c

 
 

 
 where 4a  is the latus-rectum and 2c , the length of the rod. Investigate also the 

stability of the equilibrium in this position. 
 
Solution:- As shown in the fig. referred to the focus s  as the pole and line SO as the initial line. 

The equation of the parabola is 
2

1 cos
a

r
   

    2cos / 2r a          (1) 

 Where latus-rectum 4a  rod 2 ,AB c G  is its C.G. so AG c  



 

  
 Let the polar coordinates of A  be  ,r   where  , ,SA r ASO SG r c      

 z   the depth of G  below S  
   (since S is fixed) 

   cos cosGS r c     

  2 2sec 2cos 1
2 2

a c
       

        
      

 

  2 22 2 cos sec
2 2

a c a a
    

      
   

 

  
1 1

2 2cos sin 2sec sec tan .
2 2 2 2 2 2 2

dz
c a

d

    



          
             

          
 

  2sin sec tan
2 2

c a
 


   

     
   

 

 If the equilibrium exists, then  

  0
dz

d
  

   2sin sec tan 0
2 2

c a
 


   

    
   

  

   4sin 2 cos 0
2 2

c a
     

     
    

 

 Either sin / 2 0 0    , the rod is vertical  

 Or  4cos
2 2

a

c

 
 

 
 

 To test the nature of the equilibrium when  4cos
2 2

a

c

 
 

 
 

 
2

2 2

2

1 1
cos 2sec sec tan . tan sec sec .

2 2 2 2 2 2 2 2

d z
c

d

     




            
              

            
 

  2 2 41
cos sec tan sec

2 2 2 2
c a

  


 
   

 
 



 

  4 2 1
cos sec sin

2 2 2
c a

 


 
   

 
 

  22 1
cos sin

2 2

c
c a

a




 
   

 
 

    21 cos 2 sin
2

c c



 

    
 

 

  a  negative quantity. 

 So, z  is maximum i.e., the equilibrium is stable when  2cos / 2 / 2a c  . 

 
Example20:- Two equal uniform rods are firmly, joined at one end so that the angle between 
them is   and they rest in a vertical plane on a smooth sphere of radius r . Show that the are in 
a stable or unstable equilibrium according as the length of the rod is greater or less than 
4 cosr ec  . 

 
Solution:- Suppose that two equal rods AD  and AE  with  

     
 

C.G.’s at 1G  and 2G  their lengths being 2b , are resting in a vertical plane on a smooth 

sphere of radius r  and of centre 1 2. ,O DAE AG AG b    . G  is the C.G. of both 

rods. Line AO  is the perpendicular bisector of the line 1 2G G  and also bisects the DAE

, ox  is a horizontal line through O  and let Aox    in equilibrium. 

 z   the height of C.G. G of both the rods above ox  
 sinGL OG    

  sinOA AG    

 2cos cos sin , 90
2 2

OB ec AG ABO
 


 

    
 

 

 cos cos sin
2 2

r ec b
 


 

  
 

 

 cos cos cos
2 2

dz
r es b

d

 




 
  
 

 



 

In case of equilibrium 0
dz

d
  

  cos 0 / 2       

 Which gives the position of equilibrium 

 To test the nature of equilibrium,  
2

2
cos cos sin

2 2

d z
r ec b

d

 




 
   
 

 

  
2

2

d z

d
 at cos cos

2 2 2
r ec b

  


 
    

 
 

   
1

cos 2 4 cos
2 2

b r ec


   

 The equilibrium is stable or unstable if  

  
2

2

d z

d
 at 

2


   is positive or negative. 

 i.e. 2 4 cosb r es    or 0  

 i.e. 2b   or 4 cosr ec  

 i.e. length of the rod   or 4 cosr ec . 

 
Example21:- A square lamina rests with its plane perpendicular to smooth, one corner being 
attached to ta point in the wall by a fine string of length equal to the side of the square. Find the 
position of equilibrium and show that it is stable. 
Solution:- Suppose that AFE is a wall and ABCD  is the square lamina inclined at an angle   
with the vertical such that BAF   . Let each side of the square be equal to 2b . BE  is the 

string of length 2b . G is the C.G. of the lamina ABCD . FBH  is a horizontal line 45ABG   

CBL   , so 45GBL     

     
 

 Here 2 cos 45 2BG b b   

 z   the depth of G below E  
  EF HG   

  2 cos sin 45b BG      

   2cos 2 sin 45b      

  2cos sin cosb       



 

  3cos sinb     

  3sin cos
dz

b
d

 

    

 For equilibrium, 0
dz

d
  

  3sin cos 0     

  tan 1/ 3   

 Now  
2

3cos sin
d z

b
d

 

    

 

  3cos sinb       

  
2

1tan 1/ 3
d z

at
d




  

 
1 1

3 10
10 10

b b
 

      
 

 

   negative quantity. 
 Which implies that z  is maximum. 
 i.e. the depth of C.G. is maximum 
 i.e. the equilibrium is stable 

Note:-  The system is in equilibrium when 1 1
tan

3
   
  

 
 but the above figure depicts the system 

tilted slightly from its equilibrium. 
 
Example22:- A uniform square board of mass M  is supported in a vertical plane on two smooth 
page at the same horizontal level. The distance between the page is a and the diagonal of the 
square is d  where 4d a . If one diagonal i  vertical and a  mass m  is attracted to its lower end, 

prove that the equilibrium is stable if  4 4am M d a   

 
Solution:- Suppose that the uniform square board ABCD  is resting on the page P  and Q

distance a apart in vertical plane. Mass M  at G  (C.G. of the board) and a mass m at A  are 
placed. AC d The system as shown in the fig. are is slightly displaced from its equilibrium. Let 
CA make angle  with the horizontal in this position i.e. CAF   , AF  and PQ  are horizontal. 



 

       
 Now  sin sin 45GN GE NE GA AQ       

    sin cos 45 sin 45
2

d
PQ       as  cos 45AQ PQ    

 sin cos 2
2 2

d a
    

 Again,      sin 45 cos 45 sin 45NE QT AQ PQ          

  
1

sin 2 / 2 cos 2
2 2

a
a        

 Let z  be the height of the combined C.G. of M  and m  above PQ , then  

  
   

1
sin cos 2 cos 2

2 2

a
M d a mMGN m NE

z
M m m M

    
 

 
 

  
 

 
1

sin cos 2 cos 2
2

M d ma
m M

      
 

  
 

 
1

sin cos 2
2

Md m M a
m N

     
 

  
 

 
1

cos 2sin 2
2

dz
Md m M a

d m M
 


    

 

 For equilibrium, 0
dz

d
 ,  

   cos 2 sin 2 0Md a m M     

   cos 4 sin 0Md a m M       

  cos 0   or 
 

sin
4

Md

a m M
 


 

  
2


   or 

 
sin

4

Md

a m M
 


 

 

 
2

2

d z

d
 at 

 
 

1
sin 4

2
Md a m M

m M
      

 



 

 
2

2

d z

d
 at 

 
 

1
4

2 2
Md a m M

m M


       

 

 At / 2  . The equilibrium is stable if  

   4 0Md a m M     

   4 4 4am Md aM M d a     

   4 4am M d a   

 In this case the diagonal AC is vertical. 
 
Example23:- A square lamina rests in the vertical plane on two smooth page which are in the 
same horizontal line. Show that there is only one position of equilibrium unless the distance 
between the page is grater than one-quarter of the diagonal of the square, but that if this 
condition is satisfied, there may be there positions of equilibrium and that the symmetrical 
position will be stable, but the other two position of equilibrium will be unstable. 
 
Solution:- Let the diagonal PR  of the square lamina PQRS  resting on the page A  and B  

distance a part inclined at angle   to the horizontal. G is the C.G. of the lamina, PE  is horizontal 
and GD PE . RPF   . 

      
 Here AB  is fixed. 
 z  the height of the C.G. above AB line, GC GD CFD   

  sin sin 45PG PB     

    PR d  

    sin sin 45 cos 45
2

d
AB       

 sin cos 2
2 2

d a
    

 For equilibrium 0
dz

d
 , 

  cos sin 2 0
2

d
a    

  cos 2 sin 0
2

d
a 

 
  

 
 

  cos 0   or sin / 4d a   



 

 When cos 0   i.e. / 2  , diagonal RP  is vertical. 

 
2

2
sin 2 cos 2

2

d z d
a

d
 


         (1) 

    
2

2
/ 2 2 2 / 4

2

d z d
at a a d

d
 


       

 The equilibrium is  

 Stable when 
4

d
a    one quarter of diagonal  

 Unstable when 
4

d
a  , 

 Inclined position of the equilibrium when sin / 4d a   (from 1) gives us  
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2
. 2 1 2

2 4 4

d z d d d
a

d a a

  
        

 

 
2

22

4

d
a

a

  
      

 

The equilibrium is unstable when / 4a d . Since for real values of  , 

sin 1 / 4 1 / 4d a d a       so  / 4d a  so,  / 4d a . 

But, here s  sin sin     so there may be two positions when  1sin / 4d a   or 

 1sin / 4d a  . 

Let us summarize now that the equilibrium is unstable when / 4a d . One position only 
(diagonal is vertical) and when / 4a d , three position may arise; 
1. Stable when / 2   i.e. diagonal is vertical  

2. Unstable when    1 1sin / 4 , sin / 4d a d a     

 
Example24:- A rectangular picture hangs in a vertical position by means of a string. Of length l , 
which after passing over a smooth nail has its ends attached to two points symmetrically situated 
in the upper edge of the picture at a distance c  apart. If the height of the picture be a , show that  
there  is no position of equilibrium in which a side of the picture is inclined to the horizon if 

2 2la c c a  , whilst if 2 2la c c a   there are two such positions which are both stable.  

Show also that in the latter case the position in which the side is vertical is stable for some 
displacement and unstable for other displacements. 
 
Solution:- Suppose that P  is a fixed mail and ABCD  is  



 

     
 Rectangular picture hanging in a vertical plane by means of a string  

1' 2S P PS l a    (say)       (1) 

E  is the mid-point of the upper edge AD  and 'ES ES  G is the C.G. of the picture 
,EG AD PG  is vertical. 'SS c , AB DC a  . The equation (1) suggests that P  lies 

on ellipse whose foci are S  and 'S  and the length of whose semi-major axis is 1 / 2a l  

Regarding AED  as the x-axis and EY as the y-axis  Ex Ey , the equation of the ellipse 

is 
2 2

2 2
1

x y

a b
  where b is the length of semi-major  axis. So the coordinates of G are 

 0, / 2a , the coordinates of P are  1 cos , sina b  . Using ellipse properties, 

  2 2 2

1 1b a e         (2) 

Given 1' / 2SS c ES c a e     making use of equation (2), we have  

 
2 2 2 2 2 2

2 1
2 4 2

l c l c t c
b

l


       
        
     

 

Suppose that z  is the depth of G below P , then   

     
1/2

2 2

1 cos 0 sin / 2z PG a b a       

  
1/2

2 2 2 2 2

1 cos sin sin / 4a b ab a       

Suppose that  

  
2

2 2 2 2 2

1 cos sin sin
4

a
f z a b ab         

Since z  and 2z  are of the same nature, so we test  f   

 
  2 2

12 cos sin 2 sin cos cos
df

a b ab
d


    


    

Putting 
 

0
df

d




  

   2 2

1cos 2 sin 0b a ab     

Either cos 0 / 2     , 

 or  2 2

12 sin 0b a ab    
 2 2

1

sin
2

ab

a b
 


 



 

  

2 2
2 2

22 2 2

2sin

2
2 4

a
l c

a l c

cl l c





 
    

    
     

     (3) 

 Since for real values of  , sin 1   

  
2 2

2 2 2 2 4

2
1

a l c
a l a c c

c


     

  2 2al c a c   

 Hence, if 2 2al c a c  , there may be three positions of equilibrium, namely, when  

 
2 2 2 2

1 1

2 2
sin , sin ,

2

a l c a l c

c c


  

    
    

   
   

 

 If 2 2al c a c  , there is only one position of equilibrium when / 2  . 

