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Exam point:

STATICS for UPSC CSE/IFoS Mathematics Optional

Common Catenary

Stable & Unstable Equilibrium

Principle of Virtual Work

1. For CSE: Make sure you have all formulae at one place. You have solved all examples.

—  Mindset Making:

» Get keywords

l > Read the question

» Use formula based on that keyword.

—  Required chapters are: Only Three.

Namely:

1.
2.
3.

Common Catenary

Stable and Unstable Equilibrium

Principle of principle (Virtual) Work.

» Bit understanding from centre of Gravity.

2. For IFoS: Above three chapters + centre of Gravity and Forces in 3D also required.

Year Common Stable/unstable Principle of Virtual
Catenary Equilibrium work

2010 0 0 1
2011 0 0 1
2012 1 1

2013 1 1 1
2014 0 0 2
2015 1 0 2
2016 1 1 1
2017 0 1 0
2018 0 0 0
2019 0 1 1




COMMON CATENARY

To understand common catenary let’s have some other terms-

Flexible String: A string which offers no resistance to bending at any point. e.g. A chain whose
links are quite small and perfectly smooth can be regarded as a flexible string.

Note: In case of flexible string, the resultant action along (across) any section of the string,
consists of a single force action along the tangent to the curve formed by the string.

Explanation: = Because any normal section is small and so the string may be considered as a
curved line.

— Let’s use this uniform flexible string of chain:-

) . . T sing
When it hangs freely between two points (these points;

need not be in the same vertical line) under the action of gravity, T
Then this is called a ‘common catenary’.

(Provided that the weight per unit length of the string or chain is
constant) N

[ . . . . (0]
Note that if the weight per unit length of the string is not constant; Teos ¥

then the above system will be called Catenary but not the common catenary.

» Points need not be in the same horizontal line.

Mathematics behind Common Catenary

1. Intrinsic Equation of Common Catenary

Base Understanding:

% An equation involving the arc length(s) and angle of tangent W is called the intrinsic
equation. (Differential calculus, Topic: Tangents and normal)

Vertical & Horizontal component of Tension T.

Now, let’s try to find intrinsic equation for a common  catenary.
Step (i) Practice for drawing this system (multiple times )

DC = Sag. Of catenary
P: Some arbitrary point (x,y) of Catenary.
We have considered the cartesian coordinate system as base for common catenary.

Y-axis: Called the axis of common catenary.



X-axis: Called the directrix.

w: weight per unit length of string.

“Vertex’of catenary : C: The lowest point of catenary
T : Tangential (Tension) at point P

T, : Horizontal tension at C.

‘Span’= AB ; A& B : Support point for string

B A B A B A

YA
B
. T
: : P(x. ) : e :
c X

Figures: Just for Practice

Step (i1) :  Consider the equilibrium of the portion of CP :

It is due to the horizontal tension To at the point C, the tension T at the point P and the
weight w.s acting vertically downwards through the centre of gravity of arc CP.

.. String CP is in equilibrium under the action of there forces (all lying in one plane), the line
of action of the weight w.s must pass through the intersection of the line of action To and T.

Mathematics : T cosW¥ =To ...(1)
Tsin¥ =w.s ..(2)
10 _OST Ty
ws  sn¥ w

. Intrinsic Equation of Common Catenary & =ctan¥
Hence ¢ :T—°
w

¢ ; called the parameter of common catenary
Extra: Notice from (1) & (2)

tan'y = WS Vertical component

T,  Horizontal component

We’ll use this in some questions.



2. Cartesian Equation of Common Catenary
y =c cosh X
C

Base understanding

ds dy 2
for Arc length; —=,[1+| —
dx dx

( calculus : Rectification Chapter)

ds
% =cosV¥, ﬂ =tan ¥ A dy [small arc dS]
ds dx

(Differential Calculus: Tangents & Normal Chapte(ri)X

Solving differential equation (basic)

Step (1) We know that s = ¢ tan ¥
cs=cY
dx

(To use ?) differentiating w.r.t. x
X

2
o _ dYy
dx dx?
2 2
1+(d—yj =c.d—y
dx dx?

This is just a differential equation

let’s solve it  Let ﬂ =p
dx

sl pP :cg—p
X

On integrating sin A p= Xk
c

k: integration constant
.. At the lowest point C of catenary;

x=0 codx

|
(=)



and p=

gle
I
o

Therefore k1 = 0,

5:sinh’lp :>p:sinh5
c c

:ﬂ:sin h5
dx c

On integrating
y =CCos h: 4 k,
c
atC; x=0,y=c ..ki=0
y =C C0S hX
c
Relation between x & s.

. X
s=csinh—
c

Span of Common Catenary:

Half span x = ¢ log (sec¥ +tan'¥)
Full (Total) span = 2x = 2c log(sec'¥ +tan V')

How? cs=ctan ¥

" ds =csec? ‘Pd—\P
dx dx

Using % =sec¥ , we get ; sec¥ = csec’ ‘P%—‘){(]

On integrating, we get
x = clog(sec¥ +tan'¥)+k
LatC x=0and¥ =0 - k=0
Therefore x = clog(sec'¥ +tan'¥)
Exam point: Whenever in the question, the keyword is span.

Just Target to use above formula. (Means try to find ¥ and ¢ from the given information).



Sometimes the relation between x and s is also used in this form.

. x=clog(sec¥ +tan'¥)

X= clog(\/1+tan2 Y +tan ‘P) and s =ctan ¥

2
.'.x=clog[,/1+s—2+§J
¢ c

«—clog S+ (i2+c2)

(4) Relation between y and V.
Relation between s and y.

Relation between x, y and s.

— ws=ctan¥
o csec? g d¥
dy dy
oody L . it gy AY
Using i sin¥'; (Differential Calculus), we get cosec Y = ¢ sec’Y g
S y

~y=csecV
— . For common catenary;
~Tcos¥ =To=wc

ST =w. ¢ secV

L T=wy .my=csecV
— For a common catenary
X . X
cosh—.cos¥ =1; using y = ccosh—, y=csec¥

C C

y+s

— For a common catenary ; x=clog| —

c

X,
y+s=ce’

For proof.



2.

Using y = ¢ sec P, s=ctan¥
x = clog(sec¥ +tan V)
—y?=c?+¢°
Just use : y=c.sec?, s = c tan¥W
For IF,S exam: (Add these two)

1. Approximation of common catenary

Here we consider approximation of the common catenary to the parabola and
exponential curve, depending upon certain conditions.

Case (i) When 2 is small,
c
ry=ccosh> = cl(e%+e%)
c 2
Q. a0Q
-cos hQ = e +e

. . X, =X,
On using expansion for et , € %

We get
A2 3
y=Ccil+—|—| +—| —| +....
21\ c 41\ ¢

" x/c is small ..Higher powers of X can be neglected.
C

X2
y =c+— Parabola.
2c

Observation. The above expression shows as long as x is small and ¢ large the catenary
coincides very nearly with a parabola having its vertex at the point (o,c) and latus rectum equal
to 2c or 2To/w.

Case (ii) When x is large in this case e /¢ becomes very small.
1. o%
Soy=—=ce’c
y 2

Sag of a tightly stretches wire



2

let A and B be two points in a same horizontal line between which a wire is tightly
stretched.

[; length of the wire

w ; weight of the wire

To; Horizontal tension

k= sag DC

h =span AB

Whatever rules we have discussed earlier; we can think those here too.

To k= %W.%I approximately

[for portion CB (taking moments about B)]

T, = 1w
8k

We now proceed to calculate the increase in the length of the wire on account of the sag in middle.

for this let’s take s=csinh>...(1)
C

"+ radius of curvature of the catenary is psec® ¥ =c, ¢ will be large if p is large.

.. If the catenary is flat near the vertex. It follows that X will be small for tightly stretched wire.

oefie 3]

3

X
S=X+—2
6c

Hence s —x=CB - DB

X3
—— approximatel
60 pp y



, c=-2

6T, W
. 1
Now putting X= > h

The total increase, due to sagging in a span of length 4 is

, 1

w?.=h?
2s —h= 2. >
6T,
213
2x—h= w h2
24T,

Examples (arranged in the same order as of required for concept building)

Example.1. A uniform string of weight W is suspended from two points at the same level and a
weight P is attached to its lowest point. If aoand B are now the inclinations at the highest and the

. tan W
lowest points, prove that t—a =1+—

anp P
Solutions: Let’s break the question:
Keywords: Uniform String ; suspended ; A & B
Step (i) Common Catenary
A & B at same level
W : weight of string ACB

NY [
B A

To




% tangent at A makes angle o
% tangent at C’ makes angle 3

AC’B is the string’s position on attaching the weight P. to Point C.
Step (iii) Mathematics
We know that

vertical componet of tension
Horizontal component of tension

tany =

at a point at which tension (tangent) makes an angle  with the x — axis

Lpsw)

tang=2—~ ; At the point A

0
(Weight of strings half portion CA and half of attached weight)

Ip

tan g = ?I_— ; At the point C’

o

Therefore fana = S

tan g P

Ex. 2 A uniform chain of length ¢ is suspended from two points A, B in the same horizontal
line. If the tension at A is n times that at the lowest point, show that the span AB is

\/nf__llog {n + (n2 —1) .

Sol.  Common catenary, Length of chain=/1[] A & B are in same horizontal line

AY
B A

7
To C(0, ¢

Given, Ta =nT,, ... ) Where T is tension at A, T, is at the point C.



Keyword: Span
Click x=clog(secy +tany)
\J
We need c,
Target (i): Finding y

On resolving tensions horizontal and vertical components; then for

equilibrium
Tcosy=T,
Using (1); nTo, cosy =T,
secy=n (2
tan y = \/n_z—l ...(3)
Target (i1) Findig c;

We know that for a common catenary

s =ctany
1 /
S ctany length of arc CA= 5
— et )
2yn?-1

.. Using (2), (3), (4), we have

= 73)

24/n’ -1

Required Span=2x = £ {n+\/n2 +1}

JYn? -1

Ex. 3 The end links of a uniform chain slide along a fixed rough horizontal rod. Prove that the
ratio of the maximum span to the length of the maximum span to the length of the chain is

/
ulog 1+(1+#2)3 2

Sol.  Keywords: Common Catenary

Slide, rough .. friction



Span (maximum)
\2
For the maximum span, the points A and B of the chain must be in equilibrium.
2
Under three forces:

Normal Reaction R, force of friction puR, Tension T

AY ’V T
B A
> uR
C
4
0 > X
Target (1) : finding y:
On resolving forces vertically and horizontally,
T cos w= uR ...(1)
Tsin v =R ...(2)
tan\|1zi sec \y = 1+i2
JZ H

Target (i1) : Finding ¢ (Somewhere talked about length)

s=ctany

/ 1
atA —==ctan SLe==ul
2 v 2

Maximum span AB = 2 X l,uflog{ 1+i2 +1}
2 P u

- x=clog (secy +tany)



Maximum span

Required ratio = _
lengthof chain

/
= plog 1+(1+ﬂ2)1 2

Exampled:- A heavy chain of length 2| has one end tied at A and other is attached to a small
heavy ring which can slide on a rough horizontal rod, which passes through A. If the weight of
ring is n times the weight of the chain, show that its greatest possible distance from A is

2l 1
7log{ (1+2°) +/1}, where = =4 (2n+1)

Solution:- Let W be the weight of the chain go that the weight of the ringis nW .

For the greatest possible distance of B from the fixed point A, the point B must be in
equilibrium  now the point B is in equilibrium under the action of the following forces:
(i) Normal reaction R
(ii) Force of friction uR
(iii) Weight of the ring nW
(iv) Tension T

R
A tBPHR
nW
T
C
hd P X
0 B

Resolving the forces horizontal and vertically, we have T cosy = 4R

(1)
And nW +Tsiny =R (2)

Where y is the angle made by the tangent at B with the x-axis.

Using the value of R from (2) in (1), we have
Tcosy =u(nW +T siny) (3)
=pu(n.2lw+wl), where w(=W / 2l) is the weight per unit length of the chain and
Tsiny =wl

Since T cosy =T, =wc, (3) reduces to WC = £(2n+1)lw, which gives ¢ = z(2n+1)l



But we are given that %:,u(Zn +1). Therefore, c=1/4 (4)
Now using the relation s=ctany at B, we have

| =ctany i.e. Izlztam// using (4)

i.e. tany = 4 sothat secy = (1+/12)

Hence the greatest possible distance of B from A

=2clog(secy +tany) =27|Iog {, [(1+47) +/L}

Example5:- Show that the length of an endless chain which will hang over a circular pulley of
radius 'a'so as to be in contact with two-third of the circumference of the pulley is

3 A
al—————+—
3

Iog(2+J§)

Solution:- Let AFBEA be a circular pulley of radius a. An endless chain AFBCA is hanging on
this pulley so as to be in contact with two-third of the circumference of the pulley.

Therefore, chain AFB = %(27[) = %ﬁa (1)

Since AEB forms one-third circumference of the pulley, the angle AO'B subtended by
this part at the centre O' of the pulley is equal to %x 27 ,i.e. 120°. Therefore,

Z/AQ'D = %(AAO'B) =60°
And hence Z0'AD =90°—-60° =30°
Now ZAGO = /BAG =90° - ZO"'AD =90° —30° = 60°
In the right-angled AO'AD, we have



AD = AO'sin 60° :%\@a (2)

But AD =clog(secy +tany)

=c|og(sec60°+tan60°):clog(2+J§) (3)
Equating the two values of AD obtained in (2) and (3), we find that
%\@a =C Iog(2+«/§) , Which gives ¢ = L
2Iog(2+J§)
Now using the formula s=ctany, we find that the length of chain ACB =2ctan 60"
a\/§ 3a

=2x

2Iog(2+\/§)X\/§ Iog(2+J§)

= chain ACB+ chain AFB

3a 4
=———  _+—7a

Iog(2+J§) 3

3 A
3

Iog(2+J§)

Example6:- If the normal at any point P of a common catenary meets the directrix at Q, then
prove that PQ = p (radius of curvature).

Solution:- Let PM be the tangent at any point P(X, y) of a common catenary and let the normal

at P meet the directrix at the point Q. Also let i be the angle made by PM with the directrix
and PN be the perpendicular from P on the directrix.

VA

We see that ZQPN =90° — Z/NPM
=90" (90" -y)
=y
. . ) PN
Now in the right-angled APNQ, we find that P_Q =COSy



. Yy .
i.e. ——=cosy i.e. PQ=ysec
) 7 Q=ysecy

Since y =csecy , it follows that PQ =csec® i (1)

ds
But we know that s=ctany . Differentiating with respect to y , this gives d_ = csec? 74
7%

,i.e. p=csec’y
(2)
Since p=ds/dy
Comparing (1) and (2), we conclude that PQ = p.

ExampleZ:- A heavy uniform chain AB hangs freely under gravity with A fixed and B attracted by
a string BD to a fixed point D at the same level as A. The lengths of the string and chain are such

that the ends of the chain at A and B make angle of 60° and 30° respectively with the horizontal.
Prove that the ratio of these lengths is (\/5—1) 1.

Solution:- Clearly, heavy chain AB will form a part of the catenary as shown in the figure below.
Y A

N O
Let C be the lowest point of this catenary and cbe its parameter.
The point B is in equilibrium due to the tension in the string BD in the direction of BD and
the tension in the chain in the direction of BF.
It is given that ZAEF =60° and Z/BFO =30°. Since DA is parallel to the x-axis, we find
that ZMDB =30°. Now chain AB =chain AC + chain CB
=ctan 60’ + ctan 30" using y =csecy

2 2(\/§—1)C
=C|2——= |=—F—
G e
Now in the right-angled ABMD ,we have
2(vV3-1)c _ 4(v3-1)c
BD =BM cosec 30" = x2=

5 NG

length of thestring BD _ 4(V3-1)c V3 _ i1
length of the chain AB J3 4c
Thus the ratio of string BD and chain AB is (\/5—1) 1

Hence




Example8:- The end links of a uniform chain of length | can slide on two smooth rods in the same
vertical plane which are inclined in opposite directions at equal angles ¢ to the vertical. Prove

¢

that the sag in the middle is IEtan 5

Solution:- Let EBF and EAG be two smooth rods, which are inclined in opposite directions at
an angle ¢ to the vertical EO.
ACB is a uniform chain of length |, whose end links slide on these rods. The ends of the
chain are in equilibrium due to the tension T and normal reaction R.

o
Now, ZAQx =~/BAQ =90" — ZDAE =90’ —(90° ~¢)
Therefore, v = ¢

¢

Now using the relation s =ctany , we have %I =tan¢, which gives ¢ =%| cotg (1)
Hencesag CD=DO-CO=y-cC
=Csecg—Cc=c(secp—1)

=%I cotg(secg—1), using (1)

.51
l(l_cosf’jj:l 2sin E¢

2\ sing 2 5l 1
2s5In = @cos—
2¢ 2¢
Tan?.
2 2

Example9:- if « and /£ be the inclinations to the horizon of the tangent of the extremities of a
portion of common catenary and | is the length of the portion, show that the height of one

. (a+ a-—
extremity above the other is ISIn( Zﬂ)/ COS( Zﬂ)' the two extremities being on one side

of the vertex of the catenary.



Solution:- Let PQ be a portion of a catenary such that arc length PQ =1. Also, let o and S be
the inclinations to the horizon of the tangents at the extremities P and Q of this portion.
With C as the lowest point of the catenary, let sbe arclength CQ.
Let (x,¥;) and (X, Y,)be the Cartesian co-ordinates of the points P and Q,
respectively. Then using the formula y =csecy we have
y,=cseca (atP) (1)
And y,=csecf (atQ) (2)
VA

B A

(x,-3,) ) P(x.m)

Subtracting (2) from (1), we obtain

Y, —Y, =c(seca —sec ) (3)
Which represents the height of one extremity (P) above the other (Q) .
We need to eliminate ¢ from (3). For this using the formula s=ctany , we get

S+l=ctana (at P) (4)
And s=ctanp (at Q) (5)
Subtracting (5) from (4), we obtain

| =c(tana —tan j) (6)

Now dividing (3) by (6), we finally have
Y.—Y, Seca—secp

| tana —tan g
1 1
_cosa Cosf Cos  —COS &
~sina_sinf sinacos f—cosasin
coOSa Ccospf

25in(a+ﬂ]sin(a_’8)
:cosﬂ—cosa: 2 2
sin(a - ) Zsin(a_ﬁjcos(wrﬂj
2

2
a-p
2

This gives Yy, — Y, =1 Sin(#j/ COS( j, the desired result.



Examplel0:- A heavy uniform string hangs over two smooth pegs in the same horizontal line. If
the length of each portion which hangs freely is n times the length between the pegs, probe that
the ratio of the whole length of string is to the distance between the pegs as k:logk where

K= (Zn +1J1/2

2n-1
Solution:- Let 2| be the length of the portion of the string ACB which forms a catenary between
the smooth pegs A and B. it is given that the length of each of the portions BF and AE which
hang freely is n times the length between the pegs. So BF =2nl and AE =2nl

(1)

VA

B A

\W
F o E

For equilibrium, we see that the tension at A=w. AE, where w is the weight per unit

length of the string.

But we know that T =wy

Therefore, W.AE =wy i.e. AE=Yy (2)

This shows that the end directrix of the catenary as shown in the adjacent figure.

Now equating the two values of AE from (1) and (2), we get y=2nl, ie.

csecy =2n.ctany, sinceat A,y =csecy and | =ctany (using s=ctany )
2n _secy

> X

i.e. = (note)
1 tany
2n+1 +tan
Applying the componendo and dividend, it gives _Seey tany ,
2n—-1 secy —tany
secy +tany  secy +tan 2n+1)"
ie. k2 =22V V=V Y. since kz( j
secy —tany secy +tany 2n-1
2
secy +tan
_ ad Z/) = (secy +tany)’
sec”y —tan“w
Therefore, k =secy +tany (3)

wholelengthof thestring 2y +2l

distance betweenthe pegs - AB
_ 2.csecy +2.ctany
~ 2clog(secy +tany )

, since span AB = 2clog(secy +tany)



_ Ssecy+tany
log(secy +tany) logk
Hence the ratio of the whole length of string is to the distance between the pegs as
k:logk.

, using (3)

Examplell:- A given length 2s of a uniform chain has to be hung between two points in the
same horizontal level and the tension has not to exceed the weight of the length b of the chain.

b+s
Show that the greatest span is (b2 - Sz)ll2 log (bLJ

Solution:- Let w be the weight per unit length of the string. If T denote the tension at the point

A, we are giventhat T__ =wb (1)
Ya
B 4
4
b
C .
Vv
= >
But we know that T =wy.. (2)

From (1) and (2), we get that Y =b when the tension at A is maximum so that the
span AB is the greatest.

