UPSC CSE main 2023 Mathematics Optional Paper-1

https://www.youtube.com/playlist?list=PL6ET B1X78jXi3-Ve8zyWn1184YSCXpB8

Q1. (a) Let $V_{1}=(2,-1,3,2), V_{2}=(-1,1,1,-3)$, and $V_{3}=(1,1,9,-5)$ be three vectors of the space IR^{4}.

$$
\begin{equation*}
\text { Does }(3,-1,0,-1) \in \operatorname{span}\left\{V_{1}, V_{2}, V_{3}\right\} ? \text { Justify your answer. } \tag{10}
\end{equation*}
$$

(b) Find the rank and nullity of the linear transformation:

$$
\begin{equation*}
T: I R^{3} \rightarrow I R^{3} \text { given by } T(x, y, z)=(x+z, x+y+2 z, 2 x+y+3 z) \tag{10}
\end{equation*}
$$

(c) Find the values of p and q for which $\lim _{x \rightarrow 0} \frac{x(1+p \cos x)-q \sin x}{x^{3}}$ exists and equals 1 .
(d) Examine the convergence of the integral $\int_{0}^{1} \frac{\log x}{1+x} d x$.
(e) A variable plane which is at a constant distance $3 p$ from the origin O cuts the axes in the points A, B, C respectively. Show that the locus of the centroid of the tetrahedron OABC

$$
\begin{equation*}
\text { is } 9\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}\right)=\frac{16}{p^{2}} \tag{10}
\end{equation*}
$$

Q2. (a) If the matrix of a linear transformation $T: \mathrm{IR}^{3} \rightarrow \mathrm{IR}^{3}$ relative to the basis $\{(1,0,0),(0,1,0),(0,0,1)\}$ is $\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & 2^{1} & 1 \\ 0 & 1 & 3\end{array}\right]$ then find the matrix of T relative to the basis $\{(1,1,1),(0,1,1),(0,0,1)\}$.
(b) Evaluate the triple integral which gives the volume of the solid enclosed between the two paraboloids $Z=5\left(x^{2}+y^{2}\right)$ and $Z=6-7 x^{2}-y^{2}$.
(c)i. Show that the equation $2 x^{2}+3 y^{2}-8 x+6 y-12 z+11=0$ represents an elliptic paraboloid.

> Also find its principal axis and principal planes.
(c)ii. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the coordinate axes in A, B, C respectively. Prove that the equation of the cone generated by the lines drawn from the origin O to meet the

$$
\begin{equation*}
\text { circle } A B C \text { is } y z\left(\frac{b}{c}+\frac{c}{b}\right)+z x\left(\frac{c}{a}+\frac{a}{c}\right)+x y\left(\frac{b}{a}+\frac{a}{b}\right)=0 \tag{10}
\end{equation*}
$$

Q3. (a) Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
(i) Verify the Cayley-Hamilton theorem for the matrix A.
(ii) Show that, $A^{n}=A^{n-2}+A^{2}-1$ for $n \geq 3$ where I is the identity matrix of order 3. Hence, find A^{40}.
(b) Justify whether $(0,0)$, is an extreme point for the function $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$.
(c) Find the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}-4 x-6 y+2 z-16=0$; $3 x+y+3 z-4=0$ in the following two cases.
(i) the point $(1,0,-3)$ lies on the sphere.
(ii) the given circle is a great circle of the sphere.

Q4. (a) Find the rank of the matrix $A=\left[\begin{array}{cccc}1 & 2 & -1 & 0 \\ -1 & 3 & 0 & -4 \\ 2 & 1 & 3 & -2 \\ 1 & 1 & 1 & -1\end{array}\right]$ by
(b) Trace the curve $y^{2}\left(x^{2}-1\right)=2 x=1$.
(c) Prove that the locus of a line which meets the lines $y=m x, z=c ; y=-m x, z=-c$ and the circle

$$
\begin{equation*}
x^{2}+y^{2}=a^{2}, z=0 \text { is } c^{2} m^{2}(c y-m z x)^{2}+c^{2}(y z-c m x)^{2}=a^{2} m^{2}\left(z^{2}-c^{2}\right)^{2} \tag{15}
\end{equation*}
$$

Q5. (a) Obtain the solution of the initial-value problem $\frac{d y}{d x}-2 x y=2, y(0)=1$ in the form $y=e^{x^{2}}[1+\sqrt{\pi} \operatorname{erf}(x)]$.
(b) Given that $L\{f(t) ; p\}=F(p)$.

$$
\text { Show that } \int_{0}^{\infty} \frac{f(t)}{t} d t=\int_{0}^{\infty} F(x) d x . \text { Hence evaluate the integral } \int_{0}^{\infty} \frac{e^{-t}-e^{-3 t}}{t} d t .(10)
$$