 To test the nature of equilibrium  

 
 

 
2

2 2

12
2 cos 2 sin

d f
b a ab

d


 


        (4) 

 When / 2   

 
 

 
2

2 2

12
2

d f
a b ab

d




    

 
2 2 2

2 22
4 4 2

l l c a
l c

   
     

   
 

  2 2 21

2
c a l c    

 Hence, according to the theory, the equilibrium is at / 2   

 Stable when 2 2 2c a l c   i.e. 2 2al c a c   

 Unstable when 2 2al c a c   

Now consider the case when 
2 2

2
sin

a l c

c



 . The equation (4) can be written as 

 
  

2

2 2 2

12
2 1 2sin sin

d f
b a ab

d


 


      

  2 2 2 4

2

1

2
a l c c

c
   
   

 Since for real values of , sin 1    

 i.e. 2 2 2a l c c   



 

 So, when 2 2 2a l c c   i.e. 
 2

2 2

2
,

d f
al c c a

d




   is negative, so the equilibrium is 

stable. 
Significantly, the figure depicts the position of the system when displaced slightly from its 
equilibrium. 

 
Example25:- A uniform isosceles triangular lamina ABC rests in equilibrium with its equal sides 
AB and AC in contact with two smooth page in the same horizontal line at a distance c apart. If 

the perpendicular AD upon BC is h  show that there are three position of equilibrium, of which 
the one with AD  vertical is stable and the other two are unstable if  

3 cosh c ec A ;  whilst if 3 cosh c ec A  there is only one position of equilibrium which is 

unstable. 
 
Solution:- Suppose that the uniform isosceles triangular lamina ABC  rests in the vertical plane 
on two smooth pegs. P  and Q  in horizon such that PQ c ,  

     
.AB AC AD BC  . G  is C.G. of the lamina, GN  is vertical. As depicted in the figure, 

the situation is slightly displaced from its equilibrium and DAN   . The line AE  is a 

horizontal line, 2 / 3AG h .  
In PAQ  

 
sin sin

PQ AQ

A APQ
  

  
sin

sin
2

C AQ

A A
 


  

   
  

 

  
 sin / 2

sin

A
AQ c

A

 
 . 

 Let z be the height of G above PQ  then  

 z GL GN QM    

  sin sin / 2AG AQ A     

 
 

 
sin / 22

sin sin / 2
3 sin

Ah
c A

A


 


    



 

  2 22
sin sin sin / 2

3 sin

h c
A

A
     

 For equilibrium / 0dz d   

 So, 
2 2

cos sin cos 0
3 sin

dz h c

d A
  


    

 Which gives 
2 2

cos sin 0
3 sin

h c

A
 
 

  
 

 

 Either cos 0 / 2      i.e. AD  is vertical  

 Or sin sin
3

h
A

c
           (1) 

 To test the nature of equilibrium 
2

2 2

2

2 2
sin cos sin

3 sin

d z h c

d A
  


        (2) 

 When / 2   

    
2

2

2 2 2
1 3 cos

3 sin 3

d z h c
h c ecA

d A
        

 Hence, according to theory, the equilibrium is  
 Stable if 3 cosh c es A and unstable if 3 sech c A  

 Again, consider when sin sin
3

h
A

c
   

 Form the equation (2) 

  
2

2

2

2 2
sin 2sin 1

3 sin

d z h c

d A
 


     
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sin sin

3 3 sin sin 3

h h c c h
A

c A A c

   
      

   
 

  2 2 22
sin 9

9 sin
h A c

c A
   

 But for real values of , sin 1 sin 1
3

h
A

c
      

  3 cosh c ec A          (3) 

 Under the condition (3), 
2

2

d z

d 
is negative 

 But  sin sin     

 Hence the equilibrium is unstable in inclined position when  

 1sin sin
3

h
A

c
   
  

 
or 1sin sin

3

h
A

c
   
  

 
  

Let us summarize that when 3 cosh c ecA , the equilibrium is unstable, when 

1sin sin
3

h
A

c
   
  

 
 or 1sin sin

3

h
A

c
   
  

 
 and stable when / 2  ; and when 

3 cosh c ec A , the equilibrium is unstable at / 2   



 

 
Example26:- An isosceles triangle of angle 2  rests between two smooth pegs of the same level, 

distance 2c  apart, if h be then distance of the C.G. from the vertex, and if 
2

2 sec
sin cos

c
c h

 
   then oblique positions of equilibrium exist, which are unstable. Discuss 

the stability of the vertical position in case when 
2

sin cos

c
h

 
  

Solution:- Suppose that ABC  is an isosceles triangle resting in vertical plane on two smooth pegs 
P and Q  (in horizon) with its C.G. G  at line AD bisector of the  A . 

  
Here | |PQ AF , GE AF , 2BAC   , 2PQ c , AG h , AB AC . The figure 

shows the position of the system slightly displaced from its position of equilibrium. Let 
the line AD  be inclined to AF  at an angle  . Suppose that z  be the height of G above 
PQ , then 

z GH GE QM   , as HE QM  

  sin sinh AQ           (1) 

For AQ , consider APQ  

 
sin sin

PQ AQ

BAC APQ
  

  
    

2

sin 2 sinsin

c AQ AQ

    
 

 
 

  
 2 sin

sin 2

c
AQ

 




  

 Making use of this value of AQ , we have from (1) 

 
 

 
sin

sin 2 sin
sin 2

z h c
 

  



    

  2 22
sin sin sin

sin 2

c
h   


    

 For equilibrium, 0
dz

d
  



 

  
2

cos 2sin cos 0
sin 2

dz c
h

d
  

 
    

  
4

cos sin 0
sin 2

c
h 



 
  

 
 

  cos 0   or 
sin 2

sin
4

h

c


   

  
2


   or 

sin cos
sin

2

h

c

 
   

 But for real values of  , sin 1   

 i.e. 
sin cos 2

1
2 sin cos

h c
h

c

 

 
    

So, if 2 sec cosh c ec  , there is only one position of equilibrium with 
2


  , if 

2 sec cosh c ec  , there are three positions of equilibrium obtained by 

1 1sin cos sin cos
,sin , sin

2 2 2

h h

c c

    
     
    

   
  

Now,  
2

2 2

2

2 2
sin cos sin

sin 2

d z c
h

d
  

 


     

 
 24 1 2sin

sin
sin 2

c
h







    

Case 1. When / 2  , then  
2

2

4 2

sin 2 sin cos

d z c c
h h

d   
       then equilibrium is stable or unstable as h   or 

2

sin cos

c

 
  respectively. 

If 
 

2

2

2
,

sin cos

c d z
h

d  
  at / 2 0    

 
3

2

8 2sin cos
cos

sin 2

d z c
h

d

 


 


    

At / 2  , under 3 32 cos sec , / 0h c ec d z d    . 

Again  
4

2 2

4

16
sin cos sin

sin 2

d z c
h

d
  

 
    

Putting / 2   and 2 cos sech c ec    

  
4

44

8 2 8
0 1

sin cos sin cos sin cos

d z c c c
h

d      
      

 
6

sin cos

c

 
   



 

 negative quantity as A is acute. 
So, the equilibrium is unstable 
Consider when sin / 2 sin cosh c    
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sin cos 1 2 sin cos

2 sin 2 4

d z h c h

d c c
   

 

 
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sin cos 4

2 sin cos

c
h

c

 

 

 
  

 
 

  a negative quantity when 
2

sin cos

c
h

 
 , since   is acute. 

Hence, the equilibrium in the inclined positions are unstable. 

Now sin sin sin cos
2

h

c
          

  2 secc h   since sin 0   

 Here 
2

2 sec ,
sin cos

c
c h h

 
  , 

 i.e. 
2

2 sec
sin cos

c
c h

 
   

 Thus the equilibrium in the inclined positions are unstable under the condition. 

  2 sec 2 / sin cosc h c     

 
Example27:- An isosceles triangular lamina of an angle 2  and height h  rests between two 

smooth pegs at the same level, distance 2c , apart prove that if 
3

3 sec
sin cos

c
c h

 
  , then 

oblique positions of equilibrium exist, which are unstable. Discuss stability of the vertical 
positions. 
 
Solution:- The question is same as question 26. 
 
Example:- A smooth solid circular cone, of height h and vertical angle 2  is at test with its axis 

vertical in a horizontal circular hole of radius a. Show that  if 16 3 sin 2a h  , the equilibrium is 

stable and there are two other positions of unstable equilibrium and that if 16 3 sin 2a h  , the 

equilibrium is unstable and the position in which the axis is vertical is the only position of 
equilibrium. 
 

Solution:- Suppose that ABC  is a solid circular cone with height  AD h  and G  as C.G. is 

resting in a horizontal circular hole PQ  of radius a . As shown in the figure. AD  is perpendicular 

to , | | ,BC AM PQ GN  and QM  are vertical, 
3

4
AG AD .  



 

     
The figure shows the position of the system slightly displaced from its equilibrium. Let AD  be 
inclined at angle   with AM . Here PQ  is fixed. Suppose that z  is the height of G above PQ , so

z GT GN QM    

 sin sinAG AQ         2BCA    

Now, in PAQ  

 
sin sin

PQ AQ

PAQ APQ
 ,    DAM    

  
    

2

sin 2 sinsin

a AQ AQ

    
 

 
 

  
 sin

2
sin 2

AQ a
 




  

 Making use of this result, we have  
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sin 2 sin
4 sin 2

z h a
 

  



    

  2 23 2
sin sin sin

4 sin 2

a
h   


    

 
3 2

cos .2sin cos
4 sin 2

dz a
h

d
  

 
   

 For equilibrium, putting / 0dz d   ,we have 

 
3 4

cos sin 0
4 sin 2

h a
 



 
  

 
 

  cos 0   or 
3 sin 2

sin
16

h

a


   

 i.e. 
2


   or 1 3 sin 2

sin
16

h

a

  
 
 

 or 1 3 sin 2
sin

16

h

a


   
  

 
 

  
2

2 2

2

3 4
sin cos sin

4 sin 2

d z h a

d
  

 
     

  23 4
sin 1 2sin

4 sin 2

h a
 


     



 

 
To test the nature of equilibrium 
 

Case: 1. / 2   

    
2

2

3 4 1
1 2 16 3 sin 2

2 sin 2 4sin 2

d z h a
a h

d


  
       

 Hence, the equilibrium is  
 Stable when 16 3 sin 2a h   and unstable when 16 3 sin 2a h   

 

Case: 2. 
3 sin 2

sin
16

h

a


   

 We know that for real values of , sin 1   . 

  Now 
22

2

3 3 sin 2 4 3 sin 2
1 2

4 16 sin 2 16

d z h h a h

d a a

 

 

      
       

     

 

  2 2 21
9 sin 2 256

64 sin 2
h a

a



   

   a negative quantity under the condition 3 sin 2 16h a  . 

 Hence, the equilibrium is unstable. 
 Finally, let us summarize that  

1. Under the condition 3 sin 2 16h a  , the equilibrium is  

Unstable when 1 13 sin 2 3 sin 2
sin , sin

16 16

h h

a a

 
     
    

   
 in inclined position. 

Stable when / 2  , in vertical position. 
Under this conditions, 3 positions of rest. 

2. Under the condition 3 sin 2 16h a  , the equilibrium is unstable at / 2  , i.e., the 

only one vertical position of equilibrium. 
 
 
Example28:- Four uniform rods, each of length 2a , are hinged at their ends so as to form a 
rhombus and the system is hung over two smooth pegs in the same horizontal line at a distance 

2a , the pegs being in contact with different rods. Show that the system is in equilibrium when 
the rhombus is a square, but that the equilibrium is not stable for all displacements. 
 

Solution:- Suppose that A  and B  are two smooth pegs in a horizontal line such 2AB a . Four 
rods , ,PQ QR RS  and SP  in the form of a rhombus in the vertical plane is hanging over the pegs 

A  and B . Length of each rod . 2a . G is the C.G. of the system. 



 

     
If the system being tilted slightly from it’s equilibrium the rods PQ  and PS  are inclined 

at an angle   and   to the horizontal respectively. 

 i.e. ,PQT PSM PBA       

  z   depth of G below AB  
    depth of G below P depth of AB  below P  

  
1

2
  (depth of Q   depth of S )  depth of AB below P  

   
1

2
PT PM PN    

   
1

sin sin sin
2

PQ PS PB      

 Now for PB , consider the PAB , 

  
 

2

sin sin sin sin

PB AB PB a

APB    
  

   
 

  
 
sin

2
sin

PB a


 



 

 Making use of the result,  
 

1 sin sin
2 sin sin 2

2 sin
z a a

 
 

 
   


 

  
 

sin sin
sin sin 2

sin
a

 
 

 

  
   

  
 

It is noteworthy that z  is a function of two variables   and  . So we will apply the maxi 

and minima theory of two variables.  
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cos sin sin cos
cos 2 sin
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a




 

 
  
   

      (1) 



 

  And 
  

2

2

2 sin
cos

sin

dz
a

d




  

 
  
  

      (2) 

 For equilibrium, 0
dz dz

d d 
   

  
  

2

2

2 sin
cos 0,

sin




 
 


 

  

2

2

2 sin
cos 0

sin




 
 


   (3) 

  
  
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cos 2 cos

sin sinsin

 

  
 


 

  
2 2

cos cos

sin sin

 

 
  

     

 Putting    in any of the equation (3) we have  
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2

sin
cos 2 0

sin 2





   

  
2

2 2 2

sin 1
cos 2

4sin cos 2 2 cos




  
   as 0   

  3 1 1
cos cos

2 2 2
     

  
4


    

 Now QPS QPT TPS     

   
2 2

 
            

  
2 2

 
    

 Thus the rhombus is a square. 
 To test the nature of equilibrium. 
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 So,  
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2 2
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a a
rt s a

  
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   a negative quaintly. 