Now putting Y =b in the relation y* =c? +s?, we obtain b* =c” +s?, which gives
1/2

c=(b"-5") .

Since are CA=s (given), from the relations=ctany , we have

s
(b —52)1/2 '
Also, using the relation y=csecy at the point A, we have b=csecy i.e.
secy = % = ﬁ (3)
Using (1), (2) and (3), we finally see that:

The greatest span AB =2clog (SEC!//-l—tan 1//)

tanl//§= using (1) (2)

b
=2(b* - sz)ll2 log s )1,2 + & _852)1/2
:2(b2—sz)ﬂ2 log b+s




(b-s) -S

1/2
ol o] 2 e

Examplel2:- A uniform chain of length 2| and weight 2W is suspended from two points in the
same horizontal line. A load W is now suspended from the middle point of the chain and the

. . o . . W (h*+21?
depth of the point below the horizontal line is h. Show that the terminal tension is: > o

Solution:- Let AEB be the catenary formed by the chain of length 2| and LD =h
."‘4

A

» X

Let the co-ordinates of the point L be (X, y). This is the new position of the point E .

When a load W is suspended from E, two catenaries are formed. Let one of them be
ALC , where CL=s and AL =1

At the point L, we have y* =c?+s? (1)
Whereas at the point A, we have (y+ h)2 =c? +(s+1 )2 (2)
Subtracting (1) from (2), we have h® +2hy = 1%+ 2sl
. 17 +h* +2sl
This gives y = o
If w be the weight per unit length, then the tension T at the point A is given by
T=w(y+h)

12 —h?+2sl w( 2sl h?+I?
=W ——+h|=—| —+
2h 20 h h

~ 1(2wsl W h2+|2j

2

. w
_— . ,since W=—
h | h I

2 2
But W = 2T siny = 2ws, at the point L.ThereforeT:%{M+V—v h j

+

h | h
W l+h2+|2 _W(h*+20°
“2th n ) 20 nl




Examplel3:- A string of length | is attached to a fixed point A and other end B is pulled with a
force 'wa' inclined at an angle « to the horizon, w being the weight peer unit length of the

string. Show that the vertical distance of A, above B is \/(IZ +a’+2lasin a)—a

Solution:- Let AB be a string of length | and wbe its weight per unit length. The end A of the
string is fixed whereas the end B is pulled with a force wa inclined at an angle « to the horizon

(i.e. the x-axis). Clearly, the curved chain AB forms a part of a catenary with C as its lowest point.
Ya

---------- ‘/1(x1=y1)

B(x,,y,)
wa

> X

o

Let (X,,Y;) and (X,,Y,) be the co-ordinates of the points A and B, respectively.

If T denote the tension at B, we have

T =wa (1)
Also, using the relation T =wy at B, we have

T= wy, (2)
Comparing (1) and (2), we find that

y,=a (3)
Now using the formula y=csecy at B, we obtain y, =cseca i.e. a=cseca which
gives c=aseca (4)
Further, using the for the formula s=ctany at B, we have s=acosa .tana i.e.
s=asina

Thus arc CB=asina sothatarc CA=asina +1 .

We now use the formula y* =c®+s” at Atoget y = (aCOScac)2 +(asin0¢+|)2 using (4)
=a’cos’a+(a’sin’ a +1” + 2alsina )
=a’(cos’a+sina)+1° +2alsina
=a’+1* +2alsina

Whence y, = \/(az +1% +2alsin a) . (5)

Finally, subtracting (3) from (5), the required vertical distance of A above B.

Y, — Y, :\/(a2+lz+2alsina)—a.



Examplel4:- A uniform measuring chain of length | is tightly stretched over a river, the middle
point just touching the surface of water, while each of the extremities has an elevation k above

2
of surface. Show that the breadth of the river is nearly {I —%)

Solution:- Chain is tightly stretched over the river of breadth AB. Also ACB is the measuring
chain of length | The sag CE =K.

Va
E
B A(x,y
5 > X

Let the co-ordinates of the point A be (X,y).

I . X . X
Therefore, —=csinh— at the point A, (since s=csinh—)
c c

3
Expanding sin h(X/C) in the ascending powers of x/c, we get IE= {5+%(5J +...
C !

X3

6c?’ 2 6c?’ N c?

I
Neglecting higher powers of x/c, we have E =X+

Sag EC=k = y—c=ccosh§—c:c(cosh§—1j

. X . . X
On expanding cosh — in ascending powers of —, we have
C C

el 32 3o o s

X X
Neglecting higher powers of x/c other than (X/C)z, we get k = 2— sothat c= X .
c

K 4k® 8k?
3x 41 3l
2

On putting this value of ¢ in (1), we have | - AB =

Since chain is tightly stretched, we have taken x=1/2.

2 2
Therefore, AB =1 —83L|, i.e. width of the river =1 —&.

3l



Examplel5:- A telegraph wire stretched between two poles at distance a ft apart sags n ft in

the middle. Prove that the tension at the end is approximately W(

weight per unit length of wire.

X
Solution:- We have n=sag =y —-cC = c(cosh ——1j
C

. X, . X
Expanding cosh — in ascending, powers of —, we have
C C

SEEOEBIR

2

1+l
2!

1
41

X

c

X
C

4

_X + neglecting higher powers of X
2c  24c®’ c
a2 4
We have n=—+———,since X=—
8c 21.16¢
a’ a’
Taking first approximation n=— or c=—
8c 8n

a? 7n
_+_
8n 6

], where w is the

(1)

Putting this value of ¢ in the second term of R.H.S of equation (1) we get

a? 4an®

8¢ 3a
2 3

a
Therefore, N =— +3—2 nearly, which gives
a

n

a_z—n_4_ns—n :|__4_n2
8c 3a? 3a2
So g 1 1—4—nz _1—1 1+4_nz near!
"a’ n 3a® r a’ y
2 2 2
Hence c:a— 1+4—n2 :a_+ﬂ
8n 3a 8n 6

Thus tension at the point of support
2
n
:w(n+c)=w( j

a 2
n+—+—
8n
Therefore, tension at the pole is W(

a“~ 7n
_+_
6

9

w
6 (
a? 7n
_+_
8n 6

}, on putting the value of c.



Examplel6:- A telegraph wire is made of given material and such a length | is stretched between
two posts, distance d apart and of the same height, as will produce the least possible tension at

the posts. Show that | = %sinh A, where 1 is given by the equation AtanhA=1
Solution:- We know that T =wy

:choshzi,since x=d/2 atA
c

Therefore, T = wc cosh i )

2C
Differentiating it with respect to ¢, we have
d—T=w coshi—isinhi (1)
dc 2c 2c 2C

Differentiating again with respect to ¢, we have

2 2
i =w(—isinhi+isinhi+d—3coshiJ

dc? 2¢? 2c 2c? 2c 4c 2c
2 2
Therefore, d—-! = Wd—3 cosh i >0
c 4c 2C

Hence the tension at the point of support is minimum. For minimum tension dT /dc=0,

which gives w coshi—isinhi =0, from (1)
2c 2c 2C

Therefore, i tanh i =1
2C 2C

On putting d/2c =1, we have A =tanhA=1.Here c=d /24 (2)

| . . X
We have — = csmhi, since s=csinh—
2 2C c

On putting the value of ¢ from (2) we have | =%Sinhﬂ,.



PREVIOUS YEARS QUESTIONS: IAS/IFoS (2008-2023)

SOLUTIONS HINT: Beauty of learning systematically this topic statics- No matter what book
you follow, UPSC PYQs are always directly examples from book itself. As to avoid the
documents to be lengthy and unnecessary repetition we have just put hints and mentioned
the references in front of PYQs.

1.COMMON CATANORY

Q6(a) A cable of weight w per unit length and length 21 hands from two points P and Q in the
2

same horizontal line. Show that the span of the cable is 2| (1— ], where h is the sag in the

312
middle of the tightly stretched position.
UPSC CSE 2022

Q1. Derive intrinsic equation
x=clog(secy +tany)

of the common category, where symbols have usual meanings.
Prove that the length of an endless chain, which will hang over a circular pulley of radius 'a' so as

2
to be in contact with 3 of the circumference of the pulley, is

47 .3 | [7220201F0s]

3 Iog(2+J§)

Solution Reference: part-1 Article 3 span of common catenary in theory part of this chapter. Part-
2 Example 5

Q2. The end links of a uniform chain slide along a fixed rough horizontal rod. Prove that the ratio
of the maximum span to the length of the chain is
1
1+(1+ 1% )2
,UIOQQ

where L is the coefficient of friction. [7a 2018 IFoS]. Solution Ref. Example 3

Q3. Find the length of an endless chain which will hang over a circular pulley of radius 'a' so as to
be in contact with the two-thirds of the circumference of the pulley. [8a UPSC CSE 2015]. Solution
Reference: Example 5



Q4. Determine the length of an endless chain which will hang over a circular pulley of radius a so
as to be in contact with two-thirds of the circumference of the pulley. [7a 2015 IFoS]. Solution
Reference: Example 5

Q5. The end links of a uniform chain slide along a fixed rough horizontal rod. Prove that the radio

1+y1+4°
of the maximum span to the length of the chain is xlog {u} where L is the coefficient
U

of friction. [7c UPSC CSE 2012]. Solution Reference: Example 3

Q6. A cable of length 160 meters and weighing 2 kg per meter is suspended from two points in
the same horizontal plane. The tension at the points of support is 200 kg. Show that the span of

the cable is 120cosh™ (%j and also find the sag. [5d 2011 IFoS].

Q7. A uniform chain of length 2| and weight W, is suspended from two points A and B in the
same horizontal line. A load P is now hung from the middle point D of the chain and the depth of
this point below AB is found to be h. Show that each terminal tension is

P.—+W.
h

2 2
1{ 1 h™+1 } [7a 2010 IFoS]. Solution Reference: Example 12




STABLE AND UNSTABLE EQUILIBRIUM

Step (i): Let’s try to understand basic terms first and then the mathematics behind
it.

Equilibrium :
Stable: After slight displacement, it comes into it’s original position.
Unstable: After slight displacement, it does not return to it’s original position.

Keywords: slight displacement from it’s original position of equilibrium.

. > Base
Body 2

It can be seen that if body 1 is slightly displaced from it’s position of equilibrium, the
body may come to it’s actual position but it is also possible that a further displacement it does
not come back to it’s position of equilibrium. The same we can think of body 2 too.

In case: body 1; body 1 is in unstable equilibrium.
Body 2 is in stable equilibrium.
The above story indicates that.

If height of centre of gravity of the body from the fixed (base); then it’s position of
equilibrium is unstable and if this height is minimum, then position of equilibrium is stable; Let’s
try to extend this understanding through mathematical ways.

Case (1): A body rests in equilibrium upon another body (which is fixed), the portions of
two bodies in contact being spheres of radii r and R respectively, and the straight line joining the
centres of the spheres being vertical; if the first body be slightly displaced; finding whether the
equilibrium is stable or unstable, the bodies being rough enough to present sliding.



Ol
G, C
Gt E v, G
B
D
F
0
> X
O H

O; centre of spherical surface of lower body.
O’; centre of spherical surface of upper body.
Gi; centre of gravity of upper body (actual position).
G2; centre of gravity of upper body after displacing.
Let’s have the displacement ast DF(Arc length) = EF (Arc lenght)
OD=R,OD=r
EG2=h, G:B L CH
Let /DOF =0 = ZOCH, ZECO=¢

ZECH=0+¢

Arc DF=ArcEF .. R-0=r-¢ ..(1)
Let z be the height of G above ox line.

z=CH - CB as G2BIl ox= OC cos0 — CG; cos(0 + )

= (R +r)cosd + (r —h)cos(0 + ¢) ...(2)

v G2C=r—h=(R +r)cosO + (r — h)cos( R : r]@

Using (1)

Differentiating (3) w.r.t 6, we get

E=—(R+ r)sin0+(r—h)(RJr rjsin(wje
de r r

For equilibrium i.e. for maxima or minima of z,

.3



Putting % =0

:>—(R+r)sim9+(r—h)(R:rjsin(R:rjezo

We can observe that 6 = 0° satisfies above equation.

2

z R+r) R+r
Now—=—(R+r)cos¢9+(r—h)( ; jcos( ; je

d,z R+r)
$|g_0=—(R+r)+(r—h)(T]

:(R:rjz[&fr)”‘“}: —

Gz g LRy 1011
Clearly: dg? R+r - s g4=
. h R r
(Minima)
d,z .. IR
——  <0if <h
And d6? R+r — 1<1+l
. h R r
(Maxima)

Thus the equilibrium is

Stable when 1 > l +1
h R r
Unstable when 1 < 1 + 1
h R r
dyz . rR
Now for - 271 =0 ie. h=
do? |9_0 R+r

SoLet’scheckthesignof:;%Z3 at0=0
dsz . R+r\¥ . (R+r

——=(R+r)sind—(r-h)| —— | sin| — |&
d93(+) ()(rj(r)

dgz
de*

=(R+r)cos<9—(r—h)(

R+r

r

fo

R+r

r

J



o]

= a negative quantity
z 1s maximum so equilibrium is unstable.

Therefore, the equilibrium is —

Stanble when

Unstable when —<=+

Sk o)k
Sk s
Tl |-

% Deductions: If the upper body has a plane surface in contact with the lower body i.e. r —o
the equilibrium is stable or unstable according as h <or > R.
1 1 11 1 1
(v =>—+=, =<—=+2)
h o R h o R
% Similarly we can think of if lower body has plane surface in contact the R —
Exam Suggestion: In the exam, Proofs are not being asked. Only; we need to remember
above formula. For three cases. (See examples, how)
Case (ii):

A body rests in equilibrium inside another concave fixed body, the portions of two
bodies in contact being spheres of radii r and R respectively, and the straight line joining the
centres of the spheres being vertical. If the first body be slightly displaced. Discuss the stability

of equilibrium the bodies being rough enough to prevent sliding.
Proof: Similar way as for case (ii);

The equilibrium is



Stabel when % > 11 ,
r

R

Unstable when % < 11 ,

r R

If % _1 % then the equilibrium is stable when R > 2r and unstable when R < 2r
r

Case (iii): A body rests in equilibrium upon another body (which is fixed) and the
portions of two bodies in contact have radii of curvature p; and p, respectively. The C.G. of

the first body is at height h above the point of contact and the common normal makes an angle o
with the vertical, then equilibrium is-

Stabel if h<-—222_cosy

PLt P2

Unstable if h>-222_cosq
Pt o

1 1 1 cep .
In case —=-—+—,the equilibrium is neutral.
PL P2
Note: Now; In questions, we need to observe.

++ Contact surfaces
% Height of C.G. ( For this we need to remember C.G. for some bodies in particular.)
Example:

1. Hemisphere OG = %a

=

Where ‘a’ is radius:OA

2. Cone; OG =

IS



Where OA =/

a

3. Square; NG = 5

N

4. Calculating C.G. of a system of two bodies.

|Ci2
' G

t N

»GI

0 base

Let y» is height of C.G. of upper body with C.G.G»
y1 is height of C.G. of lower body with C.G.G2
Then C.G. of the system of two bodies

Jhoy o MY
W + W,

Where wi: weight of lower body.

wa: weight of upper body.
Use:



wi=mg= = (gﬂr3 xéj g for sphere

Homogeneous body/bodies of same substance means the density p is same.

For cone and hemisphere

E7rr2€ r+£ +2—7[r3 r—i
2 4 3 8

y=
z71'r2€+g7rr3
3 3
For
14
Here NG;= —
4
NG; = i
8

Radius of hemisphere : r

Note: We have to deal different types of problems:

Type(i): Curved surfaces related problems Hemisphere, sphere, cone, elliptical
(The lower body is a curved surface or the upper)

Type (ii): Problems related to rods

Type (iii): Problems related to rectangular laminas

Type (iv): Miscellaneous problems.



Revision for exam hall (Recalling : geometry applied in questions)

% A hemisphere rests on sphere : When curved surface on the sphere. When the flat surface
on the sphere.

0

% A lamina in the form of an isosceles triangle whose vertical angle is o, placed on sphere.

Is flat surface on sphere.
A
B% D
C

Square on sphere; maximum till : %

BG:gBD
3

7
A X4

Hemisphere has a solid right cone on its base and hemisphere rests on the convex side of a
fixed sphere; the axis of cone being vertical.
Wiy +Wo Yo

W+ W,

quadratic equation in /; ¢ cannot be negative.
%+ Hemisphere lying in a fixed spherical shell. Particle is attached to the upper end.

oY

y=



o

% A thin hemispherical bowl; on the highest point of fixed sphere, Inside the bowl, a small
sphere. Keyword. Using ‘moment’
% Arrod; string: Slung over a peg considering ellipse.
» The focal distance of any point P on the ellipse is constant and is equal to the length of
its major axis.
P

>
«» Paraboloid frustum

% Rods

Q

Sine rule
sin(6é+ p)



sin(e— p)
sin{z—(a+B)}
» Depth of C.G. ; max depth stable,
Min. depth unstable.

» String and rod : r? =4a” +i% —4acos@
% Square lamina ; Properties of squares (diagonals) rectangles,
rhombus.

% Miscellaneous;
» Isosceles triangular lamina in contact with two smooth pegs.
__AQ
sinA  sin APQ
» Solid circular cone

Sine rule

% Four uniform rods
%+ Three equal spheres on a smooth table, elastic band.
%+ String, pulley, weight.



Examplel:- A hemisphere rests in equilibrium on a sphere of equal radius: show that the
equilibrium is unstable when the curved surface rest on the sphere and stable when the flat
surface of hemisphere rests on the sphere.

Solution:- Case : 1:- When the curved surface rests on sphere. Suppose that radius of the sphere
is a, C.G. is at the point G; N, the point of contact. We know that OG =3a/8

2]

h = height of C.G above N
=0ON-0G
~3a_5a
8 8
Also radius of lower body =R =a radius of upper body =r=a.
Applying Art. 39 the equilibrium is unstable if

1 1 1
_S_+_
h r R
. 8 1 1 2
i.e. —a< —+—=—
5 a a a
. 8 _
i.e. §< 2 , which is true.

Hence the equilibrium is unstable.

Case: 2:- When the flat surface rests on the sphere.
In this case of plane face of the upper body is in contact with the lower sphere, so I =,

R=a h=NG=3a/8
The equilibrium is stable if

1 1 1

h r R
. 8 1 1 1
ie. —>—+==

33 o a a
i.e. §>1 which is true.

So, the equilibrium is stable.



Example2:- A lamina in the form of an isosceles triangle whose vertical angle is «, is placed on a
sphere of radius rso what its plane is vertical and one of the equal sides is in contact with the
sphere. Show that if triangle be slightly displaced in its own plane, the equilibrium is stable if
sina < 3r/a, where ais one of the equal sides.

Solution:- ABC is the triangular lamina with equal sides BA and BC such that

BA=BC=a, ZABC=«.

BD is the bisector of ~/ABC, ZADB =90°

So, ZABD =%a, ZBNG =90°

G being the C.G. of the lamina, then BG=§DB=§&COS(0{/2) as AB=a and
h=GN =BG =sinha/?2

:iacosa/25ina/2
333
a .

=—Singa
3

R = radius of the lower body =r (given)
r = radius of the upper body (Flat surface) =00

The equilibrium is stable if

1 1 1
h r R
If 3 > +1

Example3:- A heavy cube balances on the highest point of a sphere whose radius is r. If the

sphere is rough enough to presents sliding and if the side of the cube is 7zr/2, show that the
cube can rock through a right angle without falling.



Solution:- As shown in the fig. 1 ABCD is a uniform cube, O is the centre of the given sphere
AB=rrz/2,Gisthe C.G. of the cube, so h=GN =rx/4, R = radius of the lower surface =r .
The surface of cube in contact with the sphere is plane AB.
So, I =, the radius of the lower body (sphere) =r .

Applying Art. 39, the equilibrium is stable if
1 S 1 1 o 4 1 1

=>4+, je. —>—+=
h r R rr o I
D C
€]
N |
B
Fig. 1

Fig. 2
4> 7, which is true since 7 =22/7i.e.

Hence, the equilibrium is stable.

As the cube rocks clockwise, the C.G. of the cube will move towards right hand side. When
the point A comes in contact with the surface of the sphere, in this position as shown in
fig.2, the line GA becomes vertical. If the cube tilts further slightly the cube will fall down.
Hence the cube will not fall down till the point A comes in contact with the surface of the
sphere.

