

Upendra Singh

Alumnus: IIT Delhi, Sr. Faculty in Higher
$\therefore \therefore$ Mathematics (2013 onwards), Asso. Policy Making (UP Govt.), Chairman: Patiyayat FPC Ltd.

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

Mindset Making for Modern Algebra-

(Following brain storming will precisely give a feel to Aspirants that What's the outline of this topic)

Preliminaries: [Introduction]

- Number systems, properties of number systems
- Modular arithmetic
- Mathematical induction
- Equivalence Relations, functions

Modern Algebra-Group Theory :

Part (a)

- Set theory, binary composition, algebraic structure
- Closure, associative, identity, inverse commutative axioms-group-abelian group.
- Understanding \& visualizing some famous groups
- Infinite groups

$$
C, \mathbf{R}, Q, Z, m Z
$$

$C^{*}, \mathbf{R}^{*}, \mathbf{Q}^{*}, \mathbf{C} \times \mathbf{R}, \mathbf{C} \times \mathbf{R}, \ldots \ldots$
$G L_{n}(\mathbf{R}), S L_{n}(\mathbf{R})$ etc.

- Finite groups: Roots of unity, Z_{n}, K_{4},

$$
Q_{8}, S_{n}, D_{n}, G L_{n}\left(Z_{p}\right), S L_{n}\left(Z_{p}\right)
$$

Part (b)

- Subgroups, one step subgroup test, visualizing subgroups for all famous groups.
- Cyclic groups
- Order of a group, order of elements of a group, generators, finding number of elements of some given possible order in a famous group.
- Concept of Isomorphism (Visualizing), Cayley's theorem finite cyclic groups and Z_{n}. Extend Direct product $Z_{m} \times Z_{n} \approx Z_{m n}$!!?

Part (c):

- Co-sets and Lagrange's theorem, Fermat's principle
- Normal subgroups and factor groups (visualization through Q / Z different examples of normal subgroups of famous groups.
- Grow Homomorphism: $G \mid \operatorname{ker} \phi \approx \operatorname{Im} \phi$, finding possible no of homomorphism from $G_{1} \rightarrow G_{2}$
- Fundamental theorem of finite Abelian groups

Part (d):

Some special Topics:
Sylow Theorems: Conjugacy classes, The class equation, Cauchy's theorem, Application of Sylow theorems, Simple Groups

- Product of subgroups of a group
- Groups of order upto 15 of order pq where p and q are primes.

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

Equivalence relation on a set

A binary relation \sqcup on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b and c in X :

- $\quad a \square a$ (reflexivity) means each element is related to itself.
- $\quad a \square b$ if and only if $b \square a$ (symmetry)
- If $a \square b$ and $b \square c$ then $a \square c$ (transitivity)
X together with the relation \sqcup is called a setoid.
The equivalence class of a under \sqcup, denoted $[a]$, is defined as $[a]=\{x \in X: x \sqcup a\}=$ collection of all those elements of X which are related to element a by the given relation.

Modular arithmetic-

In mathematics, modular arithmetic is a system of arithmetic for integers, where number "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmetices, published in 1801.

Time- keeping on this clock use arithmetic modulo 12. Adding 4 hours to 90 'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12 .

A familiar use of modular arithmetic is in the 12 hours clock, in which the day is divided into two 12 hours periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in $7+8=15$, but clock wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic modulo 12. In terms of the definition below, 15 is congruent to 3 modulo 12 , so " $15: 00$ " on a 24 -hour clock is displayed " $3: 00$ " on a 12 hour clock.

Congruence:-

Given an integer $n>1$, called a modulus, two integers a and b are said to be congruent modulo n. If n is divisor of their difference (that is, if there is an integer k such that $a-b=k n$)
Congruence modulo n is a congruence relation, meaning that it an equivalence relation that is compatible with the operations of addition, subtraction, and multiplication. Congruence modulo n is denotes.

$$
a \equiv b(\bmod n) .
$$

The parentheses mean that $(\bmod n)$ applies to the entire equation, not just to the right-hand side (here b). This notation is not be confused with the notation $b \bmod n($ without parentheses), which refers to the modulo operation. Indeed $b \bmod n$ denoted the unique integer a such that $0 \leq a<n$ and $a \equiv b(\bmod n)$ (that is, the remainder of b when divided by n)
The congruence relation may be rewritten as $a=k n+b$, explicitly showing its relationship with Euclidean division. However, the b here need not be the remainder of the division of a by n. Instead, what the statements $a \equiv b(\bmod n)$ asserts is that a and b have the same remainder when divided by n. That is
$a=p n+r$,
$b=q n+r$, where $0 \leq r<n$ is the common remainder.

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

Subtracting these two expression, we recover the previous relation:

$$
a-b=k n \text { by setting } k=p-q
$$

Example:- In modulus 12 , one can assert that $38 \equiv 14(\bmod 12)$ because $38-14=24$, which is a multiple of 12 . Another way to express this is to say that both 38 and 14 have the same remainder 2 , when divided by 12 .
The definition of congruence also applies to negative values. For example:

$$
\begin{aligned}
& 2 \equiv-3(\bmod 5) \\
& -8 \equiv 7(\bmod 5) \\
& -3 \equiv-8(\bmod 5)
\end{aligned}
$$

Euler's totient function-

In number theory, Euler's totient function count the positive integers up to a given integer n that are relatively prime to n, it is written using the. Greek letter phi as $\varphi(n)$ or $\phi(n)$, and may also be called Euler's phi function. In other wards, it is the number of integer k in the range $1 \leq k \leq n$ for which the greatest common divisor $\operatorname{gcd}(n, k)$ is equal to $1 .{ }^{[2][3]}$. The integer k of this form are sometimes referred to as totatives of n.

The first thousand value of $\varphi(n)$. The points on the top line represent $\varphi(p)$ when p is a prime number, which is $p-1^{[1]}$
For example, the totative of $n=9$ are the six number $1,2,4,5,7$ and 8 . They are all relatively prime to 9 , but the other three numbers in this range 3,6 , and 9 are not, since $\operatorname{gcd}(9,3)=\operatorname{gcd}(9,6)=3$ and $\operatorname{gcd}(9,9)=9$. Therefore $\varphi(9)=6$. As another example $\varphi(1)=1$ since for $n=1$ the only integer in the range from 1 to n is 1 itself, and $\operatorname{gcd}(1,1)=1$.

Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively. Prime, then $\varphi(m n)=\varphi(m) \varphi(n) \cdot{ }^{[4][5]}$. This function given the order of the multiplicative group of integers modulo n (the group of units of the ring $\square / n \square$). It is also used to defining the RSA encryption system.

Mathematical induction is a method for proving that a statement is true for every natural number, that is, that the infinitely many cases all hold. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder:

Mathematical induction proves that we can climb as high as we like on a ladder, by proving that we can climb onto the bottom rung (the basis) and that from each rung we can climb up to the next one (the step).

A proof by induction consists of two cases. The first, the base case, proves the statement for without assuming any knowledge of other cases. The second case, the induction step, proves that if the statement holds for any given case, then it must also hold for the next case. These two steps establish that the statement holds for every natural number. The base case does not necessarily begin with, but often with, and possibly with any fixed natural number, establishing the truth of the statement for all natural numbers.

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

Group Definition: Let G be a non-empty set and " O " is any binary operation $\left(\begin{array}{ll}G & 0\end{array}\right)$ is called Group if it satisfies following properties:

1. Closure property $\forall a \in G, \forall b \in G \Rightarrow a o b \in G$
2. Associative

$$
a o(b o c)=(a o b) o c \forall a, b, c \in G
$$

3. Identity:
$\forall a \in G, \exists e \in G$ s.t. $a o e=e o a=a$
4. Inverse

For each $a \in G \exists a^{-1} \in G$ s.t.

$$
a o a^{-1}=a^{-1} o a=e
$$

A group G is said to be abelian group if $a b=b a, \forall a, b \in G$
Order of Group: Number of Elements in group G is called Order or Group G, it is denoted by $O(G)=|G|$

Assignment \# 1

CATEGORY- A

Q1. Give two reasons why set of odd integers is not a group under addition.
\because Set of integers $G=\{\ldots . . .2,-1,0,1,2,3, \ldots .$.
Set odd integers $G^{\prime}=\{\ldots . . .-3,-1,1,3,5,7, \ldots \ldots\}$
$\left(G^{\prime},+\right)$ is not a group Reason (i) Not closed Reason (ii) Not having identity
Explanation: $\because-1+1=0 \notin G^{\prime}$

Q2. $\{(Q+),(R+)(C+)\} \rightarrow$ Group with Identity 0 and inverse of $a=-a$.

- Is $(N+)$ a group? Ans. No, Identity 0 does not belong to N .
- $S=N \cup\{0\}$. Is $(S+)$ a group? Ans. No, $2 \in S$ but $-2 \notin S$ s.t. $2+(-2)=0$
$\left(\mathbf{Q}^{*}\right)$
- $\left.\left(\mathbf{R}^{*}\right)\right\}$ is a group w.r.t usual multiplication with Identity 1 with inverse of $\mathrm{a}=\frac{1}{a}$?
$\left(\mathbf{C}^{*}\right)$
- $Z-\{0\}$ is a group w.r.t usual multiplication?

Ans. No. because $3 \in Z-\{0\}$ but $\frac{1}{3} \notin Z-\{0\}$ s.t. $3 \times \frac{1}{3}=1$

- $(Z+)$ is an abelian group? Solution: Yes, $a+b=b+a, \forall a, b \in Z$. Moreover $(Q,+),(\mathbf{R}+),(\mathbf{C} \varangle),\left(Q^{*},.\right),(\mathbf{R}+),\left(\mathbf{C}^{*},.\right)$ are abelian groups.
(b) Why subtraction is not associative?
$\because a-(b-c)=a-b+c ;(a-b)-c=a-b-c$. clearly $a-(b-c) \neq(a-b)-c$
Q3. $G=\mathbf{Z} \& a o b=a+b+1, a, b \in Z$ then (G, o) forms an group?
Solution: (1) $\forall a \in Z, \forall b \in Z ; a o b=a+b+1 \in Z \quad \therefore a o b \in Z, \forall a, b \in Z$
(2) Associative $a \circ(b \circ c)=(a \circ b) \circ c$
L.H.S. $=a \circ(b \circ c)=a \circ(b+c+1)=a+(b+c+1)+1=a+b+c+2$
R.H.S. $(a \circ b) \circ c=(a+b+1) \circ c=(a+b+1)+c+1=a+b+c+2$
L.H.S. $=$ R.H.S.

Hence, $a \circ(b \circ c)=(a \circ b) \circ c, \forall a, b, c \in Z$. Also we may think by that integers follow associativity.
(3) Identity let b is the identity of G then $a \circ b=a \Rightarrow \not a+b+1=\not a \Rightarrow b=-1$
(4) Inverse : Suppose b is the inverse of a then $a \circ b=-1 ; a+b+1=-1 ; b=-2-a$

Therefore $(G, 0)$ is a group w.r.t given operation.

Q4. (i) $G=Q^{+} \rightarrow$ Set of all positive rational numbers s.t. $a \circ b=\frac{a b}{3}$ then (G, o) is group?
(ii) $G=Q^{-} \rightarrow$ Set of all negative rational number $a \circ b=\frac{a b}{3}$ then (G, o) is group?

Ans. (ii) Not a group $-1 \in Q^{-}(-1) o(-2)=\frac{(-1)(-2)}{3}=\frac{2}{3} \notin Q^{-}$. Hence $(G, 0)$ is not a group
(i) $a \circ b=\frac{a b}{3}$. So $(a \circ b) \circ c=a \circ(b \circ c)$ implies $\frac{a b}{3} \circ c=a \circ(b \circ c) ; \frac{a b}{3} \circ c=a \circ \frac{b c}{3} ; \frac{a b c}{9}=\frac{a b c}{9}$
i.e. if $a=1, b=3 ; a \circ b=\frac{a b}{3} ; 1 \circ 3=\frac{\not p}{p}=1 \notin Q^{+}$

It is not a group.

CATEGORY- B

Q5. For $\alpha, \beta \in \mathbf{R}$ define the map $\phi_{(\alpha, \beta)}: \mathbf{R} \rightarrow \mathbf{R}$ by $\phi_{(\alpha, \beta)}(x)=\alpha x+\beta$. Let $G=\left\{\phi_{\alpha, \beta}:(\alpha, \beta) \in \mathbf{R}^{2}\right\}$. For $f, g \in G$ define $g \circ f \in G$ by $(g \circ f)(x)=g(f(x))$. Then discuss about closure, associative, identity and inverse axiom of elements of G.

- G is the collection of functions and we know that composition of functions $(g \circ f)(x) g(f(x))$ is associative. So (G, \circ) satisfies associative axion.
- Closure: Let $f=\phi_{\alpha, \beta}, g=\phi_{\gamma_{1} \delta}$ then
$(g \circ f)(x)=g(f(x))=\phi_{\gamma, \delta}(\alpha x+\beta)=\gamma(\alpha x+\beta)+\delta=(\gamma \alpha) x+(\gamma \beta+\delta)$
$(g \circ f)(x)=c x+d$ where $c, d \in \mathbf{R} \Rightarrow g \circ f \in G \therefore\left(G_{0}\right)$ is closed.
Identity: Let if $\exists I \in G$ s.t. $f \circ I=f ; \forall f \in G$
$f(I(x))=f(x)$
\because We wish to have now think!!
$\phi_{\alpha, \beta} \circ \phi_{\gamma \delta}=\phi_{\alpha, \beta} ; \phi_{\alpha, \beta}(\gamma x+\delta)=\phi_{\alpha, \beta}(x) \Rightarrow \alpha(\gamma x+\delta)+\beta=\alpha x+\beta \Rightarrow \gamma=1, \delta=0$
$I=\phi_{(1,0)}$. So $\phi_{(1,0)}$ works as an identity element of $(G, 0)$
Inverse axiom: Let $\phi_{(\alpha, \beta)} \cdot \phi_{(\gamma, \delta)}=\phi_{(1,0)} \Rightarrow \phi_{\alpha, \beta}(\gamma x+\delta)=1 \cdot x+0 \Rightarrow \alpha(\gamma x+\delta)+\beta=1 \cdot x$
$\Rightarrow \alpha \cdot \gamma=1, \alpha \cdot \delta=0, \beta=0$ which fails to exist for $\alpha>0 \therefore(G, 0)$ does not satisfy inverse axiom.
$\therefore(G, 0)$ is not a group.
Commutative: Commutativity need not be satisfied for composition of functions.
(c) Let $G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$ of six transforms on the set of Complex number defined by $f_{1}(z)=z, f_{2}(z)=1-z, f_{3}(z)=\frac{z}{(z-1)}$,
$f_{4}(z)=\frac{1}{z}, f_{5}(z)=\frac{1}{1-z}, f_{6}(z)=\frac{(z-1)}{z}$
- What do you understand by composition of functions?
- The given set G is closed w.r.t. composition of functions?
- Composition of two functions f and g is defined as $(f \circ g)(x)=f(g(x))$ where f is a function defined on some non-empty $A \rightarrow B$ and $g: C \rightarrow A$
- Example to understand $f \circ g$ for given set G ,
$\left(f_{1} \circ f_{2}\right)(z)=f_{1}\left(f_{2}(z)\right)=f_{1}(1-z)=1-z=f_{2}(z)$
$\left(f_{6} \circ f_{5}\right)(z)=f_{6}\left(f_{5}(z)\right)=f_{6}\left(\frac{1}{1-z}\right)=\frac{\frac{1}{1-z}-1}{\frac{1}{1-z}}=\frac{z}{(1-z)}(1-z)=z=f_{1}(z)$
$\left(f_{3} \circ f_{4}\right)(z)=f_{3}\left(f_{4}(z)\right)=f_{3}\left(\frac{1}{z}\right)=\frac{1 / z}{\left(\frac{1}{z}-1\right)}=\frac{1}{z} \times \frac{z}{(1-z)}=\frac{1}{(1-z)}=f_{5}(z)$
$\left(f_{1} \circ f_{3}\right)(z)=f_{1}\left(f_{3}(z)\right)=f_{1}\left(\frac{z}{z-1}\right)=\frac{z}{z-1}=f_{3}(z)$,
$\left(f_{1} \circ f_{4}\right)(z)=f_{1}\left(f_{4}(z)\right)=f_{1}\left(\frac{1}{z}\right)=\frac{1}{z}=f_{4}(z),\left(f_{1} \circ f_{5}\right)(z)=f_{1}\left(f_{5}(z)\right)=f_{1}\left(\frac{1}{1-z}\right)=f_{5}(z)$
$\left(f_{1} \circ f_{6}\right)(z)=f_{1}\left(f_{6}(z)\right)=f_{1}\left(\frac{z-1}{z}\right)=\frac{z-1}{z}=f_{6}(z)$
Observations: Composition of any function with $f_{1}(z)$ gives that function itself.
$f_{6} \circ f_{5}=f_{1}$ implies inverse kind thought.
Note: As the given set has finite number of elements so we can try to compose all possibilities in a Cayley table.

	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}
f_{1}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}
f_{2}	f_{2}	f_{1}	f_{5}	f_{3}	f_{6}	f_{4}
f_{3}						
f_{4}						
f_{5}						
f_{6}						

Now observe Cayley table for closure, Associative identity, inverse.
Composition of functions need not be commutative (Example $f_{2} \circ f_{3} \neq f_{3} \circ f_{2}$)

Exam point:

While composing functions for Cayley table, you may feel to quit. But if you have feeling for 'How to compose functions' you can do those easily by just observing function. (So don't quit as its easy). After just two revisions, you will have good command over it. It helps you in taking edge over others because in algebra; we have to do these compositions repeatedly. (It will come into your habit). (These are standard examples, so they ask questions by just changing representations on same questions).

CATEGORY- C

$\mathrm{Q}(6)$. Show that $\mathrm{Quartennion}\left(Q_{4}\right)$ is a group with respect to multiplication
$Q_{4}=\left\{ \pm i, \pm+j,+j,+k \mid i^{2}=j^{2}=k^{2}=-1, i j=j i=k, j k=k j=1, k i=i k=j\right\}$
Ans.
(1) From Table

	1	-1	i	$-i$	j	$-j$	k	$-k$
1	1	-1	i	$-i$	j	$-j$	k	$-k$
-1	-1	1	$-i$	i	$-j$	j	$-k$	k
i	i	$-i$	-1	1	k	k	j	j
$-i$	$-i$	i	1	-1	k	k	j	j
j	j	$-j$	k	k	-1	1		1
$-j$	$-j$	j	k	k	1	-1	1	1
k	1	$-k$	j	j	1	1	-1	1
$-k$	$-k$	k	j	j	1	1	1	-1

(2) Associative law; $a \cdot(b \cdot c)=(a \cdot b) \cdot c, \forall a, b, c \in Q_{4}$
(3) $\forall a \in Q_{4}, \exists 1 \in Q_{4}$ s.t. $a \cdot 1=1 \cdot a=a$

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

(4) Inverse of each element of $Q_{4} ; 1^{-1}=1,-1=-1, i^{-1}=-i,(-i)^{1}=i,(j)^{-1}=-j,(-j)^{-1}=-j$,

$$
(k)^{-1}=-k,(-k)^{-1}=k
$$

Thus Q_{4} is group w.r.t. multiplication
$Q_{4}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is it abelian? Solution: No; $i \in Q_{4}, j \in Q_{4}, i j=k \neq j i$ then

CATEGORY- D

How you differentiate?

- \mathbf{Z}_{n} and \mathbf{Z}
- \mathbf{Z}_{n} and \mathbf{Z}_{m}
- \mathbf{Z}_{m} and $m \mathbf{Z}$

Also write about how they form group?

- $\quad \mathbf{Z}_{n}$ represents modulo n whereas \mathbf{Z} represents set of integers. \mathbf{Z}_{n} is a finite set with elements as classes and \mathbf{Z} is an infinite set.

$$
\begin{aligned}
& \mathbf{Z}_{n}=\{[0],[1],[2], \ldots .[(n-1)]\} \\
& \mathbf{Z}_{m}=\{[0],[1],[2], \ldots .[(m-1)]\} \\
& \mathbf{Z}=\{\ldots \ldots .-3,-2,-1,0,1,2, \ldots \ldots .\} \\
& 2 \mathbf{Z}=\{\ldots . .-4,-2,0,2,4,6, \ldots .\}: \text { set of even integers } \\
& m \mathbf{Z}=\{\ldots . .3 m,-2 m,-m, 0, m, 2 m, \ldots \ldots\}
\end{aligned}
$$

Set of integers in multiple of m.

- $\mathbf{Z}, m \mathbf{Z}$ are groups w.r.t. usual addition.
- \mathbf{Z}_{n} forms a group w.r.t. addition modulo n.
- \mathbf{Z}_{n}^{*}; where p is a prime number and collection of non-zero classes in modulo p forms a group w.r.t. multiplication modulo.

Examples to feel:
$\mathbf{Z}_{4}=\{[0],[1],[2],[3]\}$ is a group w.r.t. addition modulo 4 but not a group w.r.t. multiplication modulo 4 (composite numbers cannot fulfill demand of group axioms).
$\left.\begin{array}{c|ccccc|cccc}+4 & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 1 & 2 & 3 & & { }^{\square} 4 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 3 & 0 & & 1 & 0 & 1 & 2\end{array}\right] 3$

Observe both Cayley tables 1 may seem as an identity element w.r.t. multiplication modulo 4 (4). Then what about inverse of element O? (Does not exist.)

${ }^{\ulcorner } 4$	1	2	3
1	1	2	3
2	2	0	2
3	3	2	1

Clearly O is out of the set of non-zero elements of modulo 4. So not closed.
Now let's observe \mathbf{Z}_{5}^{*} forms a group w.r.t. multiplication modulo 5 (5 is a prime number).

5	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

CATEGORY- E

Can you try to differentiate two groups G_{1} and G_{2}; where
$G_{1}=$ collection of all 2×3 matrices with real entries
$G_{2}=$ collection of all 2×2 matrices with real entries and with non-zero determinant.
G_{1} does not form a group w.r.t matrix multiplication but forms a group w.r.t matrix addition.
G_{2} does not form a group w.r.t matrix addition but forms a group w.r.t matrix multiplication.
Q. Show that $G L_{n}(\mathbf{F})$ is a group under multiplication?

Ans. Proof:
$G L_{n}(\mathbf{F})=\left\{A=\left[a_{i j}\right]_{n \times n}|A| \neq 0, a_{i j} \in \mathbf{F}\right\}$
(1) $A \in G_{n}(\mathbf{F}), B \in G L_{n}(\mathbf{F})$ s.t. $|A| \neq 0 \&|B| \neq 0$. So $|A \cdot B|=|A| \cdot|B| \neq 0$.Then $A \cdot B \in G L_{n}(\mathbf{F})$
(2) $A \cdot(B \cdot C)=(A \cdot B) \cdot C, \forall A, B, C \in G L_{n}(\mathbf{F})$
(3) $\forall A \in G L_{n}(\mathbf{F}), \exists T_{n}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]_{n \times n} \in G L_{n}(\mathbf{F})$ s.t $A \cdot \operatorname{In}=A=\operatorname{In} A$
(4) $A \in G L_{n}(\mathbf{F}) \Rightarrow|A| \neq 0$ then $A^{-1}=\frac{\operatorname{adj} A}{|A|} ;\left|A^{-1}\right|=\frac{1}{|A|}$, since $|A| \neq 0$ then $\left|A^{-1}\right| \neq 0$

Therefore, $G L_{n}(\mathbf{F})$ is group under multiplication.
Q. Show that $\operatorname{SLn}(\mathbf{F})$ is a group under multiplication?

Proof:
$S L_{n}(\mathbf{F})=\left\{A=\left[a_{i j}\right]_{n \times n}| | A \mid=1, a_{i j} \in \mathbf{F}\right\}$
(1) $A \in S L_{n}(\mathbf{F}), B \in S L_{n}(\mathbf{F})$ s.t $|A|=1 \&|B|=1$
$|A \cdot B|=|A| \cdot|B|=1$, Then $A \cdot B \in S L_{n}(\mathbf{F})$

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

(2) $A \cdot(B \cdot C)=(A \cdot B) \cdot C \forall A, B, C \in G L_{n}(\mathbf{F})$
(3) $\forall A \in S L_{n}(\mathbf{F}), \quad \exists$, In $=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]_{n \times n} \in S L_{n}(\mathbf{F})$ s.t $A \cdot I_{n}=A=I_{n} \cdot A$
(4) $A \in S L_{n}(\mathbf{F}) \Rightarrow|A|=1$, then $A^{-1}=\frac{\operatorname{adj} A}{|A|}\left|A^{-1}\right|=\frac{1}{|A|}$ since $|A|=1$ then $\left|A^{-1}\right|=1$

Therefore, $S L_{n}(\mathbf{F})$ is group under multiplication.
Q. $G L_{n}(\mathbf{F})$ is abelian? Ans. Need not be abelian. If $n=1$ then $G L_{n}(\mathbf{F})=\left\{A=\left[a_{i j}\right]_{1 \times 1}| | A \mid \neq 0, a_{i j} \in 11\right\}$

Suppose $\mathbf{F}=\mathbf{R}$ then $G L_{n}(\mathbf{R})=\{A=[a]|A| \neq 0, a \in \mathbf{R}\}=\mathbf{R}^{*}$
\mathbf{R}^{*} is abelian group w.r.t multiplication then $G L_{1}\left(\mathbf{R}^{*}\right)$ is abelian group of order ∞.
If $n \geq 2$ then $G L_{n}(\mathbf{F})$ is non-abelian group.
Q. $S L_{n}(\mathbf{F})$ is an abelian group?

Ans. (i) If $n=1$ then $S L_{n}(\mathbf{F})$ is abelian (ii) If $n \geq 2$ then $S L_{n}(\mathbf{F})$ is non-abelian.
Q. Find total number of elements in $G L_{2}(\mathbf{R})$ and $G L_{2}\left(\mathbf{Z}_{5}\right)$.

NOTE: \mathbf{Z}_{5} is a field. So entries of general linear group (which come from some field) contains here those matrices which has entries from the field \mathbf{Z}_{5} and with non-zero determinant.
$G L_{2}(\mathbf{R})=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \ldots ..\right\} ;$ Infinite number of elements
$G L_{2}\left(\mathbf{Z}_{5}\right)=\left\{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 3 \\ 0 & 3\end{array}\right], \ldots.\right\}$; (Just keep in mind non-zero determinant)
NOTE: For the general linear group with entries from finite field; we think like
$\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ Row 1 has $5 \times 5-1$ choices 2 has $5 \times 5-5$ choices
\therefore Total number of elements in $G L_{2}\left(\mathbf{Z}_{5}\right)$ are $=\left(5^{2}-1\right)\left(5^{2}-5\right)=24 \times 20=480$

Exam Point:

In general $\left|G L_{n}\left(\mathbf{Z}_{p}\right)\right|=\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{n}\right) \ldots\left(p^{n}-p^{n-1}\right)$
$\left|S L_{n}\left(\mathbf{Z}_{p}\right)\right|=\frac{\left(p^{n}-1\right)\left(p^{n}-p\right) \ldots\left(p^{n}-p^{n-1}\right)}{p-1}$
Q. Find the inverse of the element $\left[\begin{array}{ll}2 & 6 \\ 3 & 5\end{array}\right]$ in $G L_{2}\left(\mathbf{Z}_{11}\right)$.

Let $\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right] \in G L_{2}\left(\mathbf{Z}_{11}\right)$ s.t. $\left[\begin{array}{ll}2 & 6 \\ 3 & 5\end{array}\right]\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right][$ Property of inverse $]$

$$
\left.\Rightarrow \quad \begin{array}{c}
2 \alpha+6 \gamma=1 \ldots .(1) \\
2 \beta+6 \delta=0 \\
3 \alpha+5 \gamma=0 \ldots \ldots(2) \\
3 \beta+5 \delta=1 \ldots . . .(4) \tag{3}
\end{array}\right] \rightarrow \text { System of linear equations in unknown } \alpha, \beta, \gamma, \delta .
$$

\therefore Solve this system and get $\alpha, \beta, \gamma, \delta$ (Note that $\alpha, \beta, \gamma, \delta$ are elements of \mathbf{Z}_{11}).
How!! (Now you go by hit \& trial)
Let's choose $\alpha=3, \gamma=1$
Satisfy (1) but not (3) cannot work.
(looking bit tricky!!)
Let's try to solve equations (1) and (3); $2 \alpha+6\left(\frac{-3}{5} \alpha\right)=1 \therefore 2 \alpha+6(-3 \times 9 \alpha)=1 ; 2 \alpha-282 \alpha=1$
$2 \alpha-7 \alpha=1 ;-5 \alpha=1 ; 6 \alpha=1 \Rightarrow \alpha=$ inverse of 6 in $\mathbf{Z}_{11}=2$.
Here $\frac{1}{5}$ represents inverse of 5 in $\mathbf{Z}_{11}=9 ; 5 \cdot 1=1$ in $\bmod 11 \therefore \alpha=2 \therefore$ From (1) $6 \gamma=1-4=-3=8$
$\therefore \gamma=\frac{8}{6}=8 \times 2=16=5$
Now Similarly we can solve equation (1) and (4) $\because 3 \beta+5\left(-\frac{2}{6} \square \beta\right)=1 ; 3 \beta-20 \beta=1 ;=17 \beta=1$ $5 \beta=1 \Rightarrow \beta=1 / 5=9 \therefore 6 \delta=-2 \times 9=-18=4$
$\delta=\frac{4}{6}=4 \times 2=0 \therefore$ Required element is $\left[\begin{array}{ll}2 & 9 \\ 5 & 8\end{array}\right]$.
Q. $G=\left\{\left.\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \right\rvert\, O \neq a \in \mathbf{R}\right\}$ is group w.r.t multiplication?

Ans. $G=\left\{\left.\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \right\rvert\, a \neq 0 \in \mathbf{R}\right\}$
(1) $A=\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \in G, B=\left[\begin{array}{ll}b & b \\ b & b\end{array}\right] \in G ; A B=\left[\begin{array}{ll}a & a \\ a & a\end{array}\right]\left[\begin{array}{ll}b & b \\ b & b\end{array}\right]=\left[\begin{array}{ll}2 a b & 2 a b \\ 2 a b & 2 a b\end{array}\right] \in G$
(2) Associative law; $A \cdot(B \cdot C)=(A \cdot B) \cdot C, \forall A, B, C \in G$ as Matrix multiplication follows associativity (3) Let $B=\left[\begin{array}{ll}b & b \\ b & b\end{array}\right]$ is the Identity of G then $A B=A$
$\Rightarrow\left[\begin{array}{ll}a & a \\ a & a\end{array}\right]\left[\begin{array}{ll}b & b \\ b & b\end{array}\right]=\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \Rightarrow\left[\begin{array}{ll}2 a b & 2 a b \\ 2 a b & 2 a b\end{array}\right]=\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \Rightarrow 2 a b=a \Rightarrow b=\frac{1}{2} \cdot$ So $B=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$ is the identity of G.
(4) Inverse: suppose $B=\left[\begin{array}{ll}b & b \\ b & b\end{array}\right]$ is inverse of $A=\left[\begin{array}{ll}a & a \\ a & a\end{array}\right]$ Then $\left[\begin{array}{ll}a & a \\ a & a\end{array}\right]\left[\begin{array}{ll}b & b \\ b & b\end{array}\right]=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$
$\left[\begin{array}{ll}2 a b & 2 a b \\ 2 a b & 2 a b\end{array}\right]=\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right] \Rightarrow 2 a b=\frac{1}{2} ; b=\frac{1}{4 a}, O \neq a \in \mathbf{R}$.Then $B=\left[\begin{array}{cc}1 / 4 a & 1 / 4 a \\ 1 / 4 a & 1 / 4 a\end{array}\right]$
Therefore $G=\left\{\left.\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \right\rvert\, O \neq G \in \mathbf{R}\right\}$ is group w.r.t multiplication.
Q. $G=\left\{\left.\left[\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right] \right\rvert\, 0 \neq a \in \mathbf{R}\right\}$ is group w.r.t multiplication?

Ans. (1) Closure Property:Let $A=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right] \in G$
$A \cdot B=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}a b & 0 \\ 0 & 0\end{array}\right] \in G$. Closure Property holds because $\forall a, b \neq 0 \Rightarrow a b \neq 0 \in \mathbf{R}$
(2) Associative: $A(B C)=(A B) C \quad \forall A, B, C \in G$ as Matrix multiplication follows associativity.
(3) Identity

Let $B=\left[\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right] \in G$ be the identity then $A B=A \Rightarrow\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{cc}a b & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$
$\Rightarrow a b=a \Rightarrow b=1$. So identity $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
(4) Inverse, let $B=\left[\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right]$ is the inverse of then $A B=I$
$\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{cc}a b & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] ; a b=1 \Rightarrow b=1 / a$. Inverse $A^{-1}=\left[\begin{array}{cc}1 / a & 0 \\ 0 & 0\end{array}\right]$
Therefore he given set forms a group w.r.t usual multiplication of matrices.

CATEGORY- F

Q. Show that $\boldsymbol{n}^{\text {th }}$ roots of unity can be represented on the circumference of a unit circle centered at origin. Can you observe the cyclic property here?
Examples to feel: (1) Cube roots of unity $z=1, \omega, \omega^{2}$ where $\omega=-\frac{1}{2}+\frac{i \sqrt{3}}{2}, \omega^{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}$ $z=x+i y$
(2) Fourth roots of unity $z=1,-1, i,-i$

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

Now let's think about $n^{\text {th }}$ roots of unity; $z=\left\{e^{i k \cdot \frac{2 \pi}{n}} ; k=0,1,2, \ldots .,(n-1)\right\}=\left\{1, e^{i \theta}, e^{i \theta_{2}}, \ldots . e^{i \theta_{n-1}}\right\}$
As we know that the complex number $z=|z| \cdot e^{i \theta}$ is representation in polar form of a complex number on the complex plane. Modulus is one here. These complex number can be represented on the circumference of a unit radius circle centered at origin. We can imagine about multiplication of elements of z here it may lead to group structure.

Exam Point:

This is very famous example and gives opportunities for different kind of question. So keep your basics clear about roots of unity.

CATEGORY- G

Q. Can you try to observe properties of a group with exactly four elements?

Let $G=\{a, b, c, d\}$ be a group.
Observation (i): One out of a, b, c, d will be working as ideality element.
Let $a=e$
Observation (ii): Inverse of a is a because a is an identity element.

Observation (iii)	
Possibility (1)	Possibility (2)
Each element of G is self inverse \Downarrow $a^{-1}=a, b=b^{-1}, c=c^{-1}, d=d^{-1}$ Now try to think: $(\alpha \beta)^{-1}=\beta^{-1} \alpha^{-1}$ \therefore for given G and this possibility $\because(\alpha \beta)^{-1}=\beta^{-1} \alpha^{-1}$ (we know it) $\Rightarrow \alpha \beta=\beta \alpha \Rightarrow G$ is commutative / abelian group. $\therefore(\alpha \beta) \in G \quad \therefore(\alpha \beta)^{-1}=\alpha \beta$	Only two elements of G are self inverse let $a=a^{-1}, d=d^{-1}$ then we must have $b^{-1}=c$ and $c^{-1}=b$. Again we can observe G is abelian.

Therefore a group with exactly four elements is always abelian.

Exam point:

Above reasoning, helpful in thinking about groups of even order. At least two elements are self inverse.
Klein's 4 -Group: It is denoted by K_{4}
$K_{4}=\left\{e, a, b, a b \mid a^{2}=e, b^{2}=2, a b=b a\right\}$
Proof: Closure Property:
$a \cdot(a b)=a^{2} b=e$

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

	e	a	b	$a b$
e	e	a	b	$a b$
a	a	e	$a b$	b
b	b	$a b$	e	a
$a b$	$a b$	b	a	e

$(a b) \cdot(a b)=a b \cdot b a=a \cdot b^{2} \cdot a=a \cdot e \cdot a=a^{2}=e$
(2) Associative $x(y z)=(x y) z \quad \forall x, y, z \in K_{4}$
(3) $\forall x \in K_{4} \Rightarrow e \in K_{4}$ s.t $x \cdot e=e x=x$
(4) Inverse of each element $e^{-1}=e, a^{-1}=a, b^{-1}=b ;(a b)^{-1}=(a b)^{-1}$

Hence, $\left(K_{4}\right)$ from a group of order 4 with identity e.