Hence z  is neither a maximum nor a minimum when / 4    . Here  ,z z   , 

 ,z z z        . Applying Taylor’s theorem for function of the variables we 

have  

    , ,z z         
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      2 2
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a
z R          

Now although z  is neither a maximum nor a minimum where / 4    , yet there is 

equilibrium because z  is then zero so far as terms of the first order in   and   (are 

zero). But as z  is neither maximum nor minimum the equilibrium cannot be stated to be 
either stable or unstable universally. It is in fact stable with respect to some displacement 
and unstable with respect to other displacement. If for example we consider only such 
displacement as make   , then z  is certainty negative when  ,   are taken 

small enough. Thus C.G. is increased by the displacements and so then equilibrium is 
stable. If again we consider only such displacements as make    they make z  

certainly positive then   and   are small enough. The C.G. is depressed by the 

displacement and so the equilibrium is unstable. 
 
Example29:- Three equal spheres rest on a smooth table and are kept in position by a smooth 
elastic band in the plane of the centre, the band being unstretched when the spheres are in 



 

contact. A fourth equal sphere is placed above them. Prove that, if in a position of equilibrium 
the line joining the centre of the upper sphere to the centre of either of the lower spheres is 
inclined at an angle   to the vertical, the equilibrium is stable for symmetrical displacements if 

3sin 1/ 3  . 

 
Solution:- Let the three equal spheres of centres ,A B  and C  be on the smooth table and a fourth 

sphere be placed on them. O  is the foot of the normal from the centre D  of the fourth sphere 
to the plane through ,A B  and C . 

  
Let   be the inclination to the vertical of the line joining the centre of the upper sphere 
to what of one of the lower sphere, when then centre of the latter are at a distance x  
apart. Since ABC  is a equilateral triangle, so in fig. 1 

 
2

3
AO   of the median  

2 3
sin 60

3 3
AB x   

 

     
In fig. 2 , D  is the centre of the fourth sphere in the equilibrium position O  is foot of the 
perpendicular from D  to the plane through ,A B  and C , OD  is vertical and OA  is 

horizontal so that AOD  is a right angled triangle at O . Let a be the radius of each sphere, 
we have  

 
3

sin
3. 2

xOA

AB a
    



 

  2 3 sinx a          (1) 

 In fig. 1, EH  is tangent to the circles with centres A and B . 

 So, 120EAF   , Arc 
2

3
EMF a


  

 The natural length of band (unstretched) 
2

3 2
3

a a
 

  
 

 

       2 3a    

 The extended length of the band (as shown in fig. 1) 

     
2

3 3 3 2
3

x a x a


      

 If   be the coefficient of elasticity, the tension T  of the band by Hook’s Law is given by  

  
extended length natrual length

T
natural length




  

  
 

 

3 2 2 3

2 3
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 
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2 3

T x a
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


 


  

Let 1W be the weight of each sphere and W  be the element of work function; then we 

have for small displacements work done by the upper sphere  1 2 cosW a a    , 

(since 2 cosDN DO ON a a     ), negative sign indicates that the distance ND  is 

measured from N  to D  and force w  acting from D  towards N .  
 The work done by the tension 3T x   

So,  1 2 cos 3W W a a T x        

     1 2 cos 3 2 3 sin
dW d d

W a a T a
d d d

 
  
     
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   
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The position of equilibrium is given by 0
dW

d
  

i.e. 
 

1

9 3 3 sin 1 cos
sin 0

3
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  
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i.e.  1

9 3
sin 3 sin cos cos

3
W


   


 


     (3) 

For this value of  , putting the value of 
1W  from (3) in (2) 
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 33 sin 118 3

3 sin

a 
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



 

If 3 1
sin

3
   then 

2

2

d W

d
 is negative, the corresponding value of W  is a maximum and 

the equilibrium is stable. 
 
Example30:- A weight W  is supported on a smooth inclined plane by a given weight P , 
connected with W  by means of a string passing round a fixed pulley whose position is given. Find 
the position of equilibrium of W  on the plane and show that it is stable. 
 
Solution:- As shown in the figure, a weight W  is placed at B  on the plane OA inclined at angle 

 to the horizon ox . T  is the tension in the string so T P , since pulley is smooth. 

       
 Resolving the forces along the plane 
  cos sinP W   

  
sin

cos
W

const
P


   . 

This gives the position of equilibrium of the weight. If the body s slightly displaced in 
downward direction,   decrease and hence cos  increases. Therefore the body tends to 
go up to resume its position of equilibrium. Furthermore if the body is displaced in the 
upward direction,   increases which implies cos  decreases. Hence the body tends to 
get down the plane to resume its position of equilibrium. 

 Therefore the equilibrium is stable. 



 

 
Example31:- Using the principle of conservation of energy, establish that the positions of 
maximum potential energy, are positions of unstable equilibrium and position of minimum 
potential energy are positions of stable equilibrium. 
 
Proof:- The principle of conservation of energy states, “Potential energy + Kinetic energy = 
Constant, in case of a dynamical system”. So whenever a body starts moving, it acquires kinetic 
energy and therefore loses potential energy. We will now use the principle to prove the result. 
 
At first, if the potential energy of the system remains constant for small displacement, no work is 
done during this small displacement and the body is in equilibrium.  
 
Now if the system be in such a position that its potential energy is maximum and if the system be 
slightly displaced from this position and then we make it free to move. During the move me the 
potential energy of the system decreases and kinetic energy increases (i.e. kinetic energy is 
positive). The kinetic energy, compels the system to move further away from the position 
maximum potential energy. Thus it shows that the equilibrium in the position of maximum 
potential energy, is an unstable one. 
 
Conversely, if the system is in equilibrium in the position of minimum potential energy and if it is 
slightly displaced and then set free, the potential energy decreases. Since in this case the potential 
energy of the system cannot be decreased below minimum, so it will regain its original position. 
The position of minimum potential energy is therefore that of stable equilibrium. 
   
 

 
 
 

 

 

 

 

 

 

 

 

 



 

PREVIOUS YEARS QUESTIONS IAS/IFoS (2008-2023) 

STABLE, UNSTABLE & NEUTRAL EQUILIBRIUM  

UPDATED Q7(c) Suppose a cylinder of any cross-section is balanced on another fixed cylinder, the 

contact of curved surfaces being rough and the common tangent line horizontal. Let   and '  

be the radii of curvature of the two cylinders at the point of contact and h be the height of centre 

of gravity of the upper cylinder above the point of contact. Show that the upper cylinder is 

balanced in stable equilibrium if 
'

'
h



 



. UPSC CSE 2022 

Q8.(a) A bucket is in the form of a frustum of a cone and is filled with water of density  . If the 

bottom and top ends of the bucket have radii a and b respectively and h is the height of the 

bucket, then find the resultant vertical thrust on the curved surface of the bucket. Is that thrust 

equal to   
1

2
3

gh b a b a   ? IFoS 2022 

Q1. A body consists of a cone and underlying hemisphere. The base of the cone and the top of 

the hemisphere have same radius a. The whole body rests on a rough horizontal table with 

hemisphere in contact with the table. Show that the greatest height of the cone, so that the 

equilibrium may be stable, is 3a . [6a UPSC CSE 2019] 

Q2. A uniform solid hemisphere rests on a rough plane inclined to the horizon at an angle  with 

its curved surface touching the plane. Find the greatest admissible value of the inclination  for 

equilibrium. If  be less than this value, is the equilibrium stable? [6c UPSC CSE 2017]   

Q3. A heavy uniform cube balances on the highest point of a sphere whose radius is r. If the 

sphere is rough enough to prevent sliding and if the side of the cube be 
2

r
, then prove that the 

total angle through which the cube can swing without falling is 90°. [5d 2017 IFoS] 

Q4. A solid consisting of a cone and a hemisphere on the same base rests on a rough horizontal 

table with the hemisphere in contact with the table. Show that the largest height of the cone so 

that the equilibrium is stable is 3 radius of hemisphere. [7a 2014 IFoS] 

Q5. A heavy uniform rod rests with one end against a smooth vertical wall and with a point in its 

length resting on a smooth peg. Find the position of equilibrium and discuss the nature of 

equilibrium. 

[5e 2013 IFoS] 



 

Q6. A heavy hemispherical shell of radius a has a particle attached to a point on the rim, and rests 

with the curved surface in contact with a rough sphere of radius b at the highest point. Prove that 

if 5 1
b

a
  , the equilibrium is stable, whatever be the weight of the particle. 

[7b UPSC CSE 2012] 

Q7. A uniform rod AB rests with one end on a smooth vertical wall and the other on a smooth 

inclined plane, making an angle  with the horizon. Find the positions of equilibrium and discuss 

stability. [5c 2010 IFoS] 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

VIRTUAL WORK 

Definition  

Work. A force is said to do work when its point of application displaces from one position to 

another position. 

Consider a force F acting on a particle at O in the direction OA and the particle is displaced from 

one position O to another position B. Let OB make an angle  with OA, the direction of the force 

F. 

Work done by the force F = F × OA= F × OB cos      

                  =  F × projection of OB on OA  

Again work done by the force F 

=F × OA = F × OB cos  = (F cos ) × OB  

= Resolved part of the force in the direction of actual displacement × actual displacement. 

So, the product of the force and the orthogonal projection of the displacement on the line of action 

of the force is said to be work done by the force. 

or 

Product of resolved part of the force in the direction of actual displacement and the actual 

displacement is said to be work done by the force. 

Work done is positive if it is in the direction of force. It is negative if it is in the direction opposite 

to the direction of the force. If the displacement is zero or it is in the direction perpendicular to the 

direction of the force, then the work done is zero. 

Theorem 1. The work done by a force in displacing a particle from 

one position to another position is equal to the algebraic sum of works 

done by the resolved parts of the forces. 

Proof. Let OX and OY be two mutually perpendicular axes. A force 

Facts at a particle placed at O. This force displaces the point  

of application O to a point B. Let B be in- the plane of XOY. OB makes an 

angle 1, from the axis of X. Force F makes an angle 2, from this axis. 

Let OA and OC be the components of the displacement OB in the 

directions OX and OY respectively. F1 and F2, are the components of the 

forces along OX and OY respectively. 

Now the work done by the force F 

= Force F × displacement in the direction of the force F  



 

= F × OL = F × OB cos (1-2) 

= F × OB (cos 1 , cos 2 + sin 1, sin 2) 

= (OB cos 1) (F cos 2) + (OB sin 1,) (F sin 2,) 

= OA × F1  + OC × F2  

= F1 × displacement in the direction of F1 

+F2, × displacement in the direction of F2 

= Work done by the component F1 

     +Work done by the component F2  

= Algebraic sum of work done by the components F, and F 

= Algebraic sum of the work done by the resolved parts of the force F. 

Theorem 2. The algebraic sum of the works done by a number of coplanar forces acting on a 

particle, for any displacement of the particle, is equal to the work 

done by their resultant 

Proof .Let the forces F1, F2, F3, F4, .... act on particle at O. These 

forces displace the point of application from O to A. Forces F1, F2, 

F3, F4, .... make angles 1, 2, 3, 4, with OA respectively. Let F be 

the resultant of these forces, which makes an angle  with OA. 

The algebraic sum of the work done by the forces F1, F2, F3. F4, ..... 

= work done by Force F1 + work done by the force F2 + work done 

by the force F3 + work done by the force F4 + .... 

=  1 1 2 2 4 4 ...F OP F OP F OP        

1 1 2 2 3 3cos cos cosF OA F OA F OA        4 4cos ....F OA   

1 1 2 2 3 3 4 4( cos cos cos cos ...)OA F F F F         = OA × resolved part of the resultant along OA 

= F × OP = work done by the resultant. 