The arc NA=r9=7Z—r as NA:l”_r:”_r
4 2 2 4

= 6?=z
4

It follow that the angle through which the cube can turn on one side is 7z/4. Similarly on
the other side it can also turn through 7z /4. Therefore, the total angle through which the
cube can rock (turn) without sliding is #/4+x/4=7/2.

Example4:- A solid homogenous hemisphere of radius rhas a solid right cone of the same
substance constricted on its base, the hemisphere rest on the convex side of a fixed sphere of
radius R, the axis of the cone being vertical. Show that the greatest height of the cone consistent

rR[\/(3R+r)(R—r)—2r]

with stability for a small rolling displacement, is
r+

Solution:- As shown in the figure, suppose that G, and G, are the C.G. of the hemisphere and

the cone respectively and that G, the C.G. of these combined bodies. Suppose that NB =1,
h=CG. Giventhat CN=r, AC=R



WY, +Wo

Regarding C as origin and CG as y-axis and applying the formula y = — 2 we get
W, + W,
T | 27y 3r
=rilr+—|+—|r——
3 4 3 8
h= 5
Zp2 4 2 pr?
3 3
NG, =1/4, NG, =3r/8
I(r+1)+5r2
A 4) 4
| +2r
The equilibrium is stable if
1 1 1
h r R
or if IJIrZr5 >RR+r
I(r+j+r2 r
4) 4
orif I?(r+R)+4r’l +5r° -3r’R <0 (1)

If I, and |, are the roots of the equation
12 (r +R)+4r’l+5r° —3r’R =0, then
L —2r? —r{(r+3R)(R-r)}"

1

r+R

—2r +r{(r+3r)(R-r)}
r+R

In order to satisfy the inequality (1), | should be such that |, <1 <1,.

1/2

2

But |,is a negative value and | cannot be negative, so 0<I <1,.
—2r?+r{(r+3R)(R-r)}"”
r+R

i.e. | <




=$[{(r +3R)(R-r)}" - ar]
- {(r+3R)(R-)f"* ~2r |

So, the greatest value of | consistent with stability of the equilibrium is

L[\/{(sRH)(R—r)}—zr]

r+R

r
Hence for stability, | <
r+

Example5:- A sphere of weight W and radius a lies within a fixed spherical shell of radius band a
particle of weight W is fixed to the upper end of the vertical diameter. Prove that equilibrium is
W b-2a W b-2a
stable if — > and thatif —=
w a w a
Solution:- As shown in the fig. there is a spherical shell ABC within which there is a sphere with

vertical diameter BD . A weight w is putat D, W is the weight of the sphere.

, then the equilibrium is essentially stable.

A ~
D C

B
Radius of the shell =b, radius of the sphere =0OB =a.
Suppose that G is the C.G. of the system containing weight w at D and the sphere.

h—BG - wBD+WBO 2aw+aW ([ 2w+W a
w+W w+W w+W
Applying Art. 40, the equilibrium is stable
1 1 1
If —>———
h r R
w+W 1 1

orif ————>———
(2w+W)a a b
Orif (W+W)b>(b—a)(2w+W)
Orifv—v>b_2a
w a
Thus the equilibrium is stable if
W b-2a
—>
w a
IfV_V:b—Za
w a
b>2a = b-2a>0

the equilibrium is stable if (Art. 40)



W W b-2a
Concluding that — is positive, which is true, therefore, if — = then the
w w a

equilibrium is essentially stable.
Example6:- A body consisting of a cone and a hemisphere on the same base, rests on a rough
horizontal table, the hemisphere being in contact with the table; show that the greatest height of

the cone, so that the equilibrium may be stable, is \/5 times the radius of the hemisphere.

Solution:- Suppose that the height of the cone =1 ; radius of the hemisphere =r .
O

C
The C.G.s of the hemisphere and cone are G, and G, respectively,and G, the C.G. of the

combined system.

HG, = %, HG, :!I If h=HG then using the formula

9: Wiy +Wo ¥,
W, + W,

1 2( 1) 2 3( srj
—arlir+= |+ -ar’|r——
he3 4) 3 8

17zr2| +g7rr3
3

3

e
[fr+=|+=7r
B 4) 4

B 1+42r

1 1 1
Here r =1, R =0 the equilibrium is stable if E>_+E
r

- 1+2r >1
I(r+1j+5r2 r
4 4
= r(l+2r)>|(r+£j+§r2
4) 4

= I<r\/§

Hence the greatest height of the cone. For stable equilibrium is \/5 times the radius of
the hemisphere.




Example7:- A solid sphere rests inside afixed rough hemisphere bowl of twice its radius. Show
that however large a weight is attached to the highest point of the sphere, the equilibrium is
stable.

Solution:- Suppose that B and C are the centre of the sphere and the hemispherical bowl
respectively. W = weight of the sphere; W= weight attached to C

AC =2AB=2r (say),so R=2r
If h is the C.G. of the system above the point of contact A,
h_Wr+w2r (W +2w .
W +w W+w

The equilibrium will be stable (using Theorem 3)

111 1 1 1 i
f—>———=-——=— (In usual notation)

h r R r 2r 2r

W +w 1
—>_
(W+2w)r  2r

Hence the equilibrium is stable.

= W >0, which is true

Example8:- A thin hemispherical bowl of radius b and weight W rests in equilibrium on the
highest point of a fixed sphere of radius a, which is rough enough to prevent any sliding. Inside
the bowl is placed a small smooth sphere of weight W, show that the equilibrium is not unstable

unless w<W (a—_bj
2b

Solution:- The equilibrium position of the system is shown in the fig. A and B are the centres of
the lower sphere and bowl respectively. Here bowl is slightly displaced. Initially, points C and F
were coinciding. In the tilted position the weight W moves (slides) from C to its lowest position
in which BE must be a vertical line.




If /FAD=60, ZCBD=¢, BG=h/2.
Since are FD =arc CD

= afd=by
The equilibrium will be stable if the moment of W acting at G about D the moment of
w about D.

ie. W {gsin(0+¢)—bsin 0} > wb sin@

= W {%sin (1+a/b)é-sin 9} >wsin @
Since @ is very small, so using the property sin@=26.

W {%(a+b)«9—b6’}>wb«9
= W<W(a—_bJ
2b

Example9:- A rod SH, of length 2c and whose centre of gravity G is at a distance d from its
centre, has a string, of length 2cseca, tied to its two ends and the string is then slung over a

small smooth peg. P; find the position of equilibrium and show that the position which is not
vertical is unstable.

Solution:- Given that PS + PH =2cseca . Here B is the middle point of the rod SH and G, it

C.G. such that BG=d, BS =BH =c (given)
P
SO
)

A‘

We know that the sum of the focal distances of any point P on the ellipse is constant and
is equal to the lengths of its major axis. So the peg P will be on the ellipse whose foci are
S and H . Regarding AA' as major axis with centre (origin) B, if the ellipse be

2 2
X“ Yy
4= 1
22 (1)
Then 2a=PS+PH =2c sec «
= a=CcseCaand ac=BH =c = ae=c
But b’ =a*(1-e”)=c’sec’ a—¢’ =c’tan’
= b=ctan «
XZ y2
Using these values of a and b, the equation (1) becomes + =1

c?sec’a citan’a



x> sin® a + y* = ¢? tan® o referred to B as origin and A'A as x-axis
Shifting the origin to the point G(d,0) we get

(x+d)zsin2a+ y’>=c’tan’ o
Changing to polar coordinates, (rcosé+d )2 sina +r?sin”@ =c*tan’ o, where G is the
pole and GH is initial lineand GP=r, ZPGH = ¢
r? cos” @cos” o — 2rd sin® o cos @

+(c*tan’ @ —r® —d’sin’ ) =0 (2)

If we find the value of @ for which ris a maximum or minimum, and take the
corresponding point P of the ellipse for the position of the peg. And set the rod to make

PG vertical, we shall have the slant position of equilibrium.
The equation (2) is quadraticin cosé .

; ; . 1/2
2rd sin’ i[4r2d2 sin® o — 4r? cos? oz(c2 tan? o —r? —d?sin? a)]

cosd = >
2r°cos” a

. ) ; 1/2
dsin® a+ [dz sin® a + cos? a(dz sin® o + r? —c? tan? a)]

rcos’ a
But  d’sin’a+cos’ar(d’sina+r’—c’tan’ )
= d”sine(sin’ a +cos’ @)+ 1’ cos’ a — ¢’ sinx
=d®sin*a@+r’cos’ o —c*sin’ «
r* =cos’ a(d” —c’)sin*

dsin? on_r\/r2 cos’ a+(d2 —cz)sin2 a

So, cosf = 5
rcos” o

The value of @ is real if r? cos? 05+(d2 —cz)sin2 a>0
= r? >(c2—d2)tan2a

Since r cannot be negative, so

r2 >,/(c2—d2)tana

Therefore, the least value of ris /c?—d? tana and whenr =+/c?—d? tan«, then
dtan o«

Je? —d?

Since in this case r is minimum the C.G. of the rod is at its minimum depth below the peg.

(Vertically) and therefore, the C.G. is at the maximum height above the horizontal, and so

the equilibrium is unstable.

The order two positions of equilibrium are when P is at A or A' and the rod SH is then

clearly adjusted to vertical.

cosd =



Examplel0:- A smooth ellipse is fixed with its axis vertical and in it is placed a beam with its ends
resting on the arc of the ellipse, if the length of the beam be not less than the lotus rectum of the
ellipse, show that when it is in stable equilibrium, it will pass through the focus.

Solution:- Suppose that S is the focus and MN, the directrix of the ellipse, AB is the beam.

Referring to S as pole, the equation to the ellipse is —=1+ecos@ where, Sz is the initial line.

r

By the definition of the ellipse.

Udy

B

As =eAM, BS =eBN

Hence,
Z = height of C.G. of rod AB above MN
. %(AM +BN)

1
26
The equilibrium is stable if z is minimum
AS + BS is minimum
Point A, B,S alllie on the same straight line

(AS +BS)

Beam AB must pass through the focus.
Thus when beam AB passes through the focus, the equilibrium is stable.
If AB=AS+BS
I I
= +
1+ecosd 1+ecos(z—0)
| I
= +
1+ecosd 1-ecosé
3 2l
1-e*cos’ @
AB is minimum when cos@=0, i.e. 8=x/2 sowhen 8= /2, AB = length of the

latus rectum =2I
Hence, the minimum length of the rode = length of latus rectum of the ellipse.




Examplell:- A lamina in the form of a cycloid whose generating circle is of radius a, rests on the
top of another cycloid whose generating circle is of radius b, their vertices being in contact and
their axes vertical. If h be the height of C.G. of upper cycloid above its vertex, show that the
4ab

a+b

and is unstable if h>

equilibrium is stable only if h < 4ab ,
a+b
Solution:- Cycloid S =4asiny (upper)
ds
p=d—=4acosy/

At vertex A (point of common contact)

w=0, p=4aat A.

Similarly, for lower cycloid p, atAis 4b

Using Art. 41 deductions, the equilibrium is stable if

ae

A

b 4
1>i+i or h<4;alb andunstablelfh>ib
h™ 4a 4b a+b a+b

Now, aft +i 1 - %%4_%@72
ds y2i ds P> yo) ds p; ds

_ 1 1

2 4asm1//+p— Absiny

1

a

— +— [siny
/31 pz

=0, where =0, which gives no information.

2 2
Further, d_z(i}d_z[iz _4 (_i%} d ( 12%}
ds\ p ) ds°\ p; ds ds ds{ p, ds

iﬁsn +i 4—bsin
ds V" ol v

4631 d'olsmz// + 43 coswd—w
S o) ds

=—2X

1

+4a| — 23 dp, LZsiny +— ! cosy/d—y/
p; ds o5 ds



3 4a P P> 4bcosy

P Pi

:8aX4asin2y/+4—?coswsecvl+4b[8bsin2w+cosw 1 j

32a°® ., 1 32b° ., 1
= Sin l//+—+—3—3|n l//+—2

13 12 pz ,02
’ 2 + +2
so, L i}rd_{i}r(pl Pz)z(psz A1)
ds"\ o) ds*\ o, P1 P2
’ ? +p,) (1, +2
_ 328 ey, L 328 Sinzwiﬁ(pl pz)z(g A)
P P P2 P2 P1 P>
4(a+b)(b+2a)4
= : + L + ( +b)(b+ ) when ¢ =0>0.

(4a)° (ab)"  (4a)(ab)’
Showing that the equilibrium is unstable.

, stable when h < Lab

a+b a+b

Therefore, the equilibrium is unstable when h >

Examplel2:- An elliptic cylinder is placed with its axis horizontal on a rough plane inclined to the

horizontal at an angle less than the angle of friction. Prove that the cylinder can not rest if the
2 _b2 a.2 _b2
and if the inclination is equal to sin™

2

? +b? a’+b’

T . . o] a
inclination of the plane exceeds sin 1(
a“+

the equilibrium is natural to first approximation.
Solution:- In the fig. the vertical cross-section of the inclined plane and the elliptical cylinder have
been shown. OA is the inclined plane, 0X is horizontal. ZAox=«a, the axis of cylinder is

perpendicular to the plane of the paper. CP is vertical and NP. is normal P is the point of

contact. Regarding EF as the major axis and C as centre, the equation of the ellipse is
2 2

Xy
—2+F: .

Let the coordinate of P be (acosd,bsin@). Equation of the normal NP is
ax =secd—bycosecd = a’ —b?

Slope of NP =m, = %tan 0



Slope of CP:mZ:Etane, a is the angle between PC and PN, so
a

a b
—tan@—-—tan@
m1_m2 _ b C

1+mm, 1+atan6?2tan¢9
2 _p2 2 _p2

_a b tanéz? _a b sin 20
ab 1+tan“@ 2ab

2ab

Sin26’=ﬁtana
a“-b

Since, the value of @ is real so, |Sin 20| <1

2ab tan tan
Ms 1 as aszb? isa -+ve quantity

a’—b? a’—

a’-b? ) a’-b?

=SIha < > >

2ab a‘+b
2 2

a < sinl{a2 EZ j, which is the condition under which is the cylinder rests, Or. In other
a +

fana <

2 2

. : . (a"-b
words, the cylinder cannot rest if o >sin 1( > Zj
a“+b

a’-h?
a’ +b?

Now consider the case when Sin ¢ =

Sothat sin20=1 = 60=x/4
h=CP=(a2 C0529+b25in29)”2

2 2 1/2
:La ;b J as 0 =4%° (1)

The parameter equation of the ellipse is
x=acosd, y=hbsind

ﬂ:—gcote

dx a

2

d gzgcoseczed—e

dx° a dx

=_Ecosec2¢9 1 :—%COSEC?’Q
a asing a

At =45



2 2
ﬂ:_E,d ydx 2\/5%.

- _ None
dx a

. {1+(dy/dx)z}3/2 ) (l+b2/az)3/2 ) (az+bz)3/z
P= d2y/d 2\/§(b/a2) T 2J2ab

The equilibrium is natural if

1 (1 1]
=] —+-— |seca
h o p,
Here p, = radius of curvature of the inclined plane =« and p,=p. Hence

1 1
—=-—seca = h=pcosa
h p

3/2

(a®+b*)"" 2ap (az +b? jﬂz
= h= =

2J2ab a?+b? 2

Which is true by the virtue of (1)
Hence, the equilibrium is natural.

Examplel3:- A solid hemisphere rests on a plane inclined to the horizon at an angle,
a<sin’1(3/8) and the plane is rough enough to prevent any sliding. Find the position of
equilibrium and show that it is stable.

Solution:- CD is horizon CE is the inclined plane, ZECD =a=/Z0EG . As shown in the figure.

Ol s the centre of the hemisphere, E is the point of contact, OE is normal to the inclined plane,
G is the C.G. of the solid hemisphere such that OG=3r/8, where r = radius =OE,GE is

vertical.

C D
Let GE =h.In AOEG, ZEGF =6
EG  0OG  OE
SinEOG sinOEG sinOGE
h 3r/8 r
= - =— =—
sin(0—a) sina  sing
3rsin(6 -

8sina



For stable equilibrium, h <M or 1>(i+ij3e00{

Pt P, PP
Here p, =1, p,=0,s0 h<rcosa
3rsin(0-a)
8sina
3sin(0—a)<8sinacosa

Putting the value of h we have ,rcosa

U

U

3(sin@cosa —cosPsinar) <8sinacosa (2)
From (1)

1/2
sinezgsin a,cosez(l—%sinzaj (3)
Putting these value of sin@ and cosé in inequality (2), we have
8 . 64 . YV° . .
3 gsmacom— 1—Esma Sina p <8sina cosa
1/2
= (1—%sin2aJ sina >0
Since sina #0, so 1—%sin2a >0 =sina <§
=  a<sin’(3/8) (4)
For its truth, we see in equation (3)
sin0=§sina
3
For real value of @, sinf<1
8 . . 8
= —sSina <1 =sina <—
3 3
So, result in inequality (4) is true. Therefore, the equilibrium is stable.

Example14:- A solid frustum of paraboloid of revolution, of height and latus rectum 4a rests with

its vertex on the vertex of paraboloid of revolution whose latus rectum is 4b. Show that the
3ab

(a+b)

Solution:- Regarding A as the origin the equation of the generating parabola of the paraboloid
ACB is

equilibrium is stable if h<

y® = 4ax
dy Z2a
oy
dy 2ady 2a2a_ 4a’



Le(ay ok} (144a2/y?)"
. _

d?y/dx*  —4a’ly®
(y*+4a® )3/2 (4ax+4a’ )1/3
- 43> 43>
X
C
G
},
A

The value of p at A(0,0),

(0+4a® )3/2
4a
So, p, =2a, since p (= radius of curvature) remains +ve
Similarly, p, =2b,

Suppose that G is the C.G. of upper body, then
i 2
. jxdm - IO X(zy*dx) p

AG=X= e TR
m
I Ioﬁy pdx
jbxzdx 2N
0
= =—=Nh, (say)
dex 3 g
The equilibrium is stable if h < PPz o5
Pt P,
2h 2a2bcosO
= —<—————— here =0
3 2a+2b
3ab
= h<——
a+b

Examplel5:- A uniform beam of length 2a rests with its ends on two smooth planes which
intersect in a horizontal line, if the inclinations of the planes to the horizontal are « and

,B(a >,B), show that the inclination @ of the beam to the horizontal in one of the equilibrium

positions is given by tané = %(Cotﬁ—cota) and show that the beam is unstable in this position.

Solution:- As shown in the figure. Suppose that OA and OB are two inclined planes intersecting
in a horizontal line through O and perpendicular to the plane of the paper. Let AB be the



uniform rod resting on the planes and making 6 with the horizontal line MC so that
ZAOM =am /BOC =4 /BCM =6. G is C.G. of the rod AB =2a.

7

Applying sine formula in AOAB,

OCA OB  AB
sinOBA sinOAB sin AOB
OA oV 2a 2a

- sin(0+ﬂ):sin(a—e):sin{n—(a+ﬂ)}:sin(a+ﬂ)

sin(6+ ) _ asin(a—@)
sin(a+B)’ i sin(a + B)

; =GL=%(AM " Bn)=%{OAsina+OBsin,B}

:E{Msina+wsinﬂ}

= OA=2a

2 |sin(a+p) sin(a+ f)

=m{cos(0+ﬂ)sin a+sin(a—0)sin B}
o
%=m{cos(mrﬂ)sina—cos(a—&)sinﬂ} (1)

3—; =0 gives the position of equilibrium.

So, cos(6+ f3)sina—cos(a—6)sin =0
(cos@cos B—sinGsin B)sina —(cosacosd+sinasing)sin f=0

2sin@sinasin B =(sinacos f—cosasin B)cos o

U

U

= tanezé(cotﬂzcota) (2)

Which gives the position of equilibrium.

Differentiable (1) w.r.t &

d’z a : : : :
v Sin(OHﬂ)[—sm(¢9+,8)sma—sm(a—@)sm B




- _m[sin (6+B)sina+sin(a—0)sin 3|

= —;[sin @cos fsina +cos@dsin gsina +
sin(a+4)
sinazcos@sin f—cosasingsin 5]
= —;[ZSH’] asin Bcos @+ (sina cos f—cosasin ) cosd |
sin(a+f)
— 2a3|r_1 asin ffcosd {1+1(cotﬂ—cota)tan 0}
sin(a+ ) 2

2asinasin gcoséf
- sin(a+p)
_2asinasin Bsec’ 0
T sin(a+p)
=a hegative quantity.
Since «, 3,0 all are the acute angleand o+ <.

(1+tan®0) using (2)

So, z is maximum, therefore the equilibrium is unstable.

Examplel6:- A heavy uniform rod rests with one end against a smooth vertical wall and with a
point in its length resting on a smooth peg; find the position of equilibrium and show that it is
unstable.