(c) A cylinder of radius ' a ' touches a vertical wall along a generating line. Axis of the cylinder is fixed horizontally. A uniform flat beam of length ' l ' and weight ' W ' rests with its extremities in contact with the wall and the cylinder, making an angle of 45° with the vertical. If frictional forces are neglected, then show that $\frac{a}{l}=\frac{\sqrt{5}+5}{4 \sqrt{2}}$ Also, find the reactions of the cylinder and wall.
(d) A particle is moving under Simple Harmonic Motion of period T about a centre O. It passes through the point P with velocity v along the direction $O P$ and $O P=p$. Find the time that elapses before the particle returns to the point P. What will be the value of p when the elapsed time is $\frac{T}{2}$?
(e) If $\vec{a}=\sin \theta \hat{i}+\cos \theta \hat{i}+\theta k$
$\vec{b}=\cos \theta \hat{i}-\sin \theta \hat{i}-3 k$

$$
\vec{c}=2 \hat{i}+3 \hat{i}-3 k
$$

then find the values of the derivative of the vector function $\vec{a} \times(\vec{b} \times \vec{c})$ w.r.t θ at

$$
\begin{equation*}
\theta=\frac{\pi}{2} \text { and } \theta=\pi \tag{10}
\end{equation*}
$$

Q6. (a) Solve the differential equation:

$$
\begin{equation*}
\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-2 y=e^{x}+\cos x \tag{15}
\end{equation*}
$$

(b) When a particle is projected from a point O_{l} on the sea level with a velocity v and angle of projection θ with the horizon in a vertical plane, its horizontal range is R_{1}. If it is further projected from a point O_{2}, which is vertically above O_{1} at a height h in the same vertical plane, with the same velocity v and same angle θ with the horizon, its horizontal range is R_{2}. Prove that $R_{2}>R_{1}$ and $\left(\mathrm{R}_{2}=\mathrm{R}_{1}\right): \mathrm{R}_{1}$ is equal to

$$
\begin{equation*}
\frac{1}{2}\left\{\sqrt{\left(1+\frac{2 g h}{v^{2} \sin ^{2} \theta}\right)}-1\right\}: 1 \tag{15}
\end{equation*}
$$

(c) Evaluate the integral $\iint_{S}\left(3 y^{2} z^{2} \hat{i}+4 z^{2} x^{2} j+z^{2} y^{2} k\right) n d S$ where S is the upper part of the surface $4 x^{2}+4 y^{2}+4 z^{2}=1$ above the plane $z=0$ and bounded by the $x y$-plane. Hence, verify Gauss-Divergence theorem.

Q7. (a)i. Find the solution of the differential equation: : $\frac{d y}{d x}=-\frac{2 x y^{3}}{3 x^{2} y^{2}+8 e^{4 y}}$
(a)ii. Reduce the equation $x^{2} p^{2}+y(2 x+y) p+y^{2}=0$ to Clairaut's form by the substitution $y=u$ and $x y=v$. Hence solve the equation and show that $y+4 x=0$ is a singular solution of the differential equation.
(b) A solid hemisphere is supported by a string fixed to a point on its rim and to a point on a smooth vertical wall with which the curved surface is in contact. If θ is the angle of inclination of the string with vertical and ϕ is the angle of inclination of the plane base of the hemisphere to the vertical, then find the value of $(\tan \phi-\tan \theta)$.
(c) If the tangent to a curve makes a constant angle θ with a fixed line, then prove that the ratio of radius of torsion to radius of curvature is proportional to $\tan \theta$. Further prove that if this ratio is constant, then the tangent makes a constant angle with a fixed direction.

+91_9971030052

Q8. (a) Solve the following initial value problem by using Laplace transform technique:

$$
\begin{align*}
& \frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}+3 y(t)=f(t) \\
& y(0)=1, y(0)=0 \text { and } f(t), t \text { is a given function of } \mathrm{t} \tag{15}
\end{align*}
$$

(b) A particle is projected from an apse at a distance \sqrt{c} from the centre of force with a velocity $\sqrt{\frac{2 \lambda}{3} c^{3}}$ and is moving with central acceleration $\lambda\left(r^{5}-c^{2} r\right)$. Find the path of motion of this particle. Will that be the curve $x^{4}+y^{4}=c^{2}$?
(c) For a scalar point function ϕ and vector point function f, prove the identity $\nabla \cdot(\phi \vec{f})=\nabla \phi \cdot \vec{f}+\phi(\nabla \cdot \vec{f})$. Also find the value of $\nabla \cdot\left(\frac{f(r)}{r} \vec{r}\right)$ and then verify stated identity.

Words from Upendra Sir: mindset makers.
from UPSC 2023 Batch playlist, students can get the words where I put emphasis . Category of questions.
Yes it's a motivation for me too to keep my ways on. no matter I look slow on teaching or different but yes that's only thing which today motivates me.
https://youtube.com/playlist...
It's only to keep your confidence and faith alive with teaching methodologies I have been following. I may not be a perfect teacher but I believe I'm a good student who always tries to find Right Way to Prepare and Systematic Learning.
Join this ongoing YouTube Live Batch for UPSC IAS/IFoS 2024
https://www.youtube.com/playlist?list=PL6ET B1X78jXi3-Ve8zyWn1I84YSCXpB8
WELL PLANNED COURSE BOOK BASED ON DEMAND OF UPSC CSEIAS/IFOS :