Virtual work and virtual Displacement. 

Let a number of coplanar forces act on a particle. If the particle is an equilibrium under the action 

of the forces, then is no motion of the particle. So there is not actual displacement This type of 

displacement is called virtual displacement and the work done during his displacement is called 

virtual work. 

Principle of Virtual work for a system of Coplanar Forces Acting on a Particle. 



 

Statement: The necessary and sufficient condition that particle acted upon by a number of 

coplanar forces be in equilibrium is that sum of the virtual work done by the force in any small 

virtual displacement consistent with geometrical conditions of the system is zero. 

The tension of an inextensible string (non-extensible) 

Let T be the tension in string AB. 

 This tension is replaced in two equal forces T, T acting 

inward in opposite direction. String AB is displaced to new 

position A'B'. Which makes an small angel  with the direction 

of AB. Draw perpendicular A'G from the point A' on AB and 

draw a perpendicular B'E from B' on AB after producing it to 

point E. 

Sum of the virtual work done by the tension T 

= T. AG – T. BE 

= T. (AG + GB) – T. (GB + BE) = T. AB– T. GE 

= T . AB – T . A'F = T (AB – A'B' cos ) 

2

. {1 (1 ....)}
2!

T ab


     

( ' ')AB A B  

= 0. since  is very small. 

Therefore work done = 0. 

Forces which can be omitted in writing the equation of virtual work for a body in equilibrium. 

(i) Tension of inextensible string or thrust in a light rod. 

(ii) Reaction of any smooth surface with which the body is in contact. 

iii) Internal action and reaction between parts of a same body. 

(iv) Reaction at a fixed point or a fixed axis about which the body rotates. 

Procedure of Solving the problems: 

First of all draw the figure.  

(i) If it is a string, replace the tension T by two equal forces T and T acting inward in opposite 

direction.  

If l is the length of string in equilibrium. Then the virtual work done by the tension T is –Tl. 



 

(ii) If it is a rod then tension T' of the rod is replaced by two equal forces T and T acting outwards 

in opposite directions. If l is the length of the rod. Then the virtual work done by the thrust is Tl. 

(iii) Distances of the action of forces are measured from a fixed line or a fixed point. If distance 

measured is in the direction of the force, then the virtual work done by the force is taken to be 

positive. If it is in opposite direction, then it is taken to be negative. 

(iv) We equate the sum of the virtual work to zero.  

(v) In this way the problem is solved. 

 

 
Example1:- Two equal uniform rods AB and AC  each of length 2b  are freely joined at A  and 

rest on a  smooth vertical  circle of radius a . Show that 2  be the inclination between them, 

then 3sin cosb a   

 

Solution:- Let AB  and AC  be two rods resting on vertical circle of centre O . Since vertical circle 

is fixed. We will measure the distance from centre of the circle. 

      
 Let 1G  and 2G be the centre of gravity of rod AB  and AC  respectively. 

 Let W  is the weight of each rod. 

Therefore, the weight 2W  will act vertically downward from the point .G G  is the middle 

point 1 2,G G . 

   A small displacement is given to the system; so that   becomes   . 

  cos cosOG OA GA a es b     . 

 By the principle of virtual work  2 . 0W OG   

 Or   0OG  . Since 0W   

 Therefore,  cos cos 0a ec b     on putting the value of OG  

 Or cos cot sin 0a ec b        

 Or  cos cot sin 0a es b      . 



 

 But 0   therefore,  cos cot sin 0a ec b      

 Therefore, 3sin cosb a   . 

 

Example2:- Four uniform rods are freely. Joined at their extremities and form a parallelogram 

ABCD , which is suspended by the point A  and is kept in shape of by a string AC . Prove that 

the tension of the string is equal to half of the whole weight. 

 

Solution:- Let ABCD  is a parallelogram which is suspended from a point A. Point A and C are 

jointed by a string AC . Let G  be the middle point of AC . Therefore, total weight W  of these 

four rods will act. Vertically downwards from the point G . Replacing tension of the string AC by 

two forces T, T acting inward in opposite directions, distances are measured from a fixed point A. 

Let AG x . 

   
 Therefore, 2AC x ; A virtual displacement is given to the system, so that x  becomes 

x x . 

 Principle of virtual work    . . 0W AG T AC    

 Or    . . 2 0W x T x   . On putting the value of AG  and AC  

 Or 2 0W x T x    

 Or  2 0 ; 0W T x x     2 0W T    

 Or  
2

W
T    half of the weight of the roads 

 

Example3:- Five weightless rods of equal length are joined together so as to form a rhombus 

ABCD  with one diagonal BD . If a weight W  be attached to C  and the system be suspended 

from A  show that there is a thrust in BD  equal to / 3W . 

 

Solution:- Let , , ,AB BC CD DA  and BD  are five equal weightless rods. These rods are jointed 

and suspended from A. weights W is attached at C. Tension T in the rod BD is replaced by two 

forces T, T acting outward in opposite directions. 



 

      
Let rod AB  makes an angle   with the vertical AC . 

2 cosAC a   

 2 sinBD a   

Where a is the length of each rod. 

Y principle of virtual work [by small virtual displacement  becomes   ] 

     0W AC T BD    

or    2 cos 2 sin 0W a T a       

  or  2 sin 2 cos 0aW aT     . But 0   

 Therefore, 2 sin 2 cos 0aW aT     

 Which gives tanT W   

 In equilibrium rod AB rod , AD rod BD , therefore, ABD  is equilibrium triangle. 

 Therefore, 60BAD   or 30   

 tan 30
3

W
T W    

 Thrust in 
3

W
BD 

 
 

Example4:- A regular hexagon ABCDEF  consists of six equal rods which are each of weight W  

and are freely joined together. The hexagon rests in a vertical plane and AB  in contact with a 

horizontal table. If C  and F  be connected by a light string, prove that its tension is 3W . 

 

Solution:-  Let each rod be of length 2a . Replace tension of the string FC  in two equal forces T

, T  acting inwards in opposite directions. Let the rod BC  makes in an angle   with the horizontal. 

 Therefore, 2 4 cos , 2 sinFC a a GL a    . 



 

 
A small virtual displacement is given to the system so that  becomes    and length 

l  of the string becomes l l . 

Therefore, equation of virtual work is  . 6 . 0T l W GL     

Or    2 4 cos 6 2 sin 0T a a W a       

Or 12 cos 4 sin 0aW aT      

Or  3 cot 0W T   , since 0   

Therefore, 3 cotT W   in equilibrium, 60   

 
3

3 cot 60
3

W
T W     3T W   

 

Example5:- A regular hexagon ABCDEF  is composed of six equal heavy rods jointed together 

and two opposite angle C  and F  are connected by a string, which is horizontal. AB being in 

contact with a horizontal plane. A weight 'W  is placed at the middle point of DE . If W  be the 

weight of each rod, show that the tension in the string is  3 ' / 3W W . 

Solution:- Weight 'W  is placed at L , the middle point of the rod ED . The weight 6W  will act at 

G , centre of gravity of hexagon. Let the rod BC  makes an angle   with the horizontal. 

 Length of each rod 2a . 

     
 A small displacement is given to the system, so that   becomes     

 Then the equation of virtual work is      6 ' 0W GM W LM T FC       

 2 sinGM a  , 4 sinLM a  , 2 4 cosFC a a   . 

 Therefore, virtual work done by the forces  

     6 2 sin ' 4 sin 2 4cos 0W a W a T a           

 Or 12 cos 4 'cos 4 sin 0aW aW aT         



 

 Or  sin 3 cos 'cos 0T W W      

 Since 0  . 

 Therefore,  3 ' cotT W W    in equilibrium 60   

   
 3 '

3 ' cot 60 ,
3

W W
T W W


    

 

Example6:- The middle points of opposite sides of a jointed quadrilateral are connected by light 

rods of lengths l  and 'l . If T  and 'T  be the tensions in there rods, prove that 
'

0
'

T T

l l
  . 

Solution:- Let , , ,E F G H  be the middle points. Of the rods , ,AB CD DA , and BC  respectively. 

Let T  and 'T be the tension in the rod EF  and GH  respectively. Replacing the tension 

by two forces acting outwards in opposite directions 

  
A small virtual displacement is given to the system, which changes angles but not the 

lengths of sides. Therefore, the equation of the virtual work is  

   ' 0T EF T GH         (1) 

In the AOB . 

 2 2 2 22OA OB OE AE    

 2 2 2 22 OA OB EF AB         (2) 

Or similarly,  

 2 2 2 22 OB OC GH BC         (3) 

 2 2 2 22 OC OD EF CD         (4) 

 2 2 2 22 OD OA GH DA         (5) 

Subtracting (3) from (2), we have  

 2 2 2 2 2 22 OA OC EF AB GH BC         (6) 

Subtracting (5) from (4), we have  

 2 2 2 2 2 22 OC OA EF CD GH DA         (7) 

Adding (6) and (7) 

 2 2 2 2 2 20 2 EF GH AB CD BC DA       

Taking differentials 



 

   2 2 2 0EF EF GH GH      

 Since , , ,AB BC CA DA  are constant. 

Therefore,    
GH

EF GH
EF

       (8) 

On putting the value of  EF  from (8 ) in (1), we have  

   ' 0
GH

T GH T GH
EF

    or  
'

. 0
T T

GH
EF GH


 

  
 

 

But   0GH  . Therefore, 
'

0
T T

EF GH
   or 

'
0

'

T T

l l
  . 

 

Example7:- A smooth rod passes through a smooth ring at the focus of an ellipse whose major 

axis is horizontal and rests with its lower end on the quadrant of the curve which is further 

removed from the focus . 

Find its position of equilibrium and show that its length must at least be   23 1 8
4

a
e  , where 

2a  in the length of major axis and e  is the eccentricity. 

 

Solution:- Let S be the pole. Equation of the ellipse in polar co-ordinates is 1 cos
l

e
r

  . 

     
 Let the co-ordinates of the point C be  ,0r , where angle ESC   

 Weight of the rod CDwill act vertically downward from the point G . 

Taking major axis 'AA as a fixed line giving a small virtual displacement to the system so 

that   becomes    

Equation of the virtual work  W GE   

   0GE  . 

But    sin sin sinGE GS CS CG r c          (1) 

Where 2c  is the length of the rod CD . 

 
1 cos

l
r

e 



 from the equation of ellipse, using this value of r . 

 sin
1 cos

l
GE c

e




 
  

 
, therefore sin 0

1 cos

l
c

e
 



 
  

 
. 



 

On putting the value of GE , we get the above result. 

 

 

2

2

cos 1 cos sin
cos 0

1 cos

l e le
c

e

  
 



  
  

  

 

 But 0   

Therefore,  
2

cos cos 1 cos 0l le c e          (2) 

Length of the rod will be least if D  coincides with S . 

Therefore, 2r c . But 
1 cos

l
r

e 



 

Therefore, 2
1 cos

l
r c

e 
 


       (3) 

Now putting the value of c  from equation (3) in equation (2) we have 

 2cos cos 2 0e e     

Which gives 
 21 1 8

cos
2

e

e


  
    

Negative value of cos  is not admissible. 

Therefore, 
 21 1 8

cos
23




  
  

Substituting this value of cos  in equation (3), 

 2

2

1 1 8
1

2

l
c

c


         

    

 

 

  
  
  

2

2 2

3 1 8
2

3 1 8 3 1 8

e
l

e e

 


   

 

 
     

 

2 2

2 2

2 3 1 8 3 1 8

8 8 4 1

l e l e

e e

   
 

 
 

But  21l e a     22 3 1 8
4

a
c e     

Hence required length of the rod   23 1 8
4

a
e    

 



 

Example8:- A string of length a , forms the shorter diagonal of a rhombus formed by four uniform 

rods, each of length of b  and weight W . Which are hinged together. If one of the rods be 

supported in a horizontal position, prove that the tension of the string is 
 

 

2

1/2
2 2

2 2

4

W b a

b b a




. 

Solution:- Let the side CD  of the rhombus be fixed in the horizontal position. BD  is a string 

whose tension is T . Replacing the tension in two forces T , T  inward in opposite directions. 

 
 Let the LDG   . 

 A small virtual displacement is given to system so that   becomes   . 