Solution:- Suppose that AC is the wall and AB, the smooth rod with G as its C.G. and Ps a
peg whose distance from the wallis b . Let the rod resting on P make an angle @ with the vertical
wall. Here the peg P is fixed and MPN s a horizontal fixed line. AB=2a, AG=a. Let z be

the height of C.G. of the rod above line MPN . So (GN | |CA)

C
B
E g
M s N
g
14 V

z=GN =AE-AM ,as EG| | MN
=acosd —bcotd
=-—asin@+bcosec? 6



dZZ 2
W:—acosé?—Zbcosec dcotd

=—(acos@+2bcoses’dcot9)
£ =0 will give the position of equilibrium.

So, —asin@+bcosec’d =0
= sinez(b/a)m'

Which gives the position of equilibrium.
1/2

) a2 _p22 2 203 (23 _p23
: f:— ( 13 ) a+2b(gj %
dx a b

Now

1/2

__3523 (az/s _ b2/3)

Since a>b, so d°z/dé&” is a negative quantity.
Hence z is maxim = the equilibrium is unstable for Siné?:(b/a)l/3

Examplel7:- A uniform heavy bar AB can move freely in a vertical plane about a hinges at A,
and has a string attached to its end B which after passing over a small pulley at a point C
vertically above A is attached to a weight. Show that the position of equilibrium in which AB is
inclined to the vertical is an unstable one.

Solution:- Here AB is the uniform rod of weight W with G as its C.G. such that AG=GB=a,
BCP is a string of length | such that BC =r and CP.=1-r, Also suppose that a weight P is
suspended from the string at P in equilibrium, let AC=s, BC=r, Z/BAC=6.In AABC.

C
P B

(&

W
r? —4a®+c? —4ac cosé (1)
Z = height of C.G. of weights P and W above A which is fixed.
_Wacos@+P(s—1+r)
- W +P

E_ 1
dé¢ W+P

Here r and @ are variables,

{—Wasin 0+£} (2)
do



Differentiating | w.r.t 9, r:—;:ZacsinH

so, 2 __1 [—vvasinew@sine} (3)
d¢ W+P r

dz
40 =0 gives the position of equilibrium,

= (—W+P£j$in6=0
r

= sin@=0 or r:&
W

If sin@=0, =0 = the rod is in vertical position

2Pc
Or r =——, in this position of equilibrium, the rod is inclined.
Differentiating (3) w.r.t. @, we have

2
dz_ 1 [—Wacose+2acP(—i£sin9+1cos¢9ﬂ

do* W +P r2de r

_ | {—Wacos¢9+2acP(—%@sin20+lcoseﬂ
W +P rr r

=1 {—Wacos@—4a2c2Egsin20+2acP£cose}
W+P r 2Pc
Putting the value of r
4a°c’P sin® @
WP 1P
=a negative quantity as sin@>0for @<

So z is maximum when r =2Pc /W, indicating that the equilibrium is unstable.

Examplel8:- A uniform rod of length 2l , is attached by smooth rings at both ends of a parabolic
wire, fixed with its axis vertical and vertex down words, and of latus rectum 4a. Show that the
angle @ which the rod makes with the horizontal in a slanting position of equilibrium

bvcos’@=2a/l and that, if these positions exist they are also stable. Show also that the
positions in which the rod is horizontal are stable or rod is below or above the focus:

Solution:- Let AOB be a parabola whose equation is x* =4ay, AB is the rod of tength 2| with
its C.G. at G so that AG=I, AL,GN, BC are parallel to y-axis and AM is parallel to x-axis

ZBAM =0 . Suppose that the coordinates of A and B are 2at,,at/, and (2at1, atzz) respectively.



Uy

M

L 0N
Here, z = height of G above ox
-1(AL+BC)
2
:%(tfﬂzz)
In AABM,
a(t; -t
tang= o _ (t-t) “Lt,+t)
AM  2a(t,+t) 2
t,-t =2tan @
t,+
And cosé?:ﬂ:ZaM :>t2+t1:|—cose
AB 2 a

Squaring and adding (2) and (3)
2
2(t +1 ) =4tan’ 6?+;l—2cos2 0

2
So, 7=_2 4tan26’+|—2c0529
2x2 a

= i[46\2 +tan? 0 +1° cos® 6’]
4a

3—2=4i[4a2.2tanesec29+I2(—20056?sin9)]
a

1 2 2 2 a3
=2—[4a tan @sec” 6 —1 sm@cos@]

a

For the equilibrium, dz/d@=0
4a’tan@sec’ @ —1?sindcosd =0

sin 0(4a” —sec® 017 cos9) =0
Either sin@ =0 or cos’#=2a/l
sind =0 = 0 =0 gives the horizontal position.

But cos® @ = 2a/l gives the inclined position of equilibrium

d’z
do* 2a

(1)

(2)
(3)

(4)

i[4a2 {sec4 0+ 2tan @secHsecHtan 6’} —1? (cos2 0 —sin? 0)]



:i[4a2 —sec’ (sec’ 0+ 2tan’ 6)+1% - 21” cos’ 0] (5)
2a

2(1-2
:i 4a2|_ i+M +|2_2|22_a
2a 2a | 2a 2a |

:2_'2(1&] ~ 2 invo

a I a
= a Positive quantity

So, z is minimum when cos? @ =2a/l

Therefore, the equilibrium is stable

Now consider the case when @ =0, so putting &=0 in (5).

d?z 1

w 9:0:2—a|:4a2+|2—2|2:|
:i(4a2_|2)
:2—161(2a+l)(2a—l)

2
%bo >0 or <0

According as, 2a—1 >0 or 2a—1<0

According as semi-latus rectum >l or <|

According as, the rod is below or above the focus in horizontal position.

Therefore, the equilibrium is stable or unstable according as the rod is below or above the
focus when it is in horizontal position.

Examplel19:- A uniform smooth rod passes through a ring at the focus of a fixed parabola whose
axis is vertical and vertex below the focus, and rests with one end on the parabola. Prove that the
rod will be in equilibrium if it makes with the vertical an angle @ given by the equation.

0 a
cos* (Ej =2—C where 4a is the latus-rectum and 2c, the length of the rod. Investigate also the

stability of the equilibrium in this position.

Solution:- As shown in the fig. referred to the focus s as the pole and line SO as the initial line.
2a

The equation of the parabolais — =1+co0sé
r

= r=acos’*(6/2) (1)
Where latus-rectum =4a rod AB=2c, G isits C.G.so AG =cC



X

Let the polar coordinates of A be (r,0) where SA=r, ZASO =0, SG=r—-c

z = the depth of G below S
(since S is fixed)

=GScosf=(r—c)cosd

={asec2 (Qj—c}[mosz (g]—l}
2 2
=2a+C—_2acos’ (Q) —asec? (gj
2 2
E:—20 2C0$(gj —lsin(Q) —aZSeC(gjsec(than(Q).1
dé 2 2 2 2 2 2)2
=csin @ —asec? (gj tan (gj
2 2

If the equilibrium exists, then

@ _y
déo

= csin @ —asec? (gjtan(gJ:O
2 2

- Y

Either sin@/2=0 = @ =0, the rod is vertical

or  cos’ (gj -2
2) 2c

0 a
To test the nature of the equilibrium when cos’ (Ej = 2_c

d?z 0 0 ) 1 0 ,( 0 N AR
> =ccos@d—| 2sec| — |sec| — |tan| — |. —tan| — |+sec”| — [sec’| — | .—
do 2 2 2) 2 2 2 2) 2

=CCcosé— seczgtan2€+lsec4€ a
2 2 2 2




=ccos:9—asec“€ sin2£+l
2 2 2

:ccose—aﬁ[sinzg+1j
a 2 2

=—4¢(1-cos @)+ 2csin® 9
2

= a negative quantity.
So, z is maximum i.e., the equilibrium is stable when cos®(0/2)=a/2c.

Example20:- Two equal uniform rods are firmly, joined at one end so that the angle between
them is ¢ and they rest in a vertical plane on a smooth sphere of radius r . Show that the are in
a stable or unstable equilibrium according as the length of the rod is greater or less than
4rcosec « .

Solution:- Suppose that two equal rods AD and AE with
4

C.G.s at G, and G, their lengths being 2b, are resting in a vertical plane on a smooth
sphere of radius r and of centre O. ZDAE =, AG, = AG, =b. G is the C.G. of both
rods. Line AO is the perpendicular bisector of the line G,G, and also bisects the ZDAE
, 0X is a horizontal line through O and let ZAox =6 in equilibrium.

Z = the height of C.G. G of both the rods above 0x

=GL =0Gsiné
=(OA-AG)siné

o o) . o
= (OB cos ecE— AG, cosEjsm 6, ZABO =90

=(r cosecg—bcosgjsin o
2 2

E=(rcoses%—bcos%)cose



In case of equilibrium E =0
dé

= cosf0=0 =0=x/2

Which gives the position of equilibrium
2

z )
To test the nature of equilibrium, % = (r Cosec%—bcos %)(—Sln 0)

o2

> at 6’=£=— rcosecg—bcosg
déo 2 2 2

=1cosg(2b—4r coseca)
2 2

The equilibrium is stable or unstable if

d?z T, . .
— at 6 = — is positive or negative.
déo 2

i.e. 2b—4r coses o > or <0

i.e. 2b > or < 4r coseca

i.e. length of the rod > or <4rcoseca .

Example21:- A square lamina rests with its plane perpendicular to smooth, one corner being
attached to ta point in the wall by a fine string of length equal to the side of the square. Find the
position of equilibrium and show that it is stable.

Solution:- Suppose that AFEis a wall and ABCD is the square lamina inclined at an angle @
with the vertical such that /BAF =@. Let each side of the square be equal to 2b. BE is the
string of length 2b. G is the C.G. of the lamina ABCD. FBH is a horizontal line ZABG =45’
/CBL=6@,s0 ZGBL=45"+68

E

e

D

<7

W

Here BG =2bcos45 =+/2b

z = the depth of G below E
=EF +HG
=2bcos@+BGsind(0+45)

=b(200$49+\/§sin(9+45°))

=b(2cosf+sin6+coso)



=b(3cosf+sin )

dz =b(-3sin@+cosd)
do

0

For equilibrium, —
-3sin@+cos@ =0
tand=1/3

2
Now az =b(—3cosf—sin8)
dé

Y

=—b(—3cosf—sin o)
2

d—;(aw:tan11/3)

o[ 5 g =T

= negative quantity.

Which implies that z is maximum.
i.e. the depth of C.G. is maximum
i.e. the equilibrium is stable

1
Note:- The system is in equilibrium when 0 = tan'l(éj but the above figure depicts the system

tilted slightly from its equilibrium.

Example22:- A uniform square board of mass M is supported in a vertical plane on two smooth
page at the same horizontal level. The distance between the page is a and the diagonal of the
squareis d where d >4a. If one diagonal i¢ verticaland a mass m is attracted to its lower end,

prove that the equilibrium is stable if 4am>M (d —4a)

Solution:- Suppose that the uniform square board ABCD is resting on the page P and Q
distance a apart in vertical plane. Mass M at G (C.G. of the board) and a mass mat A are

placed. AC =d The system as shown in the fig. are is slightly displaced from its equilibrium. Let
CA make angle @with the horizontal in this positioni.e. ZCAF =8, AF and PQ are horizontal.



U

U

B

‘[ D
N

P \& Q
A E T r
M

Now GN = GE — NE = GAsin 49—AQsin(¢9—45°)

d . .
=—sin@d—-PQcos(#—-45"|sin(f0—-45") as AQ =PQcos(8—45°

> Qcos(¢-45')sin(0-45") as AQ=PQcos(0-45)
:gsin9+gc0329

2 2
Again, NE =QT = AQsin(0—-45") = PQ = cos(6—45")sin (60— 45")
=%asin(20—ﬁ/2):—%cosze
Let z be the height of the combined C.G. of M and m above PQ, then

_ MGN +m(-NE) ;M (d sin0+ac0320)+m2c0526?

M +m - m+M

_ —I\/I)[M (dsin 9+00320)+ma00329]

—[Md sin@+(m+M )acosZé?]

2(m+N)
dz 1

0 2( )[Md cosO— (m+M)a25|n20]

For equilibrium, az =0,

dé
Md cos §—2a(m+M )sin26=0
cosf[ Md —4a(m+M)sind|=0
Md
4a(m+M)
Md
4a(m+M)

cos@=0 or sin@ =

9:z or sin@d =
2

2
% at Q:M[—Md sin—4a(m+M )]



2
% at 9:%:@[—Md +4a(m+M)]
At @ =/2.The equilibrium is stable if
—Md +4a(m+M)>0
=  4am>Md-4aM =M (d -4a)
= 4am>M(d-4a)

In this case the diagonal AC is vertical.

Example23:- A square lamina rests in the vertical plane on two smooth page which are in the
same horizontal line. Show that there is only one position of equilibrium unless the distance
between the page is grater than one-quarter of the diagonal of the square, but that if this
condition is satisfied, there may be there positions of equilibrium and that the symmetrical
position will be stable, but the other two position of equilibrium will be unstable.

Solution:- Let the diagonal PR of the square lamina PQRS resting on the page A andB

distance a part inclined at angle @ to the horizontal. G is the C.G. of the lamina, PE is horizontal
and GD L PE.ZRPF =4.

P D

Here AB is fixed.
z =the height of the C.G. above AB line, GC =GD-CFD

= PGsin - PBsin(6-45")
PR=d
d . . . .
= sin 0—ABS|n(9—45 )cos(9—45 )

=gsin 9+Ec0520
2 2
For equilibrium E =0,
do
= %cose—asin2¢9=0

= cosH(%—Zasin0j=0

= cos@=0 orsind=d/4a



When cos@=0 i.e. @ =x/2,diagonal RP is vertical.

2
d i :—gsine—Zacosze (1)
do 2

d’z
do?
The equilibrium is

(at 0=7r/2)=—%+2a:2(a—d/4)

d
Stable when a > 2 = one quarter of diagonal

Unstable when a < % ,

Inclined position of the equilibrium when sin@=d /4a (from 1) gives us

The equilibrium is wunstable when a>d/4. Since for real values of @,
|Sin«9|<1:>|d/4a|<1:>d/4<aso(d/4)>aso, (d/4)*a.

But, here sSin6’=sin(7z—¢9) so there may be two positions when ¢9=sin’l(d /4a) or
z—sin™(d/4a).

Let us summarize now that the equilibrium is unstable when a<d /4. One position only
(diagonal is vertical) and when a>d /4, three position may arise;

1. Stable when @= /2 i.e. diagonal is vertical

2. Unstable when 6=sin’l(d /4a), z—sin™(d/4a)

Example24:- A rectangular picture hangs in a vertical position by means of a string. Of length 1,
which after passing over a smooth nail has its ends attached to two points symmetrically situated
in the upper edge of the picture at a distance ¢ apart. If the height of the picture be a, show that
there is no position of equilibrium in which a side of the picture is inclined to the horizon if

la>c+/c? +a?, whilst if la<cyc®>+a’ there are two such positions which are both stable.
Show also that in the latter case the position in which the side is vertical is stable for some

displacement and unstable for other displacements.

Solution:- Suppose that P is a fixed mail and ABCD is



y

C
Rectangular picture hanging in a vertical plane by means of a string
S'P+PS =1=2a, (say) (1)

E is the mid-point of the upper edge AD and ES'=ES G is the C.G. of the picture
EG L AD, PG isvertical. SS'=c, AB=DC =a. The equation (1) suggests that P lies

on ellipse whose fociare S and S' and the length of whose semi-major axisis a, =1/2

Regarding AED as the x-axis and EY as the y-axis (EXJ_ Ey), the equation of the ellipse

2 2
X
is —2+§:1where bis the length of semi-major axis. So the coordinates of G are
a

(0,-a/2), the coordinates of P are (@, cosé, bsind). Using ellipse properties,
b* =a7 (1-¢?) (2)
Given SS'=c = ES =c/2=ae making use of equation (2), we have
) =[lj2{1_(gjz}= 15T Jt=c®
2 I 4 2
Suppose that z is the depth of G below P, then

z=PG :{(a1c036—0)2 +(bsin 6’+a/2)2}

172

={a/ cos’ 0+b’sin’ O+ absin 6 +a’ /4}”2

Suppose that
2

f(0)=2° :afc0320+bzsin29+absin0+%

Since z and z? are of the same nature, so we test f (9)

df ()
do

df (6)

Put‘ting W =0

= 2a/ cos@sin &+ 2b*sin & cos &+ ab cos &

cos@{z(bz—af)sin9+ab}:0
Either cosd=0 = O=7x/2,
ab

or Z(bz—af)sin6?+ab=0 :)Sin@zm



a
1P =¢c? 2 2
sing=——2—— -2 'C2 . 3)
i
2 4
Since for real values of @, [sin6| <1

IZ_ 2

a C
<1 = a’l*<a%?*+c*

C2

al <cya?+c?

Hence, if al <cya?+c?, there may be three positions of equilibrium, namely, when

oo | oo [ 5

in
2 2 2

C C
If al >cya?+c?, there is only one position of equilibrium when 8= 7/2.
To test the nature of equilibrium

d2f (0)

7 :Z(bz—af)cosw—absine (4)
When O =712
d*f (0)
WZZ(af—bz)—ab
2 2 2
T
_l(cz—a |2 cz)

Hence, according to the theory, the equilibriumis at 6 = 7/2

Stable when ¢ <ay/I>—c? i.e. al >cy/a? +c?
Unstable when al <cya? +c?

2 2
Now consider the case when sin@ = avl > . The equation (4) can be written as
C
d2f (0)
=2(b*—a?)(1-2sin* @) —absing
g =207 =) )

:2_1-2[a2(|2_cz)_c4]
Since for real values of 6, |Sin 6‘| <1

ie. ayl®> —c? <c?



d?f (6
So, when av/I?—c? <c? i.e. al <cc?+a?, % is negative, so the equilibrium is

stable.
Significantly, the figure depicts the position of the system when displaced slightly from its
equilibrium.

Example25:- A uniform isosceles triangular lamina ABC rests in equilibrium with its equal sides
AB and AC in contact with two smooth page in the same horizontal line at a distance c apart. If
the perpendicular AD upon BCis h show that there are three position of equilibrium, of which
the one with AD vertical is stable and the other two are unstable if

h<3ccosec A; whilst if h>3ccosec A there is only one position of equilibrium which is

unstable.

Solution:- Suppose that the uniform isosceles triangular lamina ABC rests in the vertical plane
on two smooth pegs. P and Q in horizon such that PQ =c,

C
D
B
G
%Al
] M
AE—f—= E

AB =AC. AD 1L BC. G is C.G. of the lamina, GN ‘is vertical. As depicted in the figure,
the situation is slightly displaced from its equilibrium and ZDAN =68 . The line AE is a
horizontal line, AG=2h/3.