CATEGORY- H

$U(n)$ is the collection of relative primes to \boldsymbol{n} and $U(n)$ forms a group w.r.t multiplication modulo n.
Can you observe difference between $\mathrm{U}(8)$ and $\mathrm{U}(10)$? Why they behave differently even through both have equal cardinality?
$\because U(8)=\{1,3,5,7\}, \quad U(10)=\{1,3,7,9\}$

8	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

10	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

In $U(8) \quad$ In $U(10)$
$3 \cdot 3=1 \quad 3 \cdot 3 \cdot 3 \cdot 3=1$
$5 \cdot 5=1 \quad 7 \cdot 7 \cdot 7 \cdot 7=1$
$7 \cdot 7=1 \quad 9 \cdot 9 \cdot 9 \cdot 9=1$

CATEGORY-I

- Symmetric or Permutation Group:
- $S_{n}=\{$ Set of all one-one onto mapping from set containing n elements to itself $\}$ and $O\left(S_{n}\right)=\underline{n}=n$!
- If set containing one element then

$$
S_{1}=\{I\}, f:\{1\} \rightarrow\{1\}
$$

- If set containing 2-elements then

$$
f:\{1,2\} \rightarrow\{1,2\}
$$

Personalized Mentorship +91_9971030052

$$
\begin{aligned}
& f_{1}(1) \rightarrow 1, f_{1}(2) \rightarrow 2 \\
& \Rightarrow f_{1}=\left(\begin{array}{cc}
1 & 2 \\
f(1) & f(2)
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)=I \\
& - \\
& S_{n}=\left\{\left(\begin{array}{cc}
1 & 2 \\
f_{2}(1) & f_{1}(2)
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
f_{2}(1) & f_{2}(2)
\end{array}\right)\right\} \\
& \\
& f_{2}(1) \rightarrow 2=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \\
& \\
& f_{2}(2) \rightarrow 1
\end{aligned}
$$

- If set containing 3-elements then $f\{1,2,3\} \rightarrow\{1,2,3\}$

$$
\begin{aligned}
& \left.\begin{array}{r}
f_{1}(1) \Rightarrow 1 \\
f_{1}(2) \\
f_{1}(3)
\end{array} \Rightarrow 3.2\right\} f_{1}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
f_{1}(1) & f_{1}(2) & f_{1}(3)
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)=1 \\
& \left.\begin{array}{l}
f_{2}(1) \rightarrow 2 \\
f_{2}(2) \rightarrow 1 \\
f_{2}(3) \rightarrow 1
\end{array}\right\} f_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=(1,2) \operatorname{or}(21) \\
& \left.\begin{array}{l}
f_{3}(1) \rightarrow 3 \\
f_{3}(2) \rightarrow 2 \\
f_{3}(3) \rightarrow 1
\end{array}\right\} f_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=(1,3) \operatorname{or}(31) \\
& \left.\begin{array}{l}
f_{4}(1) \rightarrow 1 \\
f_{4}(2) \rightarrow 3 \\
f_{4}(3) \rightarrow 2
\end{array}\right\} f_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=(1,3) \text { or }(31) \\
& \left.\begin{array}{l}
f_{4}(1) \rightarrow 1 \\
f_{4}(2) \rightarrow 3 \\
f_{4}(3) \rightarrow 2
\end{array}\right\} f_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=(2,3) \text { or }(32) \\
& \left.\begin{array}{l}
f_{5}(1) \rightarrow 2 \\
f_{5}(2) \rightarrow 3 \\
f_{5}(3) \rightarrow 1
\end{array}\right\} f_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
& f_{6}(1) \rightarrow 3 \\
& \left.\begin{array}{l}
f_{6}(1) \rightarrow 3 \\
f_{6}(2) \rightarrow 1 \\
f_{6}(3) \rightarrow 2
\end{array}\right\} f_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2 \\
3 & 2 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)
\end{aligned}
$$

- Definition: Set of all one-one onto mapping from set containing n elements to itself forms a group under composition of functions. It is denoted by S_{n} and $O\left(S_{n}\right)=n$! elements are called permutation of S_{n}.
- Symmetric Group $S_{1} ; S=\{I\}, O\left(S_{1}\right)=1$
- Group $S_{2} ; S_{2}=\{I,(1,2)\}$
- Symmetric Group $S_{3} ; S_{3}=\{I,(12),(13),(23),(123)(132)\}, O\left(S_{3}\right)=6$

Dihedral Group $\left(D_{n}\right)$: Group of Symmetries.

Note-
This group will not be asked directly but if you have idea about this group, then you can interpret many things about non abelian groups and some counter example kind of demands. Also this is a very famous group to feel the group structure practically. Let's enjoy.
$D_{n}=\left\{\begin{array}{r}x^{i} y^{j} \mid x^{2}=e, y^{n}=e, x y=y^{-1} x \\ \ell=0,1 \quad y=0,1, \ldots . n-1\end{array}\right\}$
$O\left(D_{n}\right)=2 n$
$x^{i} y^{j}$ is generator
$x^{2}=e$ is Reflection
$x^{2}=e, y^{n}=e$ is Relator
$x y=y^{-1} x$ is Relation
$y^{n}=e$ is Rotation
$D_{4}=\left\{\begin{array}{c}x^{i} y^{j} \mid x^{2}=e, y^{4}=e, x y=y^{-1} x \\ \ell=0,1, \quad y=0,1,2,3\end{array}\right\}$
$O\left(D_{4}\right)=2.4=8, \quad \theta=\frac{360^{\circ}}{4}=90^{\circ}$

$$
H \rightarrow \text { Horizontally swap }
$$

$$
V \rightarrow \text { Vertically swap }
$$

Equilateral Triangle

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

$$
R_{120} R_{240}=R_{0}=R_{240} R_{120}
$$

$$
R_{120} f_{A a}=f_{C c}
$$

and $f_{A a} R_{120}=f_{B b}$

	R_{0}	R_{120}	R_{240}	$f_{A a}$	$f_{B b}$	$f_{C c}$
R_{0}	R_{0}	R_{120}	R_{240}	$f_{A a}$	$f_{B b}$	$f_{C c}$
R_{120}	R_{120}	R_{240}	R_{0}	$f_{C c}$	$f_{A a}$	$f_{B b}$
R_{240}	R_{240}	R_{0}	R_{120}	$f_{B b}$	$f_{C c}$	$f_{A a}$
$f_{A a}$	$f_{A a}$	$f_{B b}$	$f_{C c}$	R_{0}	R_{120}	R_{240}
$f_{B b}$	$f_{B b}$	$f_{C c}$	$f_{A a}$	R_{240}	R_{0}	R_{120}
$f_{C c}$	$f_{C c}$	$f_{A a}$	$f_{B b}$	R_{120}	R_{240}	R_{0}

$D_{n}=\left\{x^{i} y^{i} \mid x^{2}=e, y^{n}=e, x y=y^{-1} x ; i=0,1, j=0,1, n-1\right\}$
Is this an abelian group?
Solution:
(i) When $n=1$ is abelian if $n \geq 2$
$D_{1}=\left\{x^{i} y^{j} \mid x^{2}=e, y^{1}=e, x y=y^{-1} x, i=0,1, j=0,1, n\right\}$
$y^{-1}=e$ then $x y=y^{-1} x, x e=e^{-1} x, x e=e x, x y=y x ; D_{1}$ is abelian
(ii) When $n=2$, then
$y^{2}=e \Rightarrow y \cdot y=e \Rightarrow y=y^{-1}$; From relation $x y=y^{-1} x=y x ; D_{2}$ is an abelian group (iii) When $n \geq 3$ then D_{n} is always non-abelian.

External Direct Product

Definition: Let $G_{1}, G_{2}, \ldots G_{n}$ be finite collection of groups. Then external direct product of $G_{1}, G_{2}, \ldots G_{n}$ is denoted by $G_{1} \times G_{2} \times \ldots \ldots \times G_{n}$ or $G_{1} \oplus G_{2} \oplus \ldots \ldots . \oplus G_{n}$ and defined by

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

$$
\begin{aligned}
& G_{1} \times G_{2} \times \ldots \ldots \times G_{n}=\left\{\left(g_{1}, g_{2}, \ldots . g_{n}\right) \mid g_{i} \in G_{i}, 1 \leq i \leq n\right\} \\
& x=\left(g_{1}, g_{2}, \ldots g_{n}\right) \in G_{1} \times G_{2} \times \ldots \times G_{n} \\
& y=\left(g_{1}^{\prime}, g_{2}^{\prime} \ldots . g_{n}^{\prime}\right) \in G_{1} \times G_{2} \times \ldots \times G_{n} \\
& x y=\left(g_{1}, g_{2}, \ldots . . g_{n}\right) \cdot\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots g_{n}^{\prime}\right) \\
& =\left(g_{1} g_{1}^{\prime}, g_{2} g_{2}^{\prime}, \ldots . g_{n} g_{n}^{\prime}\right)
\end{aligned}
$$

Then each $g_{i} g_{i}^{\prime}$ performed with the operation of G_{i}.

For example:

$G_{1}=Z_{2}$ and $G_{2}=D_{4}$, then direct product of G_{1} and G_{2}.

$$
\begin{aligned}
& G_{1} \times G_{2}=Z_{2} \times D_{4}=\left\{\left(g_{1}, g_{2}\right) \mid g_{1} \in Z_{2}, g_{2} \in D_{4}\right\} \\
& Z_{2} \times D_{4}=\left\{\begin{array}{l}
\left(0, R_{0}\right),\left(0, R_{90}\right),\left(0, R_{180}\right),\left(0, R_{270}\right),(0, H),(0, V) \\
(0, D),\left(0, D^{\prime}\right),\left(1, R_{0}\right),\left(1, R_{90}\right),\left(1, R_{180}\right),\left(1, R_{270}\right) \\
(1, H),(1, V),(1, D),\left(1, D^{\prime}\right)
\end{array}\right\} \\
& x=\left(1, R_{270}\right) \in Z_{2} \times D_{4} \\
& y=(0, H) \in Z_{2} \times D_{4} \\
& x \cdot y=\left(1, R_{270}\right)(0, H)=\left(1+0, R_{270} \cdot H\right) \\
& =(1, D)
\end{aligned}
$$

Note: Let $\left(g_{1}, g_{2}, \ldots . g_{n}\right) \in G_{1} \times G_{2} \times \ldots . . \times G_{n}$ then
$O\left(g_{1}, g_{2}, \ldots . g_{n}\right)=$ L.C.M. $\left(O\left(g_{1}\right) \operatorname{in} G_{1}, O\left(g_{2}\right) \operatorname{in} G_{2} \ldots . O\left(g_{n}\right) \operatorname{in} G_{n}\right)$
and $\left(g_{1}, g_{2}, \ldots g_{n}\right)^{-1}=\left(g_{1}^{-1}, g_{2}^{-1}, \ldots . g_{n}^{-1}\right)$

Let's try to understand compositions between different elements and what does those imply.
Q. Translate each of the following multiplicative expressions into its additive counterpart.
(a) $a^{2} b^{3}$ (b) $a^{-2}\left(b^{-1} c\right)^{2}$ (c) $\left(a b^{2}\right)^{-3} c^{2}=e$
(a) $a^{2} b^{3}=(a \circ a) \cdot(b \circ b \circ b)=(a+a)+(b+b+b)=2 a+3 b$
(b) $a^{-2}\left(b^{-1} c\right)^{2}=\left(a^{-1}\right)^{2}\left(b^{-1} c\right)^{2}=(-a)+(-a)+(-b+c)+(-b+c)=-2 a-2 b+2 c$
(c) $\left(a b^{2}\right)^{-3} c^{2}=e ;\left((a+b+b)^{-1}\right)+(c+c)=e ;(-a-b-b)^{3}+(c+c)=e$
$-3 a-6 b+2 b+2 c=e ;-3 a-6 b+2 c=e$
Q. For any elements a and b from a group and any integer n, prove that How to think!!
$\left(a^{-1} b a\right)^{2}=\left(a^{-1} b a\right) \cdot\left(a^{-1} b a\right)=a^{-1} b\left(a \circ a^{-1}\right)(b a)$ Associativity $=a^{-1} b e b a=a^{-1} b^{2} a$
$\left(a^{-1} b a\right)^{3}=\left(a^{-1} b a\right)^{2} \circ\left(a^{-1} b a\right)=\left(a^{-1} b^{2} a\right) \circ\left(a^{-1} b a\right)=a^{-1} b^{2}\left(a \circ a^{-1}\right) b a=a^{-1} b^{2} e \circ a=a^{-1} b^{3} a$
We are trying to use mathematical induction.
Let if it's true for $n=k$ i.e. $\left(a^{-1} b a\right)^{k}=a^{-1} b^{k} a$ then we need to show, its true for $n=k+1$ too.
$\therefore\left(a^{-1} b a\right)^{k+1}=\left(a^{-1} b a\right)^{k} \circ\left(a^{-1} b a\right)=\left(a^{-1} b^{k} a\right) \circ\left(a^{-1} b a\right)=a^{-1} b^{k}\left(a \circ a^{-1}\right) b a=a^{-1} b^{k+1} a$
Therefore its true for all $n \in \mathbf{N}$. Similarly we can show for negative integers.

Q. (Law of exponents for Abelian group)

Let a and b are any two elements of an Abelian group and let n be any integer. Show that $(a b)^{n}=a^{n} b^{n}$. Is this also true for non-Abelian groups?
Think!
Given, if G is an Abelian group. $\Rightarrow a b=b a ; \forall a, b \in G$
$\because(a b)^{2}=(a b) \circ(a b)=(a b) \circ(b a)=a b^{2} a=a a b^{2}=a^{2} b^{2}$
$(a b)^{3}=(a b)^{2} \circ(a b)=a^{3} b^{3}=\left(a^{3} a\right)\left(b^{3} b\right)$
Q. Prove that a group is abelian iff $(a b)^{-1}=a^{-1} b^{-1}$ for all a, b in G .

Think!
Let if G is abelian; then $a b=b a \Rightarrow(a b)^{-1}=(b a)^{-1} \Rightarrow b^{-1} a^{-1}=a^{-1} b^{-1}$
$\therefore(a b)^{-1}=b^{-1} a^{-1}=a^{-1} b^{-1}$
Now if we have $(a b)^{-1}=a^{-1} b^{-1}$; then we want to check G is abeial?
For this; $(a b) \circ(a b)^{-1}=e$; we use $\Rightarrow(a b) \circ a^{-1} b^{-1}=e \Rightarrow a b a^{-1} b^{-1}=e \Rightarrow a b a^{-1} b^{-1} b=e b$
$\Rightarrow a b a^{-1}=b \Rightarrow a b a^{-1} a=b a \Rightarrow a b=b a \Rightarrow G$ is abelian.
Q. If $a_{1}, a_{2}, \ldots, a_{n}$ belong to a graph, what is the inverse of $a_{1}, a_{2}, \ldots, a_{n}$?
$\because\left(a_{1} a_{2} \ldots . . a_{n}\right) \cdot\left(a_{n}^{-1} a_{n-1}^{-1} a_{n-2}^{-1} \ldots . a_{3}^{-1} a_{2}^{-1} a_{1}^{-1}\right)$
$=a_{1} a_{2} \ldots \ldots a_{n-1} a_{n} \cdot a_{n}^{-1} \cdot a_{n-1}^{-1} \ldots . . a_{3}^{-1} a_{2}^{-1} a_{1}^{-1}$
$=a_{1} a_{2} \ldots . . a_{n-1} \cdot a_{n-1}^{-1} \ldots \ldots a_{3}^{-1} a_{2}^{-1} a_{1}^{-1}$
$=e$
$\therefore\left(a_{1} a_{2} \ldots . . a_{n}\right)^{-1}=a_{n}^{-1} a_{n-1}^{-1} a_{n-2}^{-1} \cdots \ldots . . a_{3}^{-1} a_{2}^{-1} a_{1}^{-1}$
Q. Prove that every group table is a Latin Square.
(Such questions are to feel algebra expected in subjective exams like UPSC)
Latin Square: Each element of the group appears exactly one in each row and each column.
How to think!
Ans. Think by talking all axioms of a group into consideration.

Example: By closure axiom;
If $x \circ y=z$ then $x \circ y \neq z^{\prime}$ where $z^{\prime} \neq z$.
Q13. Let G be a finite group. Show that the number of elements x of G s.t. $x^{3}=e$ is odd. Show that the number of elements x of G such that $x^{2} \neq e$ is even.
Think!!
$x^{3}=e \Rightarrow$ either $x=e$ or $x^{2} \neq e$
Because $x^{2}=e$ and $x^{3}=e$ possible only when $x=e$.
$x^{2} \neq e \Rightarrow x$ is not self inverse element.
Q . In a finite group, show that the number of non-identity elements that satisfy the equation $x^{5}=e$ is a multiple of 4 .
Think!!

$$
x^{4}=e
$$

(i) $x=e$ (\because we need not identity \therefore Not possible)
(ii) $x \neq e \Rightarrow G$ will have total no. of elements as either 5 or 10 or $15, \ldots \ldots$. (divisible by 5)
Q. Q_{5}^{4} based on randomly (arbitrary) defined binary compositions. (Not standard examples). So for these, we need to just focus on basics.
Prob. (i)
Let $G=\mathbf{R}\{-1\}$ be the set of all real numbers omitting -1 . Define the binary composition * on G by $A^{*} B=a+b+a b$. Show that $(G, *)$ is a group. Is it abelian?
Closure: Let $x \in G \Rightarrow x \neq-1 ; y \in G \Rightarrow y \neq-1$
Now we need to show $x^{*} y=-1 \Rightarrow x+y+x y \neq-1$
If can be noticed that $x+y+x y=-1$ is possible only when $x=-1, y=-1$
[Observe $x<0, y<0$; then $(x+y)$ and $x y$ will have opposite signs]
Associative: Real numbers follow associativity
$\therefore\left(a^{*} b\right) * c=a *\left(b^{*} c\right)$
Identity: Let $\exists e \in G$ s.t. $a^{*} e=a \Rightarrow a+e+a e=a \Rightarrow e(1+a)=0 \Rightarrow e=0 \neq-1 \therefore e \in G$
Inverse: For each $a \in G, e=0 \in G$, Let if there exists $b \in G$ s.t. $a * b=e$
$\Rightarrow a+b+a b=0 \Rightarrow b(1+a)=-a \Rightarrow b=\frac{-a}{1+a} \neq-1 \therefore b \in G$
So inverse axiom also satisfied.
For abelian:
$a * b=a+b+a b$
$=b+a+b a \because \mathrm{a}$ and b are reals, \therefore commute
Therefore $(G, *)$ is an abelian group.
Q. On \mathbf{R}^{3}, define a binary operation * as follows: For $(x, y, t),\left(x^{\prime}, y^{\prime}, t^{\prime}\right)$ in \mathbf{R}^{3},

$$
(x, y, t)^{*}\left(x^{\prime}, y^{\prime} t^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, t+t^{\prime}+\frac{1}{2}\left(x^{\prime} y-x y^{\prime}\right)\right)
$$

Then show that $\left(\mathbf{R}^{3},{ }^{*}\right)$ is a group.
NOTE: At the first sight it may look like absurd. But if you think about \mathbf{R}^{3}; component wise addition, you'll feel, its actually easy.

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

\Rightarrow Addition, subtraction and multiplication of real numbers is again a real number because $\left(\mathbf{R}^{3}, *\right)$ is closed.
Associative:
Let $(x, y, t) \in \mathbf{R}^{3},\left(x^{\prime} y^{\prime} t^{\prime}\right) \in \mathbf{R}^{3},\left(x^{\prime \prime}, y^{\prime \prime}, t^{\prime \prime}\right) \in \mathbf{R}^{3}$
then
$(x, y, t) *\left[\left(x^{\prime}, y^{\prime}, t^{\prime}\right) *\left(x^{\prime \prime}, y^{\prime \prime}, t^{\prime \prime}\right)\right]$
$=(x, y, z) *\left[x^{\prime}+x^{\prime \prime}, y^{\prime}+y^{\prime \prime}, t^{\prime}+t^{\prime \prime}+\frac{1}{2}\left(x^{\prime \prime} y^{\prime}-x^{\prime} y^{\prime \prime}\right)\right]$
$=\left\{x+x^{\prime}+x^{\prime \prime}, y+y^{\prime}+y^{\prime \prime}, t+t^{\prime}+t^{\prime \prime}+\frac{1}{2}\left(x^{\prime \prime} y^{\prime}-x^{\prime} y^{\prime \prime}\right)+\frac{1}{2}\left\{\left(x^{\prime}+x^{\prime \prime}\right) y-y^{\prime \prime}\left(x+x^{\prime}\right)\right\}\right.$
$\therefore\left(\mathbf{R}^{3},{ }^{*}\right)$ is associative.
Identity: It can be observed easily that $(0,0,0) \in \mathbf{R}^{3}$ is an identity element here.
Inverse: After observing identity; its easy to observe
$(x, y, t)^{-1}=(-x,-y,-t)$
$\therefore\left(\mathbf{R}^{3}, *\right)$ is a group.
Q. Write elements of $S_{3} \times \mathbf{Z}_{3}$ and then find composition of two different elements of it.
$\because S_{3}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, T_{1}, T_{2}\right\}, \mathbf{Z}_{3}=\{0,1,2\}$
$\therefore S_{3} \times \mathbf{Z}_{3}=\left\{\begin{array}{l}(I, 0),(I, 1),(I, 2),\left(\sigma_{1}, 0\right),\left(\sigma_{1}, 1\right),\left(\sigma_{1}, 2\right),\left(\sigma_{2}, 0\right),\left(\sigma_{2}, 1\right)\left(\sigma_{2}, 2\right) \\ \left(\sigma_{3}, 0\right),\left(\sigma_{3}, 1\right),\left(\sigma_{3}, 2\right),\left(\tau_{1}, 0\right),\left(\tau_{1}, 1\right),\left(\tau_{1}, 2\right),\left(\tau_{2}, 0\right),\left(\tau_{2}, 1\right),\left(\tau_{2}, 2\right)\end{array}\right\}$
$\left(\sigma_{2}, 1\right) *\left(\tau_{2}, 2\right)=\left(\sigma_{2} \cdot \tau_{2}, 1 \dagger_{3} 2\right)=\left(\sigma_{1}, 0\right)$
$\because \sigma_{2}\left[\tau_{2}=(13)(123)=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)=(12)=\tau_{1}\right.$
Q. Find α^{3}, where $\alpha=\left(\sigma_{2}, j, 2\right) \in S_{3} \times Q_{8} \times \mathbf{Z}_{5}$
$\because \alpha^{3}=\alpha * \alpha * \alpha=\left(\sigma_{2}, j, 2\right) \times\left(\sigma_{2}, j, 2\right) \times\left(\sigma_{2}, j, 2\right)$
$=\left(\sigma_{2} \circ \sigma_{2} \circ \sigma_{2}, j \cdot j \cdot j, 2+5^{2}+5^{2}\right)=\left(\sigma_{2}^{3}, j^{3}, 6\right.$ in $\left.\mathbf{Z}_{5}\right)=\left(\sigma_{2}^{2} \circ \sigma_{2}, j^{2} \cdot j, 1\right)=\left(I \circ \sigma_{2},-1 \cdot j, 1\right)$
$=\left(\sigma_{2},-j, 1\right)$
open problem (based on Dihedral Group)
Q. Let f and g be the functions from $\mathbf{R} /\{0,1\}$ to \mathbf{R} defined by $f(x)=1 / x$ and $g(x)=\frac{x-1}{x}$ for $x \in \mathbf{R} /\{0,1\}$. Can you try to construct a smallest group of functions with the above functions which is isomorphic to S_{3} or D_{3} ?
Observation: $(f \circ g)(x)=f(g(x))$
$=f\left(\frac{x-1}{x}\right)=\frac{1 / x(x-1) / x}{x-1}$

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional
$(g \circ f)(x)=g(f(x))$
$=g(1 / x)=\frac{1 / x^{-1}}{1 / x}$
$g \circ f=f \circ g^{-1}$
$(g \circ f)(x)=f \circ g^{-1}=f \circ g^{2}=f\left(\frac{-1}{x-1}\right)=1-x$

Assignment \# 2

Subgroups, Centre of a group, Order of element of a group, cyclic groups, homomorphism, Isomorphism basic definitions

Homomorphism

Let $\left(G_{1}, 0\right)$ and $\left(G_{2}, *\right)$ are two groups A mapping $f:\left(G_{1}, 0\right) \rightarrow\left(G_{2}, *\right)$ is homomorphism if $f(x \circ y)=f(x) * f(y) ; x, y \in G_{1}, f(x), f(y) \in G_{2}$
e.g.
Q. $f: Z_{4} \rightarrow Z_{10}$ defined by $f(x)=0 \cdot x$ is homomorphism?

Solution:

$f: Z_{4} \rightarrow Z_{10}$
$f(x)=0 \cdot x$
$f(x+y)=0 \cdot(x+y)=0 \cdot x+0 \cdot y$
$=f(x)+f(y), \forall x, y \in Z_{4}$
Yes.

Isomorphism

A mapping $f: G \rightarrow G^{\prime}$ is said to be isomorphism if
(i) f is homomorphism
(ii) f is one-one
(iii) f is onto
Q. $f: Z \rightarrow Z, f(x)=1 \cdot x$ is isomorphism?

Solution:
f is homomorphism, one-one and onto then f is isomorphism.
Similarly
$f: Z \rightarrow Z=-x$ is also, homomorphism, one-one and onto then $f(x)=-x$ is isomorphism.
Q. $f: Z_{15} \rightarrow Z_{15}, f(x)=1 \cdot x$ is isomorphism?

Solution:
$f(x)=1 \cdot x, O(1)$ in $Z_{15}=15, Z_{15}$ (LHS)
has element of order 15 then $f(x)=1 \cdot x$ is homomorphism.
f is one-one:
$f\left(x_{1}\right)=f\left(x_{2}\right), \quad x_{1}, x_{2} \in Z_{15}$ (LHS)
$\Rightarrow x_{1}=x_{2}$
f is one-one.
f is onto: $O\left(Z_{15}(\mathrm{LHS})\right)=O\left(Z_{15}(\right.$ RHS $\left.)\right)=15$ and f is one-one then f is onto.
Q. $f: Z_{20} \rightarrow Z_{20}$, how many isomorphism?

Solution:

$20 \mid 20$, then no. of onto homomorphism
$=\phi(20)=8=$ one-one homomorphism

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

(cardinality of domain and co-domain are same).
and they are:
$\left.\begin{array}{l}f(x)=1 \cdot x \\ f(x)=3 \cdot x \\ f(x)=7 \cdot x \\ f(x)=9 \cdot x \\ f(x)=11 \cdot x \\ f(x)=13 \cdot x \\ f(x)=17 \cdot x \\ f(x)=19 \cdot x\end{array}\right\}$ isomorphism in $f: Z_{20} \rightarrow Z_{20}$

Properties of Isomorphism

Suppose that ϕ is an isomorphism from a group G onto a group \bar{G}. Then
(i) ϕ carries the identity of G to the identity of \bar{G}
(ii) For every integer n and for every group element a in G, $\phi\left(a^{n}\right)=[\phi(a)]^{n}$
(iii) For any elements a and b in G , a and b commute if and only if $\phi(a)$ and $\phi(b)$ commute.
(iv) G is abelian if and only if \bar{G} is abelian.
(v) $|a|=|\phi(a)|$ for all a in G. (Isomorphism preserves orders)
(vi) G is cyclic if and only if \bar{G} is cyclic.
(vii) For a fixed integer k and a fixed group element b in G , the equation $x^{k}=b$ has the same number of solutions in G as does the equation $x^{k}=\phi(b)$ in \bar{G}.
(viii) ϕ^{-1} is an isomorphism from \bar{G} onto G.
(ix) If k is a subgroup of G , then $\phi(k)=\{\phi(k): k \in K\}$ is a subgroup of \bar{G}.

Q1. Let G be an Abelian group under multiplication w.r.t multiplication with identity e. Let $H=\left\{x^{2} \mid x \in G\right\}$. Then H is a subgroup of G ?
$\because e^{2}=e \quad \therefore e^{2} \in H \quad \therefore H$ is non-empty.
Let $x^{2} \in H, y^{2} \in H$
$\Rightarrow x^{2} \square y^{2}=(x y)^{2}$
$\Rightarrow x^{2} y^{2} \in H$
\because Given Group is abelian
$\therefore(x y)^{m}=x^{m} y^{m}$
Also we can show $x^{2}\left(y^{2}\right)^{-1} \in H$
\because for abelian group $\left(y^{2}\right)^{-1}=\left(y^{-1}\right)^{2}=z^{2}$ where $z=y^{-1}$

Personalized Mentorship +91_9971030052

\therefore By one step subgroup test H is a subgroup of G .
Q2. Let G be the group of non-zero real numbers under multiplication. $H=\{x \in G \mid x=1$ or irrational $\}$ and $K=\{x \in G \mid x \geq 1\}$. Then $H \leq G ? k \leq G$?
H is not a subgroup of G .
$\because \sqrt{2} \in H, \sqrt{2} \in H$
But $\sqrt{2} \times \sqrt{2}=2 \notin H$
K is not a subgroup of $\mathrm{G} \because$ for $2 \in K, 2^{-1}=\frac{1}{2} \notin k$
Q3. Let G be a group, and let a be any element of G . Then $\langle a\rangle$ is a subgroup of G .
$H=\langle a\rangle$ represents a set with elements as integral powers of a (that is composition of a with itself as integral times)
$\because a \in H \quad \therefore \mathrm{H}$ is non-empty
Let $x=a^{n} \in H, y=a^{m} \in H$
then $a^{n}\left(a^{m}\right)^{-1}=a^{n-m} \in H$
$\therefore H$ is a subgroup of G.
Q4. In \mathbf{Z}_{10}, where $H=\langle 2\rangle$
We know that in $\mathbf{Z}_{n} ; a^{n}$ means $n a$.
$\therefore H=\langle 2\rangle=\{2,4,6,8,0\}$
Q5. In $U(10)$, write $H=\langle 3\rangle$.
$H=\left\{3,3^{2}, 3^{3}, 3^{4}\right\}=\{3,9,7,1\}=U(10)$
Q6. Let $G=G L_{2}(\mathbf{R})$. Let $H=\{a \in G \| A \mid$ is a power of 2$\}$. Show that H is a subgroup of G .
$I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],|I|=1=2^{\circ} \quad \therefore I \in H \quad \therefore \mathrm{H}$ is non-empty.
Let $A \in H, B \in H$
$\Rightarrow|A|=2^{n}, \Rightarrow|B|=2^{m}$
$\therefore|A B|=|A| \cdot|B|=2^{n} \cdot 2^{m}=2^{n+m}$
Also, we can think $\left|A B^{-1}\right|=|A|\left|B^{-1}\right|=|A| \cdot \frac{1}{|B|}=2^{n} \cdot 2^{-m}=2^{n-m}$
$\Rightarrow A B^{-1} \in H$
$\therefore H$ is a subgroup of G.
Q7. Let $G=G L_{2}(\mathbf{R})$ and $H\left\{\left.\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right] \right\rvert\, a\right.$ and b non-zerointegers $\}$. Prove or disprove that H is a subgroup of G.
$\because I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in H \therefore H$ is non-empty

Let $A \in H$ where $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right],|A|=a b$
$B \in H$ where $B=\left[\begin{array}{ll}c & 0 \\ 0 & d\end{array}\right],|B|=c d$
$A B^{-1}=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\left[\begin{array}{cc}1 / c & 0 \\ 0 & 1 / d\end{array}\right]=\left[\begin{array}{cc}a / c & 0 \\ 0 & b / d\end{array}\right] \in H$
$\therefore H \leq G$
Q8. Let G be a group of functions from \mathbf{R} to \mathbf{R}^{*} under multiplication. Let
$H=\{f \in G$ such that $f(1)=1\}$. Prove that H is a subgroup of G .
Let $f \in H, g \in H$
$\Rightarrow f(1)=1 \Rightarrow g(1)=1$
$\therefore f \cdot g(1) \Rightarrow f(g(1))=f(1)=1$
$\Rightarrow f \cdot g \in H$
Also we can show that that $\mathrm{fg}^{-1}(1)$
$=f\left(g^{-1}(1)\right)$
$=f(1)=1$
$=1$
$\Rightarrow f g^{-1} \in H$
His non-empty $\Rightarrow\left\{\begin{array}{l}\because \exists \phi \in H \text { s.t. } \\ f \cdot \phi=f \\ \because f \phi(1)=f(1) \\ f(\phi(1))=1 \\ \Rightarrow \phi(1)=f^{-1}(1) \\ \Rightarrow \phi(1)=1\end{array}\right.$
$\because \phi$ is identity element of H .

Prepare in Right

Order of Element: Order of element a in G is the least positive integer n s.t. $a^{n}=e$. IF such type of n does not exist then the order of a is infinite.
Q. Possible order of elements in Z

Solution:

$Z=\{0,+1,+2,+3, \ldots .$.
$1 \cdot 0=0$ then $O(0)=1$
$1 \in Z$ s.t. $O(1)=\infty$
If $0 \neq a \in Z$ then, $O(a)=\infty$
Then possible order of elements in Z is 1 and ∞.
Q. How many elements of order finite in Z?

Solution: Exactly one element of order finite in Z i.e. 0
Q. Possible order of elements in $\mathbf{Q}, \mathbf{R}, \mathbf{C}$?

Solution: Same as Z, 1 and ∞
Q. Possible order of elements in Q.

Solution:

Q^{*} is group under multiplication then $a \in Q^{*}$ and $O(0)=1, a^{n}=1$, where n is least positive integer.
$1 \in Q^{*}$ s.t. $1^{1}=1$ then $O(1)=1$
$-1 \in Q^{*}$ s.t. $(-1)^{2}=1$ then $O(-1)=2$
$2 \in Q^{*}$ s.t. $O(2)=\infty$
Q. How many element of order finite in Q^{*} ?

Ans. Two elements of order finite in Q^{*} say 1 and -1.
Possible order are 1,2, ∞
Q. Possible order of elements in R^{*} ?

Ans. $1,2, \infty$ (Possible orders)
Q. Possible orders of elements in C^{*} ?

Infinite number of elements in \mathbf{C}^{*}
Q. What are the possible order of elements in Q_{4}

Ans. $Q_{4}=\{ \pm 1, \pm i, \pm j, \pm k\}$
$a^{n}=e$ identity $=1$
$1 \in Q^{4} \Rightarrow O(1)=1$
$-1 \in Q^{4} \Rightarrow O(-1)=2$
$i \in Q_{4} \Rightarrow O(i)=4$
$-i \in Q_{4} \Rightarrow O(-i)=4$
$j \in Q_{4} \Rightarrow O(j)=4$
$-j \in Q_{4} \Rightarrow O(-j)=4$
$k \in Q_{4} \Rightarrow \Rightarrow O(k)=4$
$-k \in Q_{4} \Rightarrow \Rightarrow O(-k)=4$
$j^{2}=-1, \Rightarrow j^{2} \cdot j^{2}=j^{4}=1$
Possible order of elements in Q_{4} is $1,2 \& 4$
Number of elements of order 1 in $Q_{4}=1$
Number of elements of order 2 in $Q_{4}=1$
Number of elements of order 4 in $Q_{4}=6$
Q. Find possible order of element in Z_{10} ?

Ans. $Z_{10}=\{0,1,2,3,4,5,6,7,8,9\}$

$$
\begin{aligned}
& O(0)=1, O(1)=10, O(2)=5, O(3)=10 O(4)=5, O(5)=2, O(6)=5, O(7)=10, O(8)=5, O(9)=10 \\
& \text { Explanation: } \\
& 1+1+1+1+1+1+1+1+1+1=0 \\
& O(1)=10 \\
& \text { Additive identity }=0 \\
& \text { Every identity element is of the order is } 1 \\
& O(0)=1
\end{aligned}
$$

Possible orders of elements $1,2,5$, and 10
Number of elements with order 1 in $Z_{10}=1$
Number of elements with order 2 in $Z_{10}=1$
Number of elements with order 5 in $Z_{10}=4$
Number of elements with order 10 in $Z_{10}=4$
Q. Possible order of elements in K_{4} ?

Ans. Possible orders are 1 and 2
Q. Find elements of possible order in $U(8)$.
$O(U(8))=4, O(1)=1, O(3)=2, O(5)=2$; since $\quad 3 \cdot 3=3^{2}=9=1(\bmod 8), O(7)=2$
Possible order of elements in $U(8)=1$ and 2 .
Number of elements of order 1 in $U(8)=1$ and Number of elements of order 2 in $U(8)=3$
Q. Find possible order of elements in $U(15)$.

Ans.
$U(15)=\{1,2,4,7,8,11,13,14\}$

$$
\begin{aligned}
& O(U(15))=8 \\
& O(1)=1 \\
& O(2)=4 \\
& O(4)=2 \\
& O(7)=4 \\
& O(8)=4 \\
& O(11)=2 \\
& O(13)=4
\end{aligned}
$$

Possible order of elements in $U(15)$ are1, 2, 4
Number of elements of order $1=1$
Number of elements of order $2=2$
Number of elements of order $4=4$

Exam Point

In D_{n}
1- No. of elements of order 2 in D_{n}
$=\left\{\begin{array}{c}n+1, \text { if } n \text { is even } \\ n, \text { if } n \text { is odd }\end{array}\right.$
2. Number of elements of order dother than 2 ; If $2 \neq d / n$ then the no. of elements of order d in $D_{n}=\phi(d)$
Q. Find possible order of elements in D_{1}.

Ans. $D_{1}=\left\{R_{0}, f_{0}\right\}, O\left(D_{1}\right)=2 \times 1=2 ; O\left(R_{0}\right)=1, O\left(f_{0}\right)=2$
Possible orders of elements 1 and 2
Number of elements of order 1 in $D_{1}=1$ and Number of elements of order 2 in $D_{1}=1$.
Q. Find possible order of elements in D_{3} ?

No. of Rotations $=$ No. of Reflections
$O\left(R_{0}\right)=1, O\left(R_{120}\right)=3, O\left(R_{240}\right)=3, O\left(f_{A a}\right)=2, O\left(f_{B b}\right)=2, O\left(f_{C c}\right)=2$
Possible order of elements in $D_{3} 1$ and 3
Number of elements with order $1=1$
Number of elements with order $2=3$
Number of elements with order $3=2$
Q. Find possible order of elements in D_{4}.