 Now the equation of virtual work is    4 0W LG T BD    

 In the  , 2 2 cosDGC DG CD         (1) 

 Therefore,  2 cosBD b CD b   

 sin cos sin cos sin sin 2
2

b
LG GD CD b          

 Putting the value of LG  and BD  in equation (1), we have  

  4 sin 2 2 cos 0
2

b
W T b   

 
  

 
 

 Or  4 cos 2 2 sin . 0W b bT      

 Or  2 cos2 sin 0W T     But 0   

   2 cos 2 sin 0W T    or 
cos 2

2
sin

T W



   

 Or 
 2 2sin cos

2
sin

T W
 




       (2) 

 In the position of the equilibrium, from the triangle DGC , we have  

  
/ 2 / 2

cos
DG BD a

DC DC b
     

 Or  cos
2

a

b
    

 2 24
sin

2

b a

b



   

 On putting the value of sin  and cos , we get   



 

  
 

2 2

1/2
2 2

2
2

4

b a
T W

b b a

 
 

 
 

 

 

Example9:- A square of side, 2a  is placed with its plane vertical between two smooth pegs, which 

are in the same horizontal line at a distance c  apart. Show that it will be in equilibrium when the 

inclination of one of its edges to the horizon is either 
4


 or 

2 2
1

2

1
sin

2

a c

c

  
 
 

 

Solution:- Let ABCD  be a square of weight W . The weight acts vertically downwards at the point 

C . G  is the point inter-section of AC  and BD . P  and Q  are two pegs. Let the side AB  makes 

an angle   with the horizontal. 

 (1)   

 In the , sin
QN

ANQ
AQ

  , 

 sinQN AQ   . 

 In the , cos
AQ

PAQ
PQ

   

 Or cosAQ c  , since PQ c  

 Putting this value of AQ  in (1), 
1

cos sin sin 2
2

QN c c    , 

 But QN EM   
1

sin 2
2

EM c    

 In the  , sin 45
GM

AMG
AG

    

 Or  sin 45
2

GM

a
    2 sin 45GM a     

 Now  
1

2 sin 45 sin 2
2

GE GM EM a c       

Since pegs ,P Q  are fixed. Therefore distance of the force is measured in upward direction 

from PQ . 

A small virtual displacement is given to the system, so that   becomes   . 



 

Equation of virtual work   0W GE   

    0GE   

 On putting the value of GE . We have  

   2 sin 45 sin 2 0
2

c
a  

 
   

 
 

 Or  2 sin 45 cos 2 0 ; 0a c       
 

 

 Therefore,  2 cos 45 cos 2 0a c     

 Or 2 cos 45 cos sin 45 sina       

     2 2cos sin 0c      

 Or  2 21 1
2 cos sin cos sin 0

2 2
a c   
 

    
 

 

 Or      cos sin cos sin cos sin 0a c           

 Or    cos sin cos sin 0a c          

 When cos sin 0   , 
1

tan 1,
4

      

 When  cos sin 0a c        or  cos sina c     

 On squaring  2 2 2 2cos sin 2sin cosa c        

 Or  2 2 2 21 sin 2 1 sin 2 /a c a c       

 Or 
2 2 2 2

1

2 2

1
sin 2 sin

2

a c a c

c c
     
    

 
 

 

Example10:- Two rods, each of weight wl  and length l , are hinged together and placed astride 

a smooth horizontal cylindrical peg of radius r . Then the lower ends are tied together by a string 

and the rods are left at the same inclination   to the horizontal direction. Find the tension in the 

string, and if the string is slack show that   satisfies the equation 2tan tan / 2l r    

 

Solution:- Since cylindrical peg is fixed. Therefore the distances are measured from the  centre of 

the peg. Let the angle AOE  . 



 

     
 Therefore, 90OAE   . 

 Hence DCA DBA      

Tension in the string BC  is replaced by two forces T , T  acting inwards in opposite 

directions. A small displacement is given to the system, so that   becomes    

 Equation of virtual work is    2 0T BC lw OG        (1) 

 2 2 cosBC BD l   . 
sin

sec
2

l
OG AG AD r


    . 

 On putting the value of BC  and OG  in (1), we have  

   
sin

2 cos 2 sec 0
2

l
T l lw r


   

 
    

 
 

 Or  2 sin cos 2 sec tan 0lT lw l r         

 Or  2 sin cos 2 sec tan 0lT lw l r          

 But 0  ,  22 sec cotT w r l     

 When the string is slack, the tension vanishes. 

   cos 2 sec tanl r    

 Or  2 2 3tan sec tan 1 tan tan tan
2

l

r
           

 Or 3tan tan
2

l

r
    

 In equilibrium    3tan tan
2

l

r
     

 

Example11:-  Two small smooth rings of equal weight slide on fixed elliptic wire whose major axis 

is vertical. They are connected by a string which passes over a small smooth peg at the upper 

focus, show that the weight will be in equilibrium wherever they are placed. 

 

Solution:-  Let CLDMC  be an elliptrical wire whose equation is  

   1 cos
l

e
r

          (1) 

  S is the pole. M, L are the positions of the rings. 



 

  Let co-ordinates of M be  ,r  . 

  So that  SM r , PSM    

  Let the length of the string be l . 

  Therefore SL a r  . 

  In the SPM . 

  
   

cos
r l r l

PS r r
re e


 

    

  Therefore, 
a r l

SQ
e

 
  

      
 Small displacement is given to the system, so that   becomes   . 

 Equation of virtual work is     0W SP W SQ   , 

 Or 0
r l a r l

W W
e e

 
     

    
   

 

 Or   0
W W

r r
e e
     or   0

W
r r

e
    

 This equation is identically satisfied. 

 Therefore, then weights will be in equilibrium, wherever they are placed. 

 

Example12:- A heavy uniform rod of length 2a , rests with its ends in contact with two smooth 

inclined places of inclination   and   to the horizon. If   be the inclination of the rod to the 

horizon, prove by the principle of virtual work, that  
1

tan cot cot
2

     

Solution:- Let DA  and DF  be two inclined planes which makes angle ,   respectively from the 

horizontal. Rod AF  rests on these inclined planes. 



 

       
 A small virtual displacement is given to the system, so that   becomes    

 Equation of virtual work,   0W GC    

 Or    0GC         (1) 

 In the 
      

,
sin sin sin

AD FD AF
CDA

      
  

   
 

 Or 
     

2

sin sin sin

AD FD a

     
 

  
 

   
 

 

 

 

2 sin 2 sin
,

sin sin

a a
AD FD

   

   

 
 

 
 

 In the ABD , 

 sin
AB

AD
 m  

 

 

2 sin sin
sin

sin

a
AB AD

  


 


  


 

 Similarly, 
 

 

2 sin sin

sin

a
FE

  

 





,  

1

2
GC AB FE   

 On putting the value of AB  and FE . 

 We have 
 

   sin sin sin sin
sin

a
GC      

 
     

 

 Using this value of GC  in (1) 

  
 

    sin sin sin sin 0
sin

a
      

 

 
    

 
 

 Or 
 

   cos sin cos sin 0
sin

a
      

 
     

 

 Or    cos sin cos sin 0, 0              

 Or  cos cos sin sin sin       

   cos cos sin sin sin 0       

 Which gives then  
1

tan cot cot
2

     

 



 

Example13:- A uniform beam rests tangentially upon a smooth curve in a vertical plane and one 

end of the beam rests against a smooth vertical wall; if the beam is in equilibrium in any positions, 

find the equation to the curve. 

 

Solution:- Let LPM  be a smooth curve. Let G  be a C . G  of the beam AB . The weight W  of 

the rod acts vertically downward from this point. 

      
 Let GN h , length of beam 2a co-ordinates of G are  cos ,a h . 

 Therefore, the equation of AB  is  

   , cos tany h x a            (1) 

 Differentiating w.r.t.  . This gives  

   20 sec cos sin tanx a a       

 Or   2cos sin cos 0x a a      

 Or  2cos 1 sinx a     

  3cosa   

 Therefore, 
1/3

1/3
cos

x

a
          

 (2) 

 Eliminating  from (1) and (2), we have  

   
2/32/3 2/3x y h a    

 Which is the required equation of the curve 

 

Example14:- One end of a beam rests against a smooth vertical wall and the other an a smooth 

curve in a vertical plane perpendicular to the wall; if the beam rests in all positions, prove that 

the curve is an ellipse whose major axis lies along the horizontal line described by the centre of 

gravity of the beam. 

 

Solution:- Let AB  be a rod of length 2a . This rod rests on a vertical wall an on a smooth curve 

MBL , weight W of the beam acts vertically downwards from CG  of the beam AB . 



 

      
 Let the co-ordinates of the point B  be  ,x y . 

 Therefore, 2 sinx a   

 cosy h a    

 Where h GH  and   is the angle which the beam makes with the vertical. 

 Now sin ; cos
2

x y h

a a
 


    

 On squaring then adding, we have 
 

22

2 2
1

4

y hx

a a


   

 Which is the equation of the ellipse. 

 Whose major axis y h , then horizontal line described by centre of gravity of beam. 

 

Example15:- A smooth parabolic wire is fixed with its axis vertical and vertex downwards and in 

it is placed a uniform rod of length 2l  with its  ends resting on the wire. Show that, for equilibrium 

the rod is either horizontal, or makes with the horizontal an angle   given by 2cos 2 / ,4a l a   

being the latusrectum of the parabola. 

 

Solution:- Let AOB  be a smooth parabolic wire AOB . A uniform rod AB  rests on this wire. Draw 

a perpendicular AK  from A on x-axis. Similarly, GO  and BM  are also perpendicular from the 

point G, B respectively on x-axis. G is the centre of gravity of rod AB . Weight W  of the rod AB  

acts vertically downwards from this point. 

 In the triangle ,ABL . 2 cos , 2 sinAL l BL l    

 Let the equation of parabola be 2 4x ay  

 Let the co-ordinates of point A be  22 ,ae at  



 

      
 Therefore, co-ordinates of B  will be  22 2 cos , 2 sinat l at l   . 

The point B  also lies on the parabola. Therefore, the co-ordinates of B  satisfy the 

equation of the parabola. 

 Therefore,    
2 22 2 cos 4 2 sinat l a at l     

 Or 2 2 2 2 2 24 8 cos 4 cos 4 8 sina t at l l a t al       

   
cos

tan
2

l
t

a


          (1) 

 A small displacement is given to the system so that   becomes   . 

 Equation of virtual work is   0W GN   

 Or   0GN   

 Now    2 2 21 1
2 sin sin

2 2
GN AK BM at at l at l         

  
2

cos
tan sin

2

l
a l

a


 

 
   

 
, from (1) 

  
2 2

2 cos
tan sin sin

4

l
a l l

a


       

  
2 2

2 cos
tan

4

l
a

a


   

 Using this value of GN in (2), we have  

  
2

2 2tan cos 0
4

l
a

a
  
 

  
 

, 

 Or 
2

22 tan sec sin 0
2

l
a ws

a
        

 Or   3 22 sec / 2 cos sin 0a l a      

 But 0  , 

 Therefore,  3 22 sec / 2 cos sin 0a l a     

 If sin 0  ,then 0  . The rod is horizontal if  



 

  
2

32 sec cos 0
2

l
a

a
    

 Or 
2

42 cos 0
2

l
a

a
  , or 

2
4

2

4
cos

a

l
  , 2 2

cos
a

l
   

 Which gives the direction of the rod with the horizontal 

 

 

Example16:- Four equal jointed rods, each of length a are hung from an angular point, which is 

connected by an elastic string with the opposite point. If the rods hang in the form of square and 

if the modulus of elasticity of the string be equal to the weight of the rod, show that upstretched 

length of the string is. 

 

Solution:- Let ABCDbe a square formed by four equal jointed rods. The system ABCD  hangs by 

the point A. Points A and C are connected by string AC . Weight 4W  acts vertically downward 

from the point G . Which is the point of intersection of the  diagonals AC  and BD , where W  is 

the weights of each rod. Replace tension T  of the string by two equal forces T , T  acting  inwards 

in opposite direction. Give a small virtual displacement  to the system so that   becomes  

, b  is the natural length of the string. 

     
 Equation of virtual work is    4 0W AG T AC    

 Or    4 0W AG T ZAG    

 Or    4 2 0W x T x    (where AG x ) 

 Or 4 2 0W x T x    or  2 2 0W T x   

 But 0x  . Therefore, 2 0W T  , 

  2T W         (1) 

 By Hook’s Law  T l b
b


   

 Or  2 cos
W

T a b
b

         (2) 



 

Where 2 cosa   in the length of extended string and is the modulus of elasticity and it 

given W  . 