In APAQ
PQ _ AQ
sinA  sin APQ
N _C _ AQ
sinA ( A)}
sinqgz—| 8+ —
s
i Al2
:> _sin(0+A/ )c.

sin A
Let z be the height of G above PQ then
z=GL=GN-QM
= AGsind—AQsin(6—-A/2)
2h sin(6+A/l2)

=—-sind-c sin(6—A/2)
3 sin A



:2—hsm6?——(sm 0 —sin A/2)
3 sin A

For equilibrium dz/d@=0

So, — dz 2h 6’—£sm6’cos€ 0
do

3 sin A

sin A
Either cos@=0—= @ =7x/2 i.e. AD is vertical

Which gives cos@(&;—ism 9) 0

Or sin9=£sin A (1)
3c
2
To test the nature of equilibrium d 2: 2h H—A[COS 9—Sin20] (2)
do 3 sin A
When =712
d?z 2h  2c

2
—=———-——(-1)=—=(h-3ccosecA
do? 3 sin A( ) 3( )
Hence, according to theory, the equilibrium is
Stable if h <3c coses Aand unstable if h >3c sec A

. h .
Again, consider when siné = 3—SIn A
C
Form the equation (2)

2
3 2:—2—h3|n0+2—(23|n 06— 1)
do 3 sin A

2h(h . 2c  4c (h .Y
=——| —SINA|————+——| —siIn
3 \3c sinA sin A 3c

(hzsin2 A—9c2)

:9csinA
But for real values of 0, sing|<1= %sin A<l

h < 3c cosec A (3)

2
Under the condition (3), dez is negative
But sin&=sin(z—0)
Hence the equilibrium is unstable in inclined position when
0= sin‘l(Lsin A)or z—sin™t (Lsin Aj
3c 3c

Let us summarize that when h< 3c cosecA, the equilibrium is unstable, when

9=Sin‘1(%sin Aj or ﬂ—sin‘l(%sinAj and stable when @=7x/2; and when

h>3c cosec A, the equilibrium is unstable at = 7 /2



Example26:- An isosceles triangle of angle 2« rests between two smooth pegs of the same level,
distance 2c¢ apart, if hbe then distance of the C.G. from the vertex, and if

2C . o —_ . . .
2cseca < h < ————— then oblique positions of equilibrium exist, which are unstable. Discuss
sinacosa

2c
sina Cos

Solution:- Suppose that ABC is an isosceles triangle resting in vertical plane on two smooth pegs
P and Q (in horizon) with its C.G. G at line AD bisector of the ZA.
B

the stability of the vertical position in case when h =

G C
% Q
il -
A 'K_ E M F
Horizontal Line

Here PQ || AF, GE 1L AF, Z/BAC =2a, PQ=2c, AG=h, AB=AC. The figure
shows the position of the system slightly displaced from its position of equilibrium. Let
the line AD be inclined to AF at an angle @. Suppose that z be the height of G above

PQ, then
z=GH =GE-QM, as HE=QM
=hsin9— AQsin(6—-«) (1)
For AQ, consider AAPQ
PQ  AQ
sinBAC sin APQ
2C AQ AQ
= : =— =—
sin2a  sin(z—(a+0)) sin(a+6)
2csin 0
- AQ = |_ (a+0)
sin2«
Making use of this value of AQ, we have from (1)
sin(a+6
z= hsim9—2c—_(a )sin(H—a)
sin 2«

h=sing— _2C (sinzé’—sinza)
Sin2a

For equilibrium, E =0
dé



dz 2 2sin@cosf=0

= cose(h— _4C sinejzo
sin2«a

hsin 2«

4c
hsina cosa

2C
But for real values of 4,

= cos@ =0 or sin@ =

= Hzgorsinéz

sin ¢9| <1
2C

hsina cosa
sina cosa

2C

i.e. <1=h<

So, if h>2csecacoseca, there is only one position of equilibrium with 0=%, if

h<2csecacoseca, there are three positions of equilibrium obtained by
7 . 4 hsinacosa . ;| hsinacosa
H:E,sm — |, #—SIN _—

2C 2C
2
Now, d 2 =—hsing- Z_ch (cosze—sinze)
do SiIn2«
_ 4c(1—25in29)
=—-hsing— -
Sin2«

Case 1.When 8=r/2, then

2
d z =-h+ _4C =—h+_L then equilibriumis stable or unstable as h< or
de sin2«a sinacosa

2C .
> ————— respectively.
sina cos
2
fhe—2¢ 92 s o-r/2-0
(sinacosa) d@
d®z 8cx2sin@cosé
> =—hcosd + -
de sin2a
At @=7/2,under h=2c cosecaseca,d®z/d6®=0.
4
Again d izhsin¢9+ _160 (cos® 6 —sin’ 6)
deo sin2«
Putting @= /2 and h=2c cosec aseca
4
d f4=h+ _ 8c (0_1)= _ 2C __ 8c
do sina cosa sinacosa  sinacosa
6C

sina Cosa



= —negative quantity as £Ais acute.
So, the equilibrium is unstable
Consider when sin@=h/2csinacosa

d’z  h* . 4c h> ., )
> =——SinaCosa —— 1-2—sin“ acos” a
de 2c sin2a 4c
_sinacosa he 4Ac?
2C sin® ¢ cos’ o

) ) 2C , .
= a negative quantity when h<—————, since Za is acute.
sina cosa

Hence, the equilibrium in the inclined positions are unstable.

. . h .
Now a <8 = sma<5|n6:2—smac05a
c

= 2cseca < h since sina #0
2c

sinacosa
2C

sin @ cos
Thus the equilibrium in the inclined positions are unstable under the condition.

2c seca <h<2c/(sin acosa)

Here 2cseca < h, h<

i.e. 2cseca <h<

Example27:- An isosceles triangular lamina of an angle 2« and height h rests between two

: > 3c
smooth pegs at the same level, distance 2c, apart prove that if 3¢ seCca <h<————, then
SINx COS

oblique positions of equilibrium exist, which are unstable. Discuss stability of the vertical
positions.

Solution:- The question is same as question 26.

Example:- A smooth solid circular cone, of height hand vertical angle 2« is at test with its axis
vertical in a horizontal circular hole of radius a. Show that if 16a >3hsin2«, the equilibrium is
stable and there are two other positions of unstable equilibrium and that if 16a <3hsin2«, the

equilibrium is unstable and the position in which the axis is vertical is the only position of
equilibrium.

Solution:- Suppose that ABC is a solid circular cone with height AD(= h) and G as C.G. is

resting in a horizontal circular hole PQ of radius a. As shown in the figure. AD is perpendicular

to BC,AM | | PQ,GN and QM are vertical, AG =%AD.



% Q
A

N M
The figure shows the position of the system slightly displaced from its equilibrium. Let AD be
inclined at angle @ with AM . Here PQ is fixed. Suppose that z is the height of G above PQ, so

z=GT =GN -QM
= AGsind—-AQsin(6-a) /BCA=2a
Now, in APAQ
_PQ =_AQ , ZDAM =0
sin PAQ sin APQ
2a AQ AQ
- - =— = —
sin2a  sin(r—(a+0)) sin(6+a)
2asm_(6’+a)
sin2«
Making use of this result, we have
sin(0+a)
sin 2o

= AQ =

z:§hsin9—2a sin(0—-a)

:Ehsine—
4

E:Ehcosé?— -
de 4 sin2«a

For equilibrium, putting dz/d@=0 ,we have

Cos 6(% — 4a

. (sinze—sinza)

sSin2a

.2sin@cos @

- sin@ |=0
4 sin2a

= cos@ =0 orsinezm

. T : _1(3hsin2aj . _1(3hsin2aj
i.e. =—orsSIN | — | or z—SIN" | ———
2 16a

- ———(cos® 0-sin’ 0)
deo 4 sin2«

(l—Zsin2 6')



To test the nature of equilibrium

Case: 1. O=rl2

2

Cz_ 3 48 ) 51 (16a-3hsin2a)
do 2 sin2a 4sin2a

Hence, the equilibrium is

Stable when 16a >3hsin 2« and unstable when 16a < 3hsin 2«

_3hsin2«a
16a

We know that for real values of 8, |sin 9| <1.

d2z  3h(3h—sin2« 4a 3h—sin2a Y
= Now S =—— —— 1-2| ——
dé 4 16a sin2a 16a

B 1
64asin2«a
= a negative quantity under the condition 3hsin2a <16a.

Hence, the equilibrium is unstable.
Finally, let us summarize that
1. Under the condition 3hsin2a <16a, the equilibrium is

3hsin2a) - _1(3hsin2a
e e R | o T A
16a 16a

Stable when @ = /2, in vertical position.
Under this conditions, 3 positions of rest.
2. Under the condition 3hsin 2« >16a, the equilibrium is unstable at @=7x/2, i.e., the

only one vertical position of equilibrium.

Case: 2. sin@

(9hzsin2 2a—256a2)

Unstable when @ :sin‘l( ] in inclined position.

Example28:- Four uniform rods, each of length 2a, are hinged at their ends so as to form a
rhombus and the system is hung over two smooth pegs in the same horizontal line at a distance

aJE, the pegs being in contact with different rods. Show that the system is in equilibrium when
the rhombus is a square, but that the equilibrium is not stable for all displacements.

Solution:- Suppose that A and B are two smooth pegs in a horizontal line such AB = aJE. Four
rods PQ,QR,RS and SP in the form of a rhombus in the vertical plane is hanging over the pegs

A and B. Length of each rod.=2a. G is the C.G. of the system.



R
If the system being tilted slightly from it’s equilibrium the rods PQ and PS are inclined

atan angle @ and ¢ to the horizontal respectively.
i.e. /ZPQT =60, £ZPSM =¢ /PBA
z = depth of G below AB
= depth of G below P —depth of AB below P

=% (depth of Q + depth of S)— depth of AB below P

=%(PT+PM)—PN

=%(PQsin 0+ PSsing)— PBsin ¢
Now for PB, consider the APAB,

PB__AB _ PB _ a2
sinf sinAPB ~ sing sin[z—(0+¢)]
sing
PB=v2a———
V2 sin(6+¢)
. 1 . . sin@sin ¢
Making use of the result, z==x2a(sin@d+sin ¢)—\/§a_—
2 sin(0+¢)

] . >singsing
_a{sm9+3|n¢ \/E—sin(¢9+¢)}

It is noteworthy that z is a function of two variables @ and ¢. So we will apply the maxi
and minima theory of two variables.

cos@sin(6+¢)—sindcos(6+¢)
{sin(¢9+¢)2}

dz .
— =a4Cc0sd—+/2sIn
T J2sing

sin’ ¢

=a cosH—\/f—2
{sin(¢9+¢)}

(1)



U

dz
And d—¢a{cos¢— (2)

J2sin?6 ]

{sin(6?+¢)}2

For equilibrium, E:0:2

do d¢

COS@—M:O, cos¢_ﬂ202:0 (3)
{sin(6+¢); {sin(6+¢)}

cosé _ J2 _ Cos ¢
sin® ¢ {sin(¢9+¢)}2 sin’ @
cos@  cos¢
sin¢  sin?@
0=¢

Putting @ = ¢ in any of the equation (3) we have

sin® g 1
cosezx/i = as =0
4sin? 9cos’ @ 22 cos2 6

cosS¢9=i = c0sf =

22 VA
T
9:—:
A ¢
Now ZQPS = ZQPT + £TPS
2 0+Z—p=n—(0+9)

2 2
T T

=0 ——=—
2 2

Thus the rhombus is a square.
To test the nature of equilibrium.

d’z a[—sin 9+«/§—2COS(9+¢) sin2¢]

do* {sin(6?+¢)}3
92 _alo V2{2singcosgsin® (0+¢) —2sin’ gsin (0 + ) cos (6 + ¢}
dgdo {5in(9+¢)4}

J2 cosgsin(6+¢)-sin ¢cos(9+¢)}

_2a3|n¢{ [sin(0+9¢)}



d’z . sin? @cos(6+¢)
2 _al- 2.2
dg’ B[sne {Sin(0+¢)}3

: (3_2’2}3:;;: R el

d?z 1 1 2
=| ———— :_2 X — ZX_ = 2
(dedgbjg:m ° JE{J_ JE} "

d°z 1 a
t= [d¢ je ”/4_a{__2+0}__ﬁ

= a negative quaintly.
Hence z is neither a maximum nor a minimum when @ =¢=7/4. Here 7= 2(9,(;5),

71+071= Z(9+59,¢+5¢). Applying Taylor’s theorem for function of the variables we

have

2(6+030,¢+59)—12(0,9)
d 1 2
_59( Z)g » 5¢(a¢je - 2!{ (56’) +2660 8¢5 +(5¢) t}+Ra+----

06 Jo-ria
1 a a 2
:E(_ﬁ(%) —J2a250 54 - T( )J +R,.....

= 1= —%{(59)2 +40505p+(5p)" |+ R,

Now although z is neither a maximum nor a minimum where 6=¢ =7 /4, yet there is
equilibrium because &z is then zero so far as terms of the first order in 66 and d¢ (are
zero). But as z is neither maximum nor minimum the equilibrium cannot be stated to be
either stable or unstable universally. It is in fact stable with respect to some displacement
and unstable with respect to other displacement. If for example we consider only such
displacement as make 60 =d¢, then S5z is certainty negative when 66, o¢ are taken

small enough. Thus C.G. is increased by the displacements and so then equilibrium is
stable. If again we consider only such displacements as make 66 = —d¢ they make 6z

certainly positive then 66 and 6¢ are small enough. The C.G. is depressed by the
displacement and so the equilibrium is unstable.

Example29:- Three equal spheres rest on a smooth table and are kept in position by a smooth
elastic band in the plane of the centre, the band being unstretched when the spheres are in



contact. A fourth equal sphere is placed above them. Prove that, if in a position of equilibrium
the line joining the centre of the upper sphere to the centre of either of the lower spheres is
inclined at an angle @ to the vertical, the equilibrium is stable for symmetrical displacements if

sin®@ <1/+/3.

Solution:- Let the three equal spheres of centres A, B and C be on the smooth table and a fourth

sphere be placed on them. O is the foot of the normal from the centre D of the fourth sphere
to the plane through A,B and C.

H
B
T
by
b
. ]‘
o
F
C
/ k : M
G x F
Fig. 1

Let @ be the inclination to the vertical of the line joining the centre of the upper sphere
to what of one of the lower sphere, when then centre of the latter are at a distance x
apart. Since AABC is a equilateral triangle, so in fig. 1

AO = % of the median

A,

_2 ABsin60" =
3 3

Fig. 2
In fig. 2, D is the centre of the fourth sphere in the equilibrium position O is foot of the
perpendicular from D to the plane through A,B and C, OD is vertical and OA is

horizontal so that AAOD is aright angled triangle at O. Let a be the radius of each sphere,
we have




=

x =2+/3asing (1)
In fig. 1, EH is tangent to the circles with centres Aand B.

So, ZEAF =120, Arc EMF—%[a

2
The natural length of band (unstretched) = (Za +?ﬂaj
=2a(3+7)
The extended length of the band (as shown in fig. 1)
:3x+3x2§a=3x+2ﬂa

If A be the coefficient of elasticity, the tension T of the band by Hook’s Law is given by
To2 extended length — natrual length
natural length
~ /13x+27za—2a(3+ )
- 2a(3+7)
T=— % (x_2a)
2(7r + 3) a

Let W, be the weight of each sphere and SW be the element of work function; then we

have for small displacements work done by the upper sphere =—W15(a+ 2a COSH),
(since DN = DO + ON = a+2acos@d ), negative sign indicates that the distance ND is

measured from N to D and force w acting from D towards N .
The work done by the tension = -3T X

So, SW =-W,5(a+2acosf)—3T 5x

%:—Wl(f—e(a+2acose)—3T;—Q(Zﬁasine)
94(x—-2
:Z\NlasinH—Mzﬁacose
2(7z'+3)a
zzwlasine—gf (2\/_asm6? Za)cosa
7+3
:zwlasin9—18@1(«/§sin9—1)acos¢9
T+
2
z(;N = MW.a 9—18f§a{\/§(cosz0—3in20)+sin 49} (2)

W
The position of equilibrium is given by 2—0 =0

9«/§/1(\/§sin9—1)0030

T+3

ie.  Wsing- =0



9@1

ie. (fsm 0cos 6 — cos@) (3)

For this value of 6? puttlng the value of W, from (3) in (2)

W _ . [9{1

do?

(\/§sin dcos@ — cos 9)} cotéd
T+3

18V3 1a
~rvs 03

3(cos? O —sin? 49)+sin 6}

2
:Mﬂ{\@cosz&—cqs 9—\/§cosza+\/§sin29—sin0}
T+3 sind
18«/§la (\/§sin3¢9—1)

T+3 sin@
2

] 1
If sin®@ < —= then
NE) do?

the equilibrium is stable.

is negative, the corresponding value of W is a maximum and

Example30:- A weight W is supported on a smooth inclined plane by a given weight P,
connected with W by means of a string passing round a fixed pulley whose position is given. Find
the position of equilibrium of W on the plane and show that it is stable.

Solution:- As shown in the figure, a weight W is placed at B on the plane OAinclined at angle
a to the horizon ox. T is the tension in the string so T = P, since pulley is smooth.

O
Resolving the forces along the plane
Pcosd =W sina

W sin
cosd = = const.

This gives the position of equilibrium of the weight. If the body s slightly displaced in
downward direction, @ decrease and hence cos@ increases. Therefore the body tends to
go up to resume its position of equilibrium. Furthermore if the body is displaced in the
upward direction, @ increases which implies cos& decreases. Hence the body tends to
get down the plane to resume its position of equilibrium.

Therefore the equilibrium is stable.



Example31:- Using the principle of conservation of energy, establish that the positions of
maximum potential energy, are positions of unstable equilibrium and position of minimum
potential energy are positions of stable equilibrium.

Proof:- The principle of conservation of energy states, “Potential energy + Kinetic energy =
Constant, in case of a dynamical system”. So whenever a body starts moving, it acquires kinetic
energy and therefore loses potential energy. We will now use the principle to prove the result.

At first, if the potential energy of the system remains constant for small displacement, no work is
done during this small displacement and the body is in equilibrium.

Now if the system be in such a position that its potential energy is maximum and if the system be
slightly displaced from this position and then we make it free to move. During the move me the
potential energy of the system decreases and kinetic energy increases (i.e. kinetic energy is
positive). The kinetic energy, compels the system to move further away from the position
maximum potential energy. Thus it shows that the equilibrium in the position of maximum
potential energy, is an unstable one.

Conversely, if the system is in equilibrium in the position of minimum potential energy and if it is
slightly displaced and then set free, the potential energy decreases. Since in this case the potential
energy of the system cannot be decreased below minimum, so it will regain its original position.
The position of minimum potential energy is therefore that of stable equilibrium.



PREVIOUS YEARS QUESTIONS IAS/IFoS (2008-2023)
STABLE, UNSTABLE & NEUTRAL EQUILIBRIUM

UPDATED Q7(c) Suppose a cylinder of any cross-section is balanced on another fixed cylinder, the
contact of curved surfaces being rough and the common tangent line horizontal. Let p and p'

be the radii of curvature of the two cylinders at the point of contact and h be the height of centre
of gravity of the upper cylinder above the point of contact. Show that the upper cylinder is

balanced in stable equilibrium if h < i UPSC CSE 2022

p+p

Q8.(a) A bucket is in the form of a frustum of a cone and is filled with water of density p. If the

bottom and top ends of the bucket have radii a and b respectively and h is the height of the
bucket, then find the resultant vertical thrust on the curved surface of the bucket. Is that thrust

equal to %ﬂ'pgh(b—a)(b-i- 2a)? IFoS 2022

Q1. A body consists of a cone and underlying hemisphere. The base of the cone and the top of
the hemisphere have same radius a. The whole body rests on a rough horizontal table with
hemisphere in contact with the table. Show that the greatest height of the cone, so that the

equilibrium may be stable, is \/§a. [6a UPSC CSE 2019]

Q2. A uniform solid hemisphere rests on a rough plane inclined to the horizon at an angle ¢ with
its curved surface touching the plane. Find the greatest admissible value of the inclination ¢ for
equilibrium. If ¢ be less than this value, is the equilibrium stable? [6c UPSC CSE 2017]

Q3. A heavy uniform cube balances on the highest point of a sphere whose radius is r. If the
r

sphere is rough enough to prevent sliding and if the side of the cube be % , then prove that the

total angle through which the cube can swing without falling is 90°. [5d 2017 IFoS]

Q4. A solid consisting of a cone and a hemisphere on the same base rests on a rough horizontal
table with the hemisphere in contact with the table. Show that the largest height of the cone so

that the equilibrium is stable is \/§>< radius of hemisphere. [7a 2014 IFoS]

Q5. A heavy uniform rod rests with one end against a smooth vertical wall and with a point in its
length resting on a smooth peg. Find the position of equilibrium and discuss the nature of
equilibrium.

[5e 2013 IFoS]



Q6. A heavy hemispherical shell of radius a has a particle attached to a point on the rim, and rests
with the curved surface in contact with a rough sphere of radius b at the highest point. Prove that

if E > \/g—l, the equilibrium is stable, whatever be the weight of the particle.
a

[7b UPSC CSE 2012]

Q7. A uniform rod AB rests with one end on a smooth vertical wall and the other on a smooth
inclined plane, making an angle a with the horizon. Find the positions of equilibrium and discuss
stability. [5¢ 2010 IFoS]



VIRTUAL WORK

Definition

Work. A force is said to do work when its point of application displaces from one position to
another position.

Consider a force F acting on a particle at O in the direction OA and the particle is displaced from

one position O to another position B. Let OB make an angle 6 with OA, the direction of the force
F.

Work done by the force F'=F x O4A= F % OB cos 0
= F X projection of OB on OA4
Again work done by the force F
=F' x OA=F % OB cos 6 = (F cos 0) x OB
= Resolved part of the force in the direction of actual displacement x actual displacement.

So, the product of the force and the orthogonal projection of the displacement on the line of action
of the force is said to be work done by the force.

or

Product of resolved part of the force in the direction of actual displacement and the actual
displacement is said to be work done by the force.