Since possible Order of elements are $1,2 \& 4$
Identity element $R_{0} \in D_{4}$ such that $O\left(R_{0}\right)=1$

$$
\begin{array}{ll}
O\left(R_{90}\right)=4 & \\
O\left(R_{180}\right)=2 & O\left(R_{270}\right)=4 \\
& O(H)=2, O(V)=2, O(D)=2, O\left(D^{\prime}\right)=2
\end{array}
$$

Number of elements of order 1 in $D_{4}=1$
Number of elements of order 2 in $D_{4}=5$
Number of elements of order 4 in $D_{4}=2$
Q. Find possible order of elements in D_{10} ?

Ans. Possible orders of elements in D_{10} are 1, 2, 5, 10
Number of elements of order $1=\phi(1)=1$
Number of elements of order 2 in D_{10} (since n is even so) $=10+1=11$
Number of elements of order 5 in $D_{10}=\phi(5)=4$
Number of elements of order 10 in $D_{10}=\phi(10)=4$

Exam Point. If $O(a)=n \Rightarrow a^{n}=e$ but $a^{n}=e$ does not implies that $O(a)=n$.
Proof: If $a^{n}=e \Rightarrow O(a) \mid n ; a \in G$
Let $O(a)=K . a^{n}=0$
$O(a)=K$
Then by division algorithm, ; $n=k_{q}+r$
$0 \leq r<k$
Case I: If $r=0$ then $n=k_{q} \Rightarrow k|n \Rightarrow O(a)| n$
Case II: $r \neq 0$
$e=a^{n}=a^{k q+r} \Rightarrow e=a^{n}=a^{k q} a^{r}=\left(a^{k}\right)^{q} \cdot a^{r}=e^{q} \cdot a^{r} \Rightarrow e=a^{r} . O(a)=r$ where $r<k$
Which contradicts the fact that $O(a)=K$. Hence r must be equal to $\mathrm{O} \therefore O(a) \mid n$
From (3)

$$
\begin{aligned}
& n=k_{q+r} \\
& n=k_{q+0}
\end{aligned} \Rightarrow n=k_{q} \Rightarrow k|n \Rightarrow O(a)| n
$$

Exam Point. Show that $O(a)=O\left(x a x^{-1}\right)=O\left(x^{-1} a x\right) x, a \in G$

Let G be a group and $O(a)=n \Rightarrow a^{n}=e$
$\left(x a x^{-1}\right)^{2}=\left(\right.$ xax $\left.^{-1}\right)\left(x a x^{-1}\right)=x a x^{-1}$ xax $^{-1}=$ xaeax $^{-1}=x a^{2} x^{-1}$
$\left(x a x^{-1}\right)^{3}=\left(x a x^{-1}\right)^{2}\left(x a x^{-1}\right)=\left(x a^{2} x^{-1}\right)\left(x a x^{-1}\right)=x a^{2} x^{-1} x a x^{-1}=x a^{2} e a x^{-1}=x a^{3} x^{-1}$
Similarly
$\left(x a x^{-1}\right)^{n}=x a^{n} x^{-1}=x e x^{-1} \quad$ From (1) $=e$
Since n is least positive integer then
$O\left(x a x^{-1}\right)=n=O(a)$
$O(a)=0\left(x a x^{-1}\right)$ and similarly; $O(a)=O\left(x^{-1} a x\right)$
Hence $O(a)=O\left(x a x^{-1}\right)=O\left(x^{-1} a x\right)$
Exam Point. Show that $O(a b)=O(b a), \forall a, b \in G$
Proof: $a b=a b e=a b a a^{-1}=a(b a) a^{-1} O\left(x(b a) x^{-1}=O(b a)\right)$. So $O(a b)=0\left(a(b a) a^{-1}\right)$
$\because O(a b)=0(b a) \quad\left(O\left(x a x^{-1}\right)=O(a)\right)$
Exam Point. Show that $(a b)^{-1}=b^{-1} a^{-1}, a, b \in G$
Proof: $a b b^{-1} a^{-1}=e \quad \because a a^{-1}=e$
$\Rightarrow(a b)\left(b^{-1} a^{-1}\right)=e \Rightarrow\left(b^{-1} a^{-1}\right)=(a b)^{-1} e=(a b)^{-1}$
$(a b)^{-1}=b^{-1} a^{-1}$
Exam Point. Show that $O(a)=O\left(a^{-1}\right)$
Proof: Let $O(a)=n \Rightarrow a^{n}=e$
Taking Inverse both sides $\Rightarrow\left(a^{n}\right)^{-1}=e^{-1} \Rightarrow a^{-n}=e \Rightarrow\left(a^{-1}\right)^{n}=e \Rightarrow O\left(a^{-1}\right)=n=O(a)$
$\therefore O(a)=O\left(a^{-1}\right)$
Theorem: If every element of G has self inverse then G is abelian but converse need not be true.
Proof: Let G be a group and every element of G has self inverse

$$
\begin{align*}
& a \in G \Rightarrow a^{-1}=a \\
& b \in G \Rightarrow b^{-1}=b \tag{2}
\end{align*}
$$

Also $a \in G, b \in G \Rightarrow a b \in G \Rightarrow(a b)^{-1} \in G \Rightarrow b^{-1} a^{-1}=a b \Rightarrow b a=a b \forall a, b \in G$
Note- if $a^{2}=e \quad \forall$ a, elements of group G then G will be abelian but its converse need not be true.
i.e. $a b=b a$
$\Rightarrow G$ is an abelian group
Converse, need not be true
$Z_{4}=\{0,1,2,3\} ; 0^{-1}=0,1^{-1}=3,2^{-1}=2,3^{-1}=1$

Only 0 and 2 are self inverse. But Z_{4} is abelian group.

Cyclic Group: A group G is said to be cyclic group if \exists element ' a ' in G s.t. every elements of G generated by ' a ' i.e. $G=\left\{a^{n} \mid n \in \mathbf{Z}\right\}$. Also represented as $G=\langle a\rangle$
Example- $Z_{6}=\{0,1,2,3,4,5\}$ is Cyclic Group?
Solution: YES. Reason: $1 \in Z_{6}$ s.t.
$1=1,1+1=2,1+1+1=3,1+1+1+1=4,1+1+1+1+1=5,1+1+1+1+1+1=6=0$
Then 1 is generator of Z_{6} i.e. $G=\langle 1\rangle$ i.e. $Z_{6}=\langle 1\rangle$
$5=5,5+5=4,5+5+5=3,5+5+5+5=2,5+5+5+5+5=1,5+5+5+5+5+5=30=0$
Then 5 is also a generator of Z_{6} i.e. $G=\langle 5\rangle$ i.e. $Z_{6}=\langle 5\rangle$
Thus, Z_{6} is a Cyclic Group.
Exam Point. If G is Cyclic then G is abelian
Proof: If G is cyclic then G is abelian
Let G is Cyclic group then $\exists a \in G . G=\langle a\rangle$
Suppose $x \in G$ then $x=a^{n}, n \in \mathbf{Z}$ and $y \in G$ then $y=a^{n}, m \in \mathbf{Z}$
$x \cdot y=a^{n} \cdot a^{m}=a^{n+m}=a^{m+n}=a^{m} a^{n} \quad(n+m=m+n$ because Z is abelian $)=y \cdot x$
$\therefore x y=y \cdot x, \forall x, y \in G$. Hence, G is abelian.
Converse, of above statement need not be true i.e. If G is abelian then G need not be Cyclic
$K_{4}=\left\{e, a, b, a b \mid a^{2}=e, b^{2}=e, a b=b a\right\}$
Let us consider
$a^{1}=a, b^{1}=b ;(a b)^{1}=a b . \quad a^{2}=e, b^{2}=e ;(a b)^{2}=e$
$a^{3}=a \quad b^{3}=b \quad(a b)^{3}=a b, a^{4}=e \quad b^{4}=e$
A generate only 2 elements of K_{4} say $a \& e$ thus a is not generator of K_{4}.
Q. Show that Z is Cyclic group w.r.t usual addition

Solution:

$$
Z=\{0, \pm 1, \pm 2, \ldots\}, a=1 \in \mathbf{Z} \text { s.t. } G=\langle 1\rangle=\{n a \mid n \in Z\}=\{n 1 \mid n \in Z\}
$$

since 1 in generator of Z so $G=Z$ is cyclic.
Now, $-1 \in Z$ s.t $G=Z=\langle-1\rangle=\{n(-1) \mid n \in Z\}$. Thus -1 is also generator of \mathbf{Z}.
Therefore 1 and -1 are generator of \mathbf{Z} i.e. exactly two.
Q. $\left(\mathbf{Q}^{+}\right)$is cyclic?, $\left(\mathbf{R}^{+}\right)$is cyclic?, $\left(\mathbf{C}^{+}\right)$is cyclic?, $\left(\mathbf{Q}^{*}\right)$ is cyclic?, $\left(\mathbf{R}^{*}\right)$ is cyclic?, $\left(\mathbf{C}^{*}\right)$ is cyclic?

Which of the above are cyclic group?
Ans. None of them are cyclic
Hint: $a \notin Q$ s.t $Q=\langle a\rangle=\{n a \mid n \in \mathbf{Z}\}$.
Q . Is $U(12)=\{1,5,7,11\}$ cyclic?

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

Ans.
$1 \in U(12)$ s.t $O(1)=1,5 \in U(12)$ s.t $O(5)=2$
$7 \in U(12)$ s.t $O(7)=2,11 \in U(12)$ s.t $O(11)=2$
$O(U(12))=4$ and $U(12)$ has no element of order 4 then $U(12)$ is not cyclic.
Q. Is D_{1} a cyclic group?

Ans. $O\left(D_{1}\right)=2 \cdot 1=2$ and D_{1} has element of order 2 then D_{1} is a cyclic group.
Q. Is D_{2} a cyclic group?

Ans. $O\left(D_{2}\right)=4$ and D_{2} has no element of order 4 then D_{2} is not cyclic.
Q . Is $D_{n}, n \geq 3$ cyclic?
Ans. $D_{n}, n \geq 3$ is non-abelian then D_{n} is non-cyclic.
Q. $G L_{n}(\mathbf{F})_{n>1}$ is cyclic?

Ans. $G L_{n}(\mathbf{F})=\left\{A=\left[a_{i j}\right]_{n \times n} \mid a_{i j} \in \mathbf{F}\right.$, and $\left.|A| \neq 0\right\}$
$\left(G L_{n}(\mathbf{F})\right)$ is non-abelian (because matrix multiplication need not be commutative) then $G L_{n}(\mathbf{F})$ is not cyclic.

- If $n=1$ then $G L_{1}(\mathbf{R})$ is it cyclic?

Solution: If $n=1$ then $G L_{1}(\mathbf{R})=R^{*}$ and \mathbf{R}^{*} is abelian but not cyclic hence $G L_{1}(\mathbf{R})$ is abelian but not cyclic.
Q.(i) $S L_{n}(\mathbf{F}), n>1$ is cyclic? ii) If $n=1$ then $S L_{n}(\mathbf{F})$ is cyclic?

Ans.(i) $S L_{n}(\mathbf{F})$ is non-abelian if $n \geq 2$ then $S L_{n}(\mathbf{F})$ is not cyclic.
(ii) If $n=1$ then $S L_{n}(\mathbf{F})=\left\{A=\left[a_{i j}\right]|A|=1, a_{i j} \in \mathbf{F}\right\}=\{1\}$
$O\left(S L_{1}(\mathbf{F})\right)=1$ and $S L_{1}(\mathbf{F})$ has a element of order 1 then $S L_{1}(\mathbf{F})$ is cyclic.
Q. $Q_{4}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is cyclic?

Solution: $i \in Q_{4}$ and $i j=-j i \neq j i j \in Q_{4}$ and $i j \neq j i$ then Q_{4} is non-abelian thus Q_{4} is non-cyclic.
Q. Show that Z_{n} is cyclic?

Ans. Proof: Case I:
If $n=1, Z_{1}=\{0\}$ And $O\left(Z_{1}\right)=1, O \in Z_{1}$ s.t $O(0)=1 \Rightarrow Z_{1}$ has element of order 1 then Z_{1} is cyclic.
Case II: If $n \geq 2$ then
$1 \in Z_{n}$ s.t $O(1)=O(Z n)$. Thus Z_{n} is cyclic.
Exam Point. No. of Generators in $Z_{n}=\phi(n)$: generator of Z_{n}; which is relatively prime to n i.e. $\operatorname{gcd}(a, n)=1$

- If $a \in Z_{n}$ s.t $\operatorname{gcd}(a, n)=1$ then a will be generator of Z_{n}.

Personalized Mentorship +91_9971030052

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

Q. How many generators in Z_{20} ?

Solution: $Z_{20}=\{0,1,2,3, \ldots, 19\}$. Number of generators in $Z_{20}=\phi(20)=8$
These generators are $1,3,7,9,11,13,17 \& 19$.
Q. $G=\{5,15,25,35\}$ is group under multiplication modulo 40? If yes then what is relation with $U(8)$?

Solution:

$G=\{5,15,25,35\}$. Consider composition Table w.r.t modulo 40

	5	15	25	35
5	25	35	5	15
15	35	25	15	5
25	5	15	25	35
35	15	5	35	25

(i) Closure property $\forall a, b \in G \Rightarrow a b \in G$ (ii) Associative $a \cdot(b c)=(a b) \cdot c, \forall a, b, c \in G$
(iii) Identity $\forall a \in G \Rightarrow 25 \in G$ s.t $a \cdot 25=25 \cdot a=a$
(iv) Inverse of each element of G

$$
5^{-1}=5,15^{-1}=15,25^{-1}=25,35^{-1}=35
$$

Then $G=\{5,15,25,35\}$ is group w.r.t multiplication modulo 40
Every element in G has its self inverse hence G is abelian.
G is not cyclic because $O(G)=4$ and it does not have any element of order 4 in it.
Note: G has only one element of order 1 and three elements of order 2.

- $U(8)=\{1,3,5,7\}$ also consider comparison table w.r.t multiplication modulo 8

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Every element of $U(8)$ has self inverse $1^{-1}=1,3^{-1}=3,5^{-1}=5,7^{-1}=7 . U(8)$ is a abelian group of order 4.Now, $U(8)$ is not cyclic because $U(8)$ has no element of order 4 .
$U(8)$ has only one element of order $1 \& 3$ element of order 2 hence.
$G \approx U(8)$ i.e. G is isomorphic to $U(8)$.

Exam Point.

$$
Z_{m} \times Z_{n}
$$

If we have to find no. of elements of order k then first of all check that $k^{\text {th }}$ order element exist or not by choosing $d_{1} \& d_{2}$ such that L.C.M. $\left(d_{1}, d_{2}\right)=K$, and $d_{1} \mid m$ and $d_{2} \mid n$ and number of elements of order K in $Z_{m} \times Z_{n}$
$=\sum\left(\phi\left(d_{1}\right) \times \phi\left(d_{2}\right)\right)$ s.t $d_{1} \mid m$ and $d_{2} \mid n$
Q. $Z_{2} \times Z_{2}=\{(0,0),(0,1),(1,0),(1,1)\}$

Clearly, $(0,1)(1,0)=(1,1) \in Z_{2} \times Z_{2}$
$(1,1)(1,1)=(2,2)=(0,0) \in Z_{2} \times Z_{2}$
$(0,1)(0,1)=(0,2)=(0,0) \in Z_{2} \times Z_{2}$
$(1,0)(0,0)=(1,0) \in Z_{2} \times Z_{2}$
$Z_{2} \times Z_{2}$ is not a cyclic group but abelian.
$Z_{2}=\{0,1\}, Z_{3}=\{0,1,2\}$

- $Z_{2} \times Z_{3}=\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)\}$
$(1,1) \in Z_{2} \times Z_{3} ;(1,1)=(1,1) ;(1,1)(1,1)=(2,2)=(0,2) ;(1,1)(1,1)(1,1)=(3,3)=(1,0)$
$(1,1)(1,1)(1,1)(1,1)=(4,4)=(0,1) ;(1,1)(1,1)(1,1)(1,1)(1,1)=(5,5)=(1,2)$
$(1,1)(1,1)(1,1)(1,1)(1,1)(1,1)=(6,6)=(0,0)$. Therefore $O(1,1)=6$
Hence $Z_{2} \times Z_{3}$ is a cyclic group as $O(1,1)=O\left(Z_{2} \times Z_{3}\right)=6$.
Q. Find possible order of elements in $Z_{2} \times Z_{2}$?

Solution: $G=Z_{2} \times Z_{2}$. We need L.C.M. $\left(d_{1}, d_{2}\right)=K$ dividing 4
L.C.M. $\left(d_{1}, d_{2}\right)=1$ is possible in $Z_{2} \times Z_{2}$ as $d_{1}\left|2, d_{2}\right| 2$

If $d_{1}=1, d_{2}=1$ then $\phi(1) \phi(1)=1$. So Number of elements of order 1 is only 1
Now, L.C.M. $\left(d_{1}, d_{2}\right)=2$ also possible in $Z_{2} \times Z_{2}$
$d_{1}\left|2, d_{2}\right| 2$, L.C.M. $(2,1)=2$. means number elements of order 2 in Z_{2} and elements of order1 in Z_{2}
which are $\phi(2) \phi(1)=1$. Similarly let's check other possibilities:
$d_{1}\left|2, d_{2}\right| 2$, L.C.M. $(1,2)=2 . \quad \phi(1) \phi(2)=1$
$d_{1}\left|2, d_{2}\right| 2$ L.C.M. $(2,2)=2$.
$\phi(2) \phi(2)=1$
No. of elements of order 2 are $3 . \quad$ Total $=3$ elements.
Q. Find Number of elements of all possible orders in $Z_{2} \times Z_{4}$.
L.C.M. $\left(d_{1}, d_{2}\right)=1, \quad$ L.C.M. $(1,1)=1 \quad \phi(1) \phi(1)=1$

Then only one element of order 1
Number of elements of order 2 in $Z_{2} \times Z_{4}$ is 3 L.C.M. $\left(d_{1}, d_{2}\right)=2$
$Z_{2} \times Z_{4}$
1

2
2

$$
\begin{array}{ll}
2 & \phi(1) \phi(2)=1 \\
1 & \phi(2) \phi(1)=1 \\
2 & \phi(2) \phi(2)=1
\end{array}
$$

$$
\text { Total } 3 \text { elements having order } 2
$$

Then L.C.M. $\left(d_{1}, d_{2}\right)=4$
$Z_{2} \times Z_{4}$
$1 \quad 4$

$$
\text { Total }=4 \text { elements having order } 4
$$

24

$$
\begin{aligned}
& \phi(1) \phi(4)=1 \times 2=2 \\
& \phi(2) \phi(4)=1 \times 2=2
\end{aligned}
$$

Possible orders are $1,2 \& 4 \&$ respectively the number of elements of these orders are 1,3 and 4 .

COSET THEORY

Coset- Let H b e a subgroup of G and $a \in G$ then $a \cdot H=\{a h \mid h \in H\}$ is called left coset of H in G and $H a=\{h a \mid h \in H\}$ is called right co set of H in G .
Note: If G is abelian then left coset of H in G is equal to right coset of H in G .
Let $a H$ is left coset of H in G then
$a H=\{a h \mid h \in H$ and $a \in G\}=\{h a \mid h \in H$ and $a \in G\}=H a a H=H a$

Point- \mathbf{H} be a subgroup of \mathbf{G} then show that $H H=H$
Let G be a group and H be a subgroup of G then
$H H=\left\{h_{1} h_{2} \mid h_{1} \in H, h_{2} \in H\right\}$
Let $x \in H H \Rightarrow x \in h_{1} h_{2} \in H . H h_{1} \in H, h_{2} \in H \Rightarrow h_{1} \in H, h_{2} \in H \Rightarrow h_{1} h_{2} \in H \Rightarrow x=h_{1} h_{2} \in H$
$x \in H ; H H \subset H$
Let $h \in H \Rightarrow h=h e \in H H, h \in H, e \in H \Rightarrow h \in H H \Rightarrow H \subseteq H H$
From (1) and (2) $H=H H$
e.g. $H=\{e, a, b\} ; H H=\{e e, e a, e b, a b\}=\{e, a, b\} a b \in H$ due to closure property $=\mathrm{H}$

Point- If $a \in H$ then $a H=H$. Prove
Let $a h \in a H, a \in H, h \in H a \in H, h \in H \Rightarrow a h \in H \ldots$ (1)
$a^{-1} h=h_{1} \in H . h=a h_{1} \in a H ; H \subseteq a H$
From (1) and (2) $a H=H$
Q. Let G be a finite cyclic group of order G with generated by a and H be a subgroup of G generated by a^{2} then find Right coset and left coset of H in G .
Hint:
G is a group generated by $a, G=\langle a\rangle \Rightarrow G=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}=e\right\}$
And H is a subgroup of G generated by a^{2} Then $H=\left\{a^{2}, a^{4}, a^{6}=e\right\}$
Exam Point- No. of cosets of subgroup \mathbf{H} in $\mathbf{G}=\frac{O(G)}{O(H)}$
Example-. $G=Q_{4}, H=\{1,-1\}$. Finding cosets of H in G
$1 \in Q_{4}$ s.t $1 H=\{1,-1\}, i H=-i H\{i,-i\}, j H=-j H=\{j,-j\}, K H=-k H=\{K-K\}$
Example- $G=Q_{4}, H=\{ \pm 1, \pm i\}$
$1 H=-1 H=i H=-i H=H, j H=-j H=k H=-k H=\{ \pm j, \pm k\}$ then
H and jH are two distinct cosets of H in G .
Q. Find cosets of H in G when $H=\{I,(123),(132)\}$ and $G=S_{3}$

Solution: write by yourself.

No. of coset of H in $G=\frac{O(G)}{O(H)}=\frac{6}{3}=2$.

[1] Lagrange's Theorem and Consequences

(i) If G is a finite group and H is a subgroup of G , then $|H|$ divides $|G|$. Moreover, the number of distinct left (right) cosets of H in G is $|G| /|H|$. Converse of Lagrange's need not be true.
(ii) $|a|$ divides $|G|$
(iii) Group of prime order are cyclic.
(iv) $a^{|G|}=e$
(v) Fermat's little theorem: For every integer a and every prime p, a^{p} modulo $\beta=a$ modulo p. (Important for questions)

Exam Point: Above five points are necessary to remember to do group theory. (Proofs of above points are not expected in exam).

Normal Subgroup: A subgroup H of G is said to be normal subgroup of g if $\forall x \in G, \forall h \in H$
$\Rightarrow x h x^{-1} \in H$ i.e. $x H x^{-1}=H$.
Q. If G is abelian then all subgroup of G are normal?

Proof: Let G be a abelian group and H is an subgroup of G
$\forall x \in G, \forall h \in H$ s.t $x h x^{-1}=x\left(h x^{-1}\right)=x\left(x^{-1} h\right), G=x x^{-1} h=e h=h \in H ; x h^{-1} x \in H$
Then H is normal subgroup of G .
Example: $G=Z_{10}$ and $H=\langle 2\rangle$ is subgroup of Z_{10} then H is normal subgroup of G .
Solution:
$G=Z_{10}$ is cyclic as well as abelian group. $H=\langle 2\rangle=\{0,2,4,6,8\}$
Then H is normal subgroup of G because all subgroup of an abelian group are normal.
Q. $G=Z_{2} \times Z_{2}$. How many normal subgroups in G ?

Solution: $G=Z_{2} \times Z_{2}$ is abelian group then all subgroups of G are normal.
Number of subgroups in $Z_{2} \times Z_{2}$?
Number of cyclic subgroups of order 1 in $Z_{2} \times Z_{2}=\frac{\text { No.of elements of order } 1 \text { in } Z_{2} \times Z_{2}}{\phi(1)}$

$$
=\frac{1}{1}=1
$$

Number of cyclic subgroups of order 2 in $Z_{2} \times Z_{2}=\frac{\text { No.of elements of order } 2 \text { in } Z_{2} \times Z_{2}}{\phi(2)}=\frac{3}{1}=3$
$G=Z_{2} \times Z_{2}$ itself is subgroup of $G=1$
$H_{2}=\{(0,0)\}, H_{2}=\{(0,0),(0,1)\}, H_{3}=\{(0,0),(1,0)\}, H_{4}=\{(0,0),(1,1)\}, H_{5}=Z_{2} \times Z_{2}$

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

All are normal subgroups of $Z_{2} \times Z_{2}$.
Q. How many normal subgroups in D_{2} ?

Solution: $D_{2}=\left\{R_{0}, R_{180}, f_{A a}, f_{B b}\right\}$. It is an abelian group \therefore all its subgroups are normal subgroups of G $O\left(D_{2}\right)=4$ And D_{2} has no elements of order 4 then D_{2} is abelian but not cyclic.
Since D_{2} is abelian then all subgroup of D_{2} are normal.
$H_{1}=\left\{R_{0}\right\}, H_{2}=\left\{R_{0}, f_{A a}\right\}, H_{3}=\left\{R_{0}, f_{B b}\right\}, H_{4}=\left\{R_{0}, R_{180}\right\}, H_{5}=D_{2}$
Q. $G=Z_{4}$, How many normal subgroups?

Solution: Z_{4} is cyclic then Z_{4} is abelian \Rightarrow all subgroup of Z_{4} are normal
Subgroup of Z_{4} are $H_{1}=\{0\}=\langle 4\rangle, H_{2}=\{0,2\}=\langle 2\rangle, H_{3}=\langle 1\rangle=Z_{4}$. All are normal subgroups of Z_{4}.
Q. Show that $H=\{e\}$ and $H=G$ are always normal subgroup of G .

Solution: Case I: Let G be a group and $H=\{0\}$ is subgroup of $\mathrm{G}, x \in G, h \in H=\{e\}$
s.t $x h x^{-1}=x e x^{-1}=x x^{-1}=e \in H \Rightarrow x h x^{-1} \in H \Rightarrow H=\{e\}$ is normal subgroup of G .

Case II: Let G be a group and $H=G$ is subgroup of G , then $x \in G, h \in H=G$ s.t $x h x^{-1} \in H$ because
$x \in G, h \in H \Rightarrow h \in G \because(H=G) \Rightarrow x h x^{-1} \in G \Rightarrow x h x^{-1} \in H \quad(G=H) ; x h x^{-1} \in H$
Then $H=G$ is normal subgroup of G .
Q. $G=D_{4}, H_{1}=\left\{R_{0}\right\}$ and $H_{2}=\left\{R_{0}, R_{90}, R_{180}, R_{270}, H, V, D, D^{\prime}\right\}$
H_{1} and H_{2} are normal subgroup of D_{4} ?
Solution: $H_{1}=\left\{R_{0}\right\}$ is the identity of D_{4} and we know that $\{e\}$ is always normal subgroup of D_{4} then $H=\left\{R_{0}\right\}$ is normal subgroup of D_{4} and $H_{2}=\left\{R_{0}, R_{90}, R_{180}, R_{270}, H, V, D, D^{\prime}\right\}=D_{4}$ is normal subgroup in D_{4} then H_{1} and H_{2} both are normal subgroup in D_{4}.
Q.(i) $(Z+)$ is normal subgroup in $(Q+)$?
(ii) $(Q+)$ is normal subgroup in $(\mathbf{R},+)$?
(iii) $(Z,+)$ is normal subgroup in $(\mathbf{R},+)$?

Solution:(i) yes,(ii) yes,(iii) yes

Centre of Group

Let G be a group and $Z(G)$ is centre of group G then
$Z(G)=\{z \in G \mid x z=z x, \forall x \in G\}$.
Note- Centre of a group is a normal subgroup of that group,

Let $x \in G$, and $h \in Z(G)$
$x h x^{-1}=(h x) x^{-1}[h \in Z(G)$ then $h x=x h, \forall x \in G]=h x x^{-1}=h e=h \in Z(G) \Rightarrow x h x^{-1} \in Z(G)$
$\therefore Z(G)$ is normal subgroup of G.
Q. $H=\{1,-1\}$ is subgroup of Q_{4}, H is normal subgroup in Q_{4} ?

Solution:
$H=\{1,-1\}$ and $Z\left(Q_{4}\right)=\{1,-1\}=H$ and we know that $Z(G)$ is always normal subgroup of G then
$H=\{1,-1\}$ is normal subgroup of Q_{4}.
Q. $G=G L_{3}\left(\mathbf{F}_{7}\right)$
$H=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right],\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right],\left[\begin{array}{ll}4 & 0 \\ 4 & 0\end{array}\right],\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right],\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]\right\}$
H is normal subgroup of G .
Solution:
$Z\left(G L_{3}\left(\mathbf{F}_{7}\right)\right)=H$ then H is a normal subgroup of $G L_{3}\left(\mathbf{F}_{7}\right)$.
Q. $H=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right],\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]\right\}$

Is normal subgroup of $S L_{3}\left(\mathbf{F}_{7}\right)$?
Solution:
$Z\left(S L_{3}\left(\mathbf{F}_{7}\right)\right)=\operatorname{gcd}(3,7-1)=3$
$Z\left(S L_{3}\left(\mathbf{F}_{7}\right)\right)=H$ then H is normal subgroup of $S L_{3}\left(\mathbf{F}_{7}\right)$.
Q. Show that $S L_{n}(\mathbf{F})$ is normal subgroup of $G L_{n}(\mathbf{F})$?

Solution:
Let $x \in G L_{n}(\mathbf{F})$ and $h \in S L_{n}(\mathbf{F}) \Rightarrow|h|=1$
$x h x^{-1} \in S L_{n}(\mathbf{F})$ because
$\left|x h x^{-1}\right|=|x||h|\left|x^{-1}\right|=|x|\left|x^{-1}\right|=\left|x x^{-1}\right|=|I|=1 . \quad \therefore x h x^{-1} \in S L_{n}(\mathbf{F})$
Then $S L_{n}(\mathbf{F})$ is normal subgroup of $G L_{n}(\mathbf{F})$.
Q. Is $S L_{2}\left(\mathbf{F}_{5}\right)$ normal subgroup of $G L\left(\mathbf{F}_{5}\right)$?

Ans. Yes
Similarly, $S L_{3}(\mathbf{R})$ is normal subgroup of $G L_{3}(\mathbf{R})$.

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

Symmetric Group or Permutation Group

Definition: Set of all one-one onto mapping from set containing n elements to itself form a group under composition of functions. It is denoted by S_{n} and $O\left(S_{n}\right)=n!$ elements are called permutation of S_{n}.
Symmetric Group $S_{1}: S_{i}=\{I\}, O\left(S_{1}\right)=1$
Group $S_{2} ; S_{2}=\{I,(1,2)\}$
Symmetric Group $S_{3} ; S_{3}=\{I,(12),(13),(23),(123)(132)\} O\left(S_{3}\right)=6$
Cycle: A permutation $f \in S_{n}$ of length r is called r-cycle.
Transposition: A permutation of length 2 is called Transposition.
e.g. $f=(12) \in S_{3}$ and length of $f=2$, then f is called Transposition.

Example of \boldsymbol{r}-cycle

$f=\binom{a_{1} a_{2} a_{3} \ldots . . a_{r-1} a_{r}}{a_{2} a_{3} a_{4} \ldots . . a_{r} a_{1}} \in S_{n} ; a_{i} \neq a_{j}, i \neq j$ then length of $f=r$. r-cycle permutation.
$f\left(\frac{4}{2} \frac{2}{3} \frac{3}{1}\right) \in S_{4}$, length of $f=3$, then 3-cycle.

Product of Two Permutation

$$
\begin{aligned}
& f_{1}=(123) \in S_{3}, f_{2}=(13) \in S_{3} \\
& f_{1} f_{2}=\left(\frac{1}{2} \frac{2}{3} \frac{3}{1}\right)\left(\frac{1}{3} \frac{2}{2} \frac{3}{1}\right)=\left(\frac{1}{1} \frac{2}{3} \frac{3}{2}\right)=(23) \\
& f=(12345) \in S_{n, n \geq 5} ; f^{2}=f \cdot f=(12345)(12345)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1
\end{array}\right)\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1
\end{array}\right) \\
& =\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 1 & 2
\end{array}\right)=\left(\begin{array}{lllll}
1 & 3 & 5 & 2 & 4
\end{array}\right)=(13524)
\end{aligned}
$$

Order of Permutation:

$f \in S_{n}$ then $O(f)=$ length of f.
e.g.

$$
\begin{aligned}
& f=(123) \in S_{4}, O(f)=3=\text { length of } f \text { then } O(f)=3 \\
& f=(123) \in S_{4}, \text { s.t. } f^{2}=(123)^{2}=(123)(123)=(132)
\end{aligned}
$$

Now, $f^{3}=(132)(123)=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)=I$
Q. $f=(123)(45) \in S_{6} O(f)=$?

Solution: $f=(123)(45)=f_{1} \cdot f_{2}$

$$
\begin{aligned}
& f^{2}=f_{1}^{2} \cdot f_{2}^{2}=(132) \cdot I=(132), f^{3}=f_{1}^{2} f_{2}=I \cdot(45) \\
& f^{4}=f_{1}^{3} f_{2}=(123) I=(123), f^{5}=f^{4} \cdot f=(132) \cdot(45) \\
& f^{6}=I \cdot I=I=f^{5} \cdot f=(132)(45)(128)(45) . \text { So } O(f)=6
\end{aligned}
$$

Q. $f=(123)(145) \in S_{n}$, find $O(f)=$?

Solution: $f=(123)(145)=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)\left(\begin{array}{lll}1 & 4 & 5 \\ 4 & 5 & 1\end{array}\right)=\left(\begin{array}{lllll}1 & 4 & 5 & 2 & 3 \\ 4 & 5 & 2 & 3 & 1\end{array}\right)=\left(\begin{array}{lllll}1 & 4 & 5 & 2 & 3\end{array}\right)$
Then $O(f)=5$.

- $\quad f=f_{1} \cdot f_{2} \cdot f_{3}$

Where $f_{1}=\left(\begin{array}{llll}a_{1} & a_{2} & a_{3} & a_{4} \\ a_{2} & a_{3} & a_{4} & a_{1}\end{array}\right), f_{2}=\left(\begin{array}{ll}a_{5} & a_{6} \\ a_{6} & a_{5}\end{array}\right), f_{3}=\left(\begin{array}{lll}a_{7} & a_{8} & a_{9} \\ a_{8} & a_{9} & a_{7}\end{array}\right)$
$O(f)=$ L.C.M. $\left(O\left(f_{1}\right), O\left(f_{2}\right), O\left(f_{3}\right)\right)$
Where f_{1}, f_{2}, f_{3} are distinct permutation.
Exam Point: If $f=f_{1}, f_{2}, \ldots ., f_{k}$, where $f_{1}, f_{2}, \ldots, f_{k}$ are distinct permutation.
Then $O(f)=\operatorname{LCM}\left(O\left(f_{1}\right), O\left(f_{2}\right) \ldots O\left(f_{k}\right)\right)$
Q. $f=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 1 & 6 & 5 & 8 & 9 & 7\end{array}\right) \in S_{n, n \geq 9}$ the $O(f)$?

Solution:
$f=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 1 & 6 & 5 & 8 & 9 & 7\end{array}\right)=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)\left(\begin{array}{ll}5 & 6 \\ 6 & 5\end{array}\right)\left(\begin{array}{lll}7 & 8 & 9 \\ 8 & 9 & 7\end{array}\right)$
$=f_{1} \cdot f_{2} \cdot f_{3}$
$\Rightarrow O(f)=$ L.C.M. $\left(O\left(f_{1}\right), O\left(f_{2}\right), O\left(f_{3}\right)\right)=$ L.C.M. $(4,2,3) \therefore O(f)=12$
Q. $f=(123)(145) \in S_{n}$, find $f^{99}=$?

Solution: $f=(123)(145)=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5\end{array}\right)\left(\begin{array}{lllll}1 & 4 & 5 & 2 & 3 \\ 4 & 5 & 1 & 2 & 3\end{array}\right)=\left(\begin{array}{lllll}1 & 4 & 5 & 2 & 3 \\ 4 & 5 & 2 & 3 & 1\end{array}\right)$
$f=\left(\begin{array}{lllll}1 & 4 & 5 & 2 & 3\end{array}\right) \Rightarrow O(f)=5 \Rightarrow f^{5}=I$
$f \cdot f=f^{2}=\left(\begin{array}{lllll}1 & 4 & 5 & 2 & 3 \\ 4 & 5 & 2 & 3 & 1\end{array}\right)\left(\begin{array}{lllll}1 & 4 & 5 & 2 & 3 \\ 4 & 5 & 2 & 3 & 1\end{array}\right)=\left(\begin{array}{lllll}1 & 4 & 5 & 2 & 3 \\ 5 & 2 & 3 & 1 & 4\end{array}\right)=\left(\begin{array}{lllll}1 & 5 & 3 & 4 & 2\end{array}\right)$
$f^{99}=f^{95+4}=f^{4}=f^{2} \cdot f^{2}$
$f^{2}=\left(\begin{array}{lllll}1 & 5 & 3 & 4 & 2 \\ 5 & 3 & 4 & 2 & 1\end{array}\right)=\left(\begin{array}{lllll}1 & 5 & 3 & 4 & 2\end{array}\right)$
$f^{4}=\left(\begin{array}{lllll}1 & 3 & 2 & 5 & 4 \\ 3 & 2 & 5 & 4 & 1\end{array}\right)=f^{2} \cdot f^{2}$
$f^{4}=\left(\begin{array}{lllll}1 & 3 & 2 & 5 & 4\end{array}\right)$
or $f^{99}=f^{100} f^{-1}=\left(f^{5}\right)^{20} \cdot f^{-1}=I \cdot f^{-1}=f^{-1}$
$f^{99}=f^{4}=\left(\begin{array}{lllll}3 & 2 & 5 & 4 & 1\end{array}\right)$

Inverse of Permutation

$f=\left(a_{1}, a_{2} \ldots . . a_{k}\right) \in S_{n}$
$f^{-1}=\left(a_{k} a_{k-1} \ldots a_{2} a_{1}\right)$ s.t $f f^{-1}=I$
Q. $f=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right) \in S_{n}$ then $f^{-1}=\left(\begin{array}{llll}4 & 3 & 2 & 1\end{array}\right)$?