 Now equating two values of T  from (1) & (2) we get 

   2 2 cos
W

W a b
b

   or 2 2 cosb a b   

  3 2 cosb a   or 
2 cos

3

a
b


  

 In equilibrium, 45  . Therefore, 
2

3
b a . 

 Upstretched length of the string is 
2

3

a
. 

 

Example17:- An endless chain of weight W  rests in the form of a circular band round a smooth 

vertical cone which has its vertex upwards. Find the tension in the chain due to its weight 

assuming the vertical angle of the cone to be 2 . 

 

Solution:- Let ABCD  be a cone. An endless chain rests in the form of a circular band round this 

smooth cone. Distance are measured from the vertex of the cone. 

  Let AG x  so that tanGE x   

  Therefore, the length of the string 2 tanx  . 

      
  A small virtual displacement is given to the system, so that x  becomes x x . 

  Equation of virtual work    2 tan 0W AG T x      

  Or    2 tan 0W x T x      

  Or 2 tan 0W x T x      

  Or  2 tan 0W T x     

  But 0x  . 

    2 tan 0W T   , which gives tension in the chain cot
2

W
T 


  

  

  



 

PREVIOUS YEARS QUESTION IAS/IFoS (2008-2023) 

Q8(b) A chain of n equal uniform rods is smoothly joined together and suspended from its one 

end 
1A . A horizontal force P  is applied to the other end 

1nA 
 of the chain. Find the inclinations 

of the rods to the downward vertical line in the equilibrium configuration. UPSC CSE 2022 

Q5(c) Two rods LM and MN are joined rigidly at the point M such that      
2 2 2

LM MN LN   

and they are hanged freely in equilibrium from a fixed point L. Let   be the weight per unit length 

of both the rods which are uniform. Determine the angle, which the rod LM makes with the 

vertical direction, in terms of lengths of the rods. UPSC CSE 2021 

Q5(d) Four light rods are joined smoothly to form a quadrilateral ABCD. Let P and Q be the mid-

points of an opposite pair of rods and these points are connected by a string in a state of tension 

T. Let R and S be the mid-points of the other opposite pair of rods and these points are connected 

by a light rod in a state of thrust X. Show that    T RS X PQ   .  IFoS 2021 

 

Q1. A square framework formed of uniform heavy rods of equal weight W joined together, is hung 

up by one corner. A weight W is suspended from each of the three lower corners, and the shape 

of the square is preserved by a light rod along the horizontal diagonal. Find the thrust of the light 

rod. [7c UPSC CSE 2020] 

Q2. A frame ABC consists of three light rods, of which AB, AC are each of length a, BC of length 

3

2
a , freely joined together. It rests with BC horizontal, A below BC and the rods AB, AC over two 

smooth pegs E and F, in the same horizontal line, at a distance 2b apart. A weight W is 

suspended from A. Find the trust in the rod BC. [7c 2018 IFoS] 

Q3. A string of length a, forms the shorter diagonal of a rhombus formed of four uniform rods, 

each of length b and weight W, which are hinged together. If one of the rods is supported in a 

horizontal position, then prove that the tension of the string is 
 2 2

2 2

2 2

4

W b a

b b a




. [6b 2017 IFoS] 

Q4. Two equal uniform rods AB and AC, each of length l, are freely joined at A and rest on a 

smooth fixed vertical circle of radius r. If 2  is the angle between the rods, then find the relation 

between l, r and , by using the principle of virtual work. [5d UPSC CSE 2014] 

Q5. A regular pentagon ABCDE, formed of equal heavy uniform bars joined together, is suspended 

from the joint A, and is maintained in form by a light rod joining the middle points of BC and DE. 

Find the stress in this rod. [7c UPSC CSE 2014] 



 

Q6. Six equal rods AB, BC, CD, DE, EF and FA are each of weight W and are freely joined at their 

extremities so as to form a hexagon; the rod AB is fixed in a horizontal position and the middle 

points of AB and DE are joined by a string. Find the tension in the string. [7c UPSC CSE 2013] 

Q7.  A heavy elastic string, whose natural length is 2 a , is placed round a smooth cone whose 

axis is vertical and whose semi-vertical angle is  . If W be the weight and  the modulus of 

elasticity of the string, prove that it will be in equilibrium when in the form of a circle whose 

radius is  

1 cos
2

W
a 



 
 

 
. [8c 2012 IFoS] 

Q8. One end of a uniform rod AB, of length 2a and weight W, is attached by a frictionless joint to 

a smooth wall and the other end B is smoothly hinged to an equal rod BC. The middle points of 

the rods are connected by an elastic cord of natural length a and modulus of elasticity 4W. Prove 

that the system can rest in equilibrium in a vertical plane with C in contact with the wall below A, 

and the angle between the rod is 1 3
2sin

4

  
 
 

. [7a 2011 IFoS] 

Q9.  A solid hemisphere is supported by a string fixed to a point on its rim and to a point on a 

smooth vertical wall with which the curved surface of the hemisphere is in contact. If  and  are 

the inclinations of the string and the plane base of the hemisphere to the vertical, prove by using 

the principle of virtual work that  

3
tan tan

8
   . [8b UPSC CSE 2010] 

 

 

 

 
 
 

 

 

 

     

 

 

 

 



 

FORCES IN THREE DIMENSIONS 

 
DEFINITION 
 

(1) Dyname:- The combination of a force R and a couple G  often called a dyname, and the 
quantities , , , , ,X Y Z L M N are called the components or elements of the dyname. 

 
(2) Central Axis:- If a system of forces is reduced to a force R  and a couple cosG   such that 

the axis of the couple coincides with the line of action of the force R , then the very line 
is called the central axis of the given system. 
 

Note:- From now onwards, we write K  for cosG   so that  
     cosK G   
 
(3) Wrench:- Suppose that a system of forces is reduced to a force R  and a couple of moment 

K  whose axis coincides with the direction of the force R . Then the force R  together 

with the couple K  is called the Wrench of the system and is denoted by  ,R K . 

 
(4) Pitch:- The ratio /K R  viz. the moment of the couple divided by the force is called the 

pitch of the system. 
 
The pitch is a linear magnitude. When the pitch is zero, the wrench reduces to a single 
force. On the other side when the pitch is infinite, the wrench becomes a couple only. If 
a body rotates through small angle d  about the axis and moves at the same time a 
distance dx  along the axis, then the ratio /dx d  is called the pitch of the screw. Clearly, 
the pitch is the rate of change of x  along the axis as   increasing.  
 

(5) Intensity of a Wrench:- The single force R  is called the intensity of the wrench. 
 

(6) Screw:- The straight line along which the single force acts when considered together with 
the pitch is called a screw, so that a screw is a definite straight line associated with a 
definite pitch. 
 

(7) Moment of a Force about a line:- The moment of a force P  about a given line is obtained 
as follows: 
 
Resolve the force P  into two components Q  and S  such that the force Q  is parallel to 

the line and the force S  is perpendicular to the line. The moment of the force P  about 
the given line is defined to be the product of force S  and the shortest distance between 
the line of action of the force S  and the given line. 



 

Suppose that a force R  acting at a point A  has components , ,X Y Z  along the coordinate 

axes ,ox oy  and oz  respectively as shown in the figure. So, by the definition the moment 

of  

   
 

The force R  about ax  axis is equal to the component 2 2Y Z  multiplied by the 
shortest distance between its line of action and ox  line   The moment of R  about ox  

is equal to the moment of 2 2Y Z  about the point N . Since the algebraic sum of the 
moments of any two forces about any point in their plane is equal to the moment of their 
resultant about the same point. So the moment of the force R  about ox  line is equal to 
the sum of the moments of its two components Y  and Z  about N  and this sum finally 
is equal to yZ zY . 

 
. The moment of the resultant couple about the Central Axis is less than moment of the 

resultant couple corresponding to any point O  which is not on the Central Axis. 
 
Proof:- As provide in Art. 12, the resultant force for any system of forces for any origin is the same 

and equal to that along the central axis. But the resultant couple differs. 
  
 If G  is the couple for any origin (or base point), not on the central axis and if   is the 

angle between the axis of the couple and the direction of the resultant force. Then the 
moment of the couple about the central axis has been proved to the cosG  . 

 Clearly cos , 0 / 2G G      

 Therefore, the moment of the resultant couple is minimum for the Central Axis. 
 
2. General Conditions of Equilibrium of A Rigid Body. 
 
Proof:- Suppose that a system of forces is reduced to a force R  and a couple G .  The couple G

can be replaced by two equal and opposite forces one of which acts through the point O  
where R  meets the plane of the couple. This force and R  can be compounded into a 
single force which passes through O  and does not meet the other force of the couple. So 
equilibrium is not possible. Hence a force R and a couple G together cannot produce 
equilibrium. 



 

 Hence the system can be in equilibrium only when the force R  and the couple G  vanish 
separately. But, by Art. 11, 

   2 2 2 2R X Y Z    and 2 2 2 2G L M N   . 
 Hence for equilibrium we must have  
   0 , 0X Y Z L M N       

 Which conclude that the sums of the resolved parts of the system of forces parallel to any 
three axes of the coordinates must separately vanish, and also the sums of their moments 
about the three axes must separately vanish. 

 
3. To find the condition that a given system of forces should compound into a single force. 
 
Proof:- In view of Art. 11, a system of forces is equivalent to a single force R  acting at an arbitrary 

point (base point) and a single couple G  and   is the angle between the axis of couple 
G  and the direction of the force R , fig. 1 

        
The force R  is equivalent to a force cosR   along OB  and a force sinR   along 

 OC OB OC , fig. 2. Since the couple G  acts in the plane DOC , so the couple G  may 

be replaced by two forces each equal to sinR  , one along OE  and the other along DF

(parallel and opposite in direction), fig. 3.  

     
The two force, each equal to sinR  , acting to O  balance. Now the system of forces is 
reduced to a force cosR   along OB and a force sinR   along DF . But the force sinR   



 

does not pass through O , therefore the force sinR   cannot, in general, compound with 

cosR   into a single force. 

   
But if cos 0R q=  

Þ  cos 0q =  as 0 / 2R q p¹ Þ = , then the system of the given force is reduced to a single 

force sinR q . Hence the straight lines whose direction cosines are , ,
X Y Z

R R R

æ ö
÷ç ÷ç ÷çè ø

 and 

, ,
L M N

G G G

æ ö
÷ç ÷ç ÷çè ø

are mutually perpendicular. So . . . cos90
X L Y M Z N

R G R G R G
+ + = o  or 

0XL YM ZN+ + =  which is the required condition. 
 
4. Invariants:- Whatever origin (or base point) and axes of coordinates are chosen, for any 

given system of forces the quantities 2 2 2X Y Z+ +  and LX MY NZ+ +  are invariable 

where X X= S etc. and ( )1 1 1 1L y Z z Y= S -  etc. 

 

Proof:- Since 2 2 2 2R X Y Z= + +  and 2 2 2 2G L M N= + + . The direction cosines of R are 

, ,
X Y Z

R R R

æ ö
÷ç ÷ç ÷çè ø

and the direction cosines of the axis of the couple G  are , ,
L M N

G G G

æ ö
÷ç ÷ç ÷çè ø

. If the 

direction of R  makes angle q  with the axis of the couple. So 

cos . . .
X L Y M Z

R G R G R G
q

N
= + +  

Þ  cos
XL YM ZN

G K
R

q
+ +

= =       (1) 

 We know that central axis is unique and both the force R  and the couple K  are found 

along the central axis. Hence R  and K  both are invariable. So 2 2 2X Y Z+ +  is invariable 
and also from (1). 

  XL YM ZN+ +  are in variable. 
 It follows that if 0K =  i.e. if the given system of forces reduces to a single force, then 

0LX MY NZ+ + = . 

 If 0R = , then 2 2 2 0X Y Z+ + =  and 0LX MY NZ+ + =  (Both). 



 

 The pitch, p , of the resultant wrench of the system  

  
2

K LX MY NZ

R R

+ +
= =  

 Thus for a given system of forces, R  and cosK G q=  are unique so that the wrench is 
unique. 

5. To find the equation of the Central Axis of any given system of forces. 
 

Proof:- Referred to the coordinates axes , ,ox oy oz , let the system of forces 1 2, ,..., nP P P  acting at 

points 1 2, ,..., nA A A  respectively be equivalent to ( ),R G  where  
2 2 2 2 2 2 2 2,R X Y Z G L M N= + + = + +  

( )1 1 1 1 1 1 1, , ,X X Y Y Z Z L y Z z Y= S = S = S = S - , 

( ) ( )1 1 1 1 1 1 1 1,M z X x Z N x Y y X= S - = -  where ( )1 1 1 1, ,P X Y Z=  etc. and coordinate 

of 1A are ( )1 1 1, ,x y z  etc. 