Work done is positive if it is in the direction of force. It is negative if it is in the direction opposite
to the direction of the force. If the displacement is zero or it is in the direction perpendicular to the
direction of the force, then the work done is zero. B

Theorem 1. The work done by a force in displacing a particle from
one position to another position is equal to the algebraic sum of works
done by the resolved parts of the forces.

v

Proof. Let OX and OY be two mutually perpendicular axes. 4 force O _ye

Facts at a particle placed at O. This force displaces the point C“ B

F
of application O to a point B. Let B be in- the plane of XOY. OB makes an L
angle 01, from the axis of X. Force F makes an angle 62, from this axis. 0,
Let O4 and OC be the components of the displacement OB in the 5
directions OX and OY respectively. F1 and F3, are the components of the (O - X O

forces along OX and OY respectively.
Now the work done by the force F'

= Force F x displacement in the direction of the force F



=F x OL =F % OB cos (01-02)
= F x OB (cos 01, cos 02 + sin 01, sin 02)
= (OB cos 01) (F cos 02) + (OB sin 01,) (F sin 02,)
=04 xF1 +0Cx F;
= F1 x displacement in the direction of F|
+F>, x displacement in the direction of F>
= Work done by the component F|
+Work done by the component F>
= Algebraic sum of work done by the components F, and F'
= Algebraic sum of the work done by the resolved parts of the force F.

Theorem 2. The algebraic sum of the works done by a number of coplanar forces acting on a
particle, for any displacement of the particle, is equal to the work
done by their resultant

F,

Proof .Let the forces F1, F», F3, Fa, .... act on particle at O. These
forces displace the point of application from O to A. Forces Fi, F>,
F3, Fa, .... make angles 01, 62, 03, 04, with OA respectively. Let F be
the resultant of these forces, which makes an angle 6 with OA.

The algebraic sum of the work done by the forces Fi, F2, F3. Fa, .....

= work done by Force F + work done by the force F> + work done
by the force F3 + work done by the force F4 + ....

= =Fx0R +F,x0OP, +F,xO0P, +...

=F, xOAcosé, + F, xOAcosd, + F, x OAcos 6, + F, xOAco0sg, +....
=0Ax(F cosé, + F,cosd, + F,cos@, + F,cosd, +...)= OA x resolved part of the resultant along OA

= F' x OP = work done by the resultant.
Virtual work and virtual Displacement.

Let a number of coplanar forces act on a particle. If the particle is an equilibrium under the action
of the forces, then is no motion of the particle. So there is not actual displacement This type of
displacement is called virtual displacement and the work done during his displacement is called
virtual work.

Principle of Virtual work for a system of Coplanar Forces Acting on a Particle.



Statement: The necessary and sufficient condition that particle acted upon by a number of
coplanar forces be in equilibrium is that sum of the virtual work done by the force in any small
virtual displacement consistent with geometrical conditions of the system is zero.

The tension of an inextensible string (non-extensible)

Let 7 be the tension in string AB.

This tension is replaced in two equal forces 7, T acting .
inward in opposite direction. String 4B is displaced to new
position A'B'. Which makes an small angel 6 with the direction 4’ Y K
of AB. Draw perpendicular 4'G from the point 4' on AB and
draw a perpendicular B'E from B' on AB after producing it to H G =T ? —

point E.
Sum of the virtual work done by the tension 7
=T AG-T BE
=T.(AG+GB)-T.(GB+BE)=T.AB-T GE
=T.AB-T.A'F=T(AB—A'B' cos 0)
92
=T.ab{1—(1—z+....)}
(- AB=A'B’)
= 0. since 0 is very small.
Therefore work done = 0.
Forces which can be omitted in writing the equation of virtual work for a body in equilibrium.
(1) Tension of inextensible string or thrust in a light rod.
(i) Reaction of any smooth surface with which the body is in contact.
ii1) Internal action and reaction between parts of a same body.
(iv) Reaction at a fixed point or a fixed axis about which the body rotates.
Procedure of Solving the problems:

First of all draw the figure.

(1) If it is a string, replace the tension 7 by two equal forces T and T acting inward in opposite
direction.

If  is the length of string in equilibrium. Then the virtual work done by the tension 7 is —70l.



(i1) If it is a rod then tension 7" of the rod is replaced by two equal forces 7 and T acting outwards
in opposite directions. If / is the length of the rod. Then the virtual work done by the thrust is 70l.

(ii1) Distances of the action of forces are measured from a fixed line or a fixed point. If distance
measured is in the direction of the force, then the virtual work done by the force is taken to be
positive. If it is in opposite direction, then it is taken to be negative.

(iv) We equate the sum of the virtual work to zero.

(v) In this way the problem is solved.

Examplel:- Two equal uniform rods AB and AC each of length 2b are freely joined at A and
rest on a smooth vertical circle of radius a. Show that 26 be the inclination between them,

then bsin® @ =acos@

Solution:- Let AB and AC be two rods resting on vertical circle of centre O. Since vertical circle
is fixed. We will measure the distance from centre of the circle.

B C
Let G, and G,be the centre of gravity of rod AB and AC respectively.

Let W is the weight of each rod.
Therefore, the weight 2W will act vertically downward from the point G. G is the middle

point G,,G,.
A small displacement is given to the system; so that & becomes 6 +6 .
OG =0OA-GA=acosesd—bcosé.

By the principle of virtual work 2W.5(0G) =0

Or 5(0G)=0.Since W # 0

Therefore, &(a cosecd—bcos@) =0 on putting the value of OG
Or —a cosec @ cotd 56 +bsind o6 =0

Or  (—acosesdcotd+bsing)s0 =0.



But 56 = 0 therefore, (—a cosecdcotf+bsing) =0

Therefore, bsin® =6 =a cosé.

Example2:- Four uniform rods are freely. Joined at their extremities and form a parallelogram
ABCD, which is suspended by the point A and is kept in shape of by a string AC . Prove that
the tension of the string is equal to half of the whole weight.

Solution:- Let ABCD is a parallelogram which is suspended from a point A. Point A and C are
jointed by a string AC. Let G be the middle point of AC . Therefore, total weight W of these
four rods will act. Vertically downwards from the point G . Replacing tension of the string AC by
two forces T, T acting inward in opposite directions, distances are measured from a fixed point A.

Let AG = X.
A

D

B

C
Therefore, AC = 2Xx; A virtual displacement is given to the system, so that X becomes

X+OX.
Principle of virtual work W. §(AG)—-T. §(AC)=0
Or  W.§(x)—T.5(2x)=0. On putting the value of AG and AC

Or Wox—-2Tox =0
Or (W—2T)5x=0;5x¢0 SW=2T =0

Or T= V?V = half of the weight of the roads

Example3:- Five weightless rods of equal length are joined together so as to form a rhombus
ABCD with one diagonal BD. If a weight W be attached to C and the system be suspended

from A show that there is a thrust in BD equalto W /\/§.

Solution:- Let AB,BC,CD,DA and BD are five equal weightless rods. These rods are jointed

and suspended from A. weights W is attached at C. Tension T in the rod BD s replaced by two
forces T, T acting outward in opposite directions.



)
< .
B 4 o D
C
I:I;
Let rod AB makes an angle @ with the vertical AC.
AC =2a cosé
BD = 2asind

Where a is the length of each rod.
Y principle of virtual work [by small virtual displacement @becomes @ + 661

W5(AC)+T45(BD)=0
or W& (2acosd)+TS(2asind) =0
or (—2aWsin @+ 2aT cos0) 60 = 0. But 56+0

Therefore, —2aW sin @+ 2aT cos@ =0
Which gives T =W tan @
In equilibrium rod AB=rod, AD =rod BD, therefore, AABD is equilibrium triangle.

Therefore, Z/BAD =60’ or 8 = 30°
oo T =W tan30° =ﬂ

J3

Thrust in BD = ﬂ

Ve

Example4:- A regular hexagon ABCDEF consists of six equal rods which are each of weight W
and are freely joined together. The hexagon rests in a vertical plane and AB in contact with a

horizontal table. If C and F be connected by a light string, prove that its tension is W\/§.

Solution:- Let each rod be of length 2a. Replace tension of the string FC in two equal forces T
, T acting inwards in opposite directions. Let the rod BC makesinan angle @ with the horizontal.

Therefore, FC =2a+4acosé, GL =2asinéd.



D

E
T T
F > < .

A L B N
A small virtual displacement is given to the system so that &becomes &+ 06 and length

G C

| of the string becomes | + 1.
Therefore, equation of virtual work is —T.51 —6W. §(GL)=0

Or T5(2a+4acos¢9)+6W5(2asin¢9)=O
Or 12aW cos @60 —4aTsinf8 66 =0
Or (3\NCOt«9—T)59:O,since 00 #0

Therefore, T =3W cot @ in equilibrium, 8 =60°

T =3wcot60 =V ~T=W+3

V3

Example5:- A regular hexagon ABCDEF is composed of six equal heavy rods jointed together
and two opposite angle C and F are connected by a string, which is horizontal. AB being in
contact with a horizontal plane. A weight W' is placed at the middle point of DE . If W be the

weight of each rod, show that the tension in the string is (3N +W ')/\/§.
Solution:- Weight W ' is placed at L, the middle point of the rod. ED... The weight 6W will act at

G, centre of gravity of hexagon. Let the rod BC makes an angle @ with the horizontal.
Length of each rod =2a.

E_ L D
8
r o g
F b G. Z C
Yow
0 : 0

A M B N
A small displacement is given to the system, so that & becomes &+ 66

Then the equation of virtual work is -6W §(GM )-W 'S5 (LM )—T §(FC) =0
GM =2asinéd, LM =4asind, FC =2a+4acosd.
Therefore, virtual work done by the forces
6W 5(2asin0)+W 'S (4asin)+Ts(2a+4c0s0) =0
Or 12aW cos 66 + 4aW 'cos @ 660 —4aT singd 66 =0



Or Tsin@—-3W cosd—-W 'cos@ =0
Since 60=0.

Therefore, T =(3W +W ') cot @ in equilibrium 6 =60’

S T=(3W+W ')cot60°,%

Example6:- The middle points of opposite sides of a jointed quadrilateral are connected by light

T 1

T
rods of lengths | and |'. If T and T ' be the tensions in there rods, prove that —+—=0.

Solution:- Let E,F,G,H be the middle points. Of the rods AB,

II
CD, DA, and BC respectively.

Let T and T 'be the tension in the rod EF and GH respectively. Replacing the tension

by two forces acting outwards in opposite directions

—C

H

B

A small virtual displacement is given to the system, which changes angles but not the
lengths of sides. Therefore, the equation of the virtual work is

TS(EF)+T'6(GH)=0

In the AAOB.

OA’ +0B* —2(OE” + AE?)
2(OA*+0B’) = EF* + AB®

Or similarly,

2(OB*+0C?)=GH?*+BC?
2(0OC?+0D?)=EF’+CD’
2(OD?+0A?)=GH? + DA’

Subtracting (3) from (2), we have
2(OA*-0C?)=EF’+ AB* =GH’ - BC”
Subtracting (5) from (4), we have

2(0C? +OA*)=EF?+CD’ ~GH? - DA?
Adding (6) and (7)

0=2(EF*-GH?”)+ AB*+CD” - BC’ — DA’
Taking differentials

(1)

(2)

(3)
(4)
(5)

(6)

(7)



2[ 2EF §(EF)-2GH §(GH)]=0
Since AB,BC,CA, DA are constant.
Therefore, 5(EF):CE—|:5(GH) (8)

On putting the value of §(EF) from (8 )in (1), we have

TS 5(GH)+T 5(GH) =0 or (L+lj. 5(GH)=0
EF EF GH
But 5(GH)¢ 0. Therefore, LJrL:O or I4—120.
EF GH [

Example7:- A smooth rod passes through a smooth ring at the focus of an ellipse whose major
axis is horizontal and rests with its lower end on the quadrant of the curve which is further
removed from the focus .

a
Find its position of equilibrium and show that its length must at least be Z{3+ (1+ 862)} , Where

2a in the length of major axis and e is the eccentricity.

I
Solution:- Let S be the pole. Equation of the ellipse in polar co-ordinates is —=1—eco0sé.

r
Y 4

-
. E >

C
(r.0)

Let the co-ordinates of the point C be (r,0), where angle ESC =6

Weight of the rod CD will act vertically downward from the point G.
Taking major axis AA'as a fixed line giving a small virtual displacement to the system so
that @ becomes 6+ 066

Equation of the virtual work W 5(GE) =0

5(GE)=0.

But GE =GSsin#=(CS—CG)siné(r—c)siné (1)
Where 2c is the length of the rod CD.

I . . . .
r = ——— from the equation of ellipse, using this value of r.
1-ecosé

GE = I——c sin@, therefore & ;—C sin@=0.
1-ecos@ 1-ecosd



On putting the value of GE, we get the above result.

| cos@(1-ecosd)—lesin® O

5 —ccosd |00=0
(1-ecos0)

But 6600
Therefore, 1cos@ —le—ccosd(1—ecos6)’ =0

Length of the rod will be least if D coincides with S.
I

Therefore, r=2c.But r=——

1-ecosé

I

Therefore, r=2c=———
1-ecosé

Now putting the value of ¢ from equation (3) in equation (2) we have

ecos’ @ +cosf@—2e=0
1+ (1+8e2)

2e
Negative value of c0Sé@ is not admissible.

Which gives cosé =

1+ (1+802)

23
Substituting this value of C0sé in equation (3),

I
—1+ (1+8c2)
2

2l éﬂ@i

{ (1+8e? )} 3+,/(1+8¢%)

2|{3+\/m} |{3+ (1+892)}

- 8—8e? 4(1 ez)

Therefore, cosé =

2Cc=

1-

But I =(1-¢’)a .. 20=%{3+ (1+8¢? )}

Hence required length of the rod=—{3+ (1+ 8e2)}

Nl
—_——

(2)

(3)



Example8:- A string of length a, forms the shorter diagonal of a rhombus formed by four uniform
rods, each of length of b and weight W . Which are hinged together. If one of the rods be
2W (2b* -a*)

/2
b(4b? —a?)
Solution:- Let the side CD of the rhombus be fixed in the horizontal position. BD is a string
whose tension is T . Replacing the tension in two forces T, T inward in opposite directions.

D L C

supported in a horizontal position, prove that the tension of the string is

A= B

Let the ZLDG =6.
A small virtual displacement is given to system so that @ becomes 6+ 96 .

Now the equation of virtual work is 4V §(LG)—-T&(BD)=0
Inthe ADGC,2DG =2CDcosé (1)
Therefore, BD=2b COSH(CD = b)

LG =GD sin@ =CD cos#siné = bcosesin0=gsin 20
Putting the value of LG and BD in equation (1), we have
4w 5(gsin 26’)—T5(2bcos€):0

Or AW bcos20660+2bTsinf@.660 =0
Or (2\N c0s26+Tsin@) 60 =0 But 50 #0

cos 26

2W cos260+Tsin@=0 or T =-2W —
sin@

(sin* @ —cos’ 6)
Or T=2W - (2)
siné@
In the position of the equilibrium, from the triangle DGC, we have
DG BD/2 al2

DC b

cosd =

4b® —a’

Or 0039:i sinezg
2b 2b

On putting the value of sin@ and cos@, we get



T=2W 2 —a 72
b(4b? —a?)

Example9:- A square of side, 2a is placed with its plane vertical between two smooth pegs, which
are in the same horizontal line at a distance ¢ apart. Show that it will be in equilibrium when the

2

o . L r 1. ,(a*-c®
inclination of one of its edges to the horizon is either 2 or Esm
c

Solution:- Let ABCD be a square of weight W . The weight acts vertically downwards at the point
C. G is the point inter-section of AC and BD. P and Q are two pegs. Let the side AB makes

an angle @ with the horizontal.

D

In the AANQ,Q—N =sing,
AQ
. QN = AQsiné.

In the APAQ,A—Q=C039
PQ
Or AQ =c cosd, since PQ=c

Putting this value of AQ in (1), QN =Ccosﬁsin9=%csin 20 ,
But QN =EM . EM :%csin 20

In the AAMG,G—M=sin(45" +0)
AG
Or G—M =sin(45° +6?) ..GM = «/Easin(45" +¢9)

J2a
Now GE =GM — EM :\/Easin(45°+0)—%csin 20

Since pegs P,Q are fixed. Therefore distance of the force is measured in upward direction
from PQ.
A small virtual displacement is given to the system, so that & becomes 0+ 56 .



Equation of virtual work “W&(GE)=0

5(GE)=0

On putting the value of GE . We have
5{x/§asin(45° +9)—%sin 29} =0

or  [V2asin(45 +0)-ccos20]50=0; 500
Therefore, v2acos(45" +6)—ccos20 =0
Or  +2a[cos45 +cos6—sin45°sin g |

—¢(cos® 0—sin® ) =0

Oor ﬁa(icose—isinej—c(cosze—sinze):o

2 2
Or a(cos@—sin@)—c(cosd—-sind)(cosf+sinf) =0
Or  (cos@-sind) a—c(cos@+sing)]|=0

When cos@-sind =0, tand =1, .. 0=%7r

When [a—c(cos@+sing)]=0 or a=c(cosd+sino)
On squaring a° =c?(cos® 6+sin’ 6+ 2sin 0cos6)

Or a’=c*(1+sin20) .. 1+sin20=a’/c?

22 20 2
Or singg=2-C% . Hzisinl(a C]

c? 2

Examplel10:- Two rods, each of weight wl and length |, are hinged together and placed astride
a smooth horizontal cylindrical peg of radius r . Then the lower ends are tied together by a string
and the rods are left at the same inclination ¢ to the horizontal direction. Find the tension in the

string, and if the string is slack show that ¢ satisfies the equation tan® ¢ +tang=1/2r

Solution:- Since cylindrical peg is fixed. Therefore the distances are measured from the centre of
the peg. Let the angle AOE =46



Therefore, OAE =90° - 6.
Hence Z/DCA= /DBA=6

Tension in the string BC is replaced by two forces T, T acting inwards in opposite
directions. A small displacement is given to the system, so that & becomes 6 + 66

Equation of virtual work is =T &(BC)+2lws(0G)=0 (1)
Ising

BC =2BD =2lcos@d. OG=AG-AD= —rsecd.

On putting the value of BC and OG in (1), we have
Ising

—T5(2Ic050)+2lw5( —rseceJ:O

Or 21T sin@ 60 +Iw(l cos§—2rsecHtan 0)56 =0
Or  [2Tsin@+Iw(lcosd—2rsecOtand)]56 =0
But 600, T =W(2rse020—l cot&)

When the string is slack, the tension vanishes.
| cos@ =2rsecHtand

Or 2L=tan Hse02H:tan9(1+tan29):tan0+tan39
r

|
Or tan®@+tan @ = —
2r

|
In equilibrium 0= ¢ .. tan® g+ tan g =or

Examplell:- Two small smooth rings of equal weight slide on fixed elliptic wire whose major axis
is vertical. They are connected by a string which passes over a small smooth peg at the upper
focus, show that the weight will be in equilibrium wherever they are placed.

Solution:- Let CLDMC be an elliptrical wire whose equation is

Ile—e cosé (1)

Sis the pole. M, L are the positions of the rings.



Let co-ordinates of M be (r,0).
Sothat SM =r, ZPSM =6

Let the length of the string be |.
Therefore SL=a—r.

In the ASPM .
r—I r—I
PS:rcosezr( )z( )
re e
Therefore, SQ = a—r-|
C
S
0
P M
L(Q
v D
/4 w

Small displacement is given to the system, so that & becomes 6+ 6 .
Equation of virtual work is W 6(SP)+W&(SQ) =0,

or Wa(r—_'}wcs(a_“'}:o
e e

Or V?v§r+\%v(—5r)=0 orv?v(ér—ér):o

This equation is identically satisfied.
Therefore, then weights will be in equilibrium, wherever they are placed.

Examplel2:- A heavy uniform rod of length 2a, rests with its ends in contact with two smooth
inclined places of inclination & and £ to the horizon. If @ be the inclination of the rod to the

1
horizon, prove by the principle of virtual work, that tané = E(COta —Cotﬂ)

Solution:- Let DA and DF be two inclined planes which makes angle f,a respectively from the

horizontal. Rod AF rests on these inclined planes.



: B :

E D C B
A small virtual displacement is given to the system, so that 8 becomes 8 + 66
Equation of virtual work, -W §(GC) =0

or 5(GC)=0 (1)
AD FD AF

In the ACDA sin(a+0) sin(f-0) sin{z—(a-p)}

or AD FD 2a

sin(a+¢9):sin(ﬂ—e):sin(a+ﬂ)
o 2a_sin(a+9)’ D — 2a_Sin(,3—t9)
sin(a+4) sin(a+f3)
In the AABD,

i =sinfm ~. AB— ADsin f= 2aSIr_l(a+0)s|nﬁ
AD sin(a + p)

2asin(f=0)sina "o _1(ag . FE)
sin(a+8) 2

On putting the value of AB and FE.