Solution: $f f^{-1}=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)\left(\begin{array}{llll}4 & 3 & 2 & 1\end{array}\right)=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)\left(\begin{array}{llll}4 & 3 & 2 & 1 \\ 3 & 2 & 1 & 4\end{array}\right)=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right)=I$
$f f^{-1}=I$
Even Permutation: A permutation $f \in S_{n}$ is called an even permutation if f can be written as product of even number of transpositions.
e.g. $(123) \in S_{4}$, is even permutation?

Solution: $f=(123) \in S_{4}=(13)(12)$
Even no. of transposition then $f=(123)$ is an even permutation.
Q. $f=(123456) \in S_{6}$, is this even permutation?

Solution: $f=(123456)=\frac{(16)(15)(14)(13)(12)}{5-\text { transposition }}$. Thus $f=(123456)$ is not even permutation.
Odd Permutation: A permutation $f \in S_{n}$ is called an odd permutation if f can be written as product of odd number of transposition.
e.g. $f=(1234) \in S_{5}$ is odd permutation

Solution: $f=(1234)=(14)(13)(12)$, so it is an odd permutation as there are 3 .
So, $f=(1234)$ is an odd permutation.

Exam Point: $I \in S_{n}$ is always an even permutation
$I=(12)(12)(12)(12)(12)(12)$
Then I is an even permutation.
$I=(12)(12), I \in S_{n}, \forall n \in N$
$I=(12)(12)(12)(12)$
$I=(12)(12) \ldots .$. even times
Then I is an even permutation also $I \in S_{1}$ is even permutation.
Exam Point: (1) Product of two even permutation is an even permutation.
(2) Product of two odd permutation is an even permutation.
(3) Product of odd and even permutation is an odd permutation.
e.g.
(1) $f=(123)$ is even permutation ; $f \cdot f=(123)(123)=(132)=(12)(13)=$ even permutation
(2) $f_{1}=(123)$ and $f_{2}=(23) ; f_{1} \cdot f_{2}=(123)(23)=(13)(12)(23)=$ odd permutation
(2) $f_{1}=(12) f_{2}=(13) ; f_{1} \cdot f_{2}=(12)(13)=$ even permutation
Q. (i) If $f \in S_{n}$ is an even permutation then f^{-1} is an even permutation.
(ii) If $f \in S_{n}$ is an odd permutation then f^{-1} is an odd permutation.

Solution:

(i) Let $f \in S_{n}, f$ is an even permutation
$f^{-1}=I>$ even Permutation
f is even permutation
$\because f$ is an even permutation given and we know that I is always even permutation then f^{-1} must be even because product of even permutation is even
$\Rightarrow f^{-1}$ is even permutation
If f^{-1} is odd then even + odd $=$ odd \neq even
Then $f^{-1}=$ even is not possible $\Rightarrow f^{-1}$ is an even permutation
Proof: (ii) Given $f \in S_{n}$ is odd permutation
We know that
$f f^{-1}=I$. And I is always even permutation and for validation of this result f^{-1} must be odd because product of two odd permutation is even. $\therefore f^{-1}$ is odd permutation.
Q. $f=\alpha \beta \alpha^{-1} \beta^{-1}$ is always an even permutation.

Solution:
$\alpha \in S_{n}$ then α is either even or odd permutation, $\beta \in S_{n}$ then β is either even or odd permutation.
Case - I: If $\alpha=$ even and $\beta=$ even permutation α is an even permutation then α^{-1} is also even permutation. Similarly β is an even permutation then β^{-1} is also even permutation.

$$
f=\alpha V_{\text {even }} V_{\text {even }}^{\alpha^{-1}} \beta^{-1}
$$

Case - II: If α is an odd permutation and β is an odd permutation
$\Rightarrow \alpha^{-1}$ and β^{-1} both are also odd permutation, $\alpha \beta$ is even permutation
$\alpha^{-1} \beta^{-1}$ is even permutation
$f=(\alpha \beta) \cdot\left(\alpha^{-1} \beta^{-1}\right)=$ even \bullet even $=$ even permutation
Case - III: When α is even and $\quad \beta$ is odd permutation
α^{-1} will be even permutation and β^{-1} will be permutation .
$\alpha \beta$ will be odd permutation, $\alpha^{-1} \beta^{-1}$ will be odd permutation
i.e. $f=(\alpha \beta)\left(\alpha^{-1} \beta^{-1}\right)=$ odd \bullet odd $=$ even permutation

Case - IV: When α is odd $\Rightarrow \alpha^{-1}$ is odd permutation β is even $\Rightarrow \beta^{-1}$ is even permutation
$\alpha \beta$ is odd permutation, $\alpha^{-1} \beta^{-1}$ is also odd permutation
$f=(\alpha \beta)\left(\alpha^{-1} \beta^{-1}\right)=$ odd \bullet odd $=$ even permutation
Hence, $f=\alpha \beta \alpha^{-1} \beta^{-1}$ is always an even permutation.

Q. (i) $f=\alpha \beta \alpha^{-1} \in S_{n}$, always even permutation when β is even.
(ii) $f=\alpha \beta \alpha^{-1} \in S_{n}$, always odd permutation is β is odd.

Exam Point: No. of distinct permutation of length r in $S_{n}=\frac{1}{r} \frac{n!}{(n-r)!}$
Proof: No. of distinct arrangement of r number out or n number ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$
$\operatorname{But}(1,2,3, \ldots . r)=(2 \cdot 3 \ldots . . r \cdot 1)=(3 \cdot 4 \ldots . r \cdot 1 \cdot 2)=(r \cdot 1 \cdot 2 \ldots . . r-1)$
are same permutation in $S_{n} . \therefore$ \# of distinct arrangement of r-cycles in $S_{n}=\frac{n!}{r(n-r)!}$
Q. Find number of Permutation in S_{3} of length 2.

Solution:
Number of permutations of length 2 in $S_{3}=\frac{3!}{2(3-2)!}=\frac{3 \cdot 2 \cdot 1}{2 \cdot 1}=3$
Those are (12), (13), (23) $\in S_{3}$
Q. How many permutations of length 3 in S_{4} or number of 3-cycle in S_{4} ?

Solution:
number of 3-cycles in $S_{4}=\frac{4!}{3(4-3)!}=\frac{4 \times \not p \times 2 \times 1}{\not p}=4 \times 2=8$
Q. How many elements of order 2 in S_{4} ?

Solution: Elements of $S_{4}: O\left(S_{4}\right)=4!=24$
$S_{4}=\left\{\begin{array}{l}I(12),(13),(14),(23),(24),(34),(123) \\ (124),(234),(134),(431),(432),(421) \\ (321),(1234),(1243),(1423),(3241) \\ (3421),(4321),(12)(34),(14)(23),(13)(24)\end{array}\right\}$
$(12) \in S_{4}$ s.t $O(12)=2,(13) \in S_{4}$ s.t $O(13)=2,(24) \in S_{4}$ s.t $O(14)=2$
$(23) \in S_{4}$ s.t $O(23)=2,(24) \in S_{4}$ s.t $O(24)=2,(34) \in S_{4}$ s.t $O(34)=2$
$(12)(34) \in S_{4}$ s.t $O((12)(34))=2,(14)(23) \in S_{4}$ s.t $O((14)(23))=2$
$(13)(24) \in S_{4}$ s.t $O((13)(24))=2$
Therefore number of elements of order 2 in S_{4} is $=9$.
Q. (i) Find number of element or order 2 in S_{6}.
(ii) Find number of element of order 3 in S_{6}.
Q. How many elements of order 3 in S_{4}.

Solution: Number of elements of order 3 in S_{4} are
$\{(123),(124),(134),(234),(432),(431),(421),(321)\}$; exactly 8 elements or order 3 in S_{4}.
Q. How many elements of order 4 in S_{4} ?

Solution: $\{(1234),(1243),(1423),(3241),(3421),(4321)\}$
exactly 6 elements of order 4 .

Permutation	No. of subgroup
S_{1}	1
S_{2}	2
S_{3}	6
S_{4}	30
S_{5}	156

Note: Number of elements of order ' d ' in S_{n}
$=\frac{\Sigma\lfloor n}{1^{\alpha_{1}} \cdot 2^{\alpha_{2}} \ldots . k^{\alpha_{k}}\left|\alpha_{1}\right| \alpha_{2} \ldots . . \mid \alpha_{k}}$
where α_{i} is equal to number of i 's in the selected partition and L.C.M. $(1,2, \ldots . . k)=d$
Q. Find number of elements of order 1 in S_{4}.

Solution:
$G=S_{4}$
$4 \rightarrow \operatorname{LCM}(4)=4$, elements of order 4
$3+1 \rightarrow \operatorname{LCM}(3,1)=3$, elements or order 3
$2+2 \rightarrow \operatorname{LCM}(2,2)=2$, elements of order 2
$2+1+1 \rightarrow \operatorname{LCM}(2,1,1)=2$, elements of order 2
$1+1+1+1 \rightarrow \operatorname{LCM}(1,1,1,1)=1$, elements or order 1
No. of elements of order 1 in $S_{4}(1+1+1+1)$
$=\frac{\underline{4}}{1^{4} \cdot 2^{\circ} \cdot 3^{\circ} \cdot 4^{\circ}\lfloor 4 \underline{0} \underline{0} \underline{0}}=\frac{\underline{4}}{1 \cdot \underline{\angle 4}}=1$
Q. Find no of elements of order 2 in S_{4}.

Solution:
$G=S_{4}$
The partition $2+2$ and $2+1+1$ gives elements or order 2 in S_{4}.
(i) No. of elements or order 2 in S_{4} corresponding to partition
$(2+2)=\frac{\underline{4}}{1^{\circ} \cdot 2^{\circ} \cdot 3^{\circ} \cdot 4^{\circ} \cdot \underline{0} L 2 \underline{0} 0}$
$=\frac{\lfloor 4}{4 \cdot \underline{2}}=\frac{4 \times 3 \times \not \underline{2}}{4 \not \underline{2}}=\frac{1 \not 2}{4}=3$
$f=(12)(34),(13)(24),(14)(23)=3$ there are the elements or order 2.
(ii) No. of elements of order 2 in S_{4} corresponding to partition
$(2+1+1)=\frac{\lfloor 4}{1^{2} \cdot 2^{1} \cdot 3^{\circ} \cdot 4^{\circ} \ldots k^{0} 2\lfloor 10 \underline{0}}$
$=\frac{\lfloor 4}{2 \cdot \underline{2}}=\frac{4 \times 3 \times \not \underline{2}}{2 \times \not \underline{2}}=6$
$f=(12),(13),(14),(23),(24),(34)=6$
Total No. of elements of order 2 in $S_{4}=3+6=9$.
Q. Find No. of elements or order 3 in S_{4} ?

Solution:

$$
G=S_{4}
$$

4
$3+1 \rightarrow \operatorname{LCM}(3,1)=3$
2+2
$2+1+1$
$1+1+1+1$
\# of elements of order 3 in $S_{4}=\frac{\underline{4}}{1^{1} 2^{\circ} 3^{1}\lfloor[Q[1}=\frac{4}{3 \cdot 1 \cdot 1}=\frac{4 \times \not{ }^{\circ} \times 2 \times 1}{\not p^{\prime}}=8$
Q. Find No. of elements of all possible order in S_{5}.

Solution:
$G=S_{5}$
$5 \rightarrow \operatorname{LCM}(5)=5$
$4+1 \rightarrow \operatorname{LCM}(4,1)=4$
$3+2 \rightarrow \operatorname{LCM}(3,2)=6$
$3+1+1 \rightarrow \operatorname{LCM}(3,1,1)=3$
$2+2+1 \rightarrow \operatorname{LCM}(2,2,1)=2$
$2+1+1+1 \rightarrow \operatorname{LCM}(2,1,1,1)=2$
$1+1+1+1+1 \rightarrow \operatorname{LCM}(1,1,1,1,1)=1$
Possible order of elements in S_{5} are 1,2,3,4,5 and 6.
Q. Find No. of elements of order 2 in S_{5} ?

Solution:
$G=S_{5}$
$2+2+1 \rightarrow \operatorname{LCM}(2,2,1)=2$
$2+1+1+1 \rightarrow \operatorname{LCM}(2,1,1,1)=2$
(i) No. of elements of order 2 w.r.t. partition
$(2+2+1)=\frac{\underline{5}}{1^{1} \cdot 2^{2} \cdot 3^{0} \ldots . k^{0}\lfloor 12\lfloor 0}=\frac{\underline{5}}{1 \cdot 4 \cdot\lfloor 2}$
$=\frac{5 \times 4 \times 3 \times \not 2 \times 1}{4 \times \not 2 \times 1}=15$
(ii) No. of elements of order 2 w.r.t. partition ($2+1+1+1$)

Total elements of order 2 in S_{5} is $=15+10=25$
\# of elements of order 3 in S_{5} ?
Solution:
$G=S_{5}$
$3+1+1 \rightarrow \operatorname{LCM}(3,1,1)=3$
No. of elements of order 3 in $S_{5}(3+1+1)$
$=\frac{\underline{5}}{1^{2} \cdot 2^{0} \cdot 3^{1}\lfloor 2110}=\frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1}=20$
Q. No. of elements or order 4 in S_{5} ?

Solution:
$G=S_{5}$
$4+1 \rightarrow \operatorname{LCM}(4,1)=4$
No. of elements of order 4 in $S_{5}(4+1)$
$=\frac{\underline{5}}{1^{1} \cdot 2^{2} \cdot 3^{0} \cdot 4^{1}\lfloor[0\lfloor 1}=\frac{5 \times \not \subset \times 3 \times 2 \times 1}{\not A \times 1 \times 1}=30$
Q. No. of elements of order 5 in S_{5} ?

Solution:
$5 \rightarrow L C M(5)=5$
\# of elements of order 5 in $S_{5}(5)=\frac{\underline{5}}{1^{\circ} \cdot 2^{\circ} \cdot 3^{\circ} \cdot 4^{\circ} \cdot 5^{\circ}[0[0] 1}=\frac{\not \boxed{ } \times 4 \times 3 \times 2 \times 1}{\not \supset}=24$
\# of elements of order 6 in $S_{5}(3+2)=\frac{\underline{5}}{1^{0} \cdot 2^{1} \cdot 3^{1} \cdot 4^{0}\lfloor 111[0}=\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 3}=20$
Total No. of elements $=1+25+20+30+24+20=120$
Q. How many elements of order 2 in S_{6} ?

$$
\begin{aligned}
& 2+2+2 \rightarrow L C M(2+2+2)=2 \\
& 2+2+1+1 \rightarrow L C M(2,2,1,1)=2 \\
& 2+1+1+1+1 \rightarrow L C M(2,1,1,1,1)=2
\end{aligned}
$$

\# of elements of order 2 in respect of partition $(2+2+2)$
$=\frac{\underline{6}}{2^{3} \cdot \underline{3}}$
$=\frac{36 \times 5 \times 4 \times \sqrt{3}}{28[3}=15$
\# of elements of order 2 w.r.t. $(2+2+1+1)$

\# of elements of order 2 w.r.t. $(2+1+1+1+1)$
$=\frac{\underline{6}}{1^{4} \cdot 2^{1} \cdot\lfloor 4 \underline{1}}=\frac{6 \times 5 \times \underline{4}}{2 \times \underline{4}}=15$
Total elements in $S_{6}=15+45+15=75$
Q. $\beta=(1357986)(2410) \in S_{10}$, find smallest positive integer m, such that $\beta^{m}=\beta^{-5}$.

Solution:
$\beta=(1,3,5,7,9,8,6)(2,4,10)$
$\beta=\beta_{1} \cdot \beta_{2}$ where $\beta_{1}=(1,3,5,7,9,8,6), \beta_{2}=(2,4,10)$
$O(\beta)=L C M\left(O\left(\beta_{1}\right), O\left(\beta_{2}\right)\right)$
$=\operatorname{LCM}(7,3)=21 \Rightarrow O(\beta)=21$
$\beta^{21}=I$
$\beta^{21} \cdot \beta^{-5}=I \cdot \beta^{-5}$
$\beta^{16}=\beta^{-5}$
i.e. $\beta^{m}=\beta^{16}=\beta^{-5}$
$\Rightarrow m=16$
Q. $\alpha=(13579)(246)(8,10)$ and a^{m} is 5-length, find possibility of m.

Solution:

$$
\alpha=(13579)(246)(810)
$$

where $\alpha_{1}=(13579), \alpha_{2}=(246), \alpha_{3}=(810)$

$$
=\alpha_{1} \alpha_{2} \alpha_{3}
$$

$O(\alpha)=L . C . M .\left(O\left(\alpha_{1}\right), O\left(\alpha_{2}\right), O\left(\alpha_{3}\right)\right)$
$=L \cdot C \cdot M \cdot(5,3,2)=30$
$\Rightarrow O(\alpha)=30$
i.e. $\alpha^{30}=I$, On squaring α_{2} it becomes identity and α_{3} becomes identity on cubing.
$\alpha^{6}=(13579) \cdot I=(13579)$
$\alpha^{12}=(15937)$
$\alpha^{18}=(17395)$
$\alpha^{24}=(19753)$
\therefore Possibility of m are, $m=6,12,18,24$
i.e. multiple of 6 but $m<30$ because $\alpha^{30}=I$
Q. In S_{3}, find α and β s.t. $|\alpha|=2,|\beta|=2$ and $|\alpha \beta|=3$, i.e. $O(\alpha)=2, O(\beta)=2$ and $O(\alpha \beta)=3$.

Solution:
$S_{3}=\{I,(12),(13),(23),(123),(132)\}$
$\alpha=(12) \Rightarrow|\alpha|=2$
$\beta=(13) \Rightarrow|\beta|=2$
$\alpha \beta=(12)(13) \Rightarrow(\alpha \beta)=(132)$
$\Rightarrow|\alpha \beta|=3$
i.e. $O(\alpha)=2, O(\beta)=2$ and $O(\alpha \beta)=3$.
Q. How many elements of order 2 in $S_{3} \times Z_{2}$.

Solution:
$G=S_{3} \times Z_{2}$

Q. How many elements of order 2 in $S_{4} \times Z_{2}$?

Solution:
$G=S_{4} \times Z_{2}$
$21 \Rightarrow 9 \cdot \phi(1)=9$
$12 \Rightarrow 1 \cdot \phi(2)=1$
$22 \Rightarrow 9 \cdot \phi(2)=9$
Total $=19$
then \# of elements of order 2 in $S_{4} \times Z_{2}=19$.
Q. How many elements of order 2 in $S_{4} \times Z_{3}$?

Solution:
$G=S_{4} \times Z_{3}$
$21 \rightarrow 9 \cdot \phi(1)=9$
\# of elements of order 2 in $S_{4} \times Z_{4}=9$.

Alternating Group $\left(A_{n}\right)$:

$A_{n}=\left\{\right.$ Set of all even Permutation of $\left.S_{n}\right\}$
Show that A_{n} is a group w.r.t Composition.
Proof: $A_{n} \subseteq S_{n}$, we have to show that $\left(A_{n}, 0\right)$ is a group.
(1) Let, $x \in A_{n} \Rightarrow x$ is an even permutation and $y \in A_{n} \Rightarrow y$ is an even permutation.
$x y=$ even permutation (Product 2 even permutation is even permutation)
Closure property satisfied.
(2) $\forall x \in A_{n}, \exists I \in A_{n}$ because I is an even permutation s.t. $x \cdot I=I \cdot x=x$
(3) If $x \in A_{n}$, then x is even permutation
$\Rightarrow x^{-1}$ is also even permutation then $x^{-1} \in A_{n}$
$\Rightarrow x x^{-1}=x^{-1} x=I$
then A_{n} is group w.r.t. to composition and
$O\left(A_{n}\right)=\frac{O\left(S_{n}\right)}{2}=\frac{\mid n}{2} ; n \geq 2$
Note: $O\left(S_{n}\right)=O\left(A_{n}\right)$, when $n=1$
$O\left(A_{n}\right)=\frac{O\left(S_{n}\right)}{2}=\frac{n!}{2} ; n \geq 2$
(i) $A_{1}=\{I\}, O\left(A_{1}\right)=1$
(ii) $A_{2}=\{I\}, O\left(A_{2}\right)=1$ because $S_{2}=\{I,(12)\}$, I is even permutation only.
(iii) $S_{3}=\{I,(12),(13),(23),(123),(132)\}$
$A_{3}=\{I,(123),(132)\}$
$O\left(A_{3}\right)=\frac{O\left(S_{3}\right)}{2}=\frac{13}{2}=3$
(iv)
$S_{4}=\left\{\begin{array}{l}I,(12),(13),(23),(24),(34) \\ (14),(123),(124),(234),(134) \\ (432),(431),(421),(321), \\ (1234),(1243),(1423),(3241) \\ (3421),(12)(34),(14)(23),(13)(24)\end{array}\right\}$
$A_{4}=\{I,(123),(124),(134),(234),(432),(431),(421),(321),(12)(34),(14)(23),(13)(24)\}$
$\therefore O\left(A_{4}\right)=\frac{O\left(S_{4}\right)}{2}=\frac{24}{2}=12$
Possible order of elements in A_{4} are 1,2,3.
Number of elements of order 1 in $A_{4}=1$
Number of elements of order 2 in $A_{4}=3$
Number of elements of order 3 in $A_{4}=8$
Total $=12$. also $O\left(A_{4}\right)=12$

$$
\begin{aligned}
& \hline S_{4} \text {, for } A_{4} \text {, odd permutation not selected } \\
& 4 \rightarrow \text { odd permutation } \times \\
& 3+1 \rightarrow \text { even }+ \text { even }=\text { even permutation } \sqrt{ } \\
& 2+2 \rightarrow \text { odd }+ \text { odd }=\text { even permutation } \sqrt{ } \\
& 2+1+1 \rightarrow \text { odd }+ \text { even }+ \text { even }=\text { odd permutation } \times \\
& 1+1+1+1 \rightarrow \text { even }+ \text { even }+ \text { even }+ \text { even }=\text { even permutation } \sqrt{ }
\end{aligned}
$$

Q. Find no of elements of possible order in A_{5} ?

Solution:

$G=A_{5}$
$5 \rightarrow$ even permutation $\sqrt{ } \longrightarrow 5$
$4+1 \rightarrow$ odd $=$ odd + even $\times \quad 4$
$3+2 \rightarrow$ odd $=$ even + odd $\times \quad 6$
$2+2+1 \rightarrow$ even $=$ even + even + even $\sqrt{ } \quad 2$
$3+1+1 \rightarrow$ even $=$ even + even + even $\downarrow \quad 3$
$2+1+1+1 \rightarrow$ odd $=$ odd + even + even + even $\quad 2$
$1+1+1+1+1 \rightarrow$ even $=$ even + even + even + even + even $\sqrt{ }$
$\operatorname{LCM}(5)=5, L C M=(3,1,1)=3$
$\operatorname{LCM}(2,2,1)=2, \operatorname{LCM}(1,1,1,1,1)=1$
Possible order of elements in A_{5} are 1,2,3 and 5
number of elements of order 1 in $A_{5}(1+1+1+1+1)=\frac{\boxed{5}}{1^{5}\lfloor 5}=1$
number of elements of order 2 in $A_{5}(2+2+1)=\frac{\underline{5}}{2^{2} \cdot 1 \underline{2}}=\frac{5 \times \not \subset A \times 3 \times \not 2 \times 1}{\not \subset A \times 1 \times \not 2}=15$
number of elements of order B in $A_{5}=(3+1+1)=\frac{\underline{5}}{1^{2} \cdot 3\lfloor 2 \underline{1}}=\frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 1}=20$
number of elements of order 5 in $A_{5}(5)=\frac{\lfloor 5}{5\lfloor 1}=\frac{\not p \times 4 \times 3 \times 2 \times 1}{\not p}=24$
Total number of elements in $A_{5}=1+15+20+24=60$.
Q. How many elements of order 4 in $A_{5} \times Z_{3}$.

Ans. Neither A_{5} nor Z_{3} has elements of order 4 so no element exists of order 4 in $A_{5} \times Z_{3}$.
Q. Set of all odd permutation of S_{n} is a group?

Solution:
$S=\left\{\right.$ Set of all odd permutation of $\left.S_{n}\right\}$
$x \in S$, then x is odd permutation, $y \in S$, then y is odd permutation
$x y \in S$ even permutation then $x y \notin S . \Rightarrow S$ is not group w.r.t composition.
Closure property not satisfied.

Exam Point:

(i) $Z\left(S_{n}\right)_{n \geq 3}=\{I\}$
(ii) $Z\left(A_{3}\right)=A_{3}$
(iii) $Z\left(A_{n}\right)=\{I\}$, if $n \geq 4$
Q. Show that A_{n} is normal subgroup of $S_{n}, n \geq 2$.

Proof: A_{n} is subgroup of S_{n} and
$i_{S_{n}}\left(A_{n}\right)=\frac{O\left(S_{n}\right)}{O\left(A_{n}\right)}=\frac{\underline{n}}{\frac{\underline{n}}{2}}=2$
then $i_{S_{n}}\left(A_{n}\right)=2 \Rightarrow A_{n}$ is normal subgroup of S_{n}.

Exam Point:

: $S_{n}, n \neq 4$, only normal subgroups are
$H_{1}=\{I\}, H_{2}=A_{n}, H_{3}=S_{n}$
If $n=1$, then $H_{1}=H_{2}=H_{3}$
If $n=4$, then $H_{1}=\{I\}, H_{2}=\{I(12)(34)(13)(24),(14)(23)\}$ then normal subgroup in A_{4} are $H_{3}=A_{4}, H_{4}=S_{4}$.

Exam Point:

: $A_{n}, n \neq 4$ only normal subgroups are $H_{1}=\{I\}, H_{2}=A_{n}$.
If $n=4$ then same as S_{n} for $n=4$.
Q. If $H=\{I,(12)(34),(13)(24),(14)(23)\}$ is normal subgroup in S_{4} then show that H is normal in A_{4}.

Solution:

$H \subseteq A_{4} \subseteq S_{4}$, and H is normal subgroup in S_{4} and $A_{4} \subseteq S_{4}$ then H is normal subgroup in A_{4}.

Factor Group of S_{3}

Solution: $H_{1}=\{I\}, H_{2}=A_{3}, H_{3}=S_{3}$ are Normal subgroup in S_{3}.
(i) $\frac{S_{3}}{H_{1}}=\frac{S_{3}}{\{I\}} \approx S_{3}$ factor group
(ii) $\frac{S_{3}}{H_{2}}=\frac{S_{3}}{A_{3}}=\left\{a A_{3} \mid a \in S_{3}\right\}$
$O\left(\frac{S_{3}}{A_{3}}\right)=2$
$A_{3}=\{I(123),(132)\}$ then,
$S_{3}=\left\{I \cdot A_{3},(12) A_{3}\right\}$
$A_{3}=\left\{A_{3},(12) A_{3}\right\}$
$\frac{S_{3}}{A_{3}} \approx Z_{2}$
(iii) $\frac{S_{3}}{S_{3}}=\left\{a S_{3} \mid a \in S_{3}\right\}$
$\frac{S_{3}}{S_{3}} \approx Z_{1}$

Factor Group of S_{4}

Solution: Normal subgroup of S_{4} are
$H_{1}=\{I\}, H_{2}=A_{4}, H_{3}=S_{4}$
$H_{4}=\{I,(12)(34),(13)(24),(14)(23)\}$
(i) $\frac{S_{4}}{H_{1}}=\frac{S_{4}}{\{I\}} \approx S_{4}$
(ii) $\frac{S_{4}}{H_{2}}=\frac{S_{4}}{A_{4}}=\left\{a A_{4} \mid a \in A_{4}\right\}$
$=\left\{I \cdot A_{4},(12) A_{4}\right\}$
$\frac{S_{4}}{A_{4}} \approx Z_{2}$
(iii) $\frac{S_{4}}{H_{3}}=\frac{S_{4}}{S_{4}}=\left\{a S_{4} \mid a \in S_{4}\right\}$

Personalized Mentorship +91_9971030052

$\frac{S_{4}}{S_{4}} \approx Z_{1}$
(iv) $\frac{S_{4}}{H_{4}}=\frac{S_{4}}{H_{4}}=\left\{a H_{4} \mid a \in S_{4}\right\} \approx S_{3}$
$\therefore \frac{S_{4}}{H_{4}} \approx S_{3}$
$O\left(\frac{S_{4}}{H_{4}}\right)=\frac{24}{4}=6$
If $\frac{S_{4}}{H_{4}} \approx Z_{6}$ then $\frac{S_{4}}{H_{4}}$ has elements of order 6 then S_{4} has elements of order 6 but S_{4} has no element of order 6 then
$\frac{S_{4}}{H_{4}} \approx S_{3}$.

Factor Group of S_{7}

Normal Subgroup of S_{7} :
$H_{1}=\{I\}, H_{2}=A_{7}$
$H_{3}=S_{7}$
(1) $\frac{S_{7}}{\{I\}} \approx S_{7}$
(2) $\frac{S_{7}}{A_{7}}=\left\{a A_{7} \mid a \in A_{7}\right\}=\left\{I \cdot A_{7},(12) A_{7}\right\} \approx Z_{2}$
(3) $\frac{S_{7}}{S_{7}}=\left\{a S_{7} \mid a \in S_{7}\right\}=\{I\} \approx Z_{1}$
i.e. $\frac{S_{7}}{\{I\}} \approx S_{7}, \frac{S_{7}}{A_{7}} \approx Z_{2}, \frac{S_{7}}{S_{7}} \approx Z_{1}$

Factor Group of A_{n}
(i) $n=4$ then
$A_{4}=\{I(123),(124),(134),(234),(432),(431),(421),(321)(12)(34),(13)(24),(14)(23)\}$
Normal subgroup of \mathbf{A}_{4} are:
$H_{1}=\{I\}, H_{2}=\{I,(12)(34),(13)(24),(14)(23)\}$
$H_{3}=A_{4}$
(1) $\frac{A_{4}}{H_{1}}=\left\{a \cdot H_{1} \mid a \in A_{4}\right\}$
$\frac{A_{4}}{H_{1}} \approx A_{4}$
(2) $\frac{A_{4}}{H_{2}}=\left\{a H_{2} \mid a \in A_{4}\right\} \approx Z_{3}$
(3) $\frac{A_{4}}{H_{3}}=\frac{A_{4}}{A_{4}} \approx Z_{1}$.
Q. How many subgroups of order 4 in A_{4} ? And it is isomorphic to?

Solution:
A_{4} has 3 elements of order 2 and no elements of order 4 in A_{4}.
\therefore No cyclic subgroup exists
$H_{2} \approx Z_{2} \times Z_{2}$
\therefore Unique subgroup of order 4 in A_{4}.
Q. Maximum order of elements in S_{10}.
(1) 10 (2) 21 (3) 30 (4) 60

Solution:
In Partition $(2+3+5)$ of S_{10}
L.C.M. $(2,3,5)=30$

In S_{10} max. order of any element $=30$
w.r.t partition $(2+3+5)$
Q. Maximum order of element in A_{10} ?
(1) 10 (2) 21 (3) 30 (4) 60

Solution:
$10=2+3+5 \rightarrow$ Odd Permutation $=\operatorname{LCM}(2,3,5)=30$
$10=7+3 \rightarrow$ even permutation $\operatorname{LCM}(7,3)=21$
SIMPLE GROUP: A group G is said to be simple group if G has only normal subgroups as $H=\{e\}$ and $H=G$ itself.
e.g. $G=Z_{11}$, G is simple?

Solution:
$G=Z_{11}$, has exactly two subgroup
$H_{1}=\{0\}, H_{2}=Z_{11}$
Since, Z_{11} is cyclic then H_{1} and H_{2} are normal subgroup of Z_{11}.
Then, $G=Z_{11}$ is simple.
Q. $G=D_{4}$ is simple?

Solution:
No, because $H_{1}=\left\{R_{0}, R_{180}, H, V\right\}$
$H_{2}=\left\{R_{0}, R_{180}, D, D^{\prime}\right\}$
$H_{3}=\left\{R_{0}, R_{180}\right\}$
are normal subgroup in D_{4} then D_{4} is not simple.
Q. $G=Z_{4}$, is this simple?

Solution:
Z_{4} is cyclic group then all subgroup of Z_{4} are normal subgroup.
Subgroup in Z_{4} are
$H_{1}=\{0\}, H_{2}=\langle 2\rangle=\{0,2\}$
$H_{3}=Z_{4}$, thus Z_{4} is not simple.
Q. A_{3} is simple?

Ans. Normal subgroup of A_{3} are $H_{1}=\{I\}, H_{2}=A_{3}$ thus A_{3} is simple.
Q. S_{3} is simple?

Ans. No, because normal subgroup of S_{3} are $H_{1}=\{I\}, H_{2}=A_{3}, H_{3}=S_{3}$ thus S_{3} is not simple.
Q. D_{3} is simple?

Ans. No, because normal subgroups of D_{3} are
$D_{3}=\left\{R_{0}, R_{120}, R_{240}, f_{A a}, f_{B b}, f_{C c}\right\}$
$H_{1}=\left\{R_{0}\right\}, H_{2}=\left\{R_{0}, R_{120}, R_{240}\right\}$
$H_{3}=D_{3}$
Q. Show that $H=\left\{R_{0}, f_{A a}\right\}$ is not normal subgroup in D_{3} ?

Solution:
$x=R_{120}, h=f_{A a}$
$R_{120} f_{A a} R_{120^{-1}}$
$=R_{120} f_{A a} R_{240}$
$=R_{120} \cdot f_{C c}$
$=f_{B b} \notin H$
Here, $R_{120} \cdot f_{A a} R_{120^{-1}} \notin H$ i.e. $f_{B b} \notin H$ then H is not normal subgroup of D_{3}.
Q. $G=S_{n}, n \geq 3$, G is simple?

Solution: No, because it will have more than two normal subgroup other than $\{e\}$ and G i.e. A_{n}
Q. $A_{n}, n \geq 5$ is this simple?

Solution: Normal subgroup in $A_{n}, n \geq 5$ are $H=\{I\}$ and $H=A_{n}$, then A_{n} is simple this is the smallest non-abelian simple group.
Q. A_{4} is not simple?

Ans. Yes, because normal subgroup of A_{4} are

$$
H=\{I\}, H=A_{4}, H=\{I(12)(34),(13)(24),(14)(23)\}
$$

Homomorphisms

Let $\left(G_{1}, 0\right)$ and $\left(G_{2}, *\right)$ are two groups A mapping $f:\left(G_{1}, 0\right) \rightarrow\left(G_{2}, *\right)$ is homomorphism if $f(x \circ y)=f(x) * f(y) ; x, y \in G_{1}, f(x), f(y) \in G_{2}$
e.g.
Q. $f: Z_{4} \rightarrow Z_{10}$ defined by $f(x)=0 \cdot x$ is homomorphism?

Solution:
$f: Z_{4} \rightarrow Z_{10}$
$f(x)=0 \cdot x$
$f(x+y)=0 \cdot(x+y)=0 \cdot x+0 \cdot y$
$=f(x)+f(y), \forall x, y \in Z_{4}$
Yes.
Theorem: A mapping $f: G \rightarrow G^{\prime}$ is homomorphism then
(i) $f(e)=e^{\prime}, \quad e^{\prime} \in G^{\prime}$
(ii) $f\left(x^{-1}\right)=[f(x)]^{-1}$

Proof:

(i) Let $f: G \rightarrow G^{\prime}$ is a homomorphism and $e \in G$ also $e^{\prime} \in G^{\prime}$
$f(x) \cdot e^{\prime}=f(x)$
$=f(x \cdot e)$
$=f(x) \cdot f(e)$
then $f^{-1}(x)$ exists
$\Rightarrow f^{-1}(x) f(x) \cdot e^{\prime}=f^{-1}(x) \cdot f(x) \cdot f(0)$
$e \cdot e^{\prime}=e \cdot f(e)$
$\therefore f(e)=e^{\prime}$
(ii) $f\left(x^{-1}\right)=[f(x)]^{-1}$
$x \in G$ then $x x^{-1}=e$
$f\left(x x^{-1}\right)=f(e)$
$\Rightarrow f(x) \cdot f\left(x^{-1}\right)=e^{\prime}$
$\Rightarrow f\left(x^{-1}\right)=[f(x)]^{-1} e^{\prime}$
$\Rightarrow f\left(x^{-1}\right)=[f(x)]^{-1}$

Kernel of Homomorphism

A mapping $f: G \rightarrow G^{\prime}$ is homomorphism then kernel of homomorphism is defined by $\operatorname{ker} f=\left\{x \in G \mid f(x)=e^{\prime}, e^{\prime} \in G^{\prime}\right\}$
Theorem: Show that

A mapping $f: G \rightarrow G^{\prime}$ is homomorphism then ker f is subgroup of G .
ker $f=\left\{x \in G \mid f(x)=e^{\prime}\right\}$
Let $x \in \operatorname{ker} f \Rightarrow f(x)=e^{\prime}$
$y \in \operatorname{ker} f \Rightarrow f(y)=e^{\prime}$
$f\left(x y^{-1}\right)=f(x) \cdot f\left(y^{-1}\right)$
$=f(x) \cdot[f(y)]^{-1}\left[f\left(y^{-1}\right)=[f(y)]^{-1}, \because f\right.$ is homomorphism $]$
$=e^{\prime} \cdot\left(e^{\prime}\right)^{-1}$
$=e^{\prime} \cdot e^{\prime}$
$=e^{\prime}$
$f\left(x y^{-1}\right)=e^{\prime}$
$\Rightarrow x y^{-1} \in \operatorname{ker} f$
Hence, $\operatorname{ker} f$ is subgroup of G .
Q. Show that ker $f=\left\{x \in G \mid f(x)=e^{\prime}\right\}$ is homomorphism where mapping is $f: G \rightarrow G^{\prime}$ then this is normal subgroup of G .
Solution:
$f: G \rightarrow G^{\prime}$ is homomorphism and $x \in G, h \in \operatorname{ker} f(h)=e^{\prime}$
then $f\left(x h x^{-1}\right)=f(x) f(h) f\left(x^{-1}\right)$
$=f(x) \cdot e^{\prime} \cdot f\left(x^{-1}\right)$
$=f(x) \cdot[f(x)]^{-1}$
$=e^{\prime}$
$f\left(x h x^{-1}\right)=e^{\prime} \Rightarrow x h x^{-1} \in \operatorname{ker} f$
then $\operatorname{ker} f$ is normal subgroup of \mathbf{G}.