Let ( ), ,f g h  be the coordinate of any point Q . At Q  the value of R  remain invariant. 

Assume lines ', ', 'Qx Qy Qz  parallel to ,ox oy  and oz  respectively. The moment of the 

force about 'ox  is obtained by putting 1 1 1, ,x f y y z h- - -  instead of 1 1 1, ,x y z  in the 

values of , ,L M N . 

Hence the moment about 'Qx  line  

( ) ( )1

1

n

i i i

i

y g Z z h Y
=

é ù= - - -ë ûå  

 

  
1 1 1

n n n

i i i i i i

i i i

y Z z Y g Z h Y
  

       

 L gZ hY   . 

Similarly the moments about the liens 'Qy and 'Qz  are M hX fZ   and N fY gX   

respectively. 

Also the components  , ,X Y Z  of the resultant force  R  are the same for all points such 

as Q . 

If Q  be a point on the central axis, the direction cosines of the axis of the couple 

corresponding to the point Q  are proportional to those of the resultant force. 

Hence 
L gZ hY M hX fZ N fY gX

X Y Z

     
   

 
2 2 2

LX MY NZ K

X Y Z R

 
 

 
   By Art. 18 

The locus of the point Q  is 
L yZ zY M zX xZ N xY yX

X Y Z

     
   which is the 

equation of the central axis. 
 
 



 

6. Working Rule:-  
 (1) To Find central axis:-  

(a) Write down the equation of the line along which the force  , ,r r r rP X Y Z  acts, in 

the standard from r r r

r r r

x x y y z z

l m n

  
   where  , ,r r rl m n  are the actual 

direction cosines. Then the components  , ,r r rX Y Z  of the force rP  along the axes 

are given by , ,r r r r r r r r rX l P Y m P Z n P   . Then , ,r r rX X Y Y Z Z      . 

(b) The value s of , ,r r rL M N  are given by the determinant  

r r r r r r

r r r

i j k

iL jM kN x y z

X Y Z

   . 

By equation the coefficient of , ,i j k  on both the side of the above equation. We get 

,r rL M  and rN . Then , ,r r rL L M M N N      . 

 
(c) Now the equation of the central axis is given by  

  
     L yZ zY M zX xZ N xY yX

X Y Z

     
   

(2) The pitch of the wrench  

  
2 2 2

K LX MY NZ
p

R X Y Z

 
 

 
 

 
 (3) The system reduces to a single force if   
  0LX MY NZ   . 
 
 
 

 

 
Example:- Equal forces act along the coordinate axes and along the straight line  

x y z r

l m n

   
          (1) 

Find the equations of the central axis of the system. 

Solution:- Let the equal force be P . Then P  acts along each of the given lines, viz. , ,ox oy oz  axes 

and the line (1) P  acts along x-axis, i.e. 
1 0 0

x y z
   

 Components   1 1 1, ,X Y Z  of P  are given by 1 1 1, 0X P Y Z    

 Components moments  1 1 1, ,L M N  of the force P  about  



 

  
1 1 1 1 1 1

1 1 1

; 0 0 0

0 0

ox iL jM kN x y z

PX Y Z

   

i j k i j k

 

  0 0 0i j k    

   
1 1 1 0L M N    

 Similarly, along oy   axis i.e. 
0 1 0

x y z
   

  
2 2 20, , 0X Y P Z    and 

2 2 2 2 2 2

2 2 2

0 0 0

0 0

L i M j N k x y z

PX Y Z

   

i j k i j k

 

   2 2 2 0L M N    

 Along the z-axis 

 3 3 30 ,X Y Z P    and 
3 3 3 3 3 3

3 3 3

0 0 0

0 0

L i M j N k x y z

PX Y Z

   

i j k i j k

 

  0 0 0i j k    

   3 3 3 0L M N    

 Along the line  

  
x y z

l m n

    
  , assuming  , ,l m n  are . .'d c s  

  4 4 4, ,X lP Y mP Z nP    

4 4 4 4 4 4

4 4 4

iL jM kN x y z

lP mP nPX Y Z

     

i j k i j k

 

     n m Pi l n Pj m l Pk            

     4 4 4, ,L n m P M l n P N m l P            

 1 0 0 1X X P lP l P         

 1 0 0 1Y Y P mP m P         

 1 0 0 1Z Z P nP n P         

   1 0 0 0L L n m P n m P             

   1 0 0 0M M l n P l n P            

   1 0 0 0N N n l P n l P            

The equation of central axis is 
L yZ zY M zX xZ N xY yX

X Y Z

     
   



 

Putting the value of respectively terms and cancelling P  throughout, we get 

 
           1 1 1 1

1 1

n m y n z m l n z l x n

l m

            


 
 

 
     1 1

1

m l x m y l

n

     



 

Which is the required equation of  the central axis. 

Note:- If  , ,l m n  are not the actual direction cosines, then the actual direction cosines are 

  
1/2

2 2 2

1 1 1, , ,
l m n

l m n l m n
  

      . 

 

Example:- Forces , ,X Y Z  act along the three lines giving by the equations 0, ;y z c 

0, ;z x a   0 ;x y b   prove that the pitch of the equivalent wrench is 

   2 2 2/aYz bZX cXY X Y Z    . If the wrench reduces to a single force, show that the line of 

action of the force lies on this hyperboloid.    x a y b z c xyz    . 

Solution:-  The three given lines are ; ;
1 0 0 0 1 0 0 0 1

x y z c x a y z x y b z  
       

 Force X  acts along the  first line, so 1 1 1, 0X X Y Z    

  
1 1 1 1 1 1

1 1 1

0 0

0 0

iL jM kN x y z c

XX Y Z

   

i j k i j k

 

       0 0i j cX k   

   1 1 10, , 0L M cX N    

  Force Y  acts along the second line, so 2 2 20, , 0X Y Y Z    

  
2 2 2 2 2 2

2 2 2

0 0

0 0

iL jM kN x y z a

YX Y Z

   

i j k i j k

 

        0 0i j k aY    

   2 2 20, 0,L M N aY    

 Force Z  acts along the third line, so 3 3 30, 0,X Y Z Z    and  

  
3 3 3 3 3 3

3 3 3

0 0

0 0

iL jM kN x y z b

ZX Y Z

   

i j k i j k

 

       0 0ibZ j k   

   3 3 3, 0L bZ M N    



 

  
1 0 0X X X X      

  
1 2 3 0 0Y Y Y Y Y Y        

  
1 2 3 0 0Z Z Z Z Z Z        

  1 2 3 0 0L L L L bZ bZ        

  1 1,M M cX N N aY      

 The pitch of wrench is given by  

  
2 2 2 2 2 2

LX MY NZ bZX cXY aYZ
p

X Y Z X Y Z

   
 

   
 

  
2 2 2

aYZ bZX cXY

X Y Z

 


 
 

Second Part:-  The condition that the system of forces reduces to a single force is  

  0LX NY NZ    

   0bZX aYZ cXY          (1) 

 The equation of central axis is  

  
L yZ zY M zX xZ N xY yX

X Y Z

     
   

 Putting the value of , ,L M N    

  
bZ yZ zY cX zX xZ aY xY yX

X Y Z

     
   

  
2 2 2

0
aYZ bZX cXY

p
X Y Z

 
  

 
 by     (1) 

   0, 0, 0bZ yZ zY cX zX xZ aY xY yX          

    0 0X zY b y Z          (2) 

    0 0c z X Y xZ          (3) 

    0 0yX a x Y Z          (4) 

To find the line of action of the single force i.e. the locus of the central axis, eliminate 

, ,X Y Z  from the equations (2), (3), (4) 

  

0

0 0

0

z b y

c z x

y a x



 



 

Expanding along the first row, we get 

       0z xy b y a x c z        

      x a y b z c xyz      

  Which is a equation of hyperboloid. 

 



 

Example:- A force F acts along the axis of z  and a force mF  along a straight line intersecting the  

axis of x  at a distance c  from the origin and parallel to y z plane. Show that as this line turns 

round the axis of x , the central axis of the system generates the surface 

   
22 2 2 2 2 21m z m y c x x z     

Solution:- In the figure a parallopiped is shown in which OD c  force mF  is assumed to be 

acting along DE  where BDE    (say), then / 2ADE     . Direction cosines of line DE  

are  cos90, cos , cos 90  i.e.  0,cos ,sin  , since line DE  lies in a plane parallel to y z  

plane.  

 The equation of the line DE  is 
0 cos sin

x c y z

 


   

 
Components of force mF  parallel to axes are 1 0X  , 1 cos ,Y mF   1 sinZ mF   and  

1 1 1 1 1 1

1 1 1

0 0

0 cos sin

L i M j N k x y z c

mF mFX Y Z  

   



i j k i j k

 

   0 sin cosi mcF j mcF k     

  1 1 10, sin , cosL M mcF N mcF      

 A force F  acts along z  axis, i.e. 
0 0 1

x y z
   

 So, its components  2 2 2, ,X Y Z  are 2 2 20, 0,X Y Z F    and  

  
2 2 2 2 2 2

2 2 2

0 0 0

0 0

L i M j N k x y z

FX Y Z

   

i j k i j k

 

   0 0 0i j k    

  2 2 2 0L M N    



 

  
1 10, cosX X Y Y mF        

   1 sin 1 sinZ Z mF F m F        

  
1 10, sinL L M M mcF         

  1 cosN N mcF     

 The equation of the central axis is  

  
L yZ zY M zX xZ N xY yX

X Y Z

     
   

 Putting the value of the respective terms we have  

   0 1 sin cos

0

y m F z mF   
 

 sin 0 1 sin

cos

mcF zX x m F

mF

 



   
  

 
cos cos 0

1 sin

mcF xmF y

m F

 



  



 

 Or 
   1 sin cos sin 1 sin

0 cos

y m zm mc x m

m

   



     
  

  
cos cos

1 sin

mc xm

m

 







       (1) 

We see that the equation of the central axis has   as perimeter, so in order to find the 

locus of the central axis, eliminate  . 

The first two ratios of (1) give 

  1 sin cos 0y m zm          (2) 

  sin cos /y z y m          (3) 

The last two ratios of equation (1) given  

 sin 1 sin cos cos

cos 1 sin

mc x m mc xm

m m

   

 

   



 

 
   

 
sin cos

cos 1 sin

x c m x m c x y
c x

m m z

 

 

  
   


 using (2) 

     sin c cosx c mz xz my x      

  
 

cos sin
xz

y z
m c x

  


     (4) 

 Squaring (3) & (4) and adding  

 
 

2 2 2
2 2

22 2

y x z
y z

m m c x
  


 

      
2 22 2 2 2 2 2m y z c x y c x x z      



 

      2 2 2 2 2 2 21c x m y m z x z    . 

 

Example:- Force , ,X Y Z  act along the straight lines , ; ,y b z c x a z c       and ,x a y b    

respectively. Show that they will have a single resultant if 0
a b c

X Y Z
    and that the equations 

to its line of action are any two of three 0
y z a

Y Z X
   , 0

z x b

Z X Y
   , 0

x y c

X Y Z
   . 

Solution:- The standard equations of the given lines are  

1 0 0

x y b z c 
          (i) 

  
0 1 0

x a y z c 
          (ii) 

  
0 0 1

x a y b z 
          (iii) 

 Force X  along the line (1), components of X  along axes are 1 1 1, 0, 0X X Y Z    and  

  
1 1 1 1 1 1

1 1 1

0

0 0

L i M j N k x y z b c

XX Y Z

    

i j k i j k

 

   0i cXj bXk    

  1 1 10, ,L M cX N bX      

Force Y  acts along the second line, components of Y  along axes are given by 

2 2 20, , 0X Y Y Z   and 

2 2 2 2 2 2

2 2 2

0 0

0 0

L i M j N k x y z a

YX Y Z

    

i j k i j k

 

   0cY i j aYk     

  2 2 2, 0,L cY M N aY      

 Force Z  is acting along the line (3), components along z   axis are 3 3 30, 0,X Y Z Z    

and    
3 3 3 3 3 3

3 3 3

0

0 0

L i M j N k x y z a b

ZX Y Z

    

i j k i j k

 

     0bZ i aZj k     

   3 3 3, , 0L bZ M aZ N      

 So,  1 , ,X X X Y Y Z Z      

       1 0L L cY bZ cY bZ           



 

     1 0M M cX aZ cX aZ          

   1 0N N bX aY bX aY          

 The system of forces is equivalent to a single force if 0LX MY NZ   . 