Similarly, FE =

a . . : .
We have GC _W[Sln(a+9)smﬂ+sm(ﬁ—9)sm a]
Using this value of GC in (1)
a . . . .
) m{sm(a+¢9)smﬂ+sm(,8—9)sm al|=0

a : .
or m[cos(aw)smﬂ 86 —cos(B—0)sinasd |=0
Oor  [cos(a+8)sinB—cos(B—0)sina|=0, 50+0
Oor  (cosacos@—sinasind)sin -

(cos Bcos@+sin fsinG)sina =0

1
Which gives then tan 8 = E(COta +cot )



Examplel3:- A uniform beam rests tangentially upon a smooth curve in a vertical plane and one
end of the beam rests against a smooth vertical wall; if the beam is in equilibrium in any positions,
find the equation to the curve.

Solution:- Let LPM be a smooth curve. Let G bea C. G of the beam AB. The weight W of
the rod acts vertically downward from this point.

Y4

o : >

Let GN =h, length of beam = 2a co-ordinates of G are (acosé,h).
Therefore, the equation of AB s
y—h=(x-a, cos@)tan o (1)
Differentiating w.r.t. 8. This gives
0 =sec’ 9(x—acos€)+asin dtan @
Or (x—acos@)+asin® cosd =0
or x:acose(l—sinze)
=acos® o

1/3
Therefore, c0S0 = —=
a

(2)
Eliminating @from (1) and (2), we have
%213 +(y_ h)2/3 — 32

Which is the required equation of the curve

Examplel4:- One end of a beam rests against a smooth vertical wall and the other an a smooth
curve in a vertical plane perpendicular to the wall; if the beam rests in all positions, prove that
the curve is an ellipse whose major axis lies along the horizontal line described by the centre of
gravity of the beam.

Solution:- Let AB be a rod of length 2a. This rod rests on a vertical wall an on a smooth curve
MBL , weight W of the beam acts vertically downwards from CG of the beam AB.



S : ; >
E I X

Let the co-ordinates of the point B be (X, Y).
Therefore, x =2asiné

y=h-acosd
Where h=GH and @ is the angle which the beam makes with the vertical.
Now ——=sind ; YN coso

2a a

2

. . x> (y=h)
On squaring then adding, we have F+ >
a a

=1

Which is the equation of the ellipse.

Whose major axis Y = h, then horizontal line described by centre of gravity of beam.

Examplel5:- A smooth parabolic wire is fixed with its axis vertical and vertex downwards and in
it is placed a uniform rod of length 21 with its ends resting on the wire. Show that, for equilibrium

the rod is either horizontal, or makes with the horizontal an angle @ given by cos? @ =2a/l,4a

being the latusrectum of the parabola.

Solution:- Let AOB be a smooth parabolic wire AOB. A uniformrod AB rests on this wire. Draw
a perpendicular AK from A on x-axis. Similarly, GO and BM are also perpendicular from the
point G, B respectively on x-axis. G is the centre of gravity of rod AB . Weight W of the rod AB

acts vertically downwards from this point.

In the triangle ABL,. AL =2lcosé, BL =2lsiné
Let the equation of parabola be x* =4ay
Let the co-ordinates of point A be (Zae, atz)



O N M > X

Therefore, co-ordinates of B will be (2at+2| cos®, at® +2lsin 0).

The point B also lies on the parabola. Therefore, the co-ordinates of B satisfy the
equation of the parabola.

Therefore, (2at+2l cos 6’)2 = 4a(at2 +2lsin 6)
Or 4a*t? +8atlcosd+41% cos® 6 = 4a*t* +8al sin @
lcosd

2a
A small displacement is given to the system so that @ becomes 6 +06 .

Equation of virtual work is “-W 6(GN) =0
or  5(GN)=0

t=tand—

(1)

Now GN =%(AK+BM)=%(at2+at2+2lsin9):at2+lsin6?

2
=a(tan6?—lcosej +1Isiné@, from (1)
2a
2 2
:a'[an26?+I cos 9—Isin0+|sin0
2 2
:atanzé?+I cos” 6
4a

Using this value of GNin (2), we have

2
5(atan2¢9+l—cos2 0]:0,
4a

2

Or 2atan @sec? @ 59—%ws€sin0 00=0

or  (2asec’dl’/2acos@)sin6 56 =0

But 00 # 0,

Therefore, (2asec30—l2 /2acos€)sin¢9:0

If sin@=0,then &=0.Therod is horizontal if



2

2asec® 49—'—0036? =0
2a

|2 4a? 2a
Or 2a—2—cos4<9:0,or cos“ezl—z,coszH:T
a

Which gives the direction of the rod with the horizontal

Examplel6:- Four equal jointed rods, each of length a are hung from an angular point, which is
connected by an elastic string with the opposite point. If the rods hang in the form of square and
if the modulus of elasticity of the string be equal to the weight of the rod, show that upstretched
length of the string is.

Solution:- Let ABCD be a square formed by four equal jointed rods. The system ABCD hangs by
the point A. Points A and C are connected by string AC . Weight 4W acts vertically downward
from the point G . Which is the point of intersection of the diagonals AC and BD, where W is
the weights of each rod. Replace tension T of the string by two equal forces T, T acting inwards
in opposite direction. Give a small virtual displacement to the system so that & becomes 6+ 060

, b is the natural length of the string.
A

0 le
\ A
B € D
vaw
¢
Equation of virtual work is 4W5(AG)—TS(AC)=0
Or  AWS(AG)-T5(ZAG)=0
Or AWS(x)=T5(2x)=0 (where AG =x)
Or IW 6x—2T 6x=0 or Z(Z\N —T)§X=0

But 6x#0. Therefore, 2N —T =0,
T=2W (1)

By Hook’s Law T = %(I -b)

or T :VFV(Zacose—b) (2)



Where 2acosé in the length of extended string and is the modulus of elasticity and it
given A=W .
Now equating two values of T from (1) & (2) we get

2W :VFV(Zacose—b) or 2b=2acosf-b

3b=2acos@ or b= 2acos

In equilibrium, @ =45, Therefore, b:?za.

av?2
Upstretched length of the string is T\/_

Examplel7:- An endless chain of weight W rests in the form of a circular band round a smooth
vertical cone which has its vertex upwards. Find the tension in the chain due to its weight
assuming the vertical angle of the cone to be 2¢ .

Solution:- Let ABCD be a cone. An endless chain rests in the form of a circular band round this
smooth cone. Distance are measured from the vertex of the cone.
Let AG=x sothat GE=X tana
Therefore, the length of the string =2zX tan .
A

o

A small virtual displacement is given to the system, so that X becomes X+JX.
Equation of virtual work WS (AG)-T&(2zxtana) =0

or  W&(x)-Ts(2zxtaner)=0

Or Wox-2zTtanadx=0

or (W-27zT tana)6x=0

But ox= 0.

W
W — 27T tana =0, which gives tension in the chain T = 2—C0ta
Vs



PREVIOUS YEARS QUESTION IAS/IFoS (2008-2023)

Q8(b) A chain of n equal uniform rods is smoothly joined together and suspended from its one
end A . A horizontal force P is applied to the other end A, of the chain. Find the inclinations
of the rods to the downward vertical line in the equilibrium configuration. UPSC CSE 2022

Q5(c) Two rods LM and MN are joined rigidly at the point M such that (LM )2 +(MN )2 =(LN )2

and they are hanged freely in equilibrium from a fixed point L. Let @ be the weight per unit length
of both the rods which are uniform. Determine the angle, which the rod LM makes with the
vertical direction, in terms of lengths of the rods. UPSC CSE 2021

Q5(d) Four light rods are joined smoothly to form a quadrilateral ABCD. Let P and Q be the mid-
points of an opposite pair of rods and these points are connected by a string in a state of tension
T. Let R and S be the mid-points of the other opposite pair of rods and these points are connected

by a light rod in a state of thrust X. Show that T-(RS) =X -(PQ). IFoS 2021

Q1. A square framework formed of uniform heavy rods of equal weight W joined together, is hung
up by one corner. A weight W is suspended from each of the three lower corners, and the shape
of the square is preserved by a light rod along the horizontal diagonal. Find the thrust of the light
rod. [7c UPSC CSE 2020]

Q2. A frame ABC consists of three light rods, of which AB, AC are each of length a, BC of length
3
Ea , freely joined together. It rests with BC horizontal, A below BC and the rods AB, AC over two

smooth pegs E and F, in the same horizontal line, at a distance 2b apart. A weight W is
suspended from A. Find the trust in the rod BC. [7c 2018 IFoS]

Q3. A string of length a, forms the shorter diagonal of a rhombus formed of four uniform rods,
each of length b and weight W, which are hinged together. If one of the rods is supported in a
2W (20° —a*)

by/4b? —a?

Q4. Two equal uniform rods AB and AC, each of length /, are freely joined at A and rest on a
smooth fixed vertical circle of radius r. If 26 is the angle between the rods, then find the relation
between /, r and 0, by using the principle of virtual work. [Sd UPSC CSE 2014]

horizontal position, then prove that the tension of the string is .[6b 2017 IFoS]

Q5. Aregular pentagon ABCDE, formed of equal heavy uniform bars joined together, is suspended
from the joint A, and is maintained in form by a light rod joining the middle points of BC and DE.
Find the stress in this rod. [7c UPSC CSE 2014]



Q6. Six equal rods AB, BC, CD, DE, EF and FA are each of weight W and are freely joined at their
extremities so as to form a hexagon; the rod AB is fixed in a horizontal position and the middle
points of AB and DE are joined by a string. Find the tension in the string. [7c UPSC CSE 2013]

Q7. A heavy elastic string, whose natural length is 27a, is placed round a smooth cone whose
axis is vertical and whose semi-vertical angle is « . If W be the weight and A the modulus of
elasticity of the string, prove that it will be in equilibrium when in the form of a circle whose
radius is

W
a(1+ ——CO0S aj . [8¢c 2012 IFoS]
27

Q8. One end of a uniform rod AB, of length 2a and weight W, is attached by a frictionless joint to
a smooth wall and the other end B is smoothly hinged to an equal rod BC. The middle points of

the rods are connected by an elastic cord of natural length a and modulus of elasticity 4W. Prove
that the system can rest in equilibrium in a vertical plane with Cin contact with the wall below A,

. 3
and the angle between the rod is ZSln‘l(Z]. [7a 2011 IFoS]

Q9. A solid hemisphere is supported by a string fixed to a point on its rim and to a point on a
smooth vertical wall with which the curved surface of the hemisphere is in contact. If 6 and ¢ are
the inclinations of the string and the plane base of the hemisphere to the vertical, prove by using
the principle of virtual work that

tang = §+ tan & . [8b UPSC CSE 2010]



FORCES IN THREE DIMENSIONS

DEFINITION

(1) Dyname:- The combination of a force R and a couple G often called a dyname, and the
quantities X,Y,Z,L,M,N are called the components or elements of the dyname.

(2) Central Axis:- If a system of forces is reduced to a force R and a couple G cosé such that

the axis of the couple coincides with the line of action of the force R, then the very line
is called the central axis of the given system.

Note:- From now onwards, we write K for Gcos@ so that
K=Gcosé@

(3) Wrench:-Suppose that a system of forces is reduced to a force R and a couple of moment
K whose axis coincides with the direction of the force R. Then the force R together
with the couple K is called the Wrench of the system and is denoted by (R, K).

(4) Pitch:- The ratio K /R viz. the moment of the couple divided by the force is called the
pitch of the system.

The pitch is a linear magnitude. When the pitch is zero, the wrench reduces to a single
force. On the other side when the pitch is infinite, the wrench becomes a couple only. If
a body rotates through small angle d@ about the axis and moves at the same time a
distance dx along the axis, then the ratio dx/d@ is called the pitch of the screw. Clearly,
the pitch is the rate of change of x along the axis as @ increasing.

(5) Intensity of a Wrench:- The single force R is called the intensity of the wrench.

(6) Screw:- The straight line along which the single force acts when considered together with
the pitch is called a screw, so that a screw is a definite straight line associated with a
definite pitch.

(7) Moment of a Force about a line:- The moment of a force P about a given line is obtained
as follows:

Resolve the force P into two components Q and S such that the force Q is parallel to
the line and the force S is perpendicular to the line. The moment of the force P about
the given line is defined to be the product of force S and the shortest distance between
the line of action of the force S and the given line.



Suppose that aforce R acting at a point A has components X,Y,Z along the coordinate
axes 0x,0y and o0z respectively as shown in the figure. So, by the definition the moment
of

W4
/A ’
Yy |z
0 - N
y
M

The force R about ax axis is equal to the component vY?+Z? multiplied by the
shortest distance between its line of action and ox line = The moment of R about ox

is equal to the moment of VY?+Z? about the point N . Since the algebraic sum of the
moments of any two forces about any point in their plane is equal to the moment of their
resultant about the same point. So the moment of the force R about ox line is equal to
the sum of the moments of its two components Y and Z about N and this sum finally
is equal to yZ —zY .

The moment of the resultant couple about the Central Axis is less than moment of the
resultant couple corresponding to any point O which is not on the Central Axis.

Proof:- As provide in Art. 12, the resultant force for any system of forces for any origin is the same

2.

and equal to that along the central axis. But the resultant couple differs.

If G is the couple for any origin (or base point), not on the central axis and if @ is the
angle between the axis of the couple and the direction of the resultant force. Then the
moment of the couple about the central axis has been proved to the Gcosé.

Clearly Gcos0<G, 0<0<xn/2

Therefore, the moment of the resultant couple is minimum for the Central Axis.

General Conditions of Equilibrium of A Rigid Body.

Proof:- Suppose that a system of forces is reduced to a force R and a couple G. The couple G

can be replaced by two equal and opposite forces one of which acts through the point O
where R meets the plane of the couple. This force and R can be compounded into a
single force which passes through O and does not meet the other force of the couple. So
equilibrium is not possible. Hence a force R and a couple G together cannot produce
equilibrium.



Hence the system can be in equilibrium only when the force R and the couple G vanish
separately. But, by Art. 11,

RZ=X%+Y?+Z%and G*=L*+M?+N?.
Hence for equilibrium we must have

X=0=Y=Z,L=M=N=0
Which conclude that the sums of the resolved parts of the system of forces parallel to any
three axes of the coordinates must separately vanish, and also the sums of their moments
about the three axes must separately vanish.

3. To find the condition that a given system of forces should compound into a single force.

Proof:-In view of Art. 11, a system of forces is equivalent to a single force R acting at an arbitrary
point (base point) and a single couple G and @ is the angle between the axis of couple

G and the direction of the force R, fig. 1

A

0
o) ‘CG B
Fig. 1
The force R is equivalent to a force Rcos@ along OB and a force Rsiné along
OC(OB LOC) , fig. 2. Since the couple G acts in the plane DOC, so the couple G may
be replaced by two forces each equal to Rsiné, one along OE and the other along DF

(parallel and opposite in direction), fig. 3.

C

Rsinf

Y

B

D
Fig. 2

The two force, each equal to Rsin@, acting to O balance. Now the system of forces is
reduced to a force Rcos@ along OB and a force Rsin@ along DF . But the force Rsin@



does not pass through O, therefore the force Rsiné cannot, in general, compound with
Rcos@ into a single force.

C
F )
ARsIn O
Rsin @ Rcos0
O > B
D
Yy Rsin @
E
Fig. 3
Butif Rcosq=0
p cosq=0as R' 0P q=p/2, then the system of the given force is reduced to a single
&X Y Z0o
force Rsing. Hence the straight lines whose direction cosines are é— —,—= and
R'R'RD
&L M NO XL YM ZN
—,—,—~are mutually perpendicular So —.—+ —.—+ —.—=¢0590° or
G G Go RG RG RG
XL+ YM + ZN = 0 which is the required condition.
4. Invariants:- Whatever origin (or base point) and axes of coordinates are chosen, for any

given system of forces the quantities X2+ Y2+ Z% and LX + MY + NZ are invariable
where X = SX etc.and L= S (y,Z,- z7)Y,) etc.

Proof:-Since R*= X2+ Y%+ Z? and G?= L+ M?+ N2. The direction cosines of R are

&X Y Z9 &L M NoO
— ,—,—=and the direction cosines of the axis of the couple G are g— —,—=. If the
R R R®o Go

direction of R makes angle q with the axis of the couple. So

XL YM ZN
cosq= —.—+ —.—+ —.—
RG RG RG
b XL + YII;A +ZN _ Geosq= K @

We know that central axis is unique and both the force R and the couple K are found

along the central axis. Hence R and K both are invariable. So X*+ Y?+ Z? is invariable
and also from (1).

XL+ YM + ZN are in variable.
It follows that if K= 0 i.e. if the given system of forces reduces to a single force, then
LX+ MY+ NZ=0.
If R=0,then X*+Y?+ Z?= 0 and LX + MY + NZ = 0 (Both).



5.

The pitch, p, of the resultant wrench of the system
K_LX+ MY+ NZ
R R?
Thus for a given system of forces, R and K= Gcosq are unique so that the wrench is
unique.
To find the equation of the Central Axis of any given system of forces.

Proof:- Referred to the coordinates axes 0x,0y,0z, let the system of forces P,P,,...,P, acting at

points A, A,,..., A respectively be equivalent to (R,G) where
R*= X?+Y?+ 7% G*= >+ M?+ N?
X=SX,Y=SY,Z2=SZ,L=S(yZ- zV,),
M =S (z,X;- %Z,),N=(xY,- y,X;)where B = (X,,Y,,Z,) etc. and coordinate

of Aare (x,V,,2,) etc.
Let (f , g,h) be the coordinate of any point Q. At Q the value of R remain invariant.
Assume lines Qx',Qy',Qz" parallel to ox,oy and 0z respectively. The moment of the
force about 0X' is obtained by putting X,- f,y,- ¥,z - h instead of X,V,,z in the
values of L,M,N .
Hence the moment about Qx' line

=4 gyi' 9)Z- (- h)YiE
i=1

n

> (viZi-zY,)- giznl:Zi +hiznl:Yi

i=1

=L-gZ+hY.
Similarly the moments about the liens Qy'and Qz' are M —hX + fZ and N — fY + gX
respectively.
Also the components (X ,Y,Z) of the resultant force R are the same for all points such
as Q.
If Q be a point on the central axis, the direction cosines of the axis of the couple
corresponding to the point Q are proportional to those of the resultant force.
L-gZ+hY M-hX+fZ N-fY-gX

Y VA

LX+MY +NZ K
= 5 > = By Art. 18
X“+Y°+Z R

Hence

L-yZ+2zY M-zX+xZ N-XY+yX
X Y

The locus of the point Q is which is the

equation of the central axis.



6. Working Rule:-
(1) To Find central axis:-

(a) Write down the equation of the line along which the force P, (Xr,Yr,Zr) acts, in

X—X - -1
ro_ y yr — r Where (Ir’ml"nl‘) are the aCtuaI
m n

r r r

direction cosines. Then the components (X,,Y,,Z, ) of the force P, along the axes
aregivenby X, =I.RP.,Y, =mP,Z =nnP.Then X =ZX,,Y =XY,,Z =37, .

r'ry r'r

the standard from

(b) The value s of L,,M,, N, are given by the determinant

R T
iL, + JM, +kN, =|x. vy, z]|.
xl’ YI’ ZI’

By equation the coefficient of i, j,k on both the side of the above equation. We get
L,,M, and N,.Then L=2L ,M =3XM_,N =Z2N, .

(c) Now the equation of the central axis is given by
L-(yZ-2Y) M—(z2X-xZ) N—(xY-yX)
X - Y B Z

(2) The pitch of the wrench
K LX+MY +NZ

R X24Y?4+Z72

(3) The system reduces to a single force if
LX +MY +NZ =0.