Image of Homomorphism

A mapping $f: G \rightarrow G^{\prime}$ is homomorphism then $\operatorname{Im} f=\{f(x) \mid x \in G\}$
Q. Show that $\operatorname{Im} f$ is subgroup of G^{\prime}.

Solution:
Let $f(x) \in \operatorname{Im} f, x \in G$
$f(y) \in \operatorname{Im} f, y \in G$
$f(x)[f(y)]^{-1}=f(x) \cdot f\left(y^{-1}\right)$
$=f\left(x y^{-1}\right)[\because$ homogeneous $]$
$x \in G \Rightarrow x y^{-1} \in G$ because G is group then $f\left(x y^{-1}\right) \in \operatorname{Im} f$
$\Rightarrow f(x) \cdot[f(y)]^{-1} \in \operatorname{Im} f$
Then $\operatorname{Im} f$ is subgroup of G^{\prime}.

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

Onto-homomorphism: A mapping $f: G \rightarrow G^{\prime}$ is said to be onto homomorphism if
(i) f is homomorphism
(ii) f is onto

Exam Point-: $f: Z_{m} \rightarrow Z_{n}, f(x)=a x, a \in Z_{n}$. First find $O(a)$ in Z_{n}, suppose $O(a)=k$ in Z_{n} and Z_{m} has elements of order k then $f(x)=a x$ is homomorphism.

Exam Point:

: Let $f: Z_{m} \rightarrow Z_{n}$
Number of such group homomorphisms $=\operatorname{gcd}(m, n)$
Q. $f: Z_{4} \rightarrow Z_{10}$ defined by $f(x)=1 \cdot x$ is homomorphism.

Solution: No
$f: Z_{4} \rightarrow Z_{10}$
Let $x=3, y=1, x \in Z_{4}, y \in Z_{4}$
$f(3+1)=f(4)=f(0)=1 \cdot 0=0$
$f(3)+f(1)=1 \cdot 3+1 \cdot 1=4$
$f(x+y) \neq f(x)+f(y)$ i.e. $0 \neq 4$
$\therefore f(x)=1 \cdot x$ is not homomorphism.
Q. $f: Z_{4} \rightarrow Z_{10}$ defined by $f(x)=2 x$ is a homomorphism?

Solution:
$f(x)=2 x$
$x=3, y=1, \quad x \in Z_{4}, y \in Z_{4}$
$f(3+1)=f(4)=f(0)=0$
$f(3)+f(1)=2 \cdot 3+2 \cdot 1=8$
$0 \neq 8$
$f(3+1) \neq f(3)+f(1)$
$f(x)=2 x$ is not a homomorphism.
Q. $f: Z_{4} \rightarrow Z_{10}$ how many group homomorphism?
$f(x)=0 \cdot x \sqrt{ }, f(x)=1 \cdot x \times, f(x)=2 \cdot x \times$
$f(x)=3 \cdot x \times, f(x)=4 \cdot x \times, f(x)=5 \cdot x \sqrt{ }$
$f(x)=6 \cdot x \times, f(x)=7 \cdot x \times, f(x)=8 \cdot x \times$
$f(x)=9 \cdot x \times$,
So $f(x)=0 \cdot x$ and $f(x)=5 \cdot x$ are group homomorphism.
Exactly 2 group homomorphism.
Q. $f: Z_{5} \rightarrow Z_{10}$ how many group homomorphism?

Solution:
$f(x)=0 \cdot x \sqrt{ }, f(x)=1 \cdot x \times$
$f(x)=2 \cdot x \sqrt{ }, f(x)=3 \cdot x \times, f(x)=4 \cdot x \sqrt{ }, f(x)=5 \cdot x \times, f(x)=6 \cdot x \sqrt{ }, f(x)=7 \cdot x \times$
$f(x)=8 \cdot x \sqrt{ }, f(x)=9 \cdot x \times$
Q. $f: Z_{3} \rightarrow Z_{9}$, how many group homomorphism?

Solution:
$f: Z_{3} \rightarrow Z_{9}$
$f(x)=0 \cdot x \sqrt{ }, f(x)=1 \cdot x \times, f(x)=2 \cdot x \times, f(x)=3 \cdot x \sqrt{ }$
$f(x)=4 \cdot x \times, f(x)=5 \cdot x \times, f(x)=6 \cdot x \sqrt{ }, f(x)=7 \cdot x \times, f(x)=8 \cdot x \times$
$f(x)=0 \cdot x, 3 \cdot x, 6 x$ are group homomorphisms.
3 group homeomorphisms are there.
Q. $f: Z_{6} \rightarrow Z_{6}$, how many homeomorphisms

Solution:
$\operatorname{gcd}(6,6)=6$
6-group homomorphisms they are
$f(x)=0 \cdot x, 1 \cdot x, 2 \cdot x, 3 \cdot x, 4 \cdot x, 5 \cdot x$
Checking:
$f(5+1)=f(6)=f(0)=0$
$f(5)+f(1)=1 \cdot 5+1 \cdot 1=6=0$
$f(5+1)=f(5)+f(1)$
$\therefore f(x)=1 \cdot x$ is homomorphism.
Q. How many homeomorphisms $f: Z_{4} \rightarrow Z_{8}$?

Solution:
Possible orders of elements in Z_{8} are 1,2,4,8
Possible order of elements in Z_{4} are 1,2,4
Common order of elements in Z_{4} and Z_{8} are 1,2 and 4.
Number of elements of order 1 in $Z_{8}=\phi(1)=1$
Number of elements of order 2 in $Z_{8}=\phi(2)=1$
Number of elements of order 4 in $Z_{8}=\phi(4)=2$
Total $=4$
Total No. of Homeomorphisms $=1+1+2=4$
i.e. Total No. of common elements in $Z_{8}=$ No. of homeomorphisms

$$
\begin{aligned}
& f: Z_{4} \rightarrow Z_{8} \\
& f(x)=0 \cdot x \rightarrow \text { order } \rightarrow 1 \\
& f(x)=4 \cdot x \rightarrow \text { order } \rightarrow 2
\end{aligned}
$$

$f(x)=2 \cdot x \rightarrow$ order $\rightarrow 4$
$f(x)=6 \cdot x \rightarrow$ order $\rightarrow 4$
Q. $f: Z_{12} \rightarrow Z_{4}$, how many homeomorphisms.

Solution: No. of homomorphism $=\operatorname{gcd}(12,4)-4$
Possible order of elements in $Z_{4}=1,2$ and 4
Possible order of elements in $Z_{12}=1,2,4,6,12$
Common order of elements in Z_{12} and $Z_{4}=1,2$ and 4
Number of elements of order 1 in $Z_{4}=\phi(1)=1$
Number of elements of order 2 in $Z_{4}=\phi(2)=1$
Number of elements of order 4 in $Z_{4}=\phi(4)=2$
Total No. of homeomorphisms $=1+1+2=4$
$f: Z_{12} \rightarrow Z_{4}, \quad f(x)=a x, a \in Z_{4}$
$f(x)=0 \cdot x \sqrt{ }$ order $(0)=1$
$f(x)=1 \cdot x \vee$ order $(1)=4$
$f(x)=2 \cdot x \vee \operatorname{order}(2)=2$
$f(x)=3 \cdot x$ Vorder $(3)=4$
Q. How many homomorphism in $f: Z_{8} \rightarrow Z_{2} \times Z_{4}$.

Solution:
Possible order of elements in $Z_{8}=1,2,4$ and 8
Possible order of elements in $Z_{2} \times Z_{4}=1,2,4$
Common order of elements in Z_{8} and $Z_{2} \times Z_{4}$ are $=1,2,4$
\# of elements of order 1 in $Z_{2} \times Z_{4}=\phi(1) \cdot \phi(1)=1$
\# of elements of order 2 in $Z_{2} \times Z_{4}$
$21=\phi(2) \cdot \phi(1)=1$
$12=\phi(2) \cdot \phi(1)=1$
$22=\phi(2) \cdot \phi(2)=1+1=1$
of order 4 in $Z_{2} \times Z_{4}$
$14=\phi(1) \cdot \phi(4)=2$
$24=\phi(2) \cdot \phi(4)=2$
Total $=4$
Total No. of homeomorphisms $=1+3+4=8$
Exam Point-: Number of Homomorphisms from $f: Z_{m} \times Z_{n} \rightarrow Z_{k}=\operatorname{gcd}(m, k) \times \operatorname{gcd}(n, k)$
Exam Point-: $f: Z_{m} \times Z_{n} \rightarrow Z_{k} \times Z_{l}$
No. of homomorphisms $=\operatorname{gcd}(m, k) \times \operatorname{gcd}(m, l) \times \operatorname{gcd}(n, k) \times \operatorname{gcd}(n, l)$
Exam Point: Number of Homomorphisms from $f: Z_{m} \rightarrow Z_{n} \times Z_{k}$
$=\operatorname{gcd}(m, n) \times \operatorname{gcd}(m, k)$

Examples

$f: Z_{8} \rightarrow Z_{2} \times Z_{4}$
$f(x)=(a, b) \cdot x,(a, b) \in Z_{2} \times Z_{4}$
$f(x)=(0,0) \cdot x$ order $\rightarrow 1$
$f(x)=(1,0) \cdot x$ order $\rightarrow 2$
$f(x)=(0,2) \cdot x$ order $\rightarrow 2$
$f(x)=(1,2) \cdot x$ order $\rightarrow 2$
$f(x)=(0,1) \cdot x$
$\left.\begin{array}{l}f(x)=(0,3) \cdot x \\ f(x)=(1,1) \cdot x \\ f(x)=(1,3) \cdot x\end{array}\right\}$ order $\rightarrow 4$
Q . How many homomorphism from $f: Z_{2} \times Z_{4} \rightarrow Z_{8}$?
Solution:
Possible order or elements in Z_{2} are 1,2
Possible order of elements in Z_{4} are 1,2 and 4
Possible order of elements in Z_{8} are 1,2,4,8
Common order of elements in Z_{2} and Z_{8} are 1,2
Number of elements order 1 in $Z_{8}=\phi(1)=1$
Number of elements order 2 in $Z_{8}=\phi(2)=1$
Total No. of homeomorphisms from Z_{2} to Z_{8}
$=1+1=2$
Common order of elements in Z_{4} and Z_{8} are 1,2,4
Number of elements or order 1 in $Z_{8}=\phi(1)=1$
Number of elements order 2 in $Z_{8}=\phi(2)=1$
Number of elements order 4 in $Z_{8}=\phi(4)=2$
Total $=4$
Total homomorphism from Z_{4} to $Z_{8}=1+1+2=4$
\therefore Total homomorphism from $Z_{2} \times Z_{4}$ to $Z_{8}=2 \times 4=8$
Q. $f: Z_{2} \times Z_{4} \rightarrow Z_{2} \times Z_{4}$

Solution:
$2 \times 2 \times 2 \times 4=32$
Q. $f: Z \rightarrow Z, f(x)=0 \cdot x$ is homomorphism

Solution:
$f(x)=0 \cdot x$
$f(x+y)=0 \cdot(x+y)=0 \cdot x+0 \cdot y=f(x)+f(y)$ then $f(x)=0 \cdot x$ is homomorphism.
Now, $f(x)=1 \cdot x$
then $x, y \in Z$
$f(x+y)=1 \cdot(x+y)=1 \cdot x+1 \cdot y=f(x)+f(y), \forall x, y \in Z$ then $f(x)=1 \cdot x$ is homomorphism.
Q. $f: Z \rightarrow Z, \quad f(x)=k x$ is a homomorphism?

Solution: $f(x+y)=k(x+y)=k \cdot x+k \cdot y=f(x)+f(y)$
then $f(x)=k x$ is a homomorphism.
Exam Point-: Infinite Number of homomorphisms from Z to Z.
Que. $f: Z_{8} \rightarrow Z_{4}, f(x)=1 \cdot x$ is onto homomorphism.
Solution:
$Z_{8}=\{0,1,2,3,4,5,6,7\}$
$Z_{4}=\{0,1,2,3\}$
$f(x)=x, f(0)=0, f(1)=1, f(2)=2, f(3)=3$
$f(4)=0, f(5)=1, f(6)=2, f(7)=3$
$\operatorname{Im} f=\{0,1,2,3\} \approx Z_{4}$
$\therefore f(x)=x$ is onto.

$f: Z_{8} \rightarrow Z_{4}$
$f(x)=x$ is onto homomorphism.
Q. $f: Z_{8} \rightarrow Z_{4}, f(x)=0 \cdot x$ is onto homomorphism?

Solution:
$f(x)=0, \quad \forall x \in Z_{8}$
then $f(x)$ is not onto.

Q. $f: Z_{8} \rightarrow Z_{4}, f(x)=2 \cdot x$ is onto homomorphism?

Solution:
$f(x)=2 x$
$f(0)=0, f(1)=2, f(2)=0, f(3)=2, f(5)=2, f(6)=0, f(7)=2$
$\operatorname{Im} f=\{0,2\} \not \approx Z_{4}$
then $f(x)=2 x$ is not onto homomorphism?
Q. $f: Z_{8} \rightarrow Z_{3}, f(x)=1 \cdot x$ is this onto homomorphism?

Solution:
Mapping is not a homomorphism hence it is not an onto homomorphism.
$1 \in Z_{3}$ and $O(1)$ in Z_{3} is 3 but Z_{8} has no element of order 3 then $f(x)=1 \cdot x$ is not homomorphism then $f(x)=1 \cdot x$ is not onto homomorphism.
Exam Point-7: $f: Z_{m} \rightarrow Z_{n}, n \mid m$ \# of onto homomorphism $=\phi(n)$.
Q. $f: Z_{10} \rightarrow Z_{4}$ has onto homomorphism?

Solution:
No. of homomorphism from Z_{10} to Z_{4}
$=\operatorname{gcd}(10,4)=2$
i.e. $f(x)=0 \cdot x$ and $f(x)=2 \cdot x$
but neither $f(x)=0 \cdot x$ nor $f(x)=2 \cdot x$ is onto mapping.
Q. $f: Z_{10} \rightarrow Z_{5}$, how many onto homomorphism?

Solution:
No. of homomorphism from Z_{10} to Z_{5}
$=\operatorname{gcd}(10,5)=5$
they are
$\left.\begin{array}{rl}f(x) & =0 \cdot x \\ f(x) & =1 \cdot x \\ f(x) & =2 \cdot x \\ f(x) & =3 \cdot x \\ f(x) & =4 \cdot x\end{array}\right\}$ homomorphism $\left.{ }^{\text {here }} \begin{array}{l}f(x)=1 \cdot x \\ f(x)=2 \cdot x \\ f(x)=3 \cdot x \\ f(x)=4 \cdot x\end{array}\right\}$ onto homomorphism.
Q. $f: Z_{20} \rightarrow Z_{10}$, how many onto homomorphism

Solution:
$10 \mid 20$, then no. of onto homomorphism $=\phi(10)=4$
$f(x)=1 \cdot x$
$f(x)=3 \cdot x$
$\left.\begin{array}{l}f(x)=7 \cdot x \\ f(x)=9 \cdot x\end{array}\right\}$ onto homomorphism
Q. $f: Z \rightarrow Z$, how many onto homomorphism?

Solution:
$\left.\begin{array}{l}f(x)=1 \cdot x \\ f(x)=-1 \cdot x\end{array}\right\}$ onto homomorphism
exactly two onto homomorphism.

Isomorphism

A mapping $f: G \rightarrow G^{\prime}$ is said to be isomorphism if
(i) f is homomorphism
(ii) f is one-one
(iii) f is onto
Q. $f: Z \rightarrow Z, f(x)=1 \cdot x$ is isomorphism?

Solution:
f is homomorphism, one-one and onto then f is isomorphism.
Similarly
$f: Z \rightarrow Z=-x$ is also, homomorphism, one-one and onto then $f(x)=-x$ is isomorphism.
Q. $f: Z_{15} \rightarrow Z_{15}, f(x)=1 \cdot x$ is isomorphism?

Solution:

$$
f(x)=1 \cdot x, O(1) \text { in } Z_{15}=15, Z_{15}(\text { LHS })
$$

has element of order 15 then $f(x)=1 \cdot x$ is homomorphism.
f is one-one:
$f\left(x_{1}\right)=f\left(x_{2}\right), \quad x_{1}, x_{2} \in Z_{15}$ (LHS)
$\Rightarrow x_{1}=x_{2}$
f is one-one.
f is onto: $O\left(Z_{15}(\right.$ LHS $\left.)\right)=O\left(Z_{15}(\right.$ RHS $\left.)\right)=15$ and f is one-one then f is onto.
Q. $f: Z_{20} \rightarrow Z_{20}$, how many isomorphism?

Solution:
$20 \mid 20$, then no. of onto homomorphism
$=\phi(20)=8=$ one-one homomorphism
(cardinality of domain and co-domain are same).
and they are:
$\left.\begin{array}{l}f(x)=1 \cdot x \\ f(x)=3 \cdot x \\ f(x)=7 \cdot x \\ f(x)=9 \cdot x \\ f(x)=11 \cdot x \\ f(x)=13 \cdot x \\ f(x)=17 \cdot x \\ f(x)=19 \cdot x\end{array}\right\}$ isomorphism in $f: Z_{20} \rightarrow Z_{20}$

Properties of Isomorphism

Suppose that ϕ is an isomorphism from a group G onto a group \bar{G}. Then
(i) ϕ carries the identity of G to the identity of \bar{G}
(ii) For every integer n and for every group element a in G, $\phi\left(a^{n}\right)=[\phi(a)]^{n}$
(iii) For any elements a and b in G , a and b commute if and only if $\phi(a)$ and $\phi(b)$ commute.
(iv) G is abelian if and only if \bar{G} is abelian.
(v) $|a|=|\phi(a)|$ for all a in G. (Isomorphism preserves orders)
(vi) G is cyclic if and only if \bar{G} is cyclic.
(vii) For a fixed integer k and a fixed group element b in G , the equation $x^{k}=b$ has the same number of solutions in G as does the equation $x^{k}=\phi(b)$ in \bar{G}.
(viii) ϕ^{-1} is an isomorphism from \bar{G} onto G.
(ix) If k is a subgroup of G , then $\phi(k)=\{\phi(k): k \in K\}$ is a subgroup of \bar{G}.

Exam Point: Proofs are easy to do and also if you do those, you'll feel these properties. But in exam; proofs of these properties are not expected to ask. So you can just read about proofs (either from classnotes or book (galian P. 123).
You need to remember these properties, those will help you in solving other questions.
[1] Cayley's theorem: (The same logic as in the previous proof, we applied): For details check the lecture as well.
[2] A finite cyclic group is isomorphic of \mathbf{Z}_{n} where of order of that group is n.

AUTOMORPHISM

A mapping $f: G \rightarrow G$ is said to be automorphism if
(1) f is homomorphism
(2) f is one-one
(3) f is onto
Q. $f: Z_{15} \rightarrow Z_{15}$, find number of automorphism?

Solution:
$f: Z_{15} \rightarrow Z_{15}$
$f_{1}(x)=1 \cdot x$
$f_{2}(x)=2 \cdot x$
$f_{3}(x)=4 \cdot x$
$f_{4}(x)=7 x$
$f_{5}(x)=8 x$
$f_{6}(x)=11 x$
$f_{7}(x)=13 x$
$f_{8}(x)=14 x$
Then, exactly 8 automorphism from Z_{15} to Z_{15}.
NOTE: $f: Z_{m} \rightarrow Z_{m}$ has exactly $\phi(n)$ automorphism.
Q. $f: Z \rightarrow Z$, how many automorphism?

Solution:
$f: Z \rightarrow Z$
$f(x)=1 x$
$f(x)=-1 x$
homomorphism, one-one and onto then $f(x)=x$ and $f(x)=-x$ are automorphism.
Exactly 2 automorphisms from Z to Z .
Q. $f: Z \rightarrow Z, f_{1}(x)=1 x$ and $f_{2}(x)=-1 x$
$\operatorname{Aut}(\mathrm{z})=\{$ Set of all automorphsim of Z$\}$ and $\operatorname{Aut}(\mathrm{z}) \approx$?
Solution:
$f: Z \rightarrow Z$

$$
\left.\begin{array}{l}
f_{1}(x)=1 x \\
f_{2}(x)=-1 x
\end{array}\right\} \text { Automorphism }
$$

Now we to check that is $\operatorname{Aut}(z)$ is a group wrt composition or not.
(1) Closure Property:

$$
\begin{aligned}
& \left(f_{2} f_{2}\right)(x)=f_{2}\left(f_{2}(x)\right) \\
& =f_{2}(-x) \\
& =x=f(x)
\end{aligned}
$$

Closure satisfied

$$
\begin{aligned}
& a \in \operatorname{Aut}(z), b \in \operatorname{Aut}(z) \\
& a b \in \operatorname{Aut}(z) \\
& a b \in \operatorname{Aut}(z) \\
& \begin{array}{l}
\left(f_{1} f_{1}\right)(x) \\
=f_{1}\left(f_{1}(x)\right) \\
=f_{1}(x) \\
=x \\
=f_{1} \\
\left(f_{1} f_{2}\right)(x)= \\
=f_{1}\left(f_{2}(x)\right) \\
=f_{1}(-x)
\end{array} \\
& \hline
\end{aligned}
$$

(2) Associative - Mapping composition always satisfied associative property.
(3) Identity $-\forall f \in \operatorname{Aut}(z) \Rightarrow f_{1} \in \operatorname{Aut}(z)$
f_{1} is identity from composition table
$f \circ f_{1}-f_{1} \circ f=f$
(4) Inverse: $\forall f \in \operatorname{Aut}(z), \exists f^{-1} \in \operatorname{Aut}(z)$
s.t. $f^{-1} \circ f^{-1}=f^{-1} \circ f=I$
$f_{1}^{-1}=f_{1}$ and $f_{2}^{-1}=f_{2}$
then $\operatorname{Aut}(z)$ is group wrt composition and $O(\operatorname{Aut}(z))=2 \approx Z_{2}$
$f_{2} \in \operatorname{Aut}$ s.t. $O\left(f_{2}\right)=2=0(\operatorname{Aut}(z))$ then $\operatorname{Aut}(z) \approx z_{2}$
Q. Find $\operatorname{Aut}\left(z_{10}\right)=$?

Solution:
$\left.\begin{array}{l}f: Z_{10} \rightarrow Z_{10} \\ f_{1}(x)=1 x \\ f_{2}(x)=3 x \\ f_{3}(x)=7 x \\ f_{4}(x)=9 x\end{array}\right\}$ There are automorphisms
$\operatorname{Aut}\left(Z_{10}\right)=\left\{\right.$ Set of all automorphism from Z_{10} to $\left.Z_{10}\right\}$
Aut $\left(Z_{10}\right)=\{x, 3 x, 7 x, 9 x\}=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$
$O\left(\operatorname{Aut}\left(Z_{10}\right)\right)=4$
Aut $\left(Z_{10}\right)$ is group w.r.t. composition

	f_{1}	f_{2}	f_{3}	f_{4}
f_{1}	f_{1}	f_{2}	f_{3}	f_{4}
f_{2}	f_{2}	f_{4}	f_{1}	f_{3}
f_{3}	f_{3}	f_{4}	f_{1}	f_{3}
f_{4}				
$\left(f_{1} f_{1}\right)(x)=f_{1}\left(f_{1}(x)\right)$				
$=f_{1}(x)=x$				
$=f_{1}$				
$\left(f_{1} f_{2}\right)(x)=f_{1}\left(f_{2}(x)\right)$				
$=f_{1}(3 x)$				
$=f_{2}$				
$\left(f_{2} f_{2}\right)(x)=f_{2}\left(f_{2}(x)\right)$				
$=f_{2}(3 x)=3(3 x)$				
$=9 x=f_{4}$				
$\left(f_{2} f_{3}\right)(x)=f_{2}\left(f_{3}(x)\right)$				
$=f_{2}(7 x)$				
$=3 \cdot 7 x=21 x$				
$=x=f_{1}$				

From Composition table $\operatorname{Aut}\left(Z_{10}\right)$ is group with identity $f_{1}(x)=x$ and
$f_{1}^{-1}=f_{1}, f_{2}^{-1}=f_{3}, f_{3}^{-1}=f_{2}, f_{4}^{-1}=f_{4}$
$O\left(\operatorname{Aut}\left(Z_{10}\right)\right)=4$
$f_{2} \in \operatorname{Aut}\left(Z_{10}\right)$ s.t. $O\left(f_{2}\right)=4=O\left(\operatorname{Aut}\left(Z_{10}\right)\right)$
$\Rightarrow\left(\operatorname{Aut}\left(Z_{10}\right)\right)$ is cyclic so $\operatorname{Aut}\left(Z_{10}\right) \approx Z_{4}$
$\left(f_{2}\right)^{4}=I$
$\left(f_{2} \cdot f_{2}\right)(x)=f_{4}(x)$
$\left(f_{2} \cdot f_{2} \cdot f_{2} \cdot f_{2}\right)(x)=\left(f_{4} \cdot f_{4}\right)(x)$
$=f_{1}(x)$
$\left(f_{2}\right)^{4}=f_{1}=I$
$\Rightarrow O\left(f_{2}\right)=4$
NOTE: Set of all automorphism of G form a group w.r.t composition it is denoted by $\operatorname{Aut}(G)$.
Q. (i) Find $\operatorname{Aut}\left(Z_{20}\right) \approx$?
(ii) Find Aut $\left(Z_{8}\right) \approx$?

Solution:
(ii) $f: Z_{8} \rightarrow Z_{8}$
$f_{1}(x)=1 x$
$f_{2}(x)=3 x$
$\left.\begin{array}{l}f_{3}(x)=5 x\end{array}\right\}$ There are automorphism
$f_{4}(x)=7 x$
$\operatorname{Aut}\left(Z_{8}\right)=\{x, 3 x, 5 x, 7 x\}=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$
$O\left(\operatorname{Aut}\left(Z_{8}\right)\right)=4$
$O\left(\operatorname{Aut}\left(Z_{8}\right)\right)=4 Z_{Z_{2} \times Z_{2}}^{Z_{4}}$
$O\left(f_{1}\right)=1, O\left(f_{3}\right)=2$
$O\left(f_{2}\right)=2, O\left(f_{4}\right)=2$
then
$\operatorname{Aut}\left(Z_{8}\right) \approx Z_{2} \times Z_{2}$
(i) $\operatorname{Aut}\left(Z_{40}\right) \approx Z_{2} \times Z_{2} \times Z_{4}$
$U(8 \times 5)=U(8) \times U(5)$
$=U\left(2^{3}\right) \times U(5)$
$\approx Z_{2} \times Z_{2} \times Z_{4}$
Note: $\operatorname{Aut}\left(Z_{n}\right) \approx U(n)$
Q. Find $\operatorname{Aut}\left(Z_{20}\right)=$?

Solution:

$$
\begin{aligned}
& f: Z_{20} \rightarrow Z_{20} \\
& f_{1}(x)=1 x
\end{aligned}
$$

```
\(f_{2}(x)=3 x\)
\(f_{3}(x)=7 x\)
\(f_{4}(x)=9 x\)
\(f_{5}(x)=11 x\)
\(f_{6}(x)=13 x\)
\(f_{7}(x)=17 x\)
\(f_{8}(x)=19 x\)
Aut \(\left(Z_{20}\right)=\{x, 3 x, 7 x, 9 x, 11 x, 13 x, 17 x, 19 x\}\)
\(=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}\right\}\)
\(O\left(\operatorname{Aut}\left(Z_{20}\right)\right)=8\)
\(f_{5} \in \operatorname{Aut}\left(Z_{20}\right)\) s.t.
\(O\left(f_{5}\right)=2\)
\(f_{5}(x)=11 x\)
\(\left(f_{5} \cdot f_{5}\right)(x)=11 \cdot 11 x\)
\(=121 x\)
\(=x=f_{1}(1)\)
```

Similarly, $f_{8}(x) \in \operatorname{Aut}\left(Z_{20}\right)$ s.t. $O\left(f_{8}\right)=2$
$\left(f_{8} \cdot f_{8}\right)(x)=f_{8}\left(f_{8}(x)\right)$
$=19 \cdot 19 x=361 x$
$=x=f_{1}(x)$
$\Rightarrow \operatorname{Aut}\left(Z_{20}\right) \not \approx Z_{8}$
because Z_{8} has exactly one element of order 2 but Aut $\left(Z_{20}\right)$ has more than one element of order 2.
Now,
$f_{3} \in \operatorname{Aut}\left(Z_{20}\right)$ s.t. $O\left(f_{3}\right)=4$
then $\operatorname{Aut}\left(Z_{20}\right) \not \not \not Z_{2} \times Z_{2} \times Z_{2}$ because $Z_{2} \times Z_{2} \times Z_{2}$ has no elements of order more than 2.
Then,
$\operatorname{Aut}\left(Z_{20}\right) \approx Z_{2} \times Z_{4}$
Q. How many elements of order 2 in $\operatorname{Aut}\left(Z_{21}\right)$?

Solution:

$$
\begin{aligned}
& f: Z_{21} \rightarrow Z_{21} \\
& \operatorname{Aut}\left(Z_{21}\right)=\{x, 2 x, 4 x, 5 x, 8 x, 10 x, 11 x, 13 x, 16 x, 17 x, 19 x, 20 x\} \\
& =\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}, f_{9}, f_{10}, f_{11}, f_{12}\right\} \\
& \operatorname{Aut}\left(Z_{21}\right) \approx U(21)=U(7 \times 3) \approx U(7) \times U(3) \\
& \approx Z_{6} \times Z_{2}
\end{aligned}
$$

$21=\phi(2) \cdot \phi(1)=1$
$12=\phi(1) \cdot \phi(1) \cdot \phi(2)=1$
$22=\phi(2) \cdot \phi(3)=1$
Then, exactly 3 elements or order 2 in $\operatorname{Aut}\left(Z_{21}\right)$
Q. $\operatorname{Aut}\left(Z_{n}\right)$ is always cyclic?
i.e. If G be a finite cyclic group of order n then $\operatorname{Aut}(G)$ is always cyclic.

Solution:
Need not be $G=Z_{12}$ is cyclic group or order 12
$\operatorname{Aut}(G)=\operatorname{Aut}\left(Z_{12}\right) \approx U(12) \approx Z_{2} \times Z_{2}$
then $\operatorname{Aut}\left(Z_{12}\right) \approx Z_{2} \times Z_{2}$ and $Z_{2} \times Z_{2}$ is not cyclic then $\operatorname{Aut}\left(Z_{n}\right)$ is not always cyclic.
NOTE: $\operatorname{Aut}\left(Z_{n}\right)$ is always abelian $\operatorname{As} \operatorname{Aut}\left(Z_{n}\right) \approx U(n)$, since $U(n)$ is always abelian so $\operatorname{Aut}\left(Z_{n}\right)$ is always abelian.
Q. If $\operatorname{Aut}\left(G_{1}\right) \approx \operatorname{Aut}\left(G_{2}\right) \Rightarrow G_{1} \approx G_{2}$?

Solution:
$G_{1}=Z_{10}$ and $G_{2}=Z_{5}$
$\operatorname{Aut}\left(Z_{10}\right) \approx U(10) \operatorname{Aut}\left(Z_{5}\right) \approx U(5)$
$\Rightarrow \operatorname{Aut}\left(Z_{10}\right) \approx Z_{4}$ and $\operatorname{Aut}\left(Z_{5}\right) \approx Z_{4}$
$\operatorname{Aut}\left(Z_{10}\right) \approx Z_{4} \approx \operatorname{Aut}\left(Z_{5}\right)$
but $Z_{10} \not \approx Z_{5}$
$\therefore \operatorname{Aut}\left(G_{1}\right) \approx \operatorname{Aut}\left(G_{2}\right)$ then $G_{1} \approx G_{2}$ is need not be true.
NOTE: (i) No. of Automorphism in $S_{n}=n!, n \geq 3$
(ii) No. of Automorphism in $D_{n}=n \phi(n), n \geq 3$

NOTE:

$$
\begin{aligned}
& f: Z_{p} \times Z_{p} \times Z_{p}, \ldots . Z_{p} \rightarrow Z_{p} \times Z_{p} \times \ldots \times Z_{p} \\
& \operatorname{Aut}\left(Z_{p} \times Z_{p} \times \ldots \times Z_{p}\right) \approx G L_{n}\left(Z_{p}\right) .
\end{aligned}
$$

$\operatorname{Aut}\left(Z_{n}\right) \approx U(n)$.
Let's learn; how to visualize theory proofs with the help of examples (my own experience).
Example: Let's think about \mathbf{Z}_{10}
Step (i): Definition of Aut (G): An isomorphism from a group G onto itself is called an automorphism of G collection of all such automorphisms of G is represented by $\operatorname{Aug}(\mathrm{G})$.
Example to visualize definition:
Let $\alpha \in \operatorname{Aut}\left(Z_{10}\right)$; now let's try to discover enough information about α to determine how α must be defined.

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

Let's begin with $\alpha(1)=$ \qquad ?
$\therefore \alpha$ is an isomorphism from \mathbf{Z}_{10} to \mathbf{Z}_{10}
$\therefore|\alpha(1)|=|1|$ in $\mathbf{Z}_{10}=10$
\therefore There are four choices for $\alpha(1)$:
$\alpha(1)=1=\alpha_{1}$ (say)
$\alpha(1)=3=\alpha_{3}$ (say)
$\alpha(1)=7=\alpha_{7}$ (say)
$\alpha(1)=9=\alpha_{9}$ (say)
Let's write $\operatorname{Aut}\left(\mathbf{Z}_{10}\right)=\left\{\alpha_{1}, \alpha_{3}, \alpha_{7}, \alpha_{9}\right\}$
for composition, we may observe α_{1} working as identity,
$\left(\alpha_{3} \alpha_{3}\right)(1)=\alpha_{3}(3)=3 \cdot 3=9=\alpha_{9}(1)$
$\therefore \alpha_{3} \alpha_{3}=\alpha_{9}, \quad \alpha_{3}^{4}=\alpha_{1}, \therefore\left|\alpha_{3}\right|=4$

Aut (\mathbf{Z}_{10})

$\operatorname{Aut}\left(Z_{10}\right)$	α_{1}	α_{3}	α_{7}	α_{9}
α_{1}	α_{1}	α_{3}	α_{7}	α_{9}
α_{3}	α_{3}	α_{9}	α_{1}	α_{7}
α_{7}	α_{7}	α_{1}	α_{9}	α_{3}
α_{9}	α_{9}	α_{7}	α_{3}	α_{1}

$\mathbf{U}(10)$

$U(N)$	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

Actual Proof:

With the above example, now we are ready to tackle the group Aut $\left(\mathrm{Z}_{n}\right)$:
\because Any automorphism α is determined by the value of $\alpha(1)$ and $\alpha(1) \in U(n)$.
Now consider the correspondence from Aut $\left(\mathrm{Z}_{n}\right)$ to $U(n)$ given by $T: \alpha \rightarrow \alpha(1)$.
Aut $\left(Z_{n}\right)$ to $U(n)$ given by $T: \alpha \rightarrow \alpha(1)$.
The fact that $\alpha(k)=k \alpha(1)$ implies
T is one-one mapping.

- To prove T is onto:

Let $r \in U(n)$ and consider the mapping α from \mathbf{Z}_{n} to \mathbf{Z}_{n} defined by $\alpha(s)=\operatorname{sr}(\bmod n)$ for all s in \mathbf{Z}_{n} (Also α is an automorphism) then,
$\because T(\alpha)=\alpha(1)=r, T$ is onto $U(n)$.

- T is operator preserving:

Let $\alpha, \beta \in \operatorname{Aut}\left(Z_{n}\right)$
$T(\alpha \beta)=(\alpha \beta)(1)=\alpha(1+1+1+\ldots .+1) \beta$-times $=\beta(1)$
$=\alpha(1)+\alpha(1)+\ldots .+\alpha(1)$
$=\alpha(1) \beta(1)=T(\alpha) T(\beta)$

Personalized Mentorship +91_9971030052

This completes the proof.