 Putting the values of the respective terms,       0cY bZ X cX aZ Y bX aY Z        

   0aYZ bZX cXY    

 Dividing by XYZ  we have. 

  0
a b

X Y
  . The first part is over      (4) 

 The equation of the central axis is 
     L yZ zY M zX xZ N xY yX

X Y Z

     
   

 Putting the values of respective terms  

  
   cY bZ yZ zY cX aZ zX xZ

X Y

       
  

  
 bX aY xY yX

Z

   
  

 Using first ratio of equation (5) 0p        (5) 

    0cY bZ yZ zY      

  0
c b y

Z Y z
     

  0
a b b y z

X Y Y Y Z
     , using (4) 

  0
a y z

X Y Z
           (6) 

 Similarly by using the other parts of the equation (5) we can derive  

 0
z x b

Z X Y
           (7) 

 0
x y c

X Y Z
           (8) 

We see that any one of these equations (6), (7), (8) can be obtained from the other two 

by means of equation (4), so any two of these equations viz. (6), (7) , (8) are linearly 

independent. Hence any two of the equations represent the line of action of the single 

force. 

 

Example:- Three forces each equal to P act on a rigid, body,  one at the point  ,0,0a parallel to 

oy , the second of the point  0, ,0b parallel to oz  and the third at the point  0,0,c  parallel to 

ox , the axes being rectangular. Find the resultant wrench in magnitude and direction. 

Solution:- The lines of action of the three forces, each equal to P , are  



 

  
0 1 0

x a y z
          (1) 

  
0 0 1

x y b z
          (2) 

  
1 0 0

x y z c
          (3) 

 Forces P  acts along the line (1), components along the axes are 1 1 10, , 0X Y P Z    

and  

  
1 1 1 1 1 1

1 1 1

0 0

0 0

L i M j N k x y z a

PX Y Z

   

i j k i j k

 

   0 0i j aPk    

  1 1 10 ,L M N aP    

Force P  acts along the second line, components along axes are given by 

2 2 20 ,X Y Z P    and  

 
2 2 2 2 2 2

2 2 2

0 0

0 0

L i M j N k x y z b

PX Y Z

   

i j k i j k

 

  0 0bPi j k    

  2 2 2, 0L bP M N    

Again, force P  acts along the third line, component along axes are given by 

3 3 3, 0X P Y Z    and  

3 3 3 3 3 3

3 3 3

0 0

0 0

L i M j N k x y z c

PX Y Z

   

i j k i j k

 

  0 0i cPj k    

  3 3 30, , 0L M cP N    

 Now  1 1 1, ,X X P Y Y P Z Z P         

  1 1 1, ,L L bP M M cP N N aP         

  2 2 2 2 23 3R X Y Z P R P       and  
2 2 2

2 2 2 23 3

K LX MY NZ bP cP aP a b c

R X Y Z P

     
  

 
 

   
   

3
3 3

a b c a b c P
K P

   
    

 The equation of the central axis is 
     L yZ zY M zX xZ N xY yX K

X Y Z R

     
    



 

 Putting the values of the respectively terms  

  
3

bP yP zP cP zP xP aP xP yP a b c

P P P

       
    

  
3

a b c
b y z c z x a x y

 
           

  
2 3 2 3 2 3

3 3 3

a b c b c a c b c
x y z

     
          (4) 

 The wrench of the system is  ,R K  where 3R P  and 
 

3

a b c P
K

 
  

 The position of the wrench is given by the central axis (4). 
 

 

 

   

PREVIOUS YEARS QUESTIONS IAS/IFoS (2008-2023) 

FORCES IN THREE DIMENSIONS  

Q1.  The forces P, Q and R act along three straight lines , , ,y b z c z c x a       and 

,x a y b    respectively. Find the condition for these forces to have a single resultant force. 

Also, determine the equations to its line of action. [6b 2015 IFoS] 

 

   

  

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Note- The way to prepare next segment of PYQs are comprising of previous 
chapters(Equilibrium, Virtual work and forces in 3D) and examples.  
 

5. MOMENTS, EQUILIBRIUM OF CO-PLANAR FORCES 

Q7 (b) UPSC CSE 2023 A solid hemisphere is supported by a string fixed to a point on its rim and 

to a point on a smooth vertical wall with which the curved surface is in contact. If 

  is the angle of inclination of the string with vertical and  is the angle of 

inclination of the plane base of the hemisphere to the vertical, then find the value 

of (tan  -tan ). (15) 

 

6.(a) A heavy string, which is not of uniform density, is hung up from two points. Let 1 2 3, ,T T T  be 

the tensions at the intermediate points A, B, C of the catenary respectively where its inclinations 

to the horizontal are in arithmetic progression with common difference  . Let 1  and 2  be the 

weights of the parts AB and BC of the string respectively. Prove that 

(i) Harmonic mean of 1 2,T T  and 2
3

3

1 2cos

T
T





 

(ii) 1 1

3 2

T

T




  UPSC CSE 2021 

 

 

Q5(c) Three forces P, Q and R act along the sides BC, CA and AB of ABC  in order to keep the 

system in equilibrium. If the resultant force touches the inscribed circle, then prove that 

1 cos 1 cos 1 cos
0

P Q R

    
   . IFoS 2022 

Q7(c) PR and QR are two equal heavy strings tied together at R and carrying a weight W at R. P 

and Q are two points in the same horizontal line and 2a is the distance between them. l  is the 

length of each string and h is the depth of R below PQ. Prove that 

(i) 2 2 22 cosh 1
a

l h c
c

 
   

 
, 

(ii) Tension at P or   2 21

2
Q lW l h w

h
   , 

 



 

where , ,    are the interior angles subtended at A, B, C respectively. IFoS 2022 

 

Q1. A uniform rod, in vertical position, can turn freely about one of its ends and is pulled aside 

from the vertical by a horizontal force acting at the other end of the rod and equal to half its 

weight. At what inclination to the vertical will the rod rest? [5d UPSC CSE 2020] 

Q2. A beam AD rests on two supports B and C, where AB = BC = CD. It is found that the beam will 

tilt when a weight of p kg is hung from A or when a weight of q kg is hung from D. Find the weight 

of the beam. [6c UPSC CSE 2020] 

Q3. A cylinder of radius 'r', whose axis is fixed horizontally, touches a vertical wall along a 

generating line. A flat beam of length l and weight 'W' rests with its extremities in contact with 

the wall and the cylinder, making an angle of 45° with the vertical. Prove that the reaction of the 

cylinder is 
5

2

W
 and the pressure on the wall is 

2

W
. Also, prove that the ratio of radius of the 

cylinder to the length of the beam is 5 5 : 4 2 . [5d 2020 IFoS] 

Q4. A 2 meters rod has a weight of 2N and has its centre of gravity at 120 cm from one end. At 20 

cm, 100 cm and 160 cm from the same end are hung loads of 3N, 7N and 10N respectively. Find 

the point at which the rod must be supported if it is to remain horizontal. [5c 2019 IFoS] 

Q5. A uniform rod AB of length 2a movable about a hinge at A rests with other end against a 

smooth vertical wall. If  is the inclination of the rod to the vertical, prove that the magnitude of 

reaction of the hinge is 21
4 tan

2
W   where W is the weight of the rod. [7a UPSC CSE 2016] 

Q6. Two weights P and Q are suspended from a fixed point O by strings OA, OB and are kept apart 

by a light rod AB. If the strings OA and OB make angles  and  with the rod AB, show that the 

angle  which the rod makes with the vertical is given by 

tan
cos cot

P Q

P Q


 





. [7b UPSC CSE 2016] 

Q7. A square ABCD, the length of whose sides is a, is fixed in a vertical plane with two of its sides 

horizontal. An endless string of length  4l a  passes over four pegs at the angles of the board 

and through a ring of weight W which is hanging vertically. Show that the tension of the string is 

 
2 2

3

2 6 8

W l a

l la a



 
. [7c UPSC CSE 2016] 

Q8. A weight W is hanging with the help of two strings of length l and 2l in such a way that the 

other ends A and B of those strings lie on a horizontal line at a distance 2l. Obtain the tension in 

the two strings. [5c 2016 IFoS]    



 

Q9. A rod of 8 kg is movable in a vertical plane about a hinge at one end, another end is fastened 

a weight equal to half of the rod, this end is fastened by a string of length l to a point at a height 

b above the hinge vertically. Obtain the tension in the string. [5d UPSC CSE 2015] 

Q10. A ladder of weight W rests with one end against a smooth vertical wall and the other end 

rests on a smooth floor. If the inclination of the ladder to the horizon is 60°, find the horizontal 

force that must be applied to the lower end to prevent the ladder from slipping down. 

[7b UPSC CSE 2011] 

Q11. AB is a uniform rod, of length 8a, which can turn freely about the end A, which is fixed C is 

a smooth ring, whose weight is twice that of the rod, which can slide on the rod, and is attached 

by a string CD to a point D in the same horizontal plane as the point A. If AD and CD are each of 

length a, fix the position of the ring and the tension of the string when the system is in 

equilibrium. 

Show also that the action on the rod at the fixed end A is a horizontal force equal to 3 W, where 

W is the weight of the end. [7b 2011 IFoS] 

Q12. A smooth wedge of mass M is placed on a smooth horizontal plane and a particle of mass 

m slides down its slant face which is inclined at an angle  to the horizontal plane. Prove that the 

acceleration of the wedge is, 

2

sin cos

sin

mg

M m

 


. [7c 2010 IFoS] 

 

6. FRICTION 

Q5(c) A body of weight w rests on a rough inclined plane of inclination  , the coefficient of 

friction,  , being greater than tan . Find the work done in slowly dragging the body a distance 

'b' up the plane and then dragging it back to the starting point, the applied force being in each 

case parallel to the plane.UPSC CSE 2022 

 

 

Q1. One end of a heavy uniform rod AB can slide along a rough horizontal rod AC, to which it is 

attached by a ring. B and C are joined by a string. When the rod is on the point of sliding, then 
2 2 2AC AB BC  . If  is the angle between AB and the horizontal line, then prove that the 

coefficient of friction is 
2

cot

2 cot




. [5c UPSC CSE 2019] 



 

Q2. A uniform rod of weight W is resting against an equally rough horizon and a wall, at and angle 

 with the wall. At this condition, a horizontal force P is stopping them from sliding, implemented 

at the mid-point of the rod. Prove that  tan 2P W    , where  is the angle of friction. Is 

there any condition on  and ? [7b 2016 IFoS] 

Q3. Two equal ladders of weight 4 kg each are placed so as to lean at A against each other with 

their ends resting on a rough floor, given the coefficient of friction is . The ladders at A make an 

angle 60° with each other. Find what weight on the top would cause them to slip.  

[6b UPSC CSE 2015] 

Q4. A semi circular disc rests in a vertical plane with its curved edge on a rough horizontal and 

equally rough vertical plane. If the coefficient of friction is , prove that the greatest angle that 

the bounding diameter can make with the horizontal plane is: 

2
1

2

3
sin

4 1

  



  
 

 
. [8a 2014 IFoS] 

Q5. The base of an inclined plane is 4 metres in length and the height is 3 metres. A force of 8 kg 

acting parallel to the plane will just prevent a weight of 20 kg from sliding down. Find the 

coefficient of friction between the plane and the weight. [5d UPSC CSE 2013] 

Q6. A uniform ladder rests at an angle of 45° with the horizontal with its upper extremity against 

a rough vertical wall and its lower extremity on the ground. If  and ' are the coefficients of 

limiting friction between the ladder and the ground and wall respectively, then find the minimum 

horizontal force required to move the lower end of the ladder towards the wall. [7b UPSC CSE 

2013] 

Q7. Two bodies of weight 1w  and 2w  are placed on an inclined plane and are connected by a light 

string which coincides with a line of greatest slope of the plane; if the coefficient of friction 

between the bodies and the plane are respectively 1  and 2 , find the inclination of the plane 

to the horizontal when both bodies are on the point of motion, it being assumed that smoother 

body is below the other. 

[6c 2013 IFoS] 

Q8. A thin equilateral rectangular plate of uniform thickness and density rests with one end of its 

base on a rough horizontal plane and the other against a small vertical wall. Show that the least 

angle, its base can make with the horizontal plane is given by  

1
cot 2

3
    

, being the coefficient of friction. [7b 2012 IFoS] 



 

 

  



 

 

 

 

 

 