Example:- Equal forces act along the coordinate axes and along the straight line
X—a y-p 1-r
|  m  n
Find the equations of the central axis of the system.
Solution:- Let the equal force be P . Then P acts along each of the given lines, viz. 0X,0y,0zZ axes

and the line (1) P acts along x-axis, i.e. X_Y_z
1 0 O

Components (X,,Y,,Z,) of P aregivenby X, =P,Y,=0=2,

(1)

Components moments (L, M,,N,) of the force P about



g k| i k
ox; iL,+ JM, +kN,; =[x vy, z |[=|0 0 O
X, Y Z| [P 0 O
=0i+0j+0k
L=M,=N,=0
.. . X Z
Similarly, along oy — axis i.e. 6:%:6
i jJ k i ] k
X,=0,Y,=P,Z,=0and Lii+M,j+N,k=|x, vy, z|=/0 0 O
X, Y, Z,, 10 P O
L,=M,=N,=0
Along the z-axis
i J k i j k
X,=0=Y,, Z,=Pand Lii+M,j+NKk=[x, y, zl|=/0 0 0
X; Y, Z,/ 10 0 P
=0i+0j+0k
LL=M,=N,=0
Along the line
XIa = y;ﬂ = Z_y,assuming (I,m,n) are d.c.'s
X,=IP,Y,=mP,Z, =nP

i j k i ] k
iL,+ M, +kN, =X, Vv, Z|=la B ¥

X, Y, 2, |IP mP nP
=(An—ym)Pi=(yl—an)Pj+(am— A1) Pk
L, =(Bn—ym)P,M, =(y1—an)P,N, =(am- )P
X =2X,=P+0+0+IP=(1+1)P
Y =XY,=0+P+0+mP=(1+m)P
Z=37,=0+0+P+nP=(1+n)P
L=2L =0+0+0+(Bn—ym)P=(pn-ym)P
M =3M, =0+0+0+(yl—an)P=(y1—an)P
N =3N, =0+0+0+(an—pl)P=(an-pl)P
L—yZ+zY:M—zX+xZ:N—xY+yX

The equation of central axis is Y 7



Putting the value of respectively terms and cancelling P throughout, we get
(nB-my)-y(@+n)+z(1+m) (ly—na)-z(1+1)+x(1+n)
1+1 - 1+m
_(am—=pl)—x(1+m)+y(1+])
- 1+n
Which is the required equation of the central axis.

Note:- ( ) are not the actual direction cosines, then the actual direction cosines are
| m n 12
=—,m=—,n==, u=(I"+m*+n’)
H ﬂ y2

Example:- Forces X,Y,Z act along the three lines giving by the equations y=0,z=c
z=0,x=a; x=0y=Db; prove that the pitch of the equivalent wrench is

(aYz +bZX +cXY )/(X Z4Y%+ Zz). If the wrench reduces to a single force, show that the line of

action of the force lies on this hyperboloid. (x—a)(y—b)(z—c)=xyz.

Solution:- The three given lines are 5=X:Z—_C;X;a=lzz;§=y—_b=E
1 0 O 0 1 00 O 1
Force X acts along the firstline,so X, =X,Y,=0=2,
i ] k| i ] k
iL,+ M, +kN,=|x, vy, z|[=[0 0 ¢
XY Z| X0 0
i(0)+j(cX)+k(0)
= L, =0, M, =cX, N, =0
Force Y acts along the second line,so X, =0,Y,=Y,Z,=0
i J Kk i J k
iL,+ jM,+kN, =[x, vy, z,|=la 0 O
X, Y, Z,, 10Y O
=i(0)+j(0)+k(aY)
= L,=0,M,=0, N, =aY
Force Z acts along the third line,so X,=0,Y,=0,Z,=Z7 and
i j k i j k
iL,+ jM;+kN; =%, Yy, z|=/0 b O
X; Y, Z |0 0 Z
ibZ +j(0)+k(0)

= L, =bZ, M;=0=N,



X=2X;,=X+0+0=X
Y=Y+Y,+Y,=0+Y +0=Y
2=2,+72,+2,=0+0+2Z2=Z
L=L+L+L,=0+0+bZ=bZ
M =32M, =cX,N =EN, =aY
The pitch of wrench is given by
_LX+MY +NZ  bZX +cXY +aYZ
COXP4Y24Z7 0 XP4Y242Z°
_aY¥YZ +bZX +cXY
COXP4Y247°
Second Part:- The condition that the system of forces reduces to a single force is
LX+NY+NZ=0
= bZX +aYZ +cXY =0 (1)
The equation of central axis is
L-yZ+2zY M-zX+xZ N-XY+yX
X - Y - Z
Putting the value of L,M,N
bZ -yZ+2Y X -2ZX+xZ aY-xY +yX

X Y Z
= bZ -yZ+2Y =0,cX —zX +xZ =0,aY —=xXY +yX =0
= 0X +2zY +(b-y)Z=0 (2)
(c—2)X+0Y +xZ =0 (3)
yX +(a—x)Y +0Z =0 (4)

To find the line of action of the single force i.e. the locus of the central axis, eliminate
X,Y,Z from the equations (2), (3), (4)

0 z b—y
c-z O X |[=0
y a-x 0
Expanding along the first row, we get
—z(—xy)+(b-y)(a—x)(c—2z)=0
= (x—a)(y—b)(z—c)=xyz
Which is a equation of hyperboloid.



Example:- A force F acts along the axis of z and a force mF along a straight line intersecting the
axis of x at a distance ¢ from the origin and parallel to y —z plane. Show that as this line turns

round the axis of X, the central axis of the system generates the surface
{mzz2 +(m? -1) yz}(c—x)2 = x?z°

Solution:- In the figure a parallopiped is shown in which OD =c¢ force mF is assumed to be
acting along DE where ZBDE =6 (say), then ZADE =7/2—6. Direction cosines of line DE
are c0s90, cosd, cos(90—0)i.e. (0,cos8,sin 9), since line DE lies in a plane parallel to y—z

plane.
-c_y z
0 cosd sind

X
The equation of the line DE is

z
A
E
AL mE
"“\“5 0
¢ ) I
0 oD
B
Y
Components of force mF parallel to axes are X, =0, Y, =mF cosé, Z, =mFsin@ and
I k| i J k
Li+M,j+Nk=|x vy, z,|=|c 0 0

X, Y, Z,| |0 mF=cos@ mFsinéd
=0i—(mcFsin @) j +(mcF cos )k
= L, =0, M, =—mcFsin &, N, = mcF cosé

A force F actsalong z—axis, i.e. X_Y_z
0 0 1
So, its components (X,,Y,,Z,) are X,=0,Y,=0, Z,=F and
I j kK [ k

Li+M,j+Nk=|x, vy, z,|=/0 0 O
X,Y, Z, 10 0 F
=0i+0j+0k
= L,=M,=N,=0



X =2X,=0,Y =ZY, =mF cosé@

Z=37Z, =mFsind+F =(1+msind)F

L=2L =0, M =XM, =—mcFsiné

N =2N, =mcF cosé
The equation of the central axis is

L-yZ+2zY M-zX+xZ N-XY+yX

X Y - Z
Putting the value of the respective terms we have
0-y(1+msin@)F +z(mF cosd)
0
_ —mcF sin 0—-2X0+x(1+msin0) F
- mF cos &
_ mcF cos & —xmF cos &+ yx0
B (1+msin)F
—y(1+msing)+zmcosd —mesind+x(1+msino)
0 N mcos 6
B mc cos & — xmcos & 1)
1+ msiné

We see that the equation of the central axis has @ as perimeter, so in order to find the
locus of the central axis, eliminate @.
The first two ratios of (1) give

—y(1+msin#)+zmcos§ =0 (2)

Or

= —ysin@+zcos@=y/m (3)
The last two ratios of equation (1) given
—mcsind+x(1+msind) mccosd—xmcosd
mcos & ~ 1+msing
(x—c)msind+x mcosd(c—x) 'y

===(Cc—X) using (2
mcosé 1+msing Z ( ) 8 (2)

=  (x—c)mzsinf+xz=my(c-x)cosé

= ycosﬁJrzsin@:L (4)
m(c—x)
Squaring (3) & (4) and adding
y2 XZZZ

2y = 2"
Y m? mz(c—x)2

= mz(y2+zz)(c—x)2:yz(c—x)2+xzz2



= (c—x)2 {(mz—l) y2+m222}=x222.

Example:- Force X,Y,Z act along the straight lines y=b,z=-C ;x=-a,z=c and x=a,y=-b

a c
respectively. Show that they will have a single resultant if X + v + 7 =0 and that the equations

toitsIineofac‘rionareanytwoofthreeX—E—E:O,Z x_b x_ Y C:O.
Y Z X Z X Y XY Z

Solution:- The standard equations of the given lines are
X y-b z+c (i
1 0 0

£=¢ (i)

b _z (i)

Force X along the line (1), components of X along axesare X, =X,Y;=0,Z, =0 and
i) k| i Kk
Li+M;j+Nk=|x vy, z|=[0 b —c
X, Y, Z| | X0 O
=0i —cXj —bXk
= L, =0, M, =—cX,N, =-bX
Force Y acts along the second line, components of Y along axes are given by
X,=0,Y,=Y,Z,=0and

i j k T T ¢
Li+M,j+Nk=|x, vy, z,|]=[-a 0 O
X, Y, Z, 0O Y O

=(—cY)i+0j—aYk

= L, =—Y, M, =0, N, =-aY
Force Z is acting along the line (3), components along z— axisare X,;=0,Y,=0,Z,=2

i j k i j k
and Li+M,j+Nk=|x, y;, z;j=|a —-b O
X, Y, 2, |0 0 Z
=(-bZ)i—azj+0k
= L, =-bZ, M, =-aZ, N; =0

So, X=2X,=X,Y=Y,Z2=Z
L=3L, =0+(-cY)+(-bZ)=—(cY +bZ)



M =3M, =—cX +0+(—aZ)=—(cX —az)
N =2N, =-bX —aY +0=—(bX +aY)
The system of forces is equivalent to a single force if LX +MY +NZ =0.
Putting the values of the respective terms, —(CY +bZ) X —(cX +aZ)Y —(bX +aY)Z =0
= aYZ +bZX +cXY =0
Dividing by XYZ we have.
i=R+0.The first part is over (4)
X Y

The equation of the central axis is L-(yz+2Y) = M _(Z\): ~x2) - N _(X;_yx)

Putting the values of respective terms
—(cY+bZ)-yZ+2Y —(cX+aZ)-zX +xZ
X - Y
_ —(bX +aY)-xY +yX
- Z
Using first ratio of equation (5) p=0 (5)
=  —(cY+bZ)-yZ+2zY =0

N|N

(6)

_____ =0 (7)

2 Y Z_p (8)

We see that any one of these equations (6), (7), (8) can be obtained from the other two
by means of equation (4), so any two of these equations viz. (6), (7) , (8) are linearly
independent. Hence any two of the equations represent the line of action of the single
force.

Example:- Three forces each equal to P act on a rigid, body, one at the point (a, 0, O) parallel to

oy, the second of the point (0,b,0)parallel to 0z and the third at the point (0,0,c) parallel to

0X, the axes being rectangular. Find the resultant wrench in magnitude and direction.
Solution:- The lines of action of the three forces, each equal to P, are



and

X—a Z

X-a_y_z (1)
0 1 0

X -b z

X_Yy-b_2 (2)

0 0 1

Xx_y_z-¢ (3)

1 0 0

Forces P acts along the line (1), components along the axes are X, =0,Y,=P, Z, =0

i j kK i j k
Li+M;j+Nk=x, vy, z|=1]a 0 O
X, Y, Z| |0 P O

=0i +0j+aPk

LL=0=M,, N, =aP
Force P acts along the second line, components along axes are given by
X,=0=Y,,Z,=P and

i j k i J k
Li+M,j+Nk=x, y, z,|=10 b 0
X, Y, Z| |0 0 P

=bPi+0]j+0k

L, =bP,M, =0=N,
Again, force P acts along the third line, component along axes are given by
X;=P,Y;=0=7, and
i J k ]
Li+M;j+Nk=Ix, y;, z,|=10 O
X; Y, Z, P O
=0i+cPj+0k
L,=0, M;=cP, N, =0
Now X =XX,=P,Y=2Y,=P,Z=%Z =P
L=%L =bP, M =2M, =cP,N =XN, =aP
R?+X?+Y24+22=3P? = R=+/3P and
K LX+MY+NZ bP?+cP*+aP? a+b+c

© o X

R X2+Y?+Zz?2 3p2 3
K:(a+b+c)\/§P:(a+b+c)P
NG

The equation of the central axis is = = =

L-(yZ-2Y) M—(zX-xZ) N-(xY-yX) K
X Y Z R



Putting the values of the respectively terms
bP-yP+zP cP-zP+xP aP-xP+yP a+b+c

P P P 3
a+b+c
= b-y+z=c-z+x=a-x+y=
a+2b+3c b+2c+3a c+2b+3c
= X+ =y+ =7+—-— (4)
3 3 3
a+b+c)P
The wrench of the system is (R, K) where R = P\/§ and K =%

The position of the wrench is given by the central axis (4).

PREVIOUS YEARS QUESTIONS IAS/IFoS (2008-2023)

FORCES IN THREE DIMENSIONS

Q1. The forces P, Q and R act along three straight lines y=Db,z=-C,z=c,x=-a and
X=a,Yy =-Db respectively. Find the condition for these forces to have a single resultant force.

Also, determine the equations to its line of action. [6b 2015 IFoS]



Note- The way to prepare next segment of PYQs are comprising of previous
chapters(Equilibrium, Virtual work and forces in 3D) and examples.

5. MOMENTS, EQUILIBRIUM OF CO-PLANAR FORCES

Q7 (b) UPSC CSE 2023 A solid hemisphere is supported by a string fixed to a point on its rim and
to a point on a smooth vertical wall with which the curved surface is in contact. If
0 is the angle of inclination of the string with vertical and ¢ is the angle of

inclination of the plane base of the hemisphere to the vertical, then find the value
of (tan¢-tan0). (15)

6.(a) A heavy string, which is not of uniform density, is hung up from two points. Let T, T,, T, be
the tensions at the intermediate points A, B, C of the catenary respectively where its inclinations
to the horizontal are in arithmetic progression with common difference f.Let @, and @, be the

weights of the parts AB and BC of the string respectively. Prove that

3T,

(i) Harmonic mean of T,T, and T, = ———
1+2cos p

»
(i) = =L upsc CSE 2021
3 @

Q5(c) Three forces P, Q and R act along the sides BC, CA and AB of AABC in order to keep the
system in equilibrium. If the resultant force touches the inscribed circle, then prove that

1+cosa 1+C0sf 1+C0Sy o (o o022

P Q

Q7(c) PR and QR are two equal heavy strings tied together at R and carrying a weight W at R. P
and Q are two points in the same horizontal line and 2a is the distance between them. | is the
length of each string and h is the depth of R below PQ. Prove that

(i) 17 =h* = 2¢? (coshi—lj,
c

(i) Tension at Por Q = %{IW +(I2 + hZ)W} ,



where «, 3,y are the interior angles subtended at A, B, C respectively. IFoS 2022

Q1. A uniform rod, in vertical position, can turn freely about one of its ends and is pulled aside
from the vertical by a horizontal force acting at the other end of the rod and equal to half its
weight. At what inclination to the vertical will the rod rest? [5d UPSC CSE 2020]

Q2. A beam AD rests on two supports B and C, where AB = BC = CD. It is found that the beam will
tilt when a weight of p kg is hung from A or when a weight of g kg is hung from D. Find the weight
of the beam. [6c UPSC CSE 2020]

Q3. A cylinder of radius 'r', whose axis is fixed horizontally, touches a vertical wall along a
generating line. A flat beam of length / and weight 'W' rests with its extremities in contact with
the wall and the cylinder, making an angle of 45° with the vertical. Prove that the reaction of the

W
cylinder is and the pressure on the wall is ER Also, prove that the ratio of radius of the

cylinder to the length of the beam is 5+\/§:4\/§. [5d 2020 IFoS]

Q4. A 2 meters rod has a weight of 2N and has its centre of gravity at 120 cm from one end. At 20
cm, 100 cm and 160 cm from the same end are hung loads of 3N, 7N and 10N respectively. Find
the point at which the rod must be supported if it is to remain horizontal. [5¢ 2019 IFoS]

Q5. A uniform rod AB of length 2a movable about a hinge at A rests with other end against a
smooth vertical wall. If o is the inclination of the rod to the vertical, prove that the magnitude of

1
reaction of the hinge is EW 4+tan® o where W is the weight of the rod. [7a UPSC CSE 2016]

Q6. Two weights P and Q are suspended from a fixed point O by strings OA, OB and are kept apart
by a light rod AB. If the strings OA and OB make angles a and 3 with the rod AB, show that the
angle 6 which the rod makes with the vertical is given by

P+Q
Pcosa —Qcot S

tand = . [7b UPSC CSE 2016]

Q7. A square ABCD, the length of whose sides is g, is fixed in a vertical plane with two of its sides

horizontal. An endless string of length I(> 4a) passes over four pegs at the angles of the board

and through a ring of weight W which is hanging vertically. Show that the tension of the string is
W (1-3a)

2+/1? —6la +8a?

Q8. A weight W is hanging with the help of two strings of length / and 2/ in such a way that the
other ends A and B of those strings lie on a horizontal line at a distance 2/. Obtain the tension in
the two strings. [5¢c 2016 IFoS]

. [7c UPSC CSE 2016]



Q9. A rod of 8 kg is movable in a vertical plane about a hinge at one end, another end is fastened
a weight equal to half of the rod, this end is fastened by a string of length / to a point at a height
b above the hinge vertically. Obtain the tension in the string. [Sd UPSC CSE 2015]

Q10. A ladder of weight W rests with one end against a smooth vertical wall and the other end
rests on a smooth floor. If the inclination of the ladder to the horizon is 60°, find the horizontal
force that must be applied to the lower end to prevent the ladder from slipping down.

[7b UPSC CSE 2011]

Q11. AB is a uniform rod, of length 8a, which can turn freely about the end A, which is fixed C is
a smooth ring, whose weight is twice that of the rod, which can slide on the rod, and is attached
by a string CD to a point D in the same horizontal plane as the point A. If AD and CD are each of
length a, fix the position of the ring and the tension of the string when the system is in
equilibrium.

Show also that the action on the rod at the fixed end A is a horizontal force equal to \/§W, where
W is the weight of the end. [7b 2011 IFoS]

Q12. A smooth wedge of mass M is placed on a smooth horizontal plane and a particle of mass
m slides down its slant face which is inclined at an angle o to the horizontal plane. Prove that the
acceleration of the wedge is,

mg Sin @ CoS &

—— . [7¢ 2010 IFoS]
M +msin‘ a

6. FRICTION

Q5(c) A body of weight w rests on a rough inclined plane of inclination @, the coefficient of
friction, 1, being greater than tan@. Find the work done in slowly dragging the body a distance

'b' up the plane and then dragging it back to the starting point, the applied force being in each
case parallel to the plane.UPSC CSE 2022

Q1. One end of a heavy uniform rod AB can slide along a rough horizontal rod AC, to which it is
attached by a ring. B and C are joined by a string. When the rod is on the point of sliding, then

AC?— AB? =BC”. If @is the angle between AB and the horizontal line, then prove that the

cotd
coefficient of friction is ————. [5¢ UPSC CSE 2019]
2+cot” @



Q2. A uniform rod of weight W is resting against an equally rough horizon and a wall, at and angle
o with the wall. At this condition, a horizontal force P is stopping them from sliding, implemented
at the mid-point of the rod. Prove that P =W tan(a—24), where X is the angle of friction. Is

there any condition on A and o.? [7b 2016 IFoS]

Q3. Two equal ladders of weight 4 kg each are placed so as to lean at A against each other with
their ends resting on a rough floor, given the coefficient of friction is n. The ladders at A make an
angle 60° with each other. Find what weight on the top would cause them to slip.

[6b UPSC CSE 2015]

Q4. A semi circular disc rests in a vertical plane with its curved edge on a rough horizontal and
equally rough vertical plane. If the coefficient of friction is u, prove that the greatest angle that
the bounding diameter can make with the horizontal plane is:

2
sin1(3—””+—“2j. [8a 2014 IFoS]
4 1+u

Q5. The base of an inclined plane is 4 metres in length and the height is 3 metres. A force of 8 kg
acting parallel to the plane will just prevent a weight of 20 kg from sliding down. Find the
coefficient of friction between the plane and the weight. [5d UPSC CSE 2013]

Q6. A uniform ladder rests at an angle of 45° with the horizontal with its upper extremity against
a rough vertical wall and its lower extremity on the ground. If u and u' are the coefficients of
limiting friction between the ladder and the ground and wall respectively, then find the minimum
horizontal force required to move the lower end of the ladder towards the wall. [7b UPSC CSE
2013]

Q7. Two bodies of weight w, and w, are placed on an inclined plane and are connected by a light
string which coincides with a line of greatest slope of the plane; if the coefficient of friction
between the bodies and the plane are respectively g, and g, , find the inclination of the plane

to the horizontal when both bodies are on the point of motion, it being assumed that smoother
body is below the other.

[6¢ 2013 IFoS]

Q8. A thin equilateral rectangular plate of uniform thickness and density rests with one end of its
base on a rough horizontal plane and the other against a small vertical wall. Show that the least
angle, its base can make with the horizontal plane is given by

cot¢9:2,u+i

N

L, being the coefficient of friction. [7b 2012 IFoS]
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