INNER AUTOMORPHISM

Let $a \in G$ the mapping $T a: G \rightarrow G$ defined by $T_{a}(x)=a x a^{-1}$ is Inner Automnorphism if
(i) T_{a} is homomorphism
(ii) T_{a} is one-one
(iii) T_{a} is onto

Verification of Definition:

$a \in G, T_{a}: G \rightarrow G$ defined by $T_{a}(x)=a x a^{-1}$ is
(i) T_{a} is homorphism
(ii) T_{a} is one-one
(iii) T_{a} is onto

Proof:
$T_{a}: G \rightarrow G^{*}$
$T_{a}(x)=a x a^{-1}$
(i) T_{a} is homomorphism: Let $x, y \in G$
$T_{a}(x, y)=a(x y) a^{-1}$
$=$ axeya $^{-1} ; a a^{-1}=e$
$=a x a^{-1} a y a^{-1}$
$\therefore T_{a}(x y)=\left(a x a^{-1}\right)\left(a y a^{-1}\right)$
$\therefore T_{a}(x y)=T_{a}(x) \cdot T_{a}(y)$
T_{a} is homomorphism.
(ii) and (iii) T_{a} is one-one and onto
$T_{a}(x)=a x a^{-1}, a \in G$, since G is group then \exists unique $a^{-1} \in G$ s.t.
$T_{a^{-1}}(x)=a^{-1} x\left(a^{-1}\right)^{-1}$
$=a^{-1} x a$
Now, we will show that $T_{a^{-1}}$ is inverse of T_{a}

$$
\begin{aligned}
& \left(T_{a} T_{a^{-1}}\right)(x)=T_{a}\left(T_{a^{-1}}(x)\right) \\
& =T_{a}\left(a^{-1} x a\right) \\
& =a\left(a^{-1} x a\right) a^{-1} \\
& =\left(a a^{-1}\right) x\left(a a^{-1}\right) \\
& =\text { exe } \\
& =e_{e} e^{-1} \\
& =T_{e}(x)
\end{aligned}
$$

$\Rightarrow T_{a} T_{a-1}=T_{e}$
then $(T a)^{-1}=T_{a-1}$
NOTE: Set of all Inner Automorphism of G form a group wrt comparisiton, it is denoted by
$I_{n n}(G)=\left\{T_{a} \mid a \in G\right\} \approx \frac{G}{Z(G)}$
Q. How many Inner Automotphsim in Z_{10} ?

Solution:
$G=Z_{10}$
$I_{n n}(G)=\frac{G}{Z(G)}$
$O\left(I_{n n}(G)\right)=\frac{O(G)}{O(Z(G))}=\frac{O\left(Z_{10}\right)}{O\left(Z\left(Z_{10}\right)\right)}=\frac{10}{10}=1$
$T_{a}=a x a^{-1}=a a^{-1} x=e \cdot x=x\left(\mathrm{G}\right.$ is abelian $\left.x a^{-1}=a^{-1} x\right)$
Q. How many Inner Automorphism in S_{3} ?

Solution:
$I_{n n}\left(S_{3}\right)=\frac{S_{3}}{Z\left(S_{3}\right)}$
$O\left(I_{n n}\left(S_{3}\right)\right)=\frac{O\left(S_{3}\right)}{O\left(Z\left(S_{3}\right)\right)}=\frac{6}{1}=6$
Q. How many Inner Automorphism in D_{3} ?

Solution:
$I_{n n}\left(D_{3}\right)=\frac{D_{3}}{Z\left(D_{3}\right)}$
$O\left(I_{n n}\left(D_{3}\right)\right)=\frac{O\left(D_{3}\right)}{O\left(Z\left(D_{3}\right)\right)}=\frac{6}{1}=6$
Q. $I_{n n}(G)=\{e\}$ iff G is abelian.

Solution:
Let G be abelian then
$\Rightarrow Z(G)=G$
$I_{n n}(G) \approx \frac{G}{Z(G)} \approx \frac{G}{G} \approx Z_{1}$
$\frac{G}{Z(G)} \approx Z_{1}, Z_{1}$ is cyclic then $G=\{e\}$
$I_{n n}(G)=\frac{G}{Z(G)} \approx Z_{1} \approx\{e\}$
Conversely, $I_{n n}(G)=\{e\}$
$\Rightarrow \frac{G}{Z(G)} \approx Z_{1}$
Since Z_{1} is cyclic then G is abelian.
NOTE: If G is abelian then $I_{n n}(G) \approx Z_{1}$ No. Inner automorphism is 1 .
Q. $G=A_{3} \times D_{4} \times S_{3} \times Z_{4}$, find no of inner automorphism.

Solution:
$G=A_{3} \times D_{4} \times S_{3} \times Z_{4}$
$I_{n n}(G) \approx \frac{G}{Z(G)}$
$O\left(I_{n n}(G)\right)=\frac{O(G)}{O(Z(G))}=\frac{3 \times 8 \times \not \subset \times \not, A}{3 \times 2 \times 1 \times \not \subset}=24$
Q. $G=Z, G=Q, G=\mathbf{R}, G=\mathbf{C}, G=\mathbf{R} \times \mathbf{R}$
$G=Z \times Q \times \mathbf{R} \times \mathbf{C} \approx Z_{1}$
$I_{n n}(Z)=I_{n n}(\mathbf{R})=I_{n n}(\mathbf{C})=I_{n n}(\mathbf{R} \times \mathbf{R}) \approx Z_{1}$
Q. Find no of Inner Automorphism in Q_{4} ?

Solution:
Inner Automorphism of Q_{4}
$I_{n n}\left(Q_{4}\right) \approx \frac{Q_{4}}{Z\left(Q_{4}\right)}$
$O\left(I_{n n}\left(Q_{4}\right)\right)=O\left(\frac{Q_{4}}{Z\left(Q_{4}\right)}\right)=\frac{O\left(Q_{4}\right)}{O\left(Z\left(Q_{4}\right)\right)}=\frac{8}{2}=4$
Then Q_{4} has exactly 4 inner automorphism.
Q. Find number of inner automorphism in $D_{n}, n \geq 3$?

Solution:
Case I: If n is odd then

$$
\begin{aligned}
& I_{n n}\left(D_{n}\right) \approx \frac{D_{n}}{Z\left(D_{n}\right)} \\
& \Rightarrow O\left(I_{n n} D_{n}\right)=\frac{O\left(D_{n}\right)}{O\left(Z\left(D_{n}\right)\right)}=\frac{2 n}{1}=2 n
\end{aligned}
$$

Case-II: If n is even then

$$
\begin{aligned}
& I_{n n}\left(D_{n}\right) \approx \frac{D_{n}}{Z\left(D_{n}\right)} \\
& \Rightarrow O\left(I_{n n}\left(D_{n}\right)\right) \approx \frac{O\left(D_{n}\right)}{O\left(Z\left(D_{n}\right)\right)}=\frac{\not 2 n}{\not 2}=n
\end{aligned}
$$

Q. No. of Inner Automorphism in D_{4} ?

Solution: $O\left(I_{n n} D_{4}\right)=\frac{O\left(D_{4}\right)}{O\left(Z\left(D_{4}\right)\right)}=\frac{8}{2}=4$
Q. How many Inner Automorphism in $S_{n, n \geq 3}$?

Solution:
$I_{n n}(S) \approx \frac{S_{n}}{Z\left(S_{n}\right)}$
$O\left(I_{n n}\left(S_{n}\right)\right)=\frac{O\left(S_{n}\right)}{O\left(Z\left(S_{n}\right)\right)}=\frac{n!}{1}=n!$
$I_{n n}\left(S_{n}\right) \approx S_{n}$
Q. How many inner automorphism in $U(n)$?

Solution:
Exactly one inner automorphsim because $U(n)$ is abelian.
Q. $f: Z_{16} \times Z_{2} \rightarrow Z_{8} \times Z_{4}$ how many onto homomorphism?

Solution:
$f: Z_{16} \times Z_{2} \rightarrow Z_{8} \times Z_{4}$ is onto homomorphism
$\frac{G}{\operatorname{ker} f} \approx G^{\prime}$
Here $O(G)=32, O\left(G^{\prime}\right)=32$

$$
\begin{aligned}
& \frac{Z_{16} \times Z_{2}}{\operatorname{ker} f} \approx Z_{8} \times Z_{4} \\
& O\left(\frac{Z_{16} \times Z_{2}}{\operatorname{ker} 5}\right)=O\left(Z_{8} \times Z_{4}\right) \\
& \Rightarrow \frac{\not Z 2}{O(\operatorname{ker} f)}=32 \Rightarrow 0(\operatorname{ker} f)=1 \\
& \Rightarrow \operatorname{ker} f=\{(0,0)\} \\
& \frac{Z_{16} \times Z_{2}}{\{(0,0)\}}=\left\{(a, b) \cdot\{(0,0)\} \mid(a, b) \in Z_{16} \times Z_{2}\right\} \\
& \approx Z_{16} \times Z_{2} \\
& \Rightarrow Z_{16} \times Z_{2} \approx Z_{8} \times Z_{4}
\end{aligned}
$$

But $Z_{16} \times Z_{2}$ has elements or order 16 and $Z_{8} \times Z_{4}$ has no elements of order 16
$\Rightarrow Z_{16} \times Z_{2} \not \approx Z_{8} \times Z_{2}$
So, onto homomorphism does not exist.

[2] The G/Z theorem:

Personalized Mentorship +91_9971030052

Let G be a group and $Z(G)$ be the centre of G . If $G / Z(G)$ is cyclic group, then G is Abelian group.
Exam Point: In group theory; proofs become easy to learn; if you are clear about definitions.
Just underline keywords in the statement recall definition and visualize it.
Proof: Let $g Z(G)$ be a generator of $G / Z(G)$ and let $a, b \in G$.
Then there exist integers i and j such that
$a Z(G)\left(g^{Z(G)}\right)^{i}=g^{i z(G)}$
$b Z(G)=\left(g^{Z(G)}\right)^{j}=g^{j} Z(G)$
Thus,
$a=g^{i} x$ for some x in $Z(G)$ and $b=g^{j} y$ for some y in $Z(G)$.
$\therefore a b=\left(g^{i} x\right)\left(g^{j} y\right)$
Now visualize definition of $Z(G)$
$a b=g^{i}\left(g^{j} x\right) y$
$=\left(g^{i} g^{j}\right)(x y)$
$=\left(g^{j} g^{i}\right)(y x)$
$=\left(g^{j} y\right)\left(g^{i} x\right)$
$a b=b a \Rightarrow G$ is abelian.

Exam Point:

(1) If $\mathrm{G} \mid \mathrm{H}$ is cyclic where H is a subgroup of $Z(G)$, then G is Abelian.
(2) It is the contra positive of above theorem which is often used - If G is non-abelian then $\mathrm{G} \mid \mathrm{Z}(\mathrm{G})$ cannot be cyclic.
[3] For any group G, $G / Z(G)$ is isomorphic to $\operatorname{Inn}(G)$.
Hint:

- Consider the correspondence from $G / Z(G) \rightarrow \operatorname{Inn}(\mathrm{G})$ given by $T: g Z(G) \rightarrow \phi_{g}$, where $\phi_{g}(x)=g x g^{-1}$ for all x in G.
- Now just show T is well defined function, one-one onto and operation preserving.
Q. Show that $G_{1} \times G_{2} \approx G_{2} \times G_{1}$

Solution:
$f: G_{1} \times G_{2} \rightarrow G_{2} \times G_{1}$ defined by $f(x, y)=(y, x)$
(i) f is homomorphism : $\left(x_{1}, y_{1}\right) \in G_{1} \times G_{2}$
$\left(x_{2}, y_{2}\right) \in G_{1} \times G_{2}$
$f\left(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\right)=f\left(\left(x_{1} x_{2}, y_{1} y_{2}\right)\right)$
$=\left(y_{1} \cdot y_{2}, x_{1} \cdot x_{2}\right)$
$=\left(y_{1}, x_{2}\right) \cdot\left(y_{2}, x_{2}\right)$
$=f\left(x_{1}, y_{1}\right) \cdot f\left(x_{2}, y_{2}\right)$
$\Rightarrow f\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=f\left(x_{1}, y_{1}\right) \cdot f\left(x_{2}, y_{2}\right) \forall x_{1}, x_{2} \in G_{1}, y_{1}, y_{2} \in G_{2}$
f is homomorphism.
(ii) \mathbf{f} is one-one:
$f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)$
$\Rightarrow\left(y_{1}, x_{1}\right)=\left(y_{2}, x_{2}\right)[\because f$ is homomorphism $]$
$\Rightarrow y_{1}=y_{2}$
$x_{1}=x_{2}$
$\Rightarrow\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$
$\therefore f$ is one-one.
(iii) f is onto:

Let $(y, x) \in G_{2} \times G_{1}$ then
$\exists(x, y) \in G_{1} \times G_{2}$ s.t $f(x, y)=(y, x)$
then f is onto.
f is homomorphism, one-one and onto then f is isomorphism.
Then, $G_{1} \times G_{2} \approx G_{2} \times G_{1}$
Note: Direct Product of two cyclic group need not be cyclic.
$G_{1}=Z_{8}$ is cyclic group of order 8
$G_{2}=Z_{4}$ is cyclic group of order 4
$G_{1} \times G_{2}=Z_{8} \times Z_{4}$ is not cyclic because $O\left(Z_{8} \times Z_{4}\right)=32$ but $Z_{8} \times Z_{4}$ has not element of order 32 .
Q. Direct Product of two abelian groups is abelian.

Solution:
Let G_{1} and G_{2} be two abelian groups
$G_{1} \times G_{2}=\left\{\left(g_{1}, g_{2}\right) \mid g_{i} \in G_{1}, g_{2} \in G_{2}\right\}$
Let $\left(x_{1}, y_{1}\right) \in G_{1} \times G_{2}$ and $\left(x_{2}, y_{2}\right) \in G_{1} \times G_{2}$
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2}\right)$
$=\left(x_{2} \cdot x_{1}, y_{2} \cdot y_{1}\right)\left[\because G_{1}\right.$ and G_{2} is abelian $]$
$=\left(x_{2}, y_{2}\right)\left(x_{1}, y_{1}\right)$
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{2}, y_{2}\right)\left(x_{1}, y_{1}\right)$
Then $G_{1} \times G_{2}$ is abelian.
Q. Converse if $G_{1} \times G_{2}$ is abelian then G_{1} and G_{2} is abelian.

Solution:

Since $G_{1} \times G_{2}$ is abelian then let
$G_{1} \times G_{2}=\left\{\left(g_{1}, g_{2}\right) \mid g_{1} \in G_{1}, g_{2} \in G_{1}\right\}$
as $G_{1} \times G_{2}$ is abelian so,
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{2}, y_{2}\right)\left(x_{1}, y_{1}\right)$
$\Rightarrow\left(x_{1} x_{2}, y_{1} y_{2}\right)=\left(x_{2} x_{1}, y_{2} y_{1}\right)$
$\Rightarrow x_{1} x_{2}=x_{2} x_{1}, \quad x_{1}, x_{2} \in G_{1}$
and $y_{1} y_{2}=y_{2} y_{1}, y_{1}, y_{2} \in G_{2}$
$\Rightarrow x_{1} x_{2}=x_{2} x_{1}, \forall x_{1}, x_{2} \in G_{1} \Rightarrow G_{1}$ is abelian and $y_{1} y_{2}=y_{2} y_{1}, \forall y_{1}, y_{2} \in G_{2}$ then G_{2} is abelian.
Note: If G_{1} and G_{2} be two finite cyclic groups of order m and n, respectively and $\operatorname{gcd}(m, n)=1$, then $G_{1} \times G_{2}$ is cyclic.
Solution:
G_{1} is finite cyclic group of order m
$\Rightarrow G_{1} \approx Z_{m}$
and G_{2} is finite cyclic group of order n
$\Rightarrow G_{2} \approx Z_{n}$
$G_{1} \times G_{2} \approx Z_{m} \times Z_{n}$
if $\operatorname{gcd}(m, n)=1$ then $Z_{m} \times Z_{n}$ has elements of order $m n$
$\Rightarrow Z_{m} \times Z_{n} \approx Z_{m n}$
$\Rightarrow G_{1} \times G_{2} \approx Z_{m n}$
$\therefore G_{1} \times G_{2}$ is cyclic
Q. Show that $Z \approx 2 Z$.

Solution:
$f: Z \rightarrow 2 Z$
$f(x)=2 x$
f is homomorphism, one-one and onto.
Then f is isomorphism.
then $Z \approx 2 Z$
Similarly,
$Z \approx m Z$, where $m=1,2,3 \ldots$.
Q. Is $(Z,+) \approx(Q,+)$?

Ans. No, because Z is cyclic and Q is not cyclic
i.e. $(Z,+)$ is cyclic group but $(Q,+)$ is not cyclic
$(Z,+) \neq(Q,+)$
Note: Similarly, $(Z,+) \not \approx(\mathbf{R},+),(Z,+) \not \approx(\mathbf{C},+)$
$(Z,+) \not \approx R \times Q$ etc.
Q. Is $Z \approx 6 Z$?

Solution: Yes, $6 Z$ is infinite cyclic group then
$6 Z \approx Z$
Q. Is $4 Z \approx 6 Z$?

Solution: Yes, $4 Z \approx Z$
and $6 Z \approx Z$
$\Rightarrow 4 Z \approx Z \approx 6 Z$
$\Rightarrow 4 Z \approx 6 Z$ (Using Transitive Relation)
Note: Isomorphism is an equivalence relation.
Note: $m Z \approx n Z, m \neq 0, n \neq 0$
Q. Is $(Q,+) \approx\left(Q^{*} \cdot\right)$?

Solution:
No, $(Q+) \not \approx\left(Q^{*} \cdot\right)$ because $(Q,+)$ has exactly 1 element of finite order. But $\left(Q^{*}, \cdot\right)$ has 2 elements of order finite.
Q. Is $(Q,+) \approx(R,+)$?

Solution:
No, $(Q,+) \not \approx(R,+)$ because Q is countable but R is uncountable.
Q . Is $(Q,+) \approx\left(R^{*}, \cdot\right)$?
Solution:
No
Q. Is $\left(Q^{*}, \cdot\right) \approx\left(R^{*}, \cdot\right)$? Similarly $(R+) \approx\left(R^{*} \cdot\right)$

Ans. No
Q. (i) $(\mathbf{R},+) \approx\left(C^{*}, \cdot\right)$
(ii) $(\mathbf{C},+) \approx\left(C^{*}, \cdot\right)$

Solution:
(ii) $(\mathbf{C},+) \not \approx\left(C^{*}, \cdot\right)$ because $(\mathbf{C},+)$ has exactly one element of finite order. But $\left(\mathbf{C}^{*}, \cdot\right)$ has infinite number of elements of finite order.
(i) Similarly, $(\mathbf{R},+) \not \approx\left(C^{*}, \cdot\right)$.
Q. $(\mathbf{R},+) \approx(\mathbf{C},+)$?
(1) $\frac{G_{1}}{\{e\}} \approx G_{1}$ (2) $\frac{G_{1}}{G_{1}} \approx\{e\}$
(3) $\frac{G_{1} \times G_{2}}{\left\{e_{1}\right\} \times G_{2}} \approx G_{1}$ (4) $\frac{G_{1} \times G_{2}}{G \times\left\{e_{2}\right\}} \approx G_{2}$
Q. Show that $G_{1} \times\left\{e_{2}\right\}$ is normal subgroup of $G_{1} \times G_{2}$.

Solution:
$G_{1} \times G_{2}=\left\{\left(g_{1}, g_{2}\right) \mid g_{1} \in G_{1}, g_{2} \in G_{2}\right\}$ and $G_{1} \times\left\{e_{2}\right\}=\left\{\left(g_{1}, e_{2}\right) \mid g_{1} \in G_{1}, e_{2} \in G_{2}\right\}$
Let $(x, y) \in G_{1} \times G_{2}$ and $\left(h, e_{2}\right) \in G_{1} \times\left\{e_{2}\right\}$
$(x, y)\left(h, e_{2}\right)(x, y)^{-1}=(x, y)\left(h, e_{2}\right)\left(x^{-1}, y^{-1}\right)$
$=\left(x h x^{-1}, y e_{2} y^{-1}\right)$
$=\left(x h x^{-1}, e_{2}\right) \in G_{1} \times\left\{e_{2}\right\}$
$\binom{x \in G_{1}, h \in G_{1}}{\Rightarrow x h x^{-1} \in G_{1}}$
Then, $G_{1} \times\left\{e_{2}\right\}$ is Normal subgroup of $G_{1} \times G_{2}$.

For Finite Group:

Step 1: $O\left(G_{1}\right)=O\left(G_{2}\right)$ if yes
Step 2: G_{1} and G_{2} both abelian/cyclic. If yes then
Step 3: Find number of elements of possible order in G_{1} and G_{2}
If number of elements of all possible orders in G_{1} and G_{2} are same then $G_{1} \approx G_{2}$ otherwise not.
Q. $G_{1}=Z_{8}, G_{2}=Z_{2} \times Z_{4}$, then $G_{1} \approx G_{2}$?

Solution:
$O\left(G_{1}\right)=O\left(G_{2}\right)=8$
then $G_{1}=Z_{8}$ is cyclic but $G_{2}=Z_{2} \times Z_{4}$ is not cyclic then
$Z_{8} \not \approx Z_{2} \times Z_{4}$
Q . Is $U(8) \approx U(10)$?
Solution:
$O(U(8))=4$
$O(U(10))=4$
then $U(8) \approx Z_{2} \times Z_{2}$
$U(10) \approx Z_{4}$
$U(10)$ is cyclic but $U(8)$ is not cyclic then
$U(8) \not \approx U(10)$.
Q. $G=S_{3} \times \frac{Z}{2 Z} \approx$?
(a) Z_{12}
(b) $Z_{2} \times Z_{6}$
(c) D_{6} (d) $D_{3} \times Z_{2}$

Solution:
$G=S_{3} \times \frac{Z}{2 Z} \approx S_{3} \times Z_{2}$
$\Rightarrow S_{3} \times Z_{2}$ is non-abelian
$O\left(S_{3} \times Z_{2}\right)=6 \times 2=12$
(a) $S_{3} \times Z_{2} \not \approx Z_{12}$, because Z_{12} is cyclic but $S_{3} \times Z_{2}$ is not cyclic
(b) $S_{3} \times Z_{2} \not \approx Z_{2} \times Z_{6}$ because $Z_{2} \times Z_{6}$ is abelian but $S_{3} \times Z_{2}$ is non-abelian.
(c) Is $S_{3} \times Z_{2} \approx D_{6}$
$O\left(S_{3} \times Z_{2}\right)=12=O\left(D_{6}\right)$
then $S_{3} \times Z_{2}$ and D_{6} both are non-abelian possible order of elements in $S_{3} \times Z_{2}$ are 1,2,3 and 6

Possible order of elements in D_{6} are 1,2,3 and 6
No. of elements of order 1 in $S_{3} \times Z_{2}=1$
No. of elements of order 2 in $S_{3} \times Z_{2}=7$
$12=1 \cdot \phi(2)=1$
$21=3 \cdot \phi(1)=3$
\# of elements of order 3 in $S_{3} \times Z_{2}=2$
$31=2 \cdot \phi(1)=2$
\# of elements of order 6 in $S_{3} \times Z_{2}=2$
$32=2 \cdot \phi(2)=2$
\# of elements of order 1 in $D_{6}=1$
order 2 in $D_{6}=n+1=7$
order 3 in $D_{6}=\phi(3)=2$
order 6 in $D_{6}=\phi(6)=2$
then $S_{3} \times Z_{2} \approx D_{6}$
Similarly, $S_{3} \times Z_{2} \approx D_{3} \times Z_{2}$
i.e. $S_{3} \times Z_{2} \approx D_{6}$ and $S_{3} \times Z_{2} \approx D_{3} \times Z_{2}$
Q. $S_{3} \times \frac{Z}{2 Z} \approx$?
(a) Z_{12} (b) $Z_{2} \times Z_{6}$ (c) A_{4} (d) D_{6}

Solution:

$S_{3} \times \frac{Z}{2 Z} \not \approx Z_{12}$ and $Z_{2} \times Z_{6}$ because
$S_{3} \times \frac{Z}{2 Z}$ is non-abelian but Z_{12} and $Z_{2} \times Z_{6}$ is abelian.
Now, checking $S_{3} \times \frac{Z}{2 Z} \approx A_{4}$
Step 1: $0\left(S_{3} \times \frac{Z}{2 Z}\right)=0\left(A_{4}\right)=12$, yes
Step 2: $S_{3} \times \frac{\mathrm{Z}}{2 Z}$ and A_{4} both are non-abelian
Step3: \# of elements of order 2 in $S_{3} \times \frac{Z}{2 Z}=7$
but \# of elements of order 2 in $A_{4}=3$ then $S_{3} \times \frac{Z}{2 Z} \not \not A_{4}$
Q. $Z_{3} \times D_{11} \approx D_{33}$?

Solution: $O\left(Z_{3} \times D_{11}\right)=O\left(D_{33}\right)=66$ yes
then
\# of elements of order 2 in $Z_{3} \times D_{11}$
$12 \phi(1) \cdot 11=11$
\#of elements of order 2 in $D_{33}=33$
$11 \neq 33$
then
$Z_{3} \times D_{11} \not \approx D_{33}$
Q. $Z_{11} \times D_{3} \approx D_{33}$?

Solution:
\# of elements of order 2 in $Z_{11} \times D_{3}=3$
\# of elements of order 2 in $D_{33}=33$
$3 \neq 33$
then $Z_{11} \times D_{3} \not \approx D_{33}$
Q. (i) $Z_{3} \times Z_{9} \approx Z_{27}$?
(ii) $Z_{3} \times Z_{5} \approx Z_{15}$?

Solution:
(i) $Z_{3} \times Z_{9} \not \approx Z_{27}$ because $Z_{3} \times Z_{9}$ is not cyclic and Z_{27} is cyclic.
(ii) $Z_{3} \times Z_{5} \approx Z_{15}$, because $Z_{3} \times Z_{5}$ and Z_{15} both are cyclic as $\operatorname{gcd}(3,5)=1$

So $Z_{3} \times Z_{5} \approx Z_{3 \times 5} \approx Z_{15}$
Q. $U(8) \approx U(12)$?

Solution:
$U(8) \approx Z_{2} \times Z_{2}$
$U(12) \approx Z_{2} \times Z_{2}$
$\Rightarrow U(8) \approx Z_{2} \times Z_{2} \approx U(12)$
$\therefore U(8) \approx U(12)$
Q. (i) $S_{4} \approx D_{12}$ (ii) $S_{3} \times S_{4} \approx S_{6}$

Solution:
(i) $S_{4} \not \approx D_{12}$, because S_{4} has 9 elements of order 2 and D_{12} has 13 elements of order 2 .
(ii) $O\left(S_{3} \times S_{4}\right)=O\left(S_{3}\right) \times O\left(S_{4}\right)=6 \times 24=144$
and $O\left(S_{6}\right)=6!=720$
$\therefore S_{3} \times S_{4} \not \approx S_{6}$.
Q. $G=U(15) \times Z_{10} \times S_{5}$. Find $O(2,3,(123)(15))$ in G and also find inverse of $(2,3,(123)(15))$.

Solution:

$$
\begin{aligned}
& (2,3,(123)(15)) \in U(15) \times Z_{10} \times S_{5} \\
& \Rightarrow(2,3,(1523)) \in U(15) \times Z_{10} \times S_{5} \\
& \Rightarrow O(2,3,(1523))=L C M(O(2), O(3), O(1523))
\end{aligned}
$$

$=\operatorname{LCM}(4,10,4)$
$=20$
$(2,3,(1523))^{-1}=(8,7,(3251))$
Q. $G_{1}=Z_{10} \approx$?
(i) D_{5} (ii) $Z_{2} \times Z_{4}$ (iii) $Z_{2} \times Z_{5}$ (iv) None

Solution:
$O\left(G_{1}\right)=10, O\left(G_{2}\right)=O\left(Z_{2} \times Z_{5}\right)=10$

FUNDAMENTAL THEOREM OF HOMOMORPHISM

If $f: G \rightarrow G^{\prime}$ is onto homomorphism then
$\frac{G}{\operatorname{ker} f} \approx G^{\prime}$
If $f: G \rightarrow G^{\prime}$ is homomorphism then
$\frac{G}{\operatorname{ker} f} \approx \operatorname{Im} f$
Q. $f: G \rightarrow G^{\prime}$ is homomorphism and $O(G)=20$ and $O\left(G^{\prime}\right)=25$. Find possible order of ker f ?
(1) 2 (2) 2 (3) 3 (4) 4

Solution:
Case - I:
Let $O(\operatorname{ker} f)=1$ then
$O\left(\frac{G}{\operatorname{ker} f}\right)=\frac{O(G)}{O(\operatorname{ker} f)}=\frac{20}{1}=20$
$\Rightarrow O(\operatorname{Im} f)=20$
but $O(\operatorname{Im} f) \times O\left(G^{\prime}\right)$ i.e. 20×25 then $O(\operatorname{ker} f) \neq 1$
Case II:
If $O(\operatorname{ker} f)=2$, then
$O\left(\frac{G}{\operatorname{ker} f}\right)=\frac{O(G)}{O(\operatorname{ker} f)}=\frac{20}{2}=10$
but 10×25 then $O(\operatorname{ker} f) \neq 2$.
Case - III
If $O(\operatorname{ker} f)=3$ then
$O\left(\frac{G}{\operatorname{ker} f}\right)=\frac{O(G)}{O(\operatorname{ker} f)}=\frac{20}{3}$ but 3×20
then $O(\operatorname{ker} f) \neq 3$
Case - IV
If $O(\operatorname{ker} f)=4$, then

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

$O\left(\frac{G}{\operatorname{ker} f}\right)=\frac{O(G)}{O(\operatorname{ker} f)}=\frac{2 \sigma}{\not 2}=5$
$5 \mid 25$, so here $O(\operatorname{ker} f)=4$ is possible
Rule: If $O(\operatorname{ker} f)$ divides $O(G)$ then we get the value of $O(\operatorname{Im} f)$ and if $O(\operatorname{Im} f)$ divides $O\left(G^{\prime}\right)$ then that is the possible order of $O(\operatorname{ker} f)$.
Q. $f: Z \rightarrow Z_{4}$, find no of homomorphism?

Solution:
Since Z is cyclic group then it is abelian so all its subgroup are normal.
Case I: $\operatorname{ker} f=\{0\}$ is subgroup of Z
$\frac{G}{\operatorname{ker} f} \approx \operatorname{Im} f$
$\frac{Z}{\{0\}} \approx Z=\operatorname{Im} f$
$\operatorname{Im} f$ is not subgroup of Z_{4} then $\operatorname{ker} f=\{0\}$ is not possible then no homomorphism exist.
Case II:
If $\operatorname{ker} f=Z$ then
$\frac{G}{\operatorname{ker} f}=\frac{Z}{Z} \approx Z_{1}, Z_{4}$ has subgroup or order 1 which is isomorphic to Z_{1}.
Then
\# of elements of order 1 in $Z_{4}=\phi(1)=1$
Case III
ker $f=2 Z$
$\frac{Z}{2 Z} \approx Z_{2}, Z_{4}$ has subgroup of order 2 which is isomorphic to Z_{2}.
Then,
Number of elements of order 2 in $Z_{4}=\phi(2)=1$
Case - IV
ker $f=3 Z$
$\frac{Z}{3 Z} \approx Z_{3}, Z_{4}$ has subgroup of order 3 ?
Ans. No, it does not have subgroup of order 3
Then no homomorphism possible corresponding to the ker $f=3 Z$
Case - V
ker $f=4 Z$
$\frac{Z}{4 Z} \approx Z_{4}$
Z_{4} has subgroup of order 4? Which is isomorphic to Z_{4} ?
Ans. Yes
\# of element of order 4 in $Z_{4}=\phi(4)=2$
So, Total No. of homomorphisms $=1+1+2=4$

NOTE: $f: Z \rightarrow Z_{n}$ has exactly n homomorphisms.
Q. $f: Z_{4} \rightarrow Z$, how many homomorphism?

Solution:
Z_{4} is cyclic then all subgroup of Z_{4} are normal.
Subgroup of Z_{4} are $H_{1}=\{0\}, H_{2}=\{(0,2)\} H_{3}=Z_{4}$
Case I: $\operatorname{ker} f=H_{1}=\{0\}$
$\frac{Z_{4}}{\{0\}} \approx Z_{4}$
but Z has no subgroup of order 4 then
ker $f \neq\{0\}$ i.e. ker $f=\{0\}$ is not possible.

Case - II

ker $f=H_{2}=\{(0,2)\}$
$\frac{Z_{4}}{\{(0,2)\}} \approx Z_{2}$
but Z has no subgroup of order 2 then $\operatorname{ker} f \neq\{(0,2)\}$ i.e. $\operatorname{ker} f=\{(0,2)\}$ is not possible.

Case - III

$\operatorname{ker} f=H_{3}=Z_{4}$
$\frac{Z_{4}}{Z_{4}} \approx Z_{1}$
here Z has subgroup of order 1 which is isomorphic to Z_{1}.
Then, Number of elements or order 1 in $Z=1$
Total No. of Homomorphism = 1
NOTE: Number of Homomorphism from $f: Z_{n} \rightarrow Z$ is exactly 1 .
Q. How many homomorphism from $f: S_{3} \rightarrow Z_{6}$

Solution:
Normal subgroup of S_{3} are:
$H_{1}=\{I\}, H_{2}=A_{3}, H_{3}=S_{3}$

Case I:

$\operatorname{ker} f=\{I\}$
$\frac{S_{3}}{\{I\}} \approx S_{3}$ and Z_{6} has subgroup of order 6 which is not isomorphic to S_{3}.
So $\operatorname{ker} f=\{I\}$ is not possible.
Not, isomorphic because subgroup of cyclic group is cyclic but S_{3} is non-abelian
$\Rightarrow \operatorname{ker} f=\{I\}$ is not possible then no homomorphism exist.
Case- II:
$\operatorname{ker} f=A_{3}$
$\frac{S_{3}}{A_{3}} \approx Z_{2}$
Q. Z_{6} has subgroup of order 2, which is isomorphic to Z_{2} ?

Ans. Yes
Number of elements of order 2 in $Z_{6}=\phi(2)=1$

Case III

ker $f=S_{3}$
$\frac{S_{3}}{S_{3}} \approx Z_{1}$
Q. Z_{6} has subgroup of order 1 , which is isomorphic to Z_{1} ?

Ans. Yes
Number of elements of order 1 in $Z_{6}=\phi(1)=1$
Total No. of homomorphisms $=1+1=2$
NOTE: $f: S_{3} \rightarrow Z_{n}$
No. of homomorphism $=1, n$ is odd
$=2, n$ is even.
(n in Z_{n} we will check)
Q. $f: Z_{6} \rightarrow S_{3}$, how many homomorphism?

Solution:
Normal subgroup of Z_{6} are since Z_{6} is cyclic.
$H_{1}=\{0\}, H_{2}=\{(0,2,4)\}, H_{3}=\{(0,3)\}, H_{4}=Z_{6}$

Case I:

ker $=\{0\}$
$\frac{Z_{6}}{\{0\}} \approx Z_{6}=\operatorname{Im} f$
Q. S_{3} has subgroup of order 6 , which is isomorphic to Z_{6} ?

Ans. It has no subroup or order 6 which is isomorphic to Z_{6} i.e. $\not \approx Z_{6}$. then $\operatorname{ker} f=\{0\}$, not possible.

Case - II

ker $f=\{0,2,4\}=\langle 2\rangle$
$\frac{Z_{6}}{\{0,2,4\}}=\frac{Z_{6}}{\langle 2\rangle} \approx Z_{2}$
S_{3} has subgroup of order 2 which is isomorphic to Z_{2}
then Number elements of order 2 in $S_{3}=3$.
Case - III
$\operatorname{ker} f=\{0,3\}=\langle 3\rangle$
$\frac{Z_{6}}{\langle 3\rangle} \approx Z_{3}$
and S_{3} has subgroup of order 3 which is isomorphic to Z_{3}.
Number of elements of order 3 in $S_{3}=2$
Case - IV
$\operatorname{ker} f=Z_{6}$
$\frac{Z_{6}}{Z_{6}} \approx Z_{1}$
S_{3} has subgroup of order 1 then
\#of elements of order 1 in $S_{3}=1$
Total No. of homomorphism $=3+2+1=6$
Q. $f: \frac{Z}{9 Z} \times \frac{Z}{4 Z} \rightarrow \frac{Z}{5 Z} \times \frac{Z}{6 Z}$, find no. of homomorphism?

Solution: $f: Z_{9} \times Z_{4} \rightarrow Z_{5} \times Z_{6}$
$f: Z_{36} \rightarrow Z_{30}$
$=\operatorname{gcd}(36,30)=6$
Q. $f: U(11) \times \frac{Z}{3 Z} \rightarrow U(11) \times \frac{Z}{9 Z}$
how many homomorphism?
Solution:
$f: Z_{10} \times Z_{3} \rightarrow Z_{10} \times Z_{9}$
$f: Z_{30} \rightarrow Z_{90}$
$\operatorname{gcd}(30,90)=30$
Q. How many homomorphism in $f: G L_{2}\left(\mathbf{F}_{2}\right) \rightarrow U(7)$?

Solution:

$$
\begin{aligned}
& f: G L_{2}\left(\mathbf{F}_{2}\right) \rightarrow U(7) \\
& f: S_{3} \rightarrow Z_{6}
\end{aligned}
$$

No. of homomorphism $=2$, as n is even in Z_{6}.
Q. $f: U(11) \rightarrow U(13)$, how many onto homomorphism?

Solution:

$$
f: U(11) \rightarrow U(13)
$$

i.e. $f: Z_{10} \rightarrow Z_{12}$

Since 12 does not divide 10 hence no onto homomorphism exist.
Q. $f: U(13) \rightarrow U(7)$, how many onto homomorphism?

Solution:
$f: Z_{12} \rightarrow Z_{6}$, i.e. $U(13) \approx Z_{12}, U(7) \approx Z_{6}$
$6 \mid 12$, then $\#$ of onto homomorphism $=\phi(6)=2$
Q. Homomorphic image of abelian group is abelian i.e.
$f: G \rightarrow G^{\prime}$ is an onto homomorphism, if G is abelian then G^{\prime} is abelian.
Solution:
Let $f: G \rightarrow G^{\prime}$ is onto homomorphism and G is abelian then $x y=y x, \forall x, y \in G$
Let $f(x) \in G^{\prime}$
$f(y) \in G^{\prime}$
$f(x) \cdot f(y)=f(x y)[\because f$ is homomorphism $]$
$=f(y x)[x y=y x, \because$ Gis abelian $]$
$=f(y) \cdot f(x)$
$\Rightarrow f(x) \cdot f(y)=f(y) \cdot f(x), \forall f(x), f(y) \in G^{\prime}$ then G^{\prime} is abelian. [Proved]

Converse of the above theorem need not be true

$f: S_{3} \rightarrow Z_{2}$ with ker $f=A_{3}$ then
$\frac{S_{3}}{A_{3}} \approx Z_{2}$
i.e. $f\left(S_{3}\right) \approx Z_{2}$ with $\operatorname{ker} f=A_{3}$
Z_{2} is abelian but S_{3} is non-abelian.
Q. Homomorphic image of cyclic group is cyclic but converse need not be true.
i.e. $f: G \rightarrow G^{\prime}$ is onto homomorphism and G is cyclic then G^{\prime} is cyclic.

Solution:

Let $f: G \rightarrow G^{\prime}$ is homomorphism and G is cyclic then $\exists a \in G$ s.t. $G=\langle a\rangle$
$f(x) \in G^{\prime}, x \in G \Rightarrow x=a^{n}, n \in Z$
$\Rightarrow f(x)=f\left(a^{n}\right)$
$=f\left(a_{1}, a_{2} \ldots a_{n}\right) n$ times
$=f(a) \cdot f(a) \ldots . . . f(a)[f$ is homomorphism]
$=(f(a))^{n}$, where $n \in Z$
then $G^{\prime}=\langle f(a)\rangle$
then G^{\prime} is cyclic.
NOTE: Converse of above statement need not be true.
Example: $f: S_{4} \rightarrow Z_{1}$ with $\operatorname{ker} f=S_{4}$
$\frac{S_{4}}{S_{4}}=\left\{I S_{4}\right\} \approx Z_{1}$ (RHS)
Z_{1} is cyclic but S_{4} is not cyclic.
Q. $f: S_{4} \rightarrow Z_{2}$ is onto homomorphism? If yes then find ker f ?

Solution:
$f: S_{4} \rightarrow Z_{2}$ onto homomorphism exist with $\operatorname{ker} f=A_{4}$
$\frac{S_{4}}{A_{4}}=\left\{I A_{4}\right.$, odd permutation $\left.A_{4}\right\} \approx Z_{2} \approx Z_{2}$ (RHS)
Q. $f: A_{4} \rightarrow Z_{2}$, is onto homomorphism? If yes then find $\operatorname{ker} f$?

Solution:
No, onto homomorphism exists because A_{4} have no normal subgroup of order 6 .
Q. $f: Z_{6} \times Z_{2} \rightarrow S_{3}$, how many onto homomorphism.

Solution:
We know that homomorphic image of abelian group is abelian.
Since $Z_{6} \times Z_{2}$ is abelian then Image of f is abelian and S_{3} is non-abelian then onto homomorphism does not exist.
Q. $f: Z_{16} \rightarrow Z_{2} \times Z_{2}$, how many onto homomorphism?

Solution:
We know that homomorphic image of cyclic group is cyclic then
Since Z_{16} is cyclic then image of f is cyclic but $Z_{2} \times Z_{2}$ is not cyclic then no onto homomorphism exists.
Q. $f: Z_{16} \times Z_{2} \rightarrow Z_{4} \times Z_{4}$, how many onto homomorphism?

Solution:
No, does not exist $f: G \rightarrow G^{\prime}$
Let $G=Z_{16} \times Z_{2}, G^{\prime}=Z_{4} \times Z_{4}, O\left(G^{\prime}\right)=16, O(G)=32$
$\frac{G}{\operatorname{ker} f} \approx G^{\prime} O(\operatorname{ker} f)=2$
We have no ker f s.t. $\frac{Z_{16} \times Z_{2}}{\operatorname{ker} f}$
which is not to $\approx Z_{4} \times Z_{4}$
\therefore No onto homomorphism exist.
Q. Let G be an abelian group of order n.

A mapping $f: G \rightarrow G$ defined by $f(x)=x^{m}$ is isomorphism if $\operatorname{gcd}(m, n)=1$
Solution:
Let $O(G)=n$ and G is abelian then
$\Rightarrow x y=y x, \forall x, y \in G$
$f: G \rightarrow G$ defined by
$f(x)=x^{m}$
(i) f is homomorphism:
$f(x y)=(x y)^{m}$
$=x^{m} y^{m}$ (G is abelian)
$=f(x) \cdot f(y)$
$f(x \cdot y)=f(x) \cdot f(y), \quad \forall x, y \in G$ then f is homomorphism.

(2) f is one-one:

Let $f(x)=f(y)$
$\Rightarrow x^{m}=y^{m}$
$\Rightarrow x^{m} y^{-m}=e$
$\Rightarrow\left(x y^{-1}\right)^{m}=e$
$\Rightarrow O\left(x y^{-1}\right) \mid m$
$\left[a \in G, a^{m}=e \because O(a) \mid m\right]$
Let $x \in G, y \in G \Rightarrow y^{-1} \in G$ [Since G is group]
$x \in G, y^{-1} \in G \Rightarrow x y^{-1} \in G$
$\Rightarrow O\left(x y^{-1}\right) \mid O(G)$
$\Rightarrow O\left(x y^{-1}\right) \mid n$
From equation (1) and (2)
$O\left(x y^{-1}\right) \mid m$ and $O\left(x y^{-1}\right) \mid n$
then $\Rightarrow O\left(x y^{-1}\right) \mid \operatorname{gcd}(m, n)$
i.e. $O\left(x y^{-1}\right) \mid \operatorname{gcd}(m, n)$
$\Rightarrow O\left(x y^{-1}\right) \mid 1$, where $\operatorname{gcd}(m, n)=1$
$\Rightarrow x y^{-1}=e$
$\Rightarrow x=y$
then f is one-one.
(3) f is onto: $f: G \rightarrow G$ and G is finite, if f is one-one then f is onto.
$\Rightarrow f$ is onto ($\because f$ is one-one)
$\Rightarrow f$ is isomorphism.
Q. $f: Z_{20} \rightarrow Z_{20}$ defined by $f(x)=7 x$ is isomorphism?

Solution:
Since $\operatorname{gcd}(7,20)=1$ then
$f(x)=7 x$ is isomorphism.
Q. $f: Z_{20} \rightarrow Z_{20}$, defined by $f(x)=5 x$ is isomorphism?

Solution:
$f(x)=5 x$ is homomorphism but not one-one $(f(0)=0$ and $f(4)=0$ but $0 \neq 4)$
then $f(x)=5 x$ not onto.
Hence, it is not isomorphism.

Conjugate Elements: Let $a, b \in G$, we say that a, i conjugate of b if \exists some $x \in G$ such that $b=x a x^{-1}$. If a is conjugate to $b(a \sim b)$ then $\exists x \in G$ s.t. $b=x a x^{-1}$ or $x^{-1} a x$.
Q. Show that conjugate Relation (\sim) is an equivalence relation.

Solution:
Reflexive: $e \in G$ s.t. $a=e a e^{-1}$ then $a \sim a$.
Symmetric: IF $a \sim b$, then $\exists x \in G$ s.t.
$b=x a x^{-1}$
$\Rightarrow x b\left(x^{-1}\right)^{-1}=0$
$\Rightarrow a=x^{-1} b x, x \in G \Rightarrow x^{-1} \in G$
$\Rightarrow b \sim a$
Transitive: If $a \sim b$ and $b \sim c$ then $a \sim c$.
$a \sim b$ then $\exists x \in G$ s.t. $b=x a x^{-1}$
and $b \sim c$ then $\exists y \in G$ s.t. $c=y b y^{-1}$
From (1) and (2)
$c=y x a x^{-1} y^{-1}$
$=(y x) a(y x)^{-1}(x \in G, y \in G \Rightarrow x y \in G)$
$c=z a z^{-1}(z=y x \in G)$
then $a \sim c$.

Conjugate Class

Definition: Let $a \in G$, then conjugate class of ' a ' is denoted by $C l(a)$ and defined by
$C l(a)=\left\{y a y^{-1} \mid y \in G\right\}$
Note: $e \in G$, then $C l(e)=\left\{\right.$ yey $\left.^{-1} \mid y \in G\right\}$
$=\left\{y y^{-1} \mid y \in G\right\}=\{e\}$
then $O(C l(e))=1$
Note: (i) If G is abelian and $a \in G$ then
$C l(a)=\left\{y a y^{-1} \mid y \in G\right\}$
$=\left\{a y y^{-1} \mid y \in G\right\}$, since G is abelian $a y=y a$
$=\{a e\}$
$\Rightarrow C l(a)=\{a\}$
$\Rightarrow O(C l(a))=1$
(ii) If G is cyclic then $\mathrm{Cl}(a)=\{e\}$

Note: $a \in G$ then $\bigcup_{a \in G} C l(a)=G$

Personalized Mentorship +91_9971030052

$\Rightarrow 0\left(\sum_{a \in G} C l(a)\right)=O(G)$
$\Rightarrow \sum_{a \in G} O(C l(a))=O(G)$
Example: $G=Z_{10}, 3 \in Z_{10}$, find $C l(3)$
$C l(3)=\left\{y^{3} y^{-1} \mid y \in G\right\}$
$=\{3\}$
$O(C l(3))=1$
i.e. $a \in Z_{10}$, then $C l(a)=\{a\}$
$O(C l(a))=1$
$\sum_{a \in G}(C l(a))=1+1+1+1+1+1+1+1+1+1$
$=O(G)=O\left(Z_{10}\right)$
$\sum_{a \in G} O(C l(a))=O\left(Z_{10}\right)=10$
Theorem: If G be a finite group and $a \in G$ then
$O(C l(a))=\frac{O(G)}{O(N(a))}$
where $N(a)=\{x \in G \mid x a=a x\}$ or
$C(a)=\{x \in G \mid x a=a x\}$ i.e. Normalizer of an element $a \in G$.
First class Equation:
$O(C l(a))=\frac{O(G)}{O(N(a))}$
$O(G)=\sum_{a \in G} O(C l(a))=\sum_{a \in G} \frac{O(G)}{O(N(a))}$
$O(G)=\sum_{a \in G} O(C l(a))=\sum_{a \in G} \frac{O(G)}{O(N(a))}$
$\Rightarrow O(G)=\sum_{a \in G} \frac{O(G)}{O(N(a))}$
$\Rightarrow O(G)=\sum_{a \in G} i_{G}(N(a))$
$i_{G}(N(a))=\frac{O(G)}{O(N(a))}$
Second Class Equation: We know that
$O(G)=\sum_{a \in G} \frac{O(G)}{O(N(a))}$
$\Rightarrow O(G)=\sum_{a \in Z} \frac{O(G)}{O(N(a))}+\sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}$
$\Rightarrow O(G)=O(Z(G))+\sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}$
$O(G)=O(Z(G))+\sum_{a \notin Z(G)} i_{G}(N(a))$
Q. $G=Z_{4} \times Z_{2}$, write class equation of G.

Solution:
$G=Z_{4} \times Z_{2}$ is abelian group
$\sum_{a \in G} O(C l(a))=O(G)$
$\Rightarrow O(G)=O\left(C l\left(a_{1}\right)\right)+O\left(C l\left(a_{2}\right)\right)+\ldots \ldots .+O\left(C l\left(a_{8}\right)\right)$
$\Rightarrow O(G)=O(C l(0,0))+0(C l(0,1))+0(C l(1,0))+0(C l(3,0))+0(C l(3,1))$
Then,
$O(G)=\frac{O(G)}{O(N(0,0))}+\frac{O(G)}{O(N(0,1))}+\ldots .+\frac{O(G)}{O(N(3,1))}$
$=\frac{8}{8}+\frac{8}{8}+\frac{8}{8}+\frac{8}{8}+\frac{8}{8}+\frac{8}{8}+\frac{8}{8}+\frac{8}{8}$
$=1+1+1+1+1+1+1+1$
$\therefore O\left(Z_{4} \times Z_{2}\right)=1+1+1+1+1+1+1+1$
Note: If G is abelian group, then number of conjugate class in $G=O(G)$
Q. $G=D_{4}$, find conjugate class of each element of D_{4}.

Solution: $G=D_{4}=\left\{R_{0}, R_{90}, R_{180}, R_{270}, H, V, D, D^{\prime}\right\}$
$R_{0} \in D_{4}$ s.t.
$C l\left(R_{0}\right)=\left\{y y^{-1} \mid y \in G\right\}=\left\{y y^{-1} \mid y \in G\right\}$
$=\left\{R_{0}\right\}$
$O\left(C l\left(R_{0}\right)\right)=1$
$\left(R_{90}\right) \in D_{4}$ s.t.
$C l\left(R_{90}\right)=\left\{y R_{90} y^{-1} \mid y \in D_{4}\right\}$
$=\left\{R_{0} R_{90} R_{0}^{-1}, R_{90} R_{90} R_{90}^{-1}, R_{180} R_{90} R_{180}^{-1}, R_{270} R_{90} R_{270}^{-1}, H R_{90} H^{-1}, V R_{90} V^{-1}, D R_{90} D^{-1} D^{\prime} R_{90} D^{\prime-1}\right\}$
$=\left\{R_{90}, R_{90}, R_{90}, R_{90}, R_{270}, R_{270}, R_{270}, R_{270}\right\}$
$C l\left(R_{90}\right)=\left\{R_{90}, R_{270}\right\}$
$R_{180} \in D_{4}$

```
\(C l\left(R_{180}\right)=\left\{y R_{180} y^{-1} \mid y \in D_{4}\right\}\)
\(C l\left(R_{180}\right)=\left\{R_{180}\right\}\)
\(R_{270} \in D_{4}\)
\(C l\left(R_{270}\right)=\left\{y R_{270} y^{-1} \mid y \in D_{4}\right\}\)
\(C l\left(R_{270}=\left\{R_{90}, R_{270}\right\}\right) H \in D_{4}\)
\(C l(H)=\{H, V\}\)
\(C l(V)=\{H, V\}\)
\(C l(D)=\left\{D, D^{\prime}\right\}\)
\(C l\left(D^{\prime}\right)=\left\{D, D^{\prime}\right\}\)
(i) \(\operatorname{Cl}\left(R_{90}\right)=\left\{R_{0}\right\}\)
(ii) \(\operatorname{Cl}\left(R_{90}\right)=\left\{R_{90}, R_{270}\right\}=C l\left(R_{270}\right)\)
(iii) \(\mathrm{Cl}\left(R_{180}\right)=\left\{R_{180}\right\}\)
(iv) \(C l(H)=\{H, V\}=C l(V)\)
(v) \(C l(D)=\left\{D, D^{\prime}\right\}=C l\left(D^{\prime}\right)\)
No. of class in \(D_{4}=5\)
Now, class equation of \(D_{4}\)
\[
\begin{aligned}
& O(G)=\sum_{a \in G} O(C l(a))=O\left(C l\left(R_{0}\right)\right)+O\left(C l\left(R_{90}\right)\right)+O\left(C l\left(R_{270}\right)\right) O(C l(H))+O(C l(D)) \\
& =1+2+1+2+2 \\
& O\left(D_{4}\right)=1+1+2+2+2
\end{aligned}
\]
```

This is the class equation.

Class Equation of S_{3}

$$
\begin{aligned}
& S_{3}=\{I,(12),(13),(23),(123),(132)\} \\
& I \in S_{3} \\
& C l(I)=\{I\} \\
& (12) \in S_{3} \\
& C l(12)=\left\{y(12) y^{-1} \mid y \in S_{3}\right\} \\
& =\left\{I(12) I^{-1},(12)(12)(12)^{-1},(13)(12)(13)^{-1}(23)(12)(23)^{-1},(123)(12)(123)^{-1},(132)(12)(132)\right\} \\
& C l(12)=\{(12),(12),(23),(13),(23),(13)\} \\
& C l(12)=\{(12),(13),(23)\} \\
& C l(123)=\left\{y(123) y^{-1} \mid y \in S_{3}\right\}
\end{aligned}
$$

$$
\left.\begin{array}{l}
=\left\{\begin{array}{l}
I(123) I^{-1},(12)(123)(12)^{-1},(13)(123)(13)^{-1} \\
(23)(123)(23)^{-1},(123)(123)(123)^{-1},(132)(123)(132)^{-1}
\end{array}\right\}
\end{array}\right\} \begin{array}{ll}
C l(123)=\{(123),(132),(132),(132),(123),(123)\}
\end{array}=\{(123),(132)\},
$$

No. of conjugate class in $S_{3}=3$
class equation of $S_{3}=\sum_{a \in S_{3}} C l(a)$
$=O(C l(I))+O(C l(12))+O(C l(123))$
$=1+3+2$
i.e. $O\left(S_{3}\right)=1+2+3$. This is class equation.

Note: Number of conjugate class in $S_{n}=P(n)$ i.e. partition of n
No. of conjugate class in $D_{n}=\left\{\begin{array}{l}\frac{n+6}{2}, \text { if } n \text { is even } \\ \frac{n+3}{2}, \text { if } n \text { is odd }\end{array}\right.$
Q. Write the class equation of S_{4} ?
Q. If $O(G)=p^{n}$ then $O(Z(G))>1$.

Solution:
Let G be a group and $O(G)=p^{n}$
Now,

$$
\begin{equation*}
Z(G)=\{Z \in G \mid x z=z x, \forall x \in G\} \tag{2}
\end{equation*}
$$

We know, $O(G)=O(Z(G))+\sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}$
where $N(a)=\{x \in G \mid x a=a x\}$, since $N(a)$ is subgroup of G then by Lagrange's Theorem $O(N(a)) \mid O(G)$
If $a \notin Z(G)$ then $O(N(a))=p^{k}, 0<k<n$
$\Rightarrow \frac{O(G)}{O(N(a))}=\frac{p^{n}}{p^{k}}=p^{n-k}$
Now, $\exists p$ such that $p \left\lvert\, \frac{O(G)}{O(N(a))}\right.$
$\Rightarrow p \left\lvert\, \sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}\right.$
Now,
$p \mid O(G)=p^{n}$

From equation (5) and (6)
$p \mid O(G)$ and $p \left\lvert\, \sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}\right.$
$\Rightarrow p \left\lvert\, O(G)-\sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))}\right.$
$\Rightarrow p \mid O(Z(G))$ [From equation (3)]
$\Rightarrow O(Z(G))>1$
Q. If $O(G)=p^{3}$ and G is non-abelain then $O(Z(G))=$
(a) 1 (b) p^{3} (c) p^{2}
(d) p

Ans. (b)
$O(Z(G))=p^{3}$, then $\frac{O(G)}{O(Z(G))}=\frac{p^{3}}{p^{3}}=1 \approx Z_{1}$
G is abelain but given G is non-abelian [Also if $O(G)=p^{n}$ then $O(Z(G))>1$]
(a) If $O(G)=p^{3}$ then $O(Z(G)) \neq 1$ because by theorem $O(Z(G))>1$. Hence not possible
(c) If $O(G)=p^{3}$ and $O(Z(G))=p^{2}$ then
$\frac{O(G)}{O(Z(G))}=\frac{p^{3}}{p^{2}}=p \approx Z_{p}$
$\Rightarrow \frac{G}{Z(G)}$ is cyclic G is abelian but G is non-abelian then $O(Z(G)) \neq p^{2}$.
(d) Therefore, $O(Z(G))=p$ is correct option.

Example: (i) $O(G)=8$ and G is non-abelian then $O(Z(G))=2$.
(ii) $O(G)=27$ and G is non-abelian then $O(Z(G))=3$
Q. If $O(G)=p^{3}$, then $O(Z(G))=$?
(a) 1 (b) p^{3} (c) p^{2} (d) p

Solution:

$$
O(G)=p^{3}
$$

Case I: If G is abelian then $O(Z(G))=O(G)=p^{3}$
Case II: If G is non-abelain then $O(Z(G))=p$
Note: $O(C l(a))$ in $S_{n}=\frac{O(G)}{O(N(a))}=\frac{\underline{n}}{1^{\alpha_{1}} \cdot 2^{\alpha_{2}} \ldots k^{\alpha_{k}}\left|\alpha_{1}\right| \alpha_{2} \ldots 1}$

Class Equation of S_{4}

Q. $G=S_{4}$, \# of conjugate class in $S_{4}=P(4)=5$
$4 \rightarrow(1234)$
$3+1 \rightarrow(123)$
$2+2 \rightarrow(12)(34)$
$2+1+1 \rightarrow(12)$
$1+1+1+1 \rightarrow I$
$O(C l(1234))=\frac{O(G)}{O(N(1234))}=\frac{\lfloor 4}{1^{\circ} \cdot 2^{\circ} \cdot 3^{\circ} \cdot 4^{\prime}\lfloor 1}=\frac{A \times 3 \times 2 \times 1}{\not A}=6$
$O(C l(123))=\frac{\underline{4}}{1^{\circ} \cdot 2^{\circ} \cdot 3^{1} \cdot 11}=\frac{4 \times \not p \times 2 \times 1}{1 \times \not p^{\prime}}=8$
$O(C l(12)(34))=\frac{\underline{4}}{2^{2} \underline{2}}=\frac{A \times 3 \times \not 2 \times 1}{A \times \not 2} \times 1 \quad=3$
$O(C l(12))=\frac{\underline{4}}{1^{2} \cdot 2\lfloor\underline{1}}=\frac{\not \boxed{A} \times 3 \times \not 2 \times 1}{\not 2 \times \not 2}=6$
$O(C l(I))=\frac{\underline{4}}{1^{4}\lfloor 4}=1$
Class Equation of $S_{4}=\sum_{a \in G} O(C l(a))$
$=O(C l(I))+O(C l(12))+O(C l(12)(34))+O(C l(123))+O(C l(1234))$
$O\left(S_{4}\right)=1+6+3+8+6$ (Class equation)
$\Rightarrow O\left(S_{4}\right)=24$
Q. $(12)(34) \in S_{n}, n \geq 4$, find $O(C l(12)(34))$?

Solution:

$$
G=S_{n}
$$

$$
n=2+2+1+1+1+\ldots .+1
$$

$$
O(C l(12)(34))=\frac{O(G)}{O(N(12)(34))}=\frac{\lfloor n}{1^{n-4} \cdot 2^{2}\lfloor n-4\lfloor 2}
$$

$$
=\frac{n(n-1)(n-2)(n-3) \underline{n}-4}{8 \underline{n}-4}
$$

$O(C l(12)(34))=\frac{n(n-1)(n-2)(n-3)}{8}$
Q. How many elements commute with (12)(34) in $S_{n}, n \geq 4$?

Solution:
$\frac{O(G)}{O(N(a))}=\frac{\underline{n}}{1^{\alpha_{1}} \cdot 2^{\alpha_{2}} \ldots . . k^{\alpha_{k}}\left|\alpha_{1}\right| \alpha_{2} \ldots \mid \alpha_{k}}$
$\frac{\underline{n}}{O(N(a))}=\frac{\underline{n}}{1^{\alpha_{1}} \cdot 2^{\alpha_{2}} \ldots . k^{\alpha k}\left|\alpha_{1}\right| \alpha_{2} \ldots . \mid \alpha_{k}}$
$\Rightarrow O(N(a))=1^{\alpha_{1}} \cdot 2^{\alpha_{2}} \ldots . . k^{\alpha_{k}} \cdot \alpha_{1} \cdot \alpha_{2} \ldots \cdot \alpha_{k}$
$=1^{n-4} \cdot 2^{2}\lfloor n-4\lfloor 2$
$=8 \underline{n}-4$
Q. Let S_{10} denote the group of permutation 10 symbol then the \# of elements of S_{10} commute with (13579)

Solution:

$$
G=S_{10}
$$

$$
10=5+1+1+1+1+1
$$

$O(N(13579))=$?
$O(C l(13579))=\frac{O(G)}{O(N(13579))}=\frac{\underline{10}}{1^{5} \cdot 5^{1}\lfloor 51}$
$O(C l(13579))=\frac{\boxed{10}}{5 \underline{5}}$
then $O(N(13579))=5 \leq 5$
Q. $G=U(15)$, find class equation and also find \# of conjugate class.

Solution:
$G=U(15)$ is abelian group then
No. of conjugate class $=O(U(15))=8$
Note: $O(G)=p^{3}$ and G is non-abelian then
\# of conjugate class in $G=p^{2}+p-1$
Q. $O(G)=3^{3}$, find \# of conjugate class in G ?
(a) 1 (b) 27 (c) 11 (d) 20

Solution:
Case I: $O(G)=27$ and G is abelian then
\# of conjugate class in $G=O(G)=27$
Case II: $O(G)=27$ and G is non-abelian then
\# of conjugate class $=3^{2}+3-1=9+3-1=11$
Q. How many conjugate class in S_{5}

Solution:
$\#$ of conjugate class in $S_{5}=P(5)$
5
4+1
3+2
$3+1+1$
$2+2+1$
$2+1+1+1$
$1+1+1+1+1$
5-conjugate class in S_{5}.
Q. $f=(123) \in S_{n}, n \geq 3$, how many elements commute with (123).

Solution:
$n=3+1+1+1+\ldots .+1$
\# of elements commute with (123) in S_{n}
$=1^{n-3} \cdot 3^{1}\lfloor n-3\lfloor 1$
$=3 \mid n-3$
Q. Which of the following is class equation of group
(i) $10=1+1+1+2+5$
(ii) $4=1+1+2$
(iii) $8=1+1+3+3$
(iv) $6=1+2+3$

Solution:
(b)
if $O(G)=4 \ll_{Z_{2} \times Z_{2}}^{Z_{4}}$
Class equation is $1+1+1+1$ so this is not possible since both are abelian.
If $G \approx Z_{4}$ then class equation is $1+1+1+1=4$
If $G \approx Z_{2} \times Z_{2}$ then class equation is $4=1+1+1+1$
So the class equation given in option is not possible.
(c) $a \in G$ and $O(C l(a))=3$ then $O(C l(a)) \mid O(G)$
$\Rightarrow 3 \mid 8$ but 3×8 then $O(C l(a))=3$ is not possible if $O(G)=8$
(a)
$10=1+1+1+2+5$
$\Rightarrow O(Z(G))=3$
$\Rightarrow 3|O(G) \Rightarrow 3| 10$ (By Lagrange Theorem)
[Since $Z(G)$ is subgroup of G then by Lagrange Theorem $O(Z(G)) \mid O(G)$]
But it is not possible thus $10=1+1+1+2+5$ is not a class equation.
Note: If $O(C l(a))=1, a \in G$
$\Rightarrow \frac{O(G)}{o(N(a))}=1 \Rightarrow O(G)=O(N(a))$
i.e. $a \in Z(G)$
Q. If $O(G)=p^{2}$, then G is always abelian.

Solution:
Let $O(G)=p^{2}$ and $Z(G)$ is Centre of group G then by Lagrange, Theorem possible order of $Z(G)$ are $1, p$ and p^{2}.

If $O(G)=p^{n}$, then $O(Z(G))>1$ then $O(Z(G)) \neq 1$ then only possible order or $Z(G)=p$ or p^{2}.
Case I: If $O(Z(G))=p$, then
$\frac{O(G)}{O(Z(G))}=p$
$\Rightarrow \frac{G}{Z(G)} \approx Z_{p}$, as Z_{p} is abelian
$\Rightarrow G$ is abelian
Case II: If $O(Z(G))=p^{2}$ then
$\frac{O(G)}{O(Z(G))}=1 \approx Z_{1}$
$\Rightarrow G$ is abelian
From case I and II
G is always abelian [Proved].

Existence of elements of prime order.

Statement:

Let G be a finite abelian group and let p be a prime that divides the order of G . Then G has an element of order p.
Note: Here we'll use the method of mathematical induction on $|G|$
We assume that the statement is true for all abelian groups with fewer elements than G and use this assumption to show that the statement is true for G as well.
Certainly, G has elements of prime order, for if $|x|=m$ and $m=q \cdot n$ where q is prime, then $|x|^{n}=q$. So let x be an element of G of some order (prime) q, say.
If $q=p$, we are finished; so assume $q \neq p$.
\because every subgroup of an abelian group is normal, we may construct the factor group
$\bar{G}=G /\langle x\rangle$.
Then \bar{G} is abelian and p divides $|\bar{G}|$,
$\because|\bar{G}|=|G| / q$.
By induction, \bar{G} has an element call it $y\langle x\rangle$ of order p. Thus the coset $y\langle x\rangle$ raised to $p+h$ power is the identity element $\langle x\rangle$ in \bar{G}.
i.e. $(y\langle x\rangle)^{p}=y^{p}\langle x\rangle=\langle x\rangle$

It follows, then, that $y^{p} \in\langle x\rangle$, so that $y^{p}=e$ or y^{p} has order q. If $y^{p}=e$, then y is the desired element of order p; if y^{p} has order q then y^{2} has order p. In either case, we have produced an element of order q.

Exam Point: Such proofs are not easy to remember. But if we decode those by visualizing some standard group then it's easy to understand, then keep revising on different intervals.
\# Exa. Here think about $U(20)$; abelian group and now think how you take x, then what'll be the factor group and then what will be y, y^{q} !

[5] Fundamental Theorem of Finite Abelian Group

Statement: Every finite abelian group is a direct product of cyclic groups of prime power order. Moreover the factorization is unique except for rearrangement of the factors.
Exam Point: Proof is not expected only remember the statement is necessary point.

Use of Fundamental Theorem:

The fundamental theorem is extremely powerful. As an application, we can use it as an algorithm for constructing all abelian groups of any order.
Example: Let's look at groups of order p^{k} where p is a prime and $k \leq 4$.

Order of G	Partitions of \boldsymbol{k}	Possible Direct Products
P	1	\mathbf{Z}_{p}
p^{2}	2	$\mathbf{Z} p^{2}$
$\mathbf{Z} p \times \mathbf{Z} p$		
p^{3}	$2+1$ $2+1$	$\mathbf{Z} p^{3}$

	$1+1+1$	$\mathbf{Z} p^{2} \times \mathbf{Z} p$ $\mathbf{Z} p \times \mathbf{Z} p \times \mathbf{Z} p$
p^{4}	4	$\mathbf{Z} p^{4}$
	$3+1$	$\mathbf{Z} p^{3} \times \mathbf{Z} p$
	$2+2$	$\mathbf{Z} p^{2} \times \mathbf{Z} p^{2}$
	$2+1+1$	$\mathbf{Z} p^{2} \times \mathbf{Z} p \times \mathbf{Z} p$
	$1+1+1+1$	$\mathbf{Z} p \times \mathbf{Z} p \times \mathbf{Z} p \times \mathbf{Z} p$

Example: Let G be an abelian group of order 1176.
$\because 1176=2^{3} \cdot 3 \cdot 7^{2}$
Let's write all possible abelian groups (up to isomorphism) of order 1176.
$Z_{8} \times Z_{3} \times Z_{49}$
$Z_{4} \times Z_{2} \times Z_{3} \times Z_{49}$
$Z_{2} \times Z_{2} \times Z_{2} \times Z_{3} \times Z_{49}$
$Z_{8} \times Z_{3} \times Z_{7} \times Z_{7}$
$Z_{4} \times Z_{2} \times Z_{3} \times Z_{7} \times Z_{7}$
$Z_{2} \times Z_{2} \times Z_{2} \times Z_{3} \times Z_{7} \times Z_{7}$
[6] Existence of subgroups of Abelian group.
Statement: If m divides the order of a finite abelian group, then G has a subgroup of order m.
(Remember the statement)

Sylow Theorems Segment

[1] (Sylow's First Theorem) Existence of subgroups of Prime-Power order.
Statement: Let G be a finite group and let p be a prime. If p^{k} divides $|G|$, then G has at least one subgroup of order p^{k}.

[2] (Cauchy's Theorem)

Statement: Let G be a finite group and p be a prime that divides the order of G . Then G has an element of order p.
[3] (Sylow's Second Theorem)
Statement: If H is a subgroup of a finite group G and $|H|$ is a power of a prime p, then H is contained in some Sylow- p subgroup of G.

[4] (Sylow's Third Theorem)

Statement: The number of Sylow p-subgroups of G is equal to 1 modulo p and divides $|G|$. Furthermore, any two Sylow p-subgroups of G are conjugate.
[5] (A unique Sylow p-subgroup)
Statement: A Sylow p-subgroup of a finite group G is a normal subgroup of G if and only if it is the only Sylow p subgroup of G.

[6] (Applications of Sylow Theorems)

Exam Points:

(i) Classification of Groups of order $2 p$

Let $|G|=2 p$, where p is a prime. Then G is isomorphic to $Z_{2 p}$ or D_{p}

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

(ii) Cyclic Groups of order p^{q}

If G is a group of order $p q$, where p and q are primes, $p<q$ and p does not divide $(q-1)$, then G is cyclic. In particular G is isomorphic to $\mathbf{Z}_{p q}$.

Type: Complete Chapter (24) Sylow Theorems (For Proof

Learning in categories now:

p-group: A group G is said to be p-group if $O(G)=p^{n}$.
For example:
$O(G)=64$ is p-group
yes, $O(G)=2^{6}=p^{6}$, where $p=2$

Cauchy's Theorem for Finite Abelian Group:

Statement: Let G be a finite abelian group and $p \mid O(G)$ then $\exists e \neq a \in G$ such that $a^{p}=e$.
Note: If G be a finite abelain group and $p \mid O(G)$ then G has subgroup of order p, which is ismorphic to Z_{p}.
e.g.
$O(G)=12$ and G is abelain $2 \mid 2$, then G has subgroup of order 2 .
$O(G)=12<{ }_{Z_{2} \times Z_{6}}^{Z_{12}}$
(i) If $G \approx Z_{12}$ then G has unique subgroup of order 2
$\langle 6\rangle=\{0,6\} \approx Z_{2}$
(ii) If $G \approx Z_{2} \times Z_{6}$, then G has subgroup of order 2 because $Z_{2} \times Z_{6}$ has elements of order 2 .
\# of subgroup of order 2 in $Z_{2} \times Z_{6}=\frac{3}{\phi(2)}=3$
$H_{1}=\langle(0,0)\rangle=\{(0,0),(1,0)\} \approx Z_{2}$
$H_{2}=\langle(0,3)\rangle=\{(0,0),(0,3)\} \approx Z_{2}$
$H_{3}=\langle(1,3)\rangle=\{(0,0),(1,3)\} \approx Z_{2}$
Again,
$O(G)=12$, and G is abelian, $3 \mid 12$, then G has subgroup of order 3

(i) If $G \approx Z_{12}$, then G has subgroup of order 3

Personalized Mentorship +91_9971030052

Mindset Makers: An Exclusive Platform UPSC Prep. With Science (Maths) Optional

$H=\langle 4\rangle,\{0,4,8\} \approx Z_{3}$
(ii) If $G \approx Z_{2} \times Z_{6}$, then G has subgroup of order 3

$$
H=\langle(0,2)\rangle=\{(0,0),(0,2),(0,4)\} \approx Z_{3}
$$

Cauchy's Theorem

If G be a finite group and $p \mid O(G)$ then G has element of order p.

Sylow's First Theorem

If G be a finite group and $p^{n} \mid O(G)$ then G has subgroup of order p^{n}.
e.g. $O(G)=56=8 \times 7$
$2 \mid O(G)$ then G has subgroup of order 2
$2^{2} \mid O(G)$ then G has subgroup of order $2^{2}=4$
$2^{3} \mid O(G)$ then G has subgroup of order $2^{3}=8$
$7 \mid O(G)$ then G has subgroup of order 7 .
Sylow-p subgroup (p -SSG): Let G be a finite group and $p^{n} \mid O(G)$ but $p^{n \times 1} \times O(G)$ then G ahs subgroup of order p^{n}, which is called Sylow's p-subgroup or p-SSG of order p^{n}.
e.g. $O(G)=12,2^{2} \mid O(G)$ but $2^{2+1} \times O(G)$ then G has 2 -SSG of order 4 .
Q. $O(G)=16$, find order of 2-SSG in G ?

Solution:

$O(G)=16=2^{4}$
$2^{4} \mid O(G)$ but $2^{4+1} \times O(G)$ then G has 2-SSG of order $2^{4}=16$
Q. $O(G)=27,3-\mathrm{SSG}$ of G is normal?

Solution:

$O(G)=27$ then $3^{3} \mid O(G)$ but $3^{3+1} \times O(G)$ then G has subgroup of order $3^{3}=27$, which is 3 -SSG.
$O(3-S S G)=27=O(G)$
$\Rightarrow 3-S S G=G$
We know that G , is always normal subgroup of G then 3-SSG is normal subgroup of G .
Q. $O(G)=8,2-\mathrm{SSG}$ of G is normal?

Solution: $O(G)=8$ then $2^{3} \mid O(G)$ but $2^{3+1} \times O(G)$ then G has subgroup of order 2^{3}, which is 2-SSG
$O(2-S S G)=8=O(G)$
$\Rightarrow 2 S S G=G$
We know that G is always normal subgroup of G then 2-SSG is normal subgroup of G .

Sylow's Second Theorem

Any two p-SSG of G are conjugate
i.e. If H_{1} and H_{2} are two p-SSG of G then $\exists x \in G$ (for x)

Such that $H_{1}=x H_{2} x^{-1}$ (p chosen once only)
Q. $G=S_{3}=\{I,(12),(13),(23),(123),(132)\}$
$O\left(S_{3}\right)=6$ and $2^{1} \mid O(G)$ but $2^{1+1} \times O(G)$ then G has 2-SSG of order $2^{1}=2$
2-SSG of $S_{3}, H_{1}=\{I,(12)\}, H_{2}=\{I,(13)\} H_{3}=\{I,(23)\}$
$H_{3}=x H_{2} x^{-1}$
H_{2} is conjugate to H_{3}
$H_{3}=x H_{2} x^{-1}$
Let $x=(12) \in S_{3}$
$x H_{2} x^{-1}=(12) H_{2}(12)^{-1}$
$=(12)\{I,(13)\}(12)^{-1}$
$=\left\{(12) I(12)^{-1},(12)(13)(12)^{-1}\right\}$
$=\{I,(23)\}$
$=H_{3}$
$(12)(13)(12)^{-1}$
$=\left(\frac{12}{21}\right)\left(\frac{13}{31}\right)\left(\frac{12}{21}\right)$
$=\left(\frac{12}{21}\right)\left(\frac{123}{231}\right)$
$=\left(\frac{123}{132}\right)$
H_{1} is conjugate to H_{2}
$H_{2}=x H x^{-1}$
Now, $3 \mid O\left(S_{3}\right)$ but $3^{1+1} \times O\left(S_{3}\right)$ then G has 3 -SSG of order $3^{1}=3$
\# of 3-SSG in $G=\frac{2}{\phi(3)}=\frac{2}{2}=1$
$H=\{I,(123),(132)\}$

H is conjugate to H

$$
\begin{aligned}
& H=x H x^{-1} \\
& x \in S_{3}, x=I \text { s.t. } x H x^{-1}=I H I^{-1} \\
& \Rightarrow H \sim H
\end{aligned}
$$

Sylow's Third Theorem

Statement: Number of P-SSG $\left(n_{p}\right)$ in G is equal to $1+k p$ such that $1+k p \mid O(G)$ and $k=0,1,2, \ldots$. i.e. $n_{p}=1+k_{p}$ such that $1+k_{p} \mid O(G), k=0,1,2, \ldots$.
Q. $O(G)=6$, find number of 2-SSG in G.

Solution: $O(G)=6=2 \times 3,2^{1} \mid O(G)$ but $2^{1+1} \times O(G)$ then G has 2 -SSG of order $2^{1}=2$.

No. of 2-SSG in $G\left(n_{2}\right)=1+2 k, k=0,1,2, \ldots$.
s.t. $1+2 k \mid O(G)$

Put $k=0, n_{2}=1+2.0=1$
and $1 \mid O(G)$ i.e. $1 \mid 6$ then $n_{2}=1$ is possible
put $k=1, n_{2}=1+2=3$ and $3 \mid O(G)$ i.e. $3 \mid 6$ then $n_{2}=3$ is possible.
Put $k=2, n_{2}=1+4=5$ and $5 \times O(G)$ so $n_{2}=5$ is not possible.
Similarly, $k=3,4,5, \ldots$ is not possible for 2-SSG.
If $O(G)=6$, then G has either unique 2-SSG or 3, 2-SSG.

If $G \approx Z_{6}$ then 2-SSG is unique.
If $G \approx S_{3}$ then 2-SSG is 3 .
Q. $O(G)=6$, find \# of 3-SSG in G?

Solution:

$O(G)=6=2 \times 3,3 \mid O(G)$ but $3^{1+1} \times O(G)$ then G has 3 -SSG of order $3^{1}=3$
No. of 3-SSG in $G\left(n_{3}\right)=1+3 k, k=0,1,2, \ldots$
s.t. $1+3 k \mid O(G)$ i.e. $1+3 k \mid 6$
(i) Put $k=0, n_{3}=1+3 \cdot 0=1$
$1 \mid 6$, then $n_{3}=1$ is possible.
(ii) Put $k=1, n_{3}=1+3 \cdot 1=4$ but $4 \times O(G)$ then $n_{3}=4$ is not possible for 3 -SSG.

Hence, if $O(G)=6$ then G has only unique 3 -SSG.
Similarly, for $k=2,3,4, \ldots$ is not possible for 3-SSG.
i.e. if $O(G)=6$, then there is unique 3 -SSG in G .
Q. Show that $3-\mathrm{SSG}$ and 5 -SSG in G is unique where $O(G)=15$?

Solution:
$O(G)=15=3 \times 5$
(i) For 3-SSG
$3^{\prime} \mid O(G)$ but $3^{1+1} \times O(G)$ then G has 3 -SSG of order $3^{\prime}=3$
No. of 3-SSG in $G\left(n_{3}\right)=1+3 k$
Put $k=0$, then $n_{3}=1+3 \cdot 0=1$ and $1 \mid O(G)$ then $n_{3}=1$ is possible for 3-SSG.
Put $k=1$, then $n_{3}=1+3 \cdot 0=1$ and $1 \mid O(G)$ then
$n_{3}=1$ is possible for 3-SSG.
Put $k=1$, then $n_{3}=4$ but $4 \times O(G)$ then
$n_{3}=4$ is not possible.
Similarly $k=2,3,4, \ldots$ is not possible for 3-SSG.
Then, G has unique 3-SSG which is $n_{3}=1$.
(ii) For 5 -SSG
$5^{1} \mid O(G)$ but $5^{1+1} \times O(G)$ then G has 5 -SSG of order 5 .
Similarly, like 3-SSG, 5-SSG also has unique 5-SSG.
Hence, G has unique 3-SSG and 5-SSG if $O(G)=15$

Homework
Q1. If $O(G)=33$ then G has unique 3-SSG and II-SSG
Q2. If $O(G)=35$ then G has unique 5 -SSG and 7-SSG.
Q3. If $O(G)=77$ then G has unique 7-SSG and II-SSG.
Note: If $O(G)=p q$ and $p \times q^{-1}$ then G has unique P-SSG and q-SSG.
Q. $G=G L_{n}\left(\mathbf{F}_{4}\right)$, find order of $\mathrm{q}-\mathrm{SSG}$ in G ?

Solution:

$$
\begin{align*}
& G=G L_{n}\left(\mathbf{F}_{\mathrm{q}}\right) \\
& O(G)=0\left(G L_{n}\left(\mathbf{F}_{\mathrm{q}}\right)\right)=\left(q^{n}-q^{n-1}\right)\left(q^{n}-q^{n-2}\right) \ldots\left(q^{n}\right) \\
& =q^{n-1}(q-1) q^{n-2}\left(q^{2}-1\right) \ldots q^{0}\left(q^{n}-1\right) \\
& =q^{(n-1)+(n-2)+\ldots+1+0}(q-1)\left(q^{2}-1\right) \ldots\left(q^{n}-1\right) \\
& =q^{0+1+2+\ldots+(n-1)}(q-1)\left(q^{2}-1\right) \ldots \ldots\left(q^{n}-1\right) \\
& O\left(G L_{n}\left(\mathbf{F}_{4}\right)\right)=q^{\frac{n(n-1)}{2}}(q-1)\left(q^{2}-1\right) \ldots\left(q^{n}-1\right) \tag{1}
\end{align*}
$$

From (1)
$\left.q^{\frac{n(n-1)}{2}} \right\rvert\, O(G)$ but $q^{\frac{n(n-1)}{2}} \times O(G)$
then $G=G L_{n}\left(\mathbf{F}_{\mathrm{q}}\right)$ has $\mathrm{q}-\mathrm{SSG}$ of order

$$
q^{\frac{n(n-1)}{2}}
$$

Q. $G=G L_{50}\left(\mathbf{F}_{\mathrm{q}}\right)$, find order of $\mathrm{q}-$ SSG

Solution: Order of q-SSG in $G=q^{\frac{50(50-1)}{2}}$
$=q^{49 \times 50}=q^{1225}$
Q. $G=S L_{n}\left(\mathbf{F}_{\mathrm{q}}\right)$, find order of q -SSG in G .

Solution:
$O\left(S L_{n}\left(\mathbf{F}_{\mathrm{q}}\right)\right)=\frac{\left(q^{n}-q^{n-1}\right)\left(q^{n}-q^{n-2}\right) \ldots \ldots\left(q^{n}-1\right)}{q-1}$
$=\frac{q^{\frac{n(n-1)}{2}}(q-1)\left(q^{2}-1\right) \cdots \ldots\left(q^{n}-1\right)}{(q-1)}$
$O\left(S L_{n}\left(\mathbf{F}_{\mathrm{q}}\right)\right)=q^{\frac{n(n-1)}{2}}\left(q^{2}-1\right)\left(q^{3}-1\right) \ldots \ldots\left(q^{n}-1\right)$
$\left.q^{\frac{n(n-1)}{2}} \right\rvert\, O(G)$ but $q^{\frac{n(n-1)}{2}+1} \times O(G)$ then G has q -SSG of order $q^{\frac{n(n-1)}{2}}$
Q. H is unique p-SSG in G iff H is normal subgroup of G .

Solution:
Let H is unique p -SSG in G of order p^{n} then $p^{n} \mid O(G)$ but $p^{n+1} \times O(G)$
Let $x \in G$ (x is arbitrary) s.t. $k=x H x^{-1}$ is subgroup of G because $O(k)=O\left(x H x^{-1}\right) O(H)=p^{n}$
Then, by Sylow's 1st theorem, k is subgroup of G of order p^{n}.
Since, $p^{n} \mid O(G)$ but $p^{n+1} \times O(G)$ then K is also p -SSG of G of order p^{n}.
But G has unique p-SSG then $k=H$
$\Rightarrow x H x^{-1}=H, \forall x \in G$
Then, H is normal subgroup of G .
Conversely, Let H is p-SSG of G and H is normal then $H=x H x^{-1} \forall x \in G$
Now, H and K are two p -SSG in G then by Sylow's second theorem \exists some $x \in G$ s.t.
$k=x H x^{-1}$
From (1) and (2)
$k=H$, then H is unique.
Q. $G=\left\{x^{i} y^{j} \mid x^{3}=e, y^{13}=e ; x y \neq y x, i=0,1,2, y=0,1,2, ..\right\}$
(i) How many 13-SSG in G?
(ii) 13 -SSG in G is normal subgroup of G ?

Solution:
(i) $O(G)=39=3 \times 13$ and G is non-abelain $13^{1} \mid O(G)$ but $13^{1+1} \times O(G)$ then G has 13 -SSG of order $13^{1}=13$.
\# of 13 -SSG in $G=1+13 k, k=0,1, \ldots$ and $1+13 k \mid O(G)$
Put $k=0$ then
$n_{13}=1+13 \cdot 1=1$ and $1 \mid O(G)$ then $n_{13}=1$ is possible.
Put $k=1$, then
$n_{13}=1+13 \cdot 1=14$ and $14 \times O(G)$ then $n_{13}=14$ is not possible.
Similarly, $k=2,3,4,5, \ldots$ are not possible for 13-SSG.
then G has unique 13 -SSG.
(ii) Since $13-\mathrm{SSG}$ in G is unique then 13-SSG of G is normal subgroup of G .
Q. $O(G)=39$ and G is non-abelian.
(i) How many 3-SSG in G?
(ii) 3 -SSG in G is normal.

Solution:
$O(G)=39=3 \times 13$ and G is non-abelian group $3^{1} \mid O(G)$ but $3^{1+1} \times O(G)$ then G has 3 -SSG of order $3^{1}=3$.
\# of 3-SSG in $G=1+3 k, k=0,1,2$, s.t. $1+3 k \mid O(G)$
Put $k=0$, then $n_{3}=1+3 \cdot 0=1$ and $1 \mid O(G)$ then $n_{3}=1$ is possible.
Put $k=1$, then $n_{3}=1+3 \cdot 1=4$ and $4 \times O(G)$ then $n_{3}=4$ is not possible for 3-SSG.
Put $k=2$ then $n_{3}=1+3 \cdot 2=7$ and $7 \times O(G)$ then $n_{3}=7$ is not possible for 3-SSG.
Put $k=3$ then $n_{3}=1+3 \cdot 3=10$ and $10 \times O(G)$ then $n_{3}=10$ is not possible for 3-SSG.
Put $k=4$ then $n_{3}=1+3 \cdot 4=14$ and $13 \mid O(G)$ then $n_{3}=13$ is possible for 3 -SSG.
Similarly, now $k=5,6, \ldots$. are not possible for 3-SSG.
\# of 3-SSG in $G=1$ or 13 .
Now,
(i) $O(G)=39$ and G is non-abelian then G has 13 subgroups of order 3 .
$\Rightarrow G$ has 13, 3-SSG.
(ii) 3-SSG of G is not normal.
Q. $O(G)=39$ and G is non-abelian. How many normal subgroups in G ?

Solution: $O(G)=3 \times 13$, possible order of subgroups in G are $1,3,13$ and 39 .
Subgroups of G of order 1 and 39 are always normal ($H=\{e\}$ and $H=G$ are always normal)
$13-\mathrm{SSG}$ or order $13^{1}=13$ is unique
subgroup of G then 13 -SSG is also normal subgroup of G .
If G is non-abelain then G has 13,3 -SSG then 3-SSG of order 3 is not normal subgroup of G .
Then,
Total No. of Normal subgroups in $G=1+1+1=3$.
Q. $O(G)=55$, how many subgroups in G ?
(a) 4 (b) 14 (c) 16 (d) 2

Solution:
$O(G)=55=5 \times 11,5 \mid 11-1$, then $\exists 2$ possibilities
i.e.

(i) If G is abelian then G has exactly 4 -subgroups
(ii) If G is non-abelain then G has 14 subgroups
Q. How many normal subgroups in G if $O(G)=55$.
(a) 4 (b) 3 (c) 14 (d) 2

Solution:
(i) If G is abelian then all subgroups are normal i.e. 4 normal subgroup
(ii) If G is non-abelian then exactly 3 -normal subgroup
Q. If $O(G)=21$ and G is non-abelian then how many unique normal subgroup in G other than $\{e\}$ and G?
Ans. Unique
Q. $O(G)=168$ and G is simple, then how many 7-SSG in G ?
(a) 1 (b) 7 (c) 8 (d) 28

Solution:
$O(G)=8 \times 3 \times 7,7^{1} \mid O(G)$ but $7^{1+1} \times O(G)$ then G has $7-\mathrm{SSG}$ of order $7^{1}=7$
\# of $7-\mathrm{SSG}$ in $G=1+7 k, k=0,1,2$, s.t. $1+7 k \mid O(G)$
$n_{7}=1+7 k=7$ is not possible for $k=0,1,2$
$n_{7}=1+7 k=28$ is not possible for $k=0,1,2$
Since G is simple then G has only normal subgroup $\{e\}$ and G then has normal subgroup of order 1 and 168 only.
So,
$n_{7}=1+7 k=1$, if $k=0$
then 7 -SSG of order 7 is unique $\Rightarrow 7$-SSG is normal subgroup of G but G is simple then $n_{7}=1$ is not possible $\Rightarrow n_{7}=1+7 k=8$ is possible.
Q. $O(G)=77$, how many 7-SSG in G ?

Solution:
$O(G)=7 \times 11$, here $7 \times 11-1$
\therefore Unique 7 -SSG exists in G
Above method can also be used.
Q. $O(G)=n$ and G is abelian, if G has 11-SSG, then how many?

Solution:

$O(G)=n$ and G is abelian then all the subgroups of G are normal. If G has 11-SSG then 11-SSG of G is normal subgroups of G .
Then, 11-SSG of G is unique.
Q. (i) $G=Z_{2} \times Z_{4} \times Z_{4}, 2-\mathrm{SSG}$ of G is normal?
(ii) How many $2-\mathrm{SSG}$ in G ?

Solution:
$O(G)=Z_{2} \times Z_{4} \times Z_{4}=32,2^{5} \mid O(G)$ but $2^{5+1} \times 0$ then G has $2-$ SSG of order $2^{5}=32$.
Since G is abelian so 2 -SSG is normal.
Hence, unique 2-SSG of G exists.
$G=Z_{2} \times Z_{4} \times Z_{4}$ is normal subgroup of G.
Q. $G=Z_{2} \times S_{3}, 3-\mathrm{SSG}$ is normal in G ?

Solution:
$O(G)=O\left(Z_{2} \times S_{3}\right)=2 \times 6=12=2^{2} \times 3$
$3^{1} \mid O(G)$ but $3^{1+1} \times O(G)$ then G has 3 -SSG of order
No of 3 -SSG ${ }^{3} G$
$n_{3}=1+3 k, k=0,1,2,3, \ldots$ s.t. $1+3 k \mid O(G)$
Put $k=0$, then $n_{3}=1+3 \cdot 0=1$ then $n_{3}=1$ is possible for $3-\mathrm{SSG}$.
Put $k=1$, then $n_{3}=4$ is possible for $3-\mathrm{SSG}$.
Then
\#of 3-SSG in G is 1 or 4.
No. of subgroup of order 3 in $Z_{2} \times S_{3}=\frac{2}{\phi(3)}=\frac{2}{2}=1$
then 3-SSG in G is unique.
$\therefore 3$-SSG is normal in G.
Q. $G=Z_{2} \times S_{3}, 2-\mathrm{SSG}$ of G is normal?

Solution:
$G=Z_{2} \times S_{3}=O\left(Z_{2} \times S_{3}\right)=12=2^{2} \times 3$
$2^{2} \mid O(G)$ but $2^{2+1} \times O(G)$ then G has 2-SSG of order 4 .
$Z_{2} \times S_{3}=\{(0, I),(0,(12)),(0,(13)),(0,(23)),(0(123)),(0,(132)),(1, I),(1,(12)),(1,(13)),(1,(23)),(1,(123)),(1,(132))\}$
2-SSG of $Z_{2} \times S_{3}$

$$
\begin{aligned}
& H_{1}=\{(0, I),(0,(12)),(1,(12)),(1, I)\} \\
& H_{2}=\{(0, I),(0,(13)),(1, I),(1,(13))\} \\
& H_{3}=\{(0, I),(0,(23)),(1, I),(1,(23))\}
\end{aligned}
$$

Since 2-SSG of $Z_{2} \times S_{3}$ is not unique then 2-SSG of $Z_{2} \times S_{3}$ is not normal.
Verification: H_{1} is not normal subgroup of $Z_{2} \times S_{3}$

$$
\begin{aligned}
& x=(0,(123)) \in Z_{2} \times S_{3} \\
& h=(0,(12)) \in H_{1} \\
& x h x^{-1}=(0,(123))(0,(12))(0,(123))^{-1} \\
& =(0,(123))(0,(12))(0,(132)) \\
& =(0,(123))(12)(132) \\
& =(0,(23)) \notin H_{1}
\end{aligned}
$$

then H_{1} is not normal subgroup of $Z_{2} \times S_{3}$.
Show that H_{2} and H_{3} also not normal subgroup of $Z_{2} \times S_{3}$.
Q. 3-SSG of $S_{3} \times S_{3}$ is normal in G?

Solution:
$O(G)=O\left(S_{3} \times S_{3}\right)=O\left(S_{3}\right) \times O\left(S_{3}\right)=6 \times 6=36=2^{2} \times 3$
For 3-SSG, $3^{2} \mid O(G)$ but $3^{2+1} \times O(G)$ then G has 3 -SSG of order $3^{2}=9$
$G=S_{3} \times S_{3}$ i.e. $G=G_{1} \times G_{2}$
3-SSG of S_{3} is normal
Similarly, 3-SSG of S_{3} is normal.
Then, 3 -SSG of $S_{3} \times S_{3}$ is normal
\therefore 3-SSG of $S_{3} \times S_{3}$ is unique.
Note: p -SSG in $G_{1} \times G_{2} \times \ldots \ldots \times G_{n}$ is normal if p -SSG is normal in each G_{i}.
Q. $G=Z_{4} \times S_{3}, 3-\mathrm{SSG}$ of G is normal?

Solution:
3-SSG in Z_{4} does not exist and 3-SSG in S_{3} is normal then 3-SSG of $Z_{4} \times S_{3}$ is normal.
Now, $O\left(Z_{4} \times S_{3}\right)=O\left(Z_{4}\right) \times O\left(S_{3}\right)=24=8 \times 3$
$3^{\prime} \mid O(G)$ but $3^{1+1} \times O(G)$ then G has 3 -SSG of order 3 .
\# of subgroup of order 3 in $Z_{4} \times S_{3}=\frac{2}{\phi(3)}=\frac{2}{2}=1$
3-SSG of $Z_{4} \times S_{3}=\{(0, I),(0,(123)),(0,(132))\}$
Q. $G=Z_{4} \times S_{3}$, subgroup of order 8 is normal subgroup in $Z_{4} \times S_{3}$?

Solution:
$G=Z_{4} \times S_{3}$
$O(G)=O\left(Z_{4} \times S_{3}\right)=2^{3} \times 3$
For 2-SSG, $2^{3} \mid O(G)$ but $2^{3+1} \times O(G)$ then G has 2-SSG of order $8=2^{3}$
Now, 2-SSG is normal in Z_{4} but 2-SSG is not normal in S_{3}.
$\Rightarrow 2-S S G$ is not normal in $Z_{4} \times S_{3}$
Q. How many subgroup of order 8 in $Z_{4} \times S_{3}$?
Q. $O(G)=30$, then show that G is not simple.

Solution:
$O(G)=30=2 \times 3 \times 5$
For 5-SSG, $5^{1} \mid O(G)$ but $5^{1+1} \times O(G)$ then G has 5 -SSG of order 5
\# of 5 -SSG in $G=1+5 k, k=0,1,2, \ldots$ s.t. $1+5 k \mid O(a)$
Put $k=0$, then $n_{5}=1+5 \cdot 1=1, n_{5}=1$ is possible
Put $k=1$, then $n_{5}+1+5 \cdot 1=6, n_{5}=6$ is possible
as $1 \mid O(G)$ and also $6 \mid O(G)$, hence $n_{5}=1$ and 6 is possible.
Similarly, $k=2,3,4 \ldots$ are not possible for 5 -SSG
then $n_{5}=1$ or $n_{5}=6$
For 3-SSG, $3^{1} \mid O(G)$ but $3^{1+1} \times O(G)$ then G has 3 -SSG of order 3
No. of 3-SSG in $G=1+3 k, k=0,1,2$ s.t.l $1+3 k \mid O(G)$
Put $k=0$ then $n_{3}=1+3 \cdot 0=1, n_{3}=1,1 \mid O(G)$ then $n_{3}=1$ is possible.
Put $k=0,1$ and 2 not possible for 3-SSG then
Put $k=3, n_{3}=1+3 \times 3=10, n_{3}=10$ and $10 \mid O(G)$ then $n_{3}=10$ is possible.
$\Rightarrow n_{3}=1$ or 10
From (1) and (2), 4 cases arises

	n_{3}	n_{5}
Case I	1	1

Case II	1	6
Case III	10	1
Case IV	10	6

Case I, II and III represent that G has normal subgroup other than $\{e\}$ and G then G is not simple and care IV is not possible for G.
In case IV, no. of elements of order 3 for each $3-\mathrm{SSG}=2$
Total no. of elements of order 3 in G for 3-SSG
$=10 \times 2=20$
Similarly, no. of elements for 5 -SSG of order $5=4$
Total no. of elements of order 5 in G for $5-\mathrm{SSG}=6 \times 4=20$
Total No. of elements in G of order 3 and $5=20+24=44$
So case IV is not possible.
Note: up to Isomorphic = Non-isomorphic
Q. $O(G)=122$, how many non-isomorphic is possible.

Solution:
$O(G)=122=2 \times 61,2 \mid 61-1, \exists 2$ possibility

then 2 non-isomorphic group is possible
i.e. $G \approx Z_{122}$ or $G \approx D_{61}$

Note: $n=p_{1}^{r_{1}} \cdot p_{2}^{r_{2}} \ldots \ldots \ldots . p_{k}^{r_{k}}$
then \# of non-isomorphic abelian group of order n
$=P\left(r_{1}\right) \times P\left(r_{2}\right) \times \ldots \ldots . . \times P\left(r_{k}\right)$
Q. $O(G)=24$, how many non-isomorphic abelian group?

Solution: $O(G)=24=2^{3} \times 3$
\# of non-isomorphic abelian group $=P(3) \times P(1)=3$
(i) Z_{24} (ii) $Z_{4} \times Z_{2} \times Z_{3}$ (iii) $Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}$
Q. $O(G)=10^{5}$, how many non-isomorphic abelian group?

Solution:
$O(G)=10^{5}=(2 \times 5)^{5}=2^{5} \times 5^{5}$
$\#$ of non-isomorphic abelian group $=P(5) \times P(5)$
$=7 \times 7=49$
[$H=\{e\}$ is trivial subgroup]

Upendra Singh : Mindset Makers for UPSC
 GROUP THEORY

1. GROUPS AND SUBGROUPS

2. CYCLIC GROUPS
3. COSETS, NORMAL SUBGROUPS \& QUOTIENT GROUPS
4. HOMOMORPHISM AND AUTOMORPHISMS
5. PERMUTATION GROUPS

1. GROUPS AND SUBGROUPS

Q1. Let p be a prime number. Then show that $(p-1) 1+1=\bmod (p)$
Also, find the remainder when $6^{4} \cdot(22) 1+3$ is divided by 23.

Upendra Singh : Mindset Makers for UPSC

Q2. If in the group G, $a^{s}=e, a b a^{-1}=b^{2}$ for some $a, b \in G$, find the order of b.

Upendra Singh : Mindset Makers for UPSC

 Q3. Prove that every group of order four is Abelian.
Upendra Singh : Mindset Makers for UPSC

Q4. Let G be the set of all real numbers except -1 and define $a^{*} b=a+b+a b \forall a, b \in G$. Examine if G is an Abelian group under *.

Upendra Singh : Mindset Makers for UPSC

Q5. Prove that the set of all bijective functions from a non-empty set X onto itself is a group with respect to usual composition of functions.

Upendra Singh : Mindset Makers for UPSC

Q6. If G is a group in which $(a \cdot b)^{4}=a^{4} \cdot b^{4},(a \cdot b)^{5}=a^{5} \cdot b^{5}$ and $(a \cdot b)^{6}=a^{6} \cdot b^{6}$ for all $a, b \in G$, then prove that G is Abelian.

Upendra Singh : Mindset Makers for UPSC

Q7. Give an example of an infinite group in which every element has finite order.

Upendra Singh : Mindset Makers for UPSC

Q8. Prove that if every element of a group $(G, 0)$ be its own inverse, then it is an abelian group.

Upendra Singh : Mindset Makers for UPSC

Q9. How many elements of order 2 are there in the group of order 16 generated by a and b such that the order of a is 8 , the order of b is 2 and $b a b^{-1}=a^{-1}$.

Upendra Singh : Mindset Makers for UPSC

Q10. Show that the set
$G=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$ of six transformations on the set of
Complex numbers defined by
$f_{1}(z)=z, f_{2}(z)=1-z$
$f_{3}(z)=\frac{z}{(z-1)}, f_{4}(z)=\frac{1}{z}$
$f_{5}(z)=\frac{1}{(1-z)}$ and $f_{6}(z)=\frac{(z-1)}{z}$ is a non-abelian group of order 6 w.r.t composition of mappings.

Upendra Singh : Mindset Makers for UPSC

Q11. Let a and b be elements of a group with $a^{2}=e, b^{6}=e$ and $a b=b^{4} a$. Find the order of $a b$, and express its inverse in each of the forms $a^{m} b^{n}$ and $b^{n} a^{n}$.

Upendra Singh : Mindset Makers for UPSC

Q12. Let G be a group, and x and y be any two elements of G. IF $y^{5}=e$ and $y x y^{-1}=x^{2}$, then show that $O(x)=31$, where e is the identity element of G and $x \neq e$.

Upendra Singh : Mindset Makers for UPSC

Q13. Let ${ }_{G=\mathbf{R}-\{-1\}}$ be the set of all real numbers omitting
-1 . Define the binary relation * on G by $a^{*} b=a+b+a b$.
Show ($G,{ }^{*}$) is a group and it is abelian.
Q14. Let
$G=\left\{\left.\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \right\rvert\, a \in \mathbf{R}, a \neq 0\right\}$. Show that G is group under matrix multiplication.

Upendra Singh : Mindset Makers for UPSC

Q15. Show that zero and unity are only idempotent of z_{n} if $n=p^{r}$, where p is a prime.

2. CYCLIC GROUPS

Q1. Let G be a finite cyclic group of order n. Then prove that G has $\phi(n)$ generators (where ϕ is Euler's ϕ function).

Upendra Singh : Mindset Makers for UPSC

Q2. Let G be a finite group and let p be a prime. If $p^{p^{\prime \prime}}$ divides order of G , then show that G has a subgroup of order p^{m}, where m is a positive integer.

Upendra Singh : Mindset Makers for UPSC

Q3. Let p be a prime number and z_{ρ} denote the additive group of integers modulo p . Show that every non-zero elements of \mathbf{z}_{p} generates \mathbf{z}_{p}.

Upendra Singh : Mindset Makers for UPSC

Q4. Let G be a group of order $p q$, where p and q are prime numbers such that $p>q$ and $q \times(p-1)$. Then prove that G is cyclic.

Upendra Singh : Mindset Makers for UPSC

Q5. How many generators are there of the cyclic group G of order 8? Explain. Taking a group $\{,, a, b, c\}$ of order 4 , where e is the identity, construct composition tables showing that one is cyclic while the other is not.

Upendra Singh : Mindset Makers for UPSC

Q6. If in a group G there is an element a of order 360, what is the order of a^{220} ? Show that if G is a cyclic group of order n and m divides n, then G has a subgroup of order m.

Upendra Singh : Mindset Makers for UPSC

Q7. Prove that a group of prime order is abelian. How many generators are there of the cyclic group (G, $)$ of order 8 ?

Upendra Singh : Mindset Makers for UPSC

Q8. Given an example of group G in which every proper subgroup is cyclic but the group itself is not cyclic.

Upendra Singh : Mindset Makers for UPSC

Q9. Let G be a group of order $2 p, p$ prime. Show that either G is cyclic or G is generated by $\{a, b\}$ with relations $a^{p}=e=b^{2}$ and $b a b=a^{-1}$.

Upendra Singh : Mindset Makers for UPSC

Q10. Show that a cyclic group of order 6 is isomorphic to the product of a cyclic group of order 2 and a cyclic group of order 3. Can you generalize this? Justify.

Upendra Singh : Mindset Makers for UPSC

Q11. Determine the number of homeomorphisms from the additive group \mathbf{z}_{15} to the additive group \mathbf{z}_{10}. (\mathbf{z}_{n} is the cyclic group of order n).

Upendra Singh : Mindset Makers for UPSC

3. COSETS, NORMAL SUBGROUPS \& QUOTIENT GROUPS

Q1. Let G be a finite group, H and K subgroups of G such that $K \subset H$. Show that $(G: K)=(G: H)(H: K)$.

Upendra Singh : Mindset Makers for UPSC

Q2. Write down all quotient groups of the group z_{1}.

Upendra Singh : Mindset Makers for UPSC

Q3. Prove that a non-commutative group of order $2 n$, where n is an odd prime must have a subgroup of order n.

Upendra Singh : Mindset Makers for UPSC

Q4. Let H be a cyclic subgroup of a group G . If H be a normal subgroup of G, prove that every subgroup of H is a normal subgroup of G.

Upendra Singh : Mindset Makers for UPSC

Q5. Let H and K are finite normal subgroups of coprime order of a group G. Prove that $h k=k h \forall h \in H$ and $k \in K$.

Upendra Singh : Mindset Makers for UPSC

 Q6. Let G be the set of all real 2×2 matrices $\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right]$, where $x z \neq 0$. Show that G is a group under matrix multiplication. Let \mathbf{N} denote the subset $\left\{\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]: a \in \mathbf{R}\right\}$. Is \mathbf{N} a normal subgroup of G? Justify your answer.
Upendra Singh : Mindset Makers for UPSC

 Q7. Prove that a non-empty subset H of a group G is normal subgroup of $G \Leftrightarrow$ for all $x, y \in H, g \in G,(g x)(g y)^{-1} \in H$.
Upendra Singh : Mindset Makers for UPSC

Q8. If G is a finite Abelian group, then show that $o(a, b)$ is a divisor of 1.c.m. of $o(a), O(b)$.

Upendra Singh : Mindset Makers for UPSC

4. HOMOMORPHISM AND AUTOMORPHISMS

Q1. If G and H are finite groups whose orders are relatively prime, then prove that there is only one homomorphism from G to H , the trivial one.

Upendra Singh : Mindset Makers for UPSC

Q2. Show that the quotient group of ($\mathbf{R},+$) modulo z is isomorphic to the multiplicative group of complex numbers on the unit circle in the complex plane. Here \mathbf{r} is the set of real numbers and z is the set of integers.

Upendra Singh : Mindset Makers for UPSC

Q3. Find all the homeomorphisms from the group ($\mathbf{z},+$) to $\left(\mathbf{z}_{4},+\right.$).

Upendra Singh : Mindset Makers for UPSC
 Q4. Show that the groups $\mathbf{z}_{5} \times \mathbf{z}_{7}$ and \mathbf{z}_{ss} are isomorphic.

Upendra Singh : Mindset Makers for UPSC

Q5. Let G be the group of non-zero complex numbers under multiplication, and let N be the set of complex numbers of absolute value 1 . Show that G / N is isomorphic to the group of all positive real numbers under multiplication.

Upendra Singh : Mindset Makers for UPSC

Q6. Let (\mathbf{R}^{*}.) be the multiplicative group of non-zero reals and $(G L(n, \mathbf{R}) X)$ be the multiplicative group of $n \times n$ non-singular real matrices. Show that the quotient group $G L(n, \mathbf{R}) / S L(n, \mathbf{R}) \quad$ and $\quad\left(\mathbf{R}^{*},.\right) \quad$ are \quad isomorphic where $\operatorname{sL}(n, \mathbf{R})=\{A \in G L(n, \mathbf{R}) / \operatorname{dec} A=1\}$. What is the centre of GL (n, \mathbf{R}) ?

Upendra Singh : Mindset Makers for UPSC

Q7. Prove or disprove that ($\mathbf{R},+$) and (\mathbf{R}^{+},) are isomorphic groups where \mathbf{R}^{+}denotes the set of all positive real numbers.

Upendra Singh : Mindset Makers for UPSC

Q8. If \mathbf{R} is the set of real numbers and \mathbf{R}_{+}is the set of positive real numbers, show that \mathbf{R} under addition ($\mathbf{R},+$) and \mathbf{R}_{+}under multiplication $\left(\mathbf{R}_{+} \cdot\right)$ are isomorphic. Similarly if \mathbf{Q} is the set of rational numbers and \mathbf{Q}_{+}the set of positive rational numbers are ($\mathbf{Q},+$) and ($\left.\mathbf{Q}_{+}, \cdot\right)$ isomorphic? Justify your answer.

Upendra Singh : Mindset Makers for UPSC 5. PERMUTATION GROUPS

Q1. Let s_{3} and z_{3} be permutation group on 3 symbols and group of residue classes module 3 respectively. Show that there is no homomorphism of s_{3} in z_{3} except the trivial homomorphism.

Upendra Singh : Mindset Makers for UPSC

Q2. Show that the smallest subgroup V of A_{4} containing $(1,2)(3,4),(1,3)(2,4)$ and $(1,4)(2,3)$ is isomorphic to the Klein 4group.

Upendra Singh : Mindset Makers for UPSC

Q3. Let G be a group of order n. Show that G is isomorphic to a subgroup of the permutation group s_{n}.

Upendra Singh : Mindset Makers for UPSC

Q4. Show that any non-abelian group of order 6 is isomorphic to the symmetric group s_{3}.

Upendra Singh : Mindset Makers for UPSC

Q5. What is the maximum possible order of a permutation in s_{8}, the group of permutations on the eight numbers $\{1,2,3, \ldots, 8\}$? Justify your answer. (Majority of marks will be given for the justification.)

Upendra Singh : Mindset Makers for UPSC

Q6. What are the orders of the following permutations in s_{10} ?
$\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 8 & 7 & 3 & 10 & 5 & 4 & 2 & 6 & 9\end{array}\right)$ and $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)\left(\begin{array}{ll}6 & 7\end{array}\right)$.

Upendra Singh : Mindset Makers for UPSC

Q7. What is the maximal possible order of an element in s_{10} ? Why? Give an example of such an element. How many elements will there be in s_{10} of that order?

Upendra Singh : Mindset Makers for UPSC

Q8. How many conjugacy classes does the permutation group s_{s} of permutations 5 numbers have? Write down one element in each class (preferably in terms of cycles).

Upendra Singh : Mindset Makers for UPSC

Q9. Show that in a symmetric group s_{3}, there are four elements σ satisfying $\sigma^{2}=$ Identity and three elements satisfying $\sigma^{3}=$ Identity.

Upendra Singh : Mindset Makers for UPSC

Q10. Show that the alternating group on four letters A_{4} has no subgroup of order 6 .